xref: /openbmc/qemu/target/ppc/machine.c (revision 6b829602e2f10f301ff8508f3a6850a0e913142c)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "sysemu/tcg.h"
6 #include "helper_regs.h"
7 #include "mmu-hash64.h"
8 #include "migration/cpu.h"
9 #include "qapi/error.h"
10 #include "kvm_ppc.h"
11 #include "power8-pmu.h"
12 #include "sysemu/replay.h"
13 
post_load_update_msr(CPUPPCState * env)14 static void post_load_update_msr(CPUPPCState *env)
15 {
16     target_ulong msr = env->msr;
17 
18     /*
19      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
20      * before restoring.  Note that this recomputes hflags.
21      */
22     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
23     ppc_store_msr(env, msr);
24 }
25 
get_avr(QEMUFile * f,void * pv,size_t size,const VMStateField * field)26 static int get_avr(QEMUFile *f, void *pv, size_t size,
27                    const VMStateField *field)
28 {
29     ppc_avr_t *v = pv;
30 
31     v->u64[0] = qemu_get_be64(f);
32     v->u64[1] = qemu_get_be64(f);
33 
34     return 0;
35 }
36 
put_avr(QEMUFile * f,void * pv,size_t size,const VMStateField * field,JSONWriter * vmdesc)37 static int put_avr(QEMUFile *f, void *pv, size_t size,
38                    const VMStateField *field, JSONWriter *vmdesc)
39 {
40     ppc_avr_t *v = pv;
41 
42     qemu_put_be64(f, v->u64[0]);
43     qemu_put_be64(f, v->u64[1]);
44     return 0;
45 }
46 
47 static const VMStateInfo vmstate_info_avr = {
48     .name = "avr",
49     .get  = get_avr,
50     .put  = put_avr,
51 };
52 
53 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
54     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
55 
56 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
57     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
58 
get_fpr(QEMUFile * f,void * pv,size_t size,const VMStateField * field)59 static int get_fpr(QEMUFile *f, void *pv, size_t size,
60                    const VMStateField *field)
61 {
62     ppc_vsr_t *v = pv;
63 
64     v->VsrD(0) = qemu_get_be64(f);
65 
66     return 0;
67 }
68 
put_fpr(QEMUFile * f,void * pv,size_t size,const VMStateField * field,JSONWriter * vmdesc)69 static int put_fpr(QEMUFile *f, void *pv, size_t size,
70                    const VMStateField *field, JSONWriter *vmdesc)
71 {
72     ppc_vsr_t *v = pv;
73 
74     qemu_put_be64(f, v->VsrD(0));
75     return 0;
76 }
77 
78 static const VMStateInfo vmstate_info_fpr = {
79     .name = "fpr",
80     .get  = get_fpr,
81     .put  = put_fpr,
82 };
83 
84 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
85     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
86 
87 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
88     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
89 
get_vsr(QEMUFile * f,void * pv,size_t size,const VMStateField * field)90 static int get_vsr(QEMUFile *f, void *pv, size_t size,
91                    const VMStateField *field)
92 {
93     ppc_vsr_t *v = pv;
94 
95     v->VsrD(1) = qemu_get_be64(f);
96 
97     return 0;
98 }
99 
put_vsr(QEMUFile * f,void * pv,size_t size,const VMStateField * field,JSONWriter * vmdesc)100 static int put_vsr(QEMUFile *f, void *pv, size_t size,
101                    const VMStateField *field, JSONWriter *vmdesc)
102 {
103     ppc_vsr_t *v = pv;
104 
105     qemu_put_be64(f, v->VsrD(1));
106     return 0;
107 }
108 
109 static const VMStateInfo vmstate_info_vsr = {
110     .name = "vsr",
111     .get  = get_vsr,
112     .put  = put_vsr,
113 };
114 
115 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
116     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
117 
118 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
119     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
120 
cpu_pre_save(void * opaque)121 static int cpu_pre_save(void *opaque)
122 {
123     PowerPCCPU *cpu = opaque;
124     CPUPPCState *env = &cpu->env;
125     int i;
126 
127     env->spr[SPR_LR] = env->lr;
128     env->spr[SPR_CTR] = env->ctr;
129     env->spr[SPR_XER] = cpu_read_xer(env);
130 #if defined(TARGET_PPC64)
131     env->spr[SPR_CFAR] = env->cfar;
132 #endif
133     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
134 
135     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
136         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
137         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
138         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
139         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
140     }
141     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
142         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
143         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
144         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
145         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
146     }
147 
148     /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
149     env->hflags_compat_nmsr = 0;
150 
151     if (tcg_enabled()) {
152         /*
153          * TCG does not maintain the DECR spr (unlike KVM) so have to save
154          * it here.
