xref: /openbmc/u-boot/drivers/spi/stm32_qspi.c (revision 50e24381c097579ff2a8b171838347c82c2fba04)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2016
4  *
5  * Michael Kurz, <michi.kurz@gmail.com>
6  *
7  * STM32 QSPI driver
8  */
9 
10 #include <common.h>
11 #include <clk.h>
12 #include <dm.h>
13 #include <errno.h>
14 #include <malloc.h>
15 #include <reset.h>
16 #include <spi.h>
17 #include <spi_flash.h>
18 #include <asm/io.h>
19 #include <asm/arch/stm32.h>
20 #include <linux/ioport.h>
21 
22 struct stm32_qspi_regs {
23 	u32 cr;		/* 0x00 */
24 	u32 dcr;	/* 0x04 */
25 	u32 sr;		/* 0x08 */
26 	u32 fcr;	/* 0x0C */
27 	u32 dlr;	/* 0x10 */
28 	u32 ccr;	/* 0x14 */
29 	u32 ar;		/* 0x18 */
30 	u32 abr;	/* 0x1C */
31 	u32 dr;		/* 0x20 */
32 	u32 psmkr;	/* 0x24 */
33 	u32 psmar;	/* 0x28 */
34 	u32 pir;	/* 0x2C */
35 	u32 lptr;	/* 0x30 */
36 };
37 
38 /*
39  * QUADSPI control register
40  */
41 #define STM32_QSPI_CR_EN		BIT(0)
42 #define STM32_QSPI_CR_ABORT		BIT(1)
43 #define STM32_QSPI_CR_DMAEN		BIT(2)
44 #define STM32_QSPI_CR_TCEN		BIT(3)
45 #define STM32_QSPI_CR_SSHIFT		BIT(4)
46 #define STM32_QSPI_CR_DFM		BIT(6)
47 #define STM32_QSPI_CR_FSEL		BIT(7)
48 #define STM32_QSPI_CR_FTHRES_MASK	GENMASK(4, 0)
49 #define STM32_QSPI_CR_FTHRES_SHIFT	(8)
50 #define STM32_QSPI_CR_TEIE		BIT(16)
51 #define STM32_QSPI_CR_TCIE		BIT(17)
52 #define STM32_QSPI_CR_FTIE		BIT(18)
53 #define STM32_QSPI_CR_SMIE		BIT(19)
54 #define STM32_QSPI_CR_TOIE		BIT(20)
55 #define STM32_QSPI_CR_APMS		BIT(22)
56 #define STM32_QSPI_CR_PMM		BIT(23)
57 #define STM32_QSPI_CR_PRESCALER_MASK	GENMASK(7, 0)
58 #define STM32_QSPI_CR_PRESCALER_SHIFT	(24)
59 
60 /*
61  * QUADSPI device configuration register
62  */
63 #define STM32_QSPI_DCR_CKMODE		BIT(0)
64 #define STM32_QSPI_DCR_CSHT_MASK	GENMASK(2, 0)
65 #define STM32_QSPI_DCR_CSHT_SHIFT	(8)
66 #define STM32_QSPI_DCR_FSIZE_MASK	GENMASK(4, 0)
67 #define STM32_QSPI_DCR_FSIZE_SHIFT	(16)
68 
69 /*
70  * QUADSPI status register
71  */
72 #define STM32_QSPI_SR_TEF		BIT(0)
73 #define STM32_QSPI_SR_TCF		BIT(1)
74 #define STM32_QSPI_SR_FTF		BIT(2)
75 #define STM32_QSPI_SR_SMF		BIT(3)
76 #define STM32_QSPI_SR_TOF		BIT(4)
77 #define STM32_QSPI_SR_BUSY		BIT(5)
78 #define STM32_QSPI_SR_FLEVEL_MASK	GENMASK(5, 0)
79 #define STM32_QSPI_SR_FLEVEL_SHIFT	(8)
80 
81 /*
82  * QUADSPI flag clear register
83  */
84 #define STM32_QSPI_FCR_CTEF		BIT(0)
85 #define STM32_QSPI_FCR_CTCF		BIT(1)
86 #define STM32_QSPI_FCR_CSMF		BIT(3)
87 #define STM32_QSPI_FCR_CTOF		BIT(4)
88 
89 /*
90  * QUADSPI communication configuration register
91  */
92 #define STM32_QSPI_CCR_DDRM		BIT(31)
93 #define STM32_QSPI_CCR_DHHC		BIT(30)
