xref: /openbmc/linux/drivers/spi/spi-sun4i.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 
19 #include <linux/spi/spi.h>
20 
21 #define SUN4I_FIFO_DEPTH		64
22 
23 #define SUN4I_RXDATA_REG		0x00
24 
25 #define SUN4I_TXDATA_REG		0x04
26 
27 #define SUN4I_CTL_REG			0x08
28 #define SUN4I_CTL_ENABLE			BIT(0)
29 #define SUN4I_CTL_MASTER			BIT(1)
30 #define SUN4I_CTL_CPHA				BIT(2)
31 #define SUN4I_CTL_CPOL				BIT(3)
32 #define SUN4I_CTL_CS_ACTIVE_LOW			BIT(4)
33 #define SUN4I_CTL_LMTF				BIT(6)
34 #define SUN4I_CTL_TF_RST			BIT(8)
35 #define SUN4I_CTL_RF_RST			BIT(9)
36 #define SUN4I_CTL_XCH				BIT(10)
37 #define SUN4I_CTL_CS_MASK			0x3000
38 #define SUN4I_CTL_CS(cs)			(((cs) << 12) & SUN4I_CTL_CS_MASK)
39 #define SUN4I_CTL_DHB				BIT(15)
40 #define SUN4I_CTL_CS_MANUAL			BIT(16)
41 #define SUN4I_CTL_CS_LEVEL			BIT(17)
42 #define SUN4I_CTL_TP				BIT(18)
43 
44 #define SUN4I_INT_CTL_REG		0x0c
45 #define SUN4I_INT_CTL_RF_F34			BIT(4)
46 #define SUN4I_INT_CTL_TF_E34			BIT(12)
47 #define SUN4I_INT_CTL_TC			BIT(16)
48 
49 #define SUN4I_INT_STA_REG		0x10
50 
51 #define SUN4I_DMA_CTL_REG		0x14
52 
53 #define SUN4I_WAIT_REG			0x18
54 
55 #define SUN4I_CLK_CTL_REG		0x1c
56 #define SUN4I_CLK_CTL_CDR2_MASK			0xff
57 #define SUN4I_CLK_CTL_CDR2(div)			((div) & SUN4I_CLK_CTL_CDR2_MASK)
58 #define SUN4I_CLK_CTL_CDR1_MASK			0xf
59 #define SUN4I_CLK_CTL_CDR1(div)			(((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
60 #define SUN4I_CLK_CTL_DRS			BIT(12)
61 
62 #define SUN4I_MAX_XFER_SIZE			0xffffff
63 
64 #define SUN4I_BURST_CNT_REG		0x20
65 #define SUN4I_BURST_CNT(cnt)			((cnt) & SUN4I_MAX_XFER_SIZE)
66 
67 #define SUN4I_XMIT_CNT_REG		0x24
68 #define SUN4I_XMIT_CNT(cnt)			((cnt) & SUN4I_MAX_XFER_SIZE)
69 
70 
71 #define SUN4I_FIFO_STA_REG		0x28
72 #define SUN4I_FIFO_STA_RF_CNT_MASK		0x7f
73 #define SUN4I_FIFO_STA_RF_CNT_BITS		0
74 #define SUN4I_FIFO_STA_TF_CNT_MASK		0x7f
75 #define SUN4I_FIFO_STA_TF_CNT_BITS		16
76 
77 struct sun4i_spi {
78 	struct spi_master	*master;
79 	void __iomem		*base_addr;
80 	struct clk		*hclk;
81 	struct clk		*mclk;
82 
83 	struct completion	done;
84 
85 	const u8		*tx_buf;
86 	u8			*rx_buf;
87 	int			len;
88 };
89 
sun4i_spi_read(struct sun4i_spi * sspi,u32 reg)90 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
91 {
92 	return readl(sspi->base_addr + reg);
93 }
94 
sun4i_spi_write(struct sun4i_spi * sspi,u32 reg,u32 value)95 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
96 {
97 	writel(value, sspi->base_addr + reg);
98 }
99 
sun4i_spi_get_tx_fifo_count(struct sun4i_spi * sspi)100 static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
101 {
102 	u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
103 
104 	reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
105 
106 	return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
107 }
108 
sun4i_spi_enable_interrupt(struct sun4i_spi * sspi,u32 mask)109 static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
110 {
111 	u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
112 
113 	reg |= mask;
114 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
115 }
116 
sun4i_spi_disable_interrupt(struct sun4i_spi * sspi,u32 mask)117 static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
118 {
119 	u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
120 
121 	reg &= ~mask;
122 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
123 }
124 
sun4i_spi_drain_fifo(struct sun4i_spi * sspi,int len)125 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
126 {
127 	u32 reg, cnt;
128 	u8 byte;
129 
130 	/* See how much data is available */
131 	reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
132 	reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
133 	cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
134 
135 	if (len > cnt)
136 		len = cnt;
137 
138 	while (len--) {
139 		byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
140 		if (sspi->rx_buf)
141 			*sspi->rx_buf++ = byte;
142 	}
143 }
144 