155          */
156         env->spr[SPR_DECR] = cpu_ppc_load_decr(env);
157     }
158 
159     return 0;
160 }
161 
162 /*
163  * Determine if a given PVR is a "close enough" match to the CPU
164  * object.  For TCG and KVM PR it would probably be sufficient to
165  * require an exact PVR match.  However for KVM HV the user is
166  * restricted to a PVR exactly matching the host CPU.  The correct way
167  * to handle this is to put the guest into an architected
168  * compatibility mode.  However, to allow a more forgiving transition
169  * and migration from before this was widely done, we allow migration
170  * between sufficiently similar PVRs, as determined by the CPU class's
171  * pvr_match() hook.
172  */
pvr_match(PowerPCCPU * cpu,uint32_t pvr)173 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
174 {
175     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
176 
177     if (pvr == pcc->pvr) {
178         return true;
179     }
180     return pcc->pvr_match(pcc, pvr, true);
181 }
182 
cpu_post_load(void * opaque,int version_id)183 static int cpu_post_load(void *opaque, int version_id)
184 {
185     PowerPCCPU *cpu = opaque;
186     CPUPPCState *env = &cpu->env;
187     int i;
188 
189     /*
190      * If we're operating in compat mode, we should be ok as long as
191      * the destination supports the same compatibility mode.
192      *
193      * Otherwise, however, we require that the destination has exactly
194      * the same CPU model as the source.
195      */
196 
197 #if defined(TARGET_PPC64)
198     if (cpu->compat_pvr) {
199         uint32_t compat_pvr = cpu->compat_pvr;
200         Error *local_err = NULL;
201         int ret;
202 
203         cpu->compat_pvr = 0;
204         ret = ppc_set_compat(cpu, compat_pvr, &local_err);
205         if (ret < 0) {
206             error_report_err(local_err);
207             return ret;
208         }
209     } else
210 #endif
211     {
212         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
213             return -EINVAL;
214         }
215     }
216 
217     /*
218      * If we're running with KVM HV, there is a chance that the guest
219      * is running with KVM HV and its kernel does not have the
220      * capability of dealing with a different PVR other than this
221      * exact host PVR in KVM_SET_SREGS. If that happens, the
222      * guest freezes after migration.
223      *
224      * The function kvmppc_pvr_workaround_required does this verification
225      * by first checking if the kernel has the cap, returning true immediately
226      * if that is the case. Otherwise, it checks if we're running in KVM PR.
227      * If the guest kernel does not have the cap and we're not running KVM-PR
228      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
229      * receive the PVR it expects as a workaround.
230      *
231      */
232     if (kvmppc_pvr_workaround_required(cpu)) {
233         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
234     }
235 
236     env->lr = env->spr[SPR_LR];
237     env->ctr = env->spr[SPR_CTR];
238     cpu_write_xer(env, env->spr[SPR_XER]);
239 #if defined(TARGET_PPC64)
240     env->cfar = env->spr[SPR_CFAR];
241 #endif
242     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
243 
244     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
245         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
246         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
247         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
248         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
249     }
250     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
251         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
252         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
253         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
254         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
255     }
256 
257     if (!cpu->vhyp) {
258         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
259     }
260 
261     post_load_update_msr(env);
262 
263     if (tcg_enabled()) {
264         /* Re-set breaks based on regs */
265 #if defined(TARGET_PPC64)
266         ppc_update_ciabr(env);
267         ppc_update_daw0(env);
268 #endif
269         /*
270          * TCG needs to re-start the decrementer timer and/or raise the
271          * interrupt. This works for level-triggered decrementer. Edge
272          * triggered types (including HDEC) would need to carry more state.