94 #define STM32_QSPI_CCR_SIOO		BIT(28)
95 #define STM32_QSPI_CCR_FMODE_SHIFT	(26)
96 #define STM32_QSPI_CCR_DMODE_SHIFT	(24)
97 #define STM32_QSPI_CCR_DCYC_SHIFT	(18)
98 #define STM32_QSPI_CCR_DCYC_MASK	GENMASK(4, 0)
99 #define STM32_QSPI_CCR_ABSIZE_SHIFT	(16)
100 #define STM32_QSPI_CCR_ABMODE_SHIFT	(14)
101 #define STM32_QSPI_CCR_ADSIZE_SHIFT	(12)
102 #define STM32_QSPI_CCR_ADMODE_SHIFT	(10)
103 #define STM32_QSPI_CCR_IMODE_SHIFT	(8)
104 #define STM32_QSPI_CCR_INSTRUCTION_MASK	GENMASK(7, 0)
105 
106 enum STM32_QSPI_CCR_IMODE {
107 	STM32_QSPI_CCR_IMODE_NONE = 0,
108 	STM32_QSPI_CCR_IMODE_ONE_LINE = 1,
109 	STM32_QSPI_CCR_IMODE_TWO_LINE = 2,
110 	STM32_QSPI_CCR_IMODE_FOUR_LINE = 3,
111 };
112 
113 enum STM32_QSPI_CCR_ADMODE {
114 	STM32_QSPI_CCR_ADMODE_NONE = 0,
115 	STM32_QSPI_CCR_ADMODE_ONE_LINE = 1,
116 	STM32_QSPI_CCR_ADMODE_TWO_LINE = 2,
117 	STM32_QSPI_CCR_ADMODE_FOUR_LINE = 3,
118 };
119 
120 enum STM32_QSPI_CCR_ADSIZE {
121 	STM32_QSPI_CCR_ADSIZE_8BIT = 0,
122 	STM32_QSPI_CCR_ADSIZE_16BIT = 1,
123 	STM32_QSPI_CCR_ADSIZE_24BIT = 2,
124 	STM32_QSPI_CCR_ADSIZE_32BIT = 3,
125 };
126 
127 enum STM32_QSPI_CCR_ABMODE {
128 	STM32_QSPI_CCR_ABMODE_NONE = 0,
129 	STM32_QSPI_CCR_ABMODE_ONE_LINE = 1,
130 	STM32_QSPI_CCR_ABMODE_TWO_LINE = 2,
131 	STM32_QSPI_CCR_ABMODE_FOUR_LINE = 3,
132 };
133 
134 enum STM32_QSPI_CCR_ABSIZE {
135 	STM32_QSPI_CCR_ABSIZE_8BIT = 0,
136 	STM32_QSPI_CCR_ABSIZE_16BIT = 1,
137 	STM32_QSPI_CCR_ABSIZE_24BIT = 2,
138 	STM32_QSPI_CCR_ABSIZE_32BIT = 3,
139 };
140 
141 enum STM32_QSPI_CCR_DMODE {
142 	STM32_QSPI_CCR_DMODE_NONE = 0,
143 	STM32_QSPI_CCR_DMODE_ONE_LINE = 1,
144 	STM32_QSPI_CCR_DMODE_TWO_LINE = 2,
145 	STM32_QSPI_CCR_DMODE_FOUR_LINE = 3,
146 };
147 
148 enum STM32_QSPI_CCR_FMODE {
149 	STM32_QSPI_CCR_IND_WRITE = 0,
150 	STM32_QSPI_CCR_IND_READ = 1,
151 	STM32_QSPI_CCR_AUTO_POLL = 2,
152 	STM32_QSPI_CCR_MEM_MAP = 3,
153 };
154 
155 /* default SCK frequency, unit: HZ */
156 #define STM32_QSPI_DEFAULT_SCK_FREQ 108000000
157 
158 #define STM32_MAX_NORCHIP 2
159 
160 struct stm32_qspi_platdata {
161 	u32 base;
162 	u32 memory_map;
163 	u32 max_hz;
164 };
165 
166 struct stm32_qspi_priv {
167 	struct stm32_qspi_regs *regs;
168 	ulong clock_rate;
169 	u32 max_hz;
170 	u32 mode;
171 
172 	u32 command;
173 	u32 address;
174 	u32 dummycycles;
175 #define CMD_HAS_ADR	BIT(24)
176 #define CMD_HAS_DUMMY	BIT(25)
177 #define CMD_HAS_DATA	BIT(26)
178 };
179 
_stm32_qspi_disable(struct stm32_qspi_priv * priv)180 static void _stm32_qspi_disable(struct stm32_qspi_priv *priv)
181 {
182 	clrbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
183 }
184 