sun4i_spi_fill_fifo(struct sun4i_spi * sspi,int len)145 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
146 {
147 	u32 cnt;
148 	u8 byte;
149 
150 	/* See how much data we can fit */
151 	cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
152 
153 	len = min3(len, (int)cnt, sspi->len);
154 
155 	while (len--) {
156 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
157 		writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
158 		sspi->len--;
159 	}
160 }
161 
sun4i_spi_set_cs(struct spi_device * spi,bool enable)162 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
163 {
164 	struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
165 	u32 reg;
166 
167 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
168 
169 	reg &= ~SUN4I_CTL_CS_MASK;
170 	reg |= SUN4I_CTL_CS(spi_get_chipselect(spi, 0));
171 
172 	/* We want to control the chip select manually */
173 	reg |= SUN4I_CTL_CS_MANUAL;
174 
175 	if (enable)
176 		reg |= SUN4I_CTL_CS_LEVEL;
177 	else
178 		reg &= ~SUN4I_CTL_CS_LEVEL;
179 
180 	/*
181 	 * Even though this looks irrelevant since we are supposed to
182 	 * be controlling the chip select manually, this bit also
183 	 * controls the levels of the chip select for inactive
184 	 * devices.
185 	 *
186 	 * If we don't set it, the chip select level will go low by
187 	 * default when the device is idle, which is not really
188 	 * expected in the common case where the chip select is active
189 	 * low.
190 	 */
191 	if (spi->mode & SPI_CS_HIGH)
192 		reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
193 	else
194 		reg |= SUN4I_CTL_CS_ACTIVE_LOW;
195 
196 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
197 }
198 
sun4i_spi_max_transfer_size(struct spi_device * spi)199 static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
200 {
201 	return SUN4I_MAX_XFER_SIZE - 1;
202 }
203 
sun4i_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)204 static int sun4i_spi_transfer_one(struct spi_master *master,
205 				  struct spi_device *spi,
206 				  struct spi_transfer *tfr)
207 {
208 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
209 	unsigned int mclk_rate, div, timeout;
210 	unsigned int start, end, tx_time;
211 	unsigned int tx_len = 0;
212 	int ret = 0;
213 	u32 reg;
214 
215 	/* We don't support transfer larger than the FIFO */
216 	if (tfr->len > SUN4I_MAX_XFER_SIZE)
217 		return -EMSGSIZE;
218 
219 	if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
220 		return -EMSGSIZE;
221 
222 	reinit_completion(&sspi->done);
223 	sspi->tx_buf = tfr->tx_buf;
224 	sspi->rx_buf = tfr->rx_buf;
225 	sspi->len = tfr->len;
226 
227 	/* Clear pending interrupts */
228 	sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
229 
230 
231 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
232 
233 	/* Reset FIFOs */
234 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
235 			reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
236 
237 	/*
238 	 * Setup the transfer control register: Chip Select,
239 	 * polarities, etc.
240 	 */
241 	if (spi->mode & SPI_CPOL)
242 		reg |= SUN4I_CTL_CPOL;
243 	else
244 		reg &= ~SUN4I_CTL_CPOL;
245 
246 	if (spi->mode & SPI_CPHA)
247 		reg |= SUN4I_CTL_CPHA;
248 	else
249 		reg &= ~SUN4I_CTL_CPHA;
250 
251 	if (spi->mode & SPI_LSB_FIRST)
252 		reg |= SUN4I_CTL_LMTF;
253 	else
254 		reg &= ~SUN4I_CTL_LMTF;
255 
256 
257 	/*
258 	 * If it's a TX only transfer, we don't want to fill the RX
259 	 * FIFO with bogus data
260 	 */
261 	if (sspi->rx_buf)
262 		reg &= ~SUN4I_CTL_DHB;
263 	else
264 		reg |= SUN4I_CTL_DHB;
265 
266 	/* Now that the settings are correct, enable the interface */
267 	reg |= SUN4I_CTL_ENABLE;
268 
269 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
270 
271 	/* Ensure that we have a parent clock fast enough */
272 	mclk_rate = clk_get_rate(sspi->mclk);
273 	if (mclk_rate < (2 * tfr->speed_hz)) {
274 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
275 		mclk_rate = clk_get_rate(sspi->mclk);
276 	}
277 
278 	/*
279 	 * Setup clock divider.