273          */
274         cpu_ppc_store_decr(env, env->spr[SPR_DECR]);
275         pmu_mmcr01a_updated(env);
276     }
277 
278     return 0;
279 }
280 
fpu_needed(void * opaque)281 static bool fpu_needed(void *opaque)
282 {
283     PowerPCCPU *cpu = opaque;
284 
285     return cpu->env.insns_flags & PPC_FLOAT;
286 }
287 
288 static const VMStateDescription vmstate_fpu = {
289     .name = "cpu/fpu",
290     .version_id = 1,
291     .minimum_version_id = 1,
292     .needed = fpu_needed,
293     .fields = (const VMStateField[]) {
294         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
295         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
296         VMSTATE_END_OF_LIST()
297     },
298 };
299 
altivec_needed(void * opaque)300 static bool altivec_needed(void *opaque)
301 {
302     PowerPCCPU *cpu = opaque;
303 
304     return cpu->env.insns_flags & PPC_ALTIVEC;
305 }
306 
get_vscr(QEMUFile * f,void * opaque,size_t size,const VMStateField * field)307 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
308                     const VMStateField *field)
309 {
310     PowerPCCPU *cpu = opaque;
311     ppc_store_vscr(&cpu->env, qemu_get_be32(f));
312     return 0;
313 }
314 
put_vscr(QEMUFile * f,void * opaque,size_t size,const VMStateField * field,JSONWriter * vmdesc)315 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
316                     const VMStateField *field, JSONWriter *vmdesc)
317 {
318     PowerPCCPU *cpu = opaque;
319     qemu_put_be32(f, ppc_get_vscr(&cpu->env));
320     return 0;
321 }
322 
323 static const VMStateInfo vmstate_vscr = {
324     .name = "cpu/altivec/vscr",
325     .get = get_vscr,
326     .put = put_vscr,
327 };
328 
329 static const VMStateDescription vmstate_altivec = {
330     .name = "cpu/altivec",
331     .version_id = 1,
332     .minimum_version_id = 1,
333     .needed = altivec_needed,
334     .fields = (const VMStateField[]) {
335         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
336         /*
337          * Save the architecture value of the vscr, not the internally
338          * expanded version.  Since this architecture value does not
339          * exist in memory to be stored, this requires a but of hoop
340          * jumping.  We want OFFSET=0 so that we effectively pass CPU
341          * to the helper functions.
342          */
343         {
344             .name = "vscr",
345             .version_id = 0,
346             .size = sizeof(uint32_t),
347             .info = &vmstate_vscr,
348             .flags = VMS_SINGLE,
349             .offset = 0
350         },
351         VMSTATE_END_OF_LIST()
352     },
353 };
354 
vsx_needed(void * opaque)355 static bool vsx_needed(void *opaque)
356 {
357     PowerPCCPU *cpu = opaque;
358 
359     return cpu->env.insns_flags2 & PPC2_VSX;
360 }
361 
362 static const VMStateDescription vmstate_vsx = {
363     .name = "cpu/vsx",
364     .version_id = 1,
365     .minimum_version_id = 1,
366     .needed = vsx_needed,
367     .fields = (const VMStateField[]) {
368         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
369         VMSTATE_END_OF_LIST()
370     },
371 };
372 
373 #ifdef TARGET_PPC64
374 /* Transactional memory state */
tm_needed(void * opaque)375 static bool tm_needed(void *opaque)
376 {
377     PowerPCCPU *cpu = opaque;
378     CPUPPCState *env = &cpu->env;
379     return FIELD_EX64(env->msr, MSR, TS);
380 }
381 
382 static const VMStateDescription vmstate_tm = {
383     .name = "cpu/tm",
384     .version_id = 1,
385     .minimum_version_id = 1,
386     .needed = tm_needed,
387     .fields = (const VMStateField []) {
388         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
389         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
390         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
391         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
392         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
393         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
394         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
395         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
396         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
397         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
398         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
399         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
400         VMSTATE_END_OF_LIST()
401     },
402 };
403 #endif
404 
sr_needed(void * opaque)405 static bool sr_needed(void *opaque)
406 {
407 #ifdef TARGET_PPC64
408     PowerPCCPU *cpu = opaque;
409 
410     return !mmu_is_64bit(cpu->env.mmu_model);
411 #else
412     return true;
413 #endif
414 }
415 
416 static const VMStateDescription vmstate_sr = {
417     .name = "cpu/sr",
418     .version_id = 1,
419     .minimum_version_id = 1,
420     .needed = sr_needed,
421     .fields = (const VMStateField[]) {
422         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
423         VMSTATE_END_OF_LIST()