_stm32_qspi_enable(struct stm32_qspi_priv * priv)185 static void _stm32_qspi_enable(struct stm32_qspi_priv *priv)
186 {
187 	setbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
188 }
189 
_stm32_qspi_wait_for_not_busy(struct stm32_qspi_priv * priv)190 static void _stm32_qspi_wait_for_not_busy(struct stm32_qspi_priv *priv)
191 {
192 	while (readl(&priv->regs->sr) & STM32_QSPI_SR_BUSY)
193 		;
194 }
195 
_stm32_qspi_wait_for_complete(struct stm32_qspi_priv * priv)196 static void _stm32_qspi_wait_for_complete(struct stm32_qspi_priv *priv)
197 {
198 	while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_TCF))
199 		;
200 }
201 
_stm32_qspi_wait_for_ftf(struct stm32_qspi_priv * priv)202 static void _stm32_qspi_wait_for_ftf(struct stm32_qspi_priv *priv)
203 {
204 	while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_FTF))
205 		;
206 }
207 
_stm32_qspi_set_flash_size(struct stm32_qspi_priv * priv,u32 size)208 static void _stm32_qspi_set_flash_size(struct stm32_qspi_priv *priv, u32 size)
209 {
210 	u32 fsize = fls(size) - 1;
211 
212 	clrsetbits_le32(&priv->regs->dcr,
213 			STM32_QSPI_DCR_FSIZE_MASK << STM32_QSPI_DCR_FSIZE_SHIFT,
214 			fsize << STM32_QSPI_DCR_FSIZE_SHIFT);
215 }
216 
_stm32_qspi_set_cs(struct stm32_qspi_priv * priv,unsigned int cs)217 static void _stm32_qspi_set_cs(struct stm32_qspi_priv *priv, unsigned int cs)
218 {
219 	clrsetbits_le32(&priv->regs->cr, STM32_QSPI_CR_FSEL,
220 			cs ? STM32_QSPI_CR_FSEL : 0);
221 }
222 
_stm32_qspi_gen_ccr(struct stm32_qspi_priv * priv,u8 fmode)223 static unsigned int _stm32_qspi_gen_ccr(struct stm32_qspi_priv *priv, u8 fmode)
224 {
225 	unsigned int ccr_reg = 0;
226 	u8 imode, admode, dmode;
227 	u32 mode = priv->mode;
228 	u32 cmd = (priv->command & STM32_QSPI_CCR_INSTRUCTION_MASK);
229 
230 	imode = STM32_QSPI_CCR_IMODE_ONE_LINE;
231 	admode = STM32_QSPI_CCR_ADMODE_ONE_LINE;
232 	dmode = STM32_QSPI_CCR_DMODE_ONE_LINE;
233 
234 	if ((priv->command & CMD_HAS_ADR) && (priv->command & CMD_HAS_DATA)) {
235 		if (fmode == STM32_QSPI_CCR_IND_WRITE) {
236 			if (mode & SPI_TX_QUAD)
237 				dmode = STM32_QSPI_CCR_DMODE_FOUR_LINE;
238 			else if (mode & SPI_TX_DUAL)
239 				dmode = STM32_QSPI_CCR_DMODE_TWO_LINE;
240 		} else if ((fmode == STM32_QSPI_CCR_MEM_MAP) ||
241 			 (fmode == STM32_QSPI_CCR_IND_READ)) {
242 			if (mode & SPI_RX_QUAD)
243 				dmode = STM32_QSPI_CCR_DMODE_FOUR_LINE;
244 			else if (mode & SPI_RX_DUAL)
245 				dmode = STM32_QSPI_CCR_DMODE_TWO_LINE;
246 		}
247 	}
248 
249 	if (priv->command & CMD_HAS_DATA)
250 		ccr_reg |= (dmode << STM32_QSPI_CCR_DMODE_SHIFT);
251 
252 	if (priv->command & CMD_HAS_DUMMY)