280 	 *
281 	 * We have two choices there. Either we can use the clock
282 	 * divide rate 1, which is calculated thanks to this formula:
283 	 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
284 	 * Or we can use CDR2, which is calculated with the formula:
285 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
286 	 * Whether we use the former or the latter is set through the
287 	 * DRS bit.
288 	 *
289 	 * First try CDR2, and if we can't reach the expected
290 	 * frequency, fall back to CDR1.
291 	 */
292 	div = mclk_rate / (2 * tfr->speed_hz);
293 	if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
294 		if (div > 0)
295 			div--;
296 
297 		reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
298 	} else {
299 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
300 		reg = SUN4I_CLK_CTL_CDR1(div);
301 	}
302 
303 	sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
304 
305 	/* Setup the transfer now... */
306 	if (sspi->tx_buf)
307 		tx_len = tfr->len;
308 
309 	/* Setup the counters */
310 	sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
311 	sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
312 
313 	/*
314 	 * Fill the TX FIFO
315 	 * Filling the FIFO fully causes timeout for some reason
316 	 * at least on spi2 on A10s
317 	 */
318 	sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
319 
320 	/* Enable the interrupts */
321 	sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
322 					 SUN4I_INT_CTL_RF_F34);
323 	/* Only enable Tx FIFO interrupt if we really need it */
324 	if (tx_len > SUN4I_FIFO_DEPTH)
325 		sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
326 
327 	/* Start the transfer */
328 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
329 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
330 
331 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
332 	start = jiffies;
333 	timeout = wait_for_completion_timeout(&sspi->done,
334 					      msecs_to_jiffies(tx_time));
335 	end = jiffies;
336 	if (!timeout) {
337 		dev_warn(&master->dev,
338 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
339 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
340 			 jiffies_to_msecs(end - start), tx_time);
341 		ret = -ETIMEDOUT;
342 		goto out;
343 	}
344 
345 
346 out:
347 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
348 
349 	return ret;
350 }
351 
sun4i_spi_handler(int irq,void * dev_id)352 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
353 {
354 	struct sun4i_spi *sspi = dev_id;
355 	u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
356 
357 	/* Transfer complete */
358 	if (status & SUN4I_INT_CTL_TC) {
359 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
360 		sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
361 		complete(&sspi->done);
362 		return IRQ_HANDLED;
363 	}
364 
365 	/* Receive FIFO 3/4 full */
366 	if (status & SUN4I_INT_CTL_RF_F34) {
367 		sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
368 		/* Only clear the interrupt _after_ draining the FIFO */
369 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
370 		return IRQ_HANDLED;
371 	}
372 
373 	/* Transmit FIFO 3/4 empty */
374 	if (status & SUN4I_INT_CTL_TF_E34) {
375 		sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
376 
377 		if (!sspi->len)
378 			/* nothing left to transmit */
379 			sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
380 
381 		/* Only clear the interrupt _after_ re-seeding the FIFO */
382 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
383 
384 		return IRQ_HANDLED;
385 	}
386 
387 	return IRQ_NONE;
388 }
389 
sun4i_spi_runtime_resume(struct device * dev)390 static int sun4i_spi_runtime_resume(struct device *dev)
391 {
392 	struct spi_master *master = dev_get_drvdata(dev);
393 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
394 	int ret;
395 
396 	ret = clk_prepare_enable(sspi->hclk);
397 	if (ret) {
398 		dev_err(dev, "Couldn't enable AHB clock\n");
399 		goto out;
400 	}
401 
402 	ret = clk_prepare_enable(sspi->mclk);
403 	if (ret) {
404 		dev_err(dev, "Couldn't enable module clock\n");
405 		goto err;
406 	}
407 
408 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
409 			SUN4I_CTL_MASTER | SUN4I_CTL_TP);