424     },
425 };
426 
427 #ifdef TARGET_PPC64
get_slbe(QEMUFile * f,void * pv,size_t size,const VMStateField * field)428 static int get_slbe(QEMUFile *f, void *pv, size_t size,
429                     const VMStateField *field)
430 {
431     ppc_slb_t *v = pv;
432 
433     v->esid = qemu_get_be64(f);
434     v->vsid = qemu_get_be64(f);
435 
436     return 0;
437 }
438 
put_slbe(QEMUFile * f,void * pv,size_t size,const VMStateField * field,JSONWriter * vmdesc)439 static int put_slbe(QEMUFile *f, void *pv, size_t size,
440                     const VMStateField *field, JSONWriter *vmdesc)
441 {
442     ppc_slb_t *v = pv;
443 
444     qemu_put_be64(f, v->esid);
445     qemu_put_be64(f, v->vsid);
446     return 0;
447 }
448 
449 static const VMStateInfo vmstate_info_slbe = {
450     .name = "slbe",
451     .get  = get_slbe,
452     .put  = put_slbe,
453 };
454 
455 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
456     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
457 
458 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
459     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
460 
slb_needed(void * opaque)461 static bool slb_needed(void *opaque)
462 {
463     PowerPCCPU *cpu = opaque;
464 
465     /* We don't support any of the old segment table based 64-bit CPUs */
466     return mmu_is_64bit(cpu->env.mmu_model);
467 }
468 
slb_post_load(void * opaque,int version_id)469 static int slb_post_load(void *opaque, int version_id)
470 {
471     PowerPCCPU *cpu = opaque;
472     CPUPPCState *env = &cpu->env;
473     int i;
474 
475     /*
476      * We've pulled in the raw esid and vsid values from the migration
477      * stream, but we need to recompute the page size pointers
478      */
479     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
480         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
481             /* Migration source had bad values in its SLB */
482             return -1;
483         }
484     }
485 
486     return 0;
487 }
488 
489 static const VMStateDescription vmstate_slb = {
490     .name = "cpu/slb",
491     .version_id = 2,
492     .minimum_version_id = 1,
493     .needed = slb_needed,
494     .post_load = slb_post_load,
495     .fields = (const VMStateField[]) {
496         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
497         VMSTATE_END_OF_LIST()
498     }
499 };
500 #endif /* TARGET_PPC64 */
501 
502 static const VMStateDescription vmstate_tlb6xx_entry = {
503     .name = "cpu/tlb6xx_entry",
504     .version_id = 1,
505     .minimum_version_id = 1,
506     .fields = (const VMStateField[]) {
507         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
508         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
509         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
510         VMSTATE_END_OF_LIST()
511     },
512 };
513 
tlb6xx_needed(void * opaque)514 static bool tlb6xx_needed(void *opaque)
515 {
516     PowerPCCPU *cpu = opaque;
517     CPUPPCState *env = &cpu->env;
518 
519     return env->nb_tlb && (env->tlb_type == TLB_6XX);
520 }
521 
522 static const VMStateDescription vmstate_tlb6xx = {
523     .name = "cpu/tlb6xx",
524     .version_id = 1,
525     .minimum_version_id = 1,
526     .needed = tlb6xx_needed,
527     .fields = (const VMStateField[]) {
528         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
529         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
530                                             env.nb_tlb,
531                                             vmstate_tlb6xx_entry,
532                                             ppc6xx_tlb_t),
533         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
534         VMSTATE_END_OF_LIST()
535     }
536 };
537 
538 static const VMStateDescription vmstate_tlbemb_entry = {
539     .name = "cpu/tlbemb_entry",
540     .version_id = 1,
541     .minimum_version_id = 1,
542     .fields = (const VMStateField[]) {
543         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
544         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
545         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
546         VMSTATE_UINTTL(size, ppcemb_tlb_t),
547         VMSTATE_UINT32(prot, ppcemb_tlb_t),
548         VMSTATE_UINT32(attr, ppcemb_tlb_t),
549         VMSTATE_END_OF_LIST()
550     },
551 };
552 
tlbemb_needed(void * opaque)553 static bool tlbemb_needed(void *opaque)
554 {
555     PowerPCCPU *cpu = opaque;
556     CPUPPCState *env = &cpu->env;
557 
558     return env->nb_tlb && (env->tlb_type == TLB_EMB);
559 }
560 
561 static const VMStateDescription vmstate_tlbemb = {
562     .name = "cpu/tlbemb",
563     .version_id = 1,
564     .minimum_version_id = 1,
565     .needed = tlbemb_needed,
566     .fields = (const VMStateField[]) {
567         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
568         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
569                                             env.nb_tlb,
570                                             vmstate_tlbemb_entry,