253 		ccr_reg |= ((priv->dummycycles & STM32_QSPI_CCR_DCYC_MASK)
254 				<< STM32_QSPI_CCR_DCYC_SHIFT);
255 
256 	if (priv->command & CMD_HAS_ADR) {
257 		ccr_reg |= (STM32_QSPI_CCR_ADSIZE_24BIT
258 				<< STM32_QSPI_CCR_ADSIZE_SHIFT);
259 		ccr_reg |= (admode << STM32_QSPI_CCR_ADMODE_SHIFT);
260 	}
261 
262 	ccr_reg |= (fmode << STM32_QSPI_CCR_FMODE_SHIFT);
263 	ccr_reg |= (imode << STM32_QSPI_CCR_IMODE_SHIFT);
264 	ccr_reg |= cmd;
265 
266 	return ccr_reg;
267 }
268 
_stm32_qspi_enable_mmap(struct stm32_qspi_priv * priv,struct spi_flash * flash)269 static void _stm32_qspi_enable_mmap(struct stm32_qspi_priv *priv,
270 				    struct spi_flash *flash)
271 {
272 	unsigned int ccr_reg;
273 
274 	priv->command = flash->read_opcode | CMD_HAS_ADR | CMD_HAS_DATA
275 			| CMD_HAS_DUMMY;
276 	priv->dummycycles = flash->read_dummy;
277 
278 	ccr_reg = _stm32_qspi_gen_ccr(priv, STM32_QSPI_CCR_MEM_MAP);
279 
280 	_stm32_qspi_wait_for_not_busy(priv);
281 
282 	writel(ccr_reg, &priv->regs->ccr);
283 
284 	priv->dummycycles = 0;
285 }
286 
_stm32_qspi_disable_mmap(struct stm32_qspi_priv * priv)287 static void _stm32_qspi_disable_mmap(struct stm32_qspi_priv *priv)
288 {
289 	setbits_le32(&priv->regs->cr, STM32_QSPI_CR_ABORT);
290 }
291 
_stm32_qspi_set_xfer_length(struct stm32_qspi_priv * priv,u32 length)292 static void _stm32_qspi_set_xfer_length(struct stm32_qspi_priv *priv,
293 					u32 length)
294 {
295 	writel(length - 1, &priv->regs->dlr);
296 }
297 
_stm32_qspi_start_xfer(struct stm32_qspi_priv * priv,u32 cr_reg)298 static void _stm32_qspi_start_xfer(struct stm32_qspi_priv *priv, u32 cr_reg)
299 {
300 	writel(cr_reg, &priv->regs->ccr);
301 
302 	if (priv->command & CMD_HAS_ADR)
303 		writel(priv->address, &priv->regs->ar);
304 }
305 
_stm32_qspi_xfer(struct stm32_qspi_priv * priv,struct spi_flash * flash,unsigned int bitlen,const u8 * dout,u8 * din,unsigned long flags)306 static int _stm32_qspi_xfer(struct stm32_qspi_priv *priv,
307 			    struct spi_flash *flash, unsigned int bitlen,
308 			    const u8 *dout, u8 *din, unsigned long flags)
309 {
310 	unsigned int words = bitlen / 8;
311 	u32 ccr_reg;
312 	int i;
313 
314 	if (flags & SPI_XFER_MMAP) {
315 		_stm32_qspi_enable_mmap(priv, flash);
316 		return 0;
317 	} else if (flags & SPI_XFER_MMAP_END) {
318 		_stm32_qspi_disable_mmap(priv);
319 		return 0;
320 	}
321 
322 	if (bitlen == 0)
323 		return -1;
324 
325 	if (bitlen % 8) {
326 		debug("spi_xfer: Non byte aligned SPI transfer\n");
327 		return -1;
328 	}
329 
330 	if (dout && din) {
331 		debug("spi_xfer: QSPI cannot have data in and data out set\n");
332 		return -1;
333 	}
334 
335 	if (!dout && (flags & SPI_XFER_BEGIN)) {