410 
411 	return 0;
412 
413 err:
414 	clk_disable_unprepare(sspi->hclk);
415 out:
416 	return ret;
417 }
418 
sun4i_spi_runtime_suspend(struct device * dev)419 static int sun4i_spi_runtime_suspend(struct device *dev)
420 {
421 	struct spi_master *master = dev_get_drvdata(dev);
422 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
423 
424 	clk_disable_unprepare(sspi->mclk);
425 	clk_disable_unprepare(sspi->hclk);
426 
427 	return 0;
428 }
429 
sun4i_spi_probe(struct platform_device * pdev)430 static int sun4i_spi_probe(struct platform_device *pdev)
431 {
432 	struct spi_master *master;
433 	struct sun4i_spi *sspi;
434 	int ret = 0, irq;
435 
436 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
437 	if (!master) {
438 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
439 		return -ENOMEM;
440 	}
441 
442 	platform_set_drvdata(pdev, master);
443 	sspi = spi_master_get_devdata(master);
444 
445 	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
446 	if (IS_ERR(sspi->base_addr)) {
447 		ret = PTR_ERR(sspi->base_addr);
448 		goto err_free_master;
449 	}
450 
451 	irq = platform_get_irq(pdev, 0);
452 	if (irq < 0) {
453 		ret = -ENXIO;
454 		goto err_free_master;
455 	}
456 
457 	ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
458 			       0, "sun4i-spi", sspi);
459 	if (ret) {
460 		dev_err(&pdev->dev, "Cannot request IRQ\n");
461 		goto err_free_master;
462 	}
463 
464 	sspi->master = master;
465 	master->max_speed_hz = 100 * 1000 * 1000;
466 	master->min_speed_hz = 3 * 1000;
467 	master->set_cs = sun4i_spi_set_cs;
468 	master->transfer_one = sun4i_spi_transfer_one;
469 	master->num_chipselect = 4;
470 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
471 	master->bits_per_word_mask = SPI_BPW_MASK(8);
472 	master->dev.of_node = pdev->dev.of_node;
473 	master->auto_runtime_pm = true;
474 	master->max_transfer_size = sun4i_spi_max_transfer_size;
475 
476 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
477 	if (IS_ERR(sspi->hclk)) {
478 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
479 		ret = PTR_ERR(sspi->hclk);
480 		goto err_free_master;
481 	}
482 
483 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
484 	if (IS_ERR(sspi->mclk)) {
485 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
486 		ret = PTR_ERR(sspi->mclk);
487 		goto err_free_master;
488 	}
489 
490 	init_completion(&sspi->done);
491 
492 	/*
493 	 * This wake-up/shutdown pattern is to be able to have the
494 	 * device woken up, even if runtime_pm is disabled
495 	 */
496 	ret = sun4i_spi_runtime_resume(&pdev->dev);
497 	if (ret) {
498 		dev_err(&pdev->dev, "Couldn't resume the device\n");
499 		goto err_free_master;
500 	}
501 
502 	pm_runtime_set_active(&pdev->dev);
503 	pm_runtime_enable(&pdev->dev);
504 	pm_runtime_idle(&pdev->dev);
505 
506 	ret = devm_spi_register_master(&pdev->dev, master);
507 	if (ret) {
508 		dev_err(&pdev->dev, "cannot register SPI master\n");
509 		goto err_pm_disable;
510 	}
511 
512 	return 0;
513 
514 err_pm_disable:
515 	pm_runtime_disable(&pdev->dev);
516 	sun4i_spi_runtime_suspend(&pdev->dev);
517 err_free_master:
518 	spi_master_put(master);
519 	return ret;
520 }
521 
sun4i_spi_remove(struct platform_device * pdev)522 static void sun4i_spi_remove(struct platform_device *pdev)
523 {
524 	pm_runtime_force_suspend(&pdev->dev);
525 }
526 
527 static const struct of_device_id sun4i_spi_match[] = {
528 	{ .compatible = "allwinner,sun4i-a10-spi", },
529 	{}
530 };
531 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
532 
533 static const struct dev_pm_ops sun4i_spi_pm_ops = {
534 	.runtime_resume		= sun4i_spi_runtime_resume,
535 	.runtime_suspend	= sun4i_spi_runtime_suspend,
536 };
537 
538 static struct platform_driver sun4i_spi_driver = {
539 	.probe	= sun4i_spi_probe,
540 	.remove_new = sun4i_spi_remove,
541 	.driver	= {
542 		.name		= "sun4i-spi",
543 		.of_match_table	= sun4i_spi_match,
544 		.pm		= &sun4i_spi_pm_ops,
545 	},
546 };
547 module_platform_driver(sun4i_spi_driver);
548 
549 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
550 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
551 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
552 MODULE_LICENSE("GPL");
553