571                                             ppcemb_tlb_t),
572         VMSTATE_END_OF_LIST()
573     },
574 };
575 
576 static const VMStateDescription vmstate_tlbmas_entry = {
577     .name = "cpu/tlbmas_entry",
578     .version_id = 1,
579     .minimum_version_id = 1,
580     .fields = (const VMStateField[]) {
581         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
582         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
583         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
584         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
585         VMSTATE_END_OF_LIST()
586     },
587 };
588 
tlbmas_needed(void * opaque)589 static bool tlbmas_needed(void *opaque)
590 {
591     PowerPCCPU *cpu = opaque;
592     CPUPPCState *env = &cpu->env;
593 
594     return env->nb_tlb && (env->tlb_type == TLB_MAS);
595 }
596 
597 static const VMStateDescription vmstate_tlbmas = {
598     .name = "cpu/tlbmas",
599     .version_id = 1,
600     .minimum_version_id = 1,
601     .needed = tlbmas_needed,
602     .fields = (const VMStateField[]) {
603         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
604         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
605                                             env.nb_tlb,
606                                             vmstate_tlbmas_entry,
607                                             ppcmas_tlb_t),
608         VMSTATE_END_OF_LIST()
609     }
610 };
611 
compat_needed(void * opaque)612 static bool compat_needed(void *opaque)
613 {
614     PowerPCCPU *cpu = opaque;
615 
616     assert(!(cpu->compat_pvr && !cpu->vhyp));
617     return cpu->compat_pvr != 0;
618 }
619 
620 static const VMStateDescription vmstate_compat = {
621     .name = "cpu/compat",
622     .version_id = 1,
623     .minimum_version_id = 1,
624     .needed = compat_needed,
625     .fields = (const VMStateField[]) {
626         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
627         VMSTATE_END_OF_LIST()
628     }
629 };
630 
reservation_needed(void * opaque)631 static bool reservation_needed(void *opaque)
632 {
633     return (replay_mode != REPLAY_MODE_NONE);
634 }
635 
636 static const VMStateDescription vmstate_reservation = {
637     .name = "cpu/reservation",
638     .version_id = 1,
639     .minimum_version_id = 1,
640     .needed = reservation_needed,
641     .fields = (const VMStateField[]) {
642         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
643         VMSTATE_UINTTL(env.reserve_length, PowerPCCPU),
644         VMSTATE_UINTTL(env.reserve_val, PowerPCCPU),
645 #if defined(TARGET_PPC64)
646         VMSTATE_UINTTL(env.reserve_val2, PowerPCCPU),
647 #endif
648         VMSTATE_END_OF_LIST()
649     }
650 };
651 
652 #ifdef TARGET_PPC64
bhrb_needed(void * opaque)653 static bool bhrb_needed(void *opaque)
654 {
655     PowerPCCPU *cpu = opaque;
656     return (cpu->env.flags & POWERPC_FLAG_BHRB) != 0;
657 }
658 
659 static const VMStateDescription vmstate_bhrb = {
660     .name = "cpu/bhrb",
661     .version_id = 1,
662     .minimum_version_id = 1,
663     .needed = bhrb_needed,
664     .fields = (VMStateField[]) {
665         VMSTATE_UINTTL(env.bhrb_offset, PowerPCCPU),
666         VMSTATE_UINT64_ARRAY(env.bhrb, PowerPCCPU, BHRB_MAX_NUM_ENTRIES),
667         VMSTATE_END_OF_LIST()
668     }
669 };
670 #endif
671 
672 const VMStateDescription vmstate_ppc_cpu = {
673     .name = "cpu",
674     .version_id = 5,
675     .minimum_version_id = 5,
676     .pre_save = cpu_pre_save,
677     .post_load = cpu_post_load,
678     .fields = (const VMStateField[]) {
679         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
680 
681         /* User mode architected state */
682         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
683 #if !defined(TARGET_PPC64)
684         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
685 #endif
686         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
687         VMSTATE_UINTTL(env.nip, PowerPCCPU),
688 
689         /* SPRs */
690         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
691         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
692 
693         VMSTATE_UNUSED(sizeof(target_ulong)), /* was env.reserve_addr */
694 
695         /* Supervisor mode architected state */
696         VMSTATE_UINTTL(env.msr, PowerPCCPU),
697 
698         /* Backward compatible internal state */
699         VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
700 
701         VMSTATE_END_OF_LIST()
702     },
703     .subsections = (const VMStateDescription * const []) {
704         &vmstate_fpu,
705         &vmstate_altivec,
706         &vmstate_vsx,
707         &vmstate_sr,
708 #ifdef TARGET_PPC64
709         &vmstate_tm,
710         &vmstate_slb,
711         &vmstate_bhrb,
712 #endif /* TARGET_PPC64 */
713         &vmstate_tlb6xx,
714         &vmstate_tlbemb,
715         &vmstate_tlbmas,
716         &vmstate_compat,
717         &vmstate_reservation,
718         NULL
719     }
720 };
721