336 		debug("spi_xfer: QSPI transfer must begin with command\n");
337 		return -1;
338 	}
339 
340 	if (dout) {
341 		if (flags & SPI_XFER_BEGIN) {
342 			/* data is command */
343 			priv->command = dout[0] | CMD_HAS_DATA;
344 			if (words >= 4) {
345 				/* address is here too */
346 				priv->address = (dout[1] << 16) |
347 						(dout[2] << 8) | dout[3];
348 				priv->command |= CMD_HAS_ADR;
349 			}
350 
351 			if (words > 4) {
352 				/* rest is dummy bytes */
353 				priv->dummycycles = (words - 4) * 8;
354 				priv->command |= CMD_HAS_DUMMY;
355 			}
356 
357 			if (flags & SPI_XFER_END) {
358 				/* command without data */
359 				priv->command &= ~(CMD_HAS_DATA);
360 			}
361 		}
362 
363 		if (flags & SPI_XFER_END) {
364 			ccr_reg = _stm32_qspi_gen_ccr(priv,
365 						      STM32_QSPI_CCR_IND_WRITE);
366 
367 			_stm32_qspi_wait_for_not_busy(priv);
368 
369 			if (priv->command & CMD_HAS_DATA)
370 				_stm32_qspi_set_xfer_length(priv, words);
371 
372 			_stm32_qspi_start_xfer(priv, ccr_reg);
373 
374 			debug("%s: write: ccr:0x%08x adr:0x%08x\n",
375 			      __func__, priv->regs->ccr, priv->regs->ar);
376 
377 			if (priv->command & CMD_HAS_DATA) {
378 				_stm32_qspi_wait_for_ftf(priv);
379 
380 				debug("%s: words:%d data:", __func__, words);
381 
382 				i = 0;
383 				while (words > i) {
384 					writeb(dout[i], &priv->regs->dr);
385 					debug("%02x ", dout[i]);
386 					i++;
387 				}
388 				debug("\n");
389 
390 				_stm32_qspi_wait_for_complete(priv);
391 			} else {
392 				_stm32_qspi_wait_for_not_busy(priv);
393 			}
394 		}
395 	} else if (din) {
396 		ccr_reg = _stm32_qspi_gen_ccr(priv, STM32_QSPI_CCR_IND_READ);
397 
398 		_stm32_qspi_wait_for_not_busy(priv);
399 
400 		_stm32_qspi_set_xfer_length(priv, words);
401 
402 		_stm32_qspi_start_xfer(priv, ccr_reg);
403 
404 		debug("%s: read: ccr:0x%08x adr:0x%08x len:%d\n", __func__,
405 		      priv->regs->ccr, priv->regs->ar, priv->regs->dlr);
406 
407 		debug("%s: data:", __func__);
408 
409 		i = 0;
410 		while (words > i) {
411 			din[i] = readb(&priv->regs->dr);
412 			debug("%02x ", din[i]);
413 			i++;
414 		}
415 		debug("\n");
416 	}
417 
418 	return 0;
419 }
420 
stm32_qspi_ofdata_to_platdata(struct udevice * bus)421 static int stm32_qspi_ofdata_to_platdata(struct udevice *bus)
422 {
423 	struct resource res_regs, res_mem;
424 	struct stm32_qspi_platdata *plat = bus->platdata;
425 	int ret;
426 
427 	ret = dev_read_resource_byname(bus, "qspi", &res_regs);
428 	if (ret) {
429 		debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
430 		return -ENOMEM;
431 	}
432 	ret = dev_read_resource_byname(bus, "qspi_mm", &res_mem);
433 	if (ret) {
434 		debug("Error: can't get mmap base address(ret = %d)!\n", ret);
435 		return -ENOMEM;
436 	}
437 
438 	plat->max_hz = dev_read_u32_default(bus, "spi-max-frequency",
439 					    STM32_QSPI_DEFAULT_SCK_FREQ);
440 
441 	plat->base = res_regs.start;
442 	plat->memory_map = res_mem.start;
443 
444 	debug("%s: regs=<0x%x> mapped=<0x%x>, max-frequency=%d\n",
445 	      __func__,
446 	      plat->base,
447 	      plat->memory_map,
448 	      plat->max_hz
449 	      );
450 
451 	return 0;
452 }
453 
stm32_qspi_probe(struct udevice * bus)454 static int stm32_qspi_probe(struct udevice *bus)
455 {
456 	struct stm32_qspi_platdata *plat = dev_get_platdata(bus);
457 	struct stm32_qspi_priv *priv = dev_get_priv(bus);
458 	struct dm_spi_bus *dm_spi_bus;
459 	struct clk clk;
460 	struct reset_ctl reset_ctl;
461 	int ret;
462 
463 	dm_spi_bus = bus->uclass_priv;
464 
465 	dm_spi_bus->max_hz = plat->max_hz;
466 
467 	priv->regs = (struct stm32_qspi_regs *)(uintptr_t)plat->base;
468 
469 	priv->max_hz = plat->max_hz;
470 
471 	ret = clk_get_by_index(bus, 0, &clk);
472 	if (ret < 0)
473 		return ret;
474 
475 	ret = clk_enable(&clk);
476 
477 	if (ret) {
478 		dev_err(bus, "failed to enable clock\n");
479 		return ret;
480 	}
481 
482 	priv->clock_rate = clk_get_rate(&clk);
483 	if (priv->clock_rate < 0) {
484 		clk_disable(&clk);
485 		return priv->clock_rate;
486 	}
487 
488 	ret = reset_get_by_index(bus, 0, &reset_ctl);
489 	if (ret) {
490 		if (ret != -ENOENT) {
491 			dev_err(bus, "failed to get reset\n");
492 			clk_disable(&clk);
493 			return ret;
494 		}
495 	} else {
496 		/* Reset QSPI controller */
497 		reset_assert(&reset_ctl);
498 		udelay(2);
499 		reset_deassert(&reset_ctl);
500 	}
501 
502 	setbits_le32(&priv->regs->cr, STM32_QSPI_CR_SSHIFT);
503 
504 	return 0;
505 }
506 
stm32_qspi_remove(struct udevice * bus)507 static int stm32_qspi_remove(struct udevice *bus)
508 {
509 	return 0;
510 }
511 
stm32_qspi_claim_bus(struct udevice * dev)512 static int stm32_qspi_claim_bus(struct udevice *dev)
513 {
514 	struct stm32_qspi_priv *priv;
515 	struct udevice *bus;
516 	struct spi_flash *flash;
517 	struct dm_spi_slave_platdata *slave_plat;
518 
519 	bus = dev->parent;
520 	priv = dev_get_priv(bus);
521 	flash = dev_get_uclass_priv(dev);
522 	slave_plat = dev_get_parent_platdata(dev);
523 
524 	if (slave_plat->cs >= STM32_MAX_NORCHIP)
525 		return -ENODEV;
526 
527 	_stm32_qspi_set_cs(priv, slave_plat->cs);
528 
529 	_stm32_qspi_set_flash_size(priv, flash->size);
530 
531 	_stm32_qspi_enable(priv);
532 
533 	return 0;
534 }
535 
stm32_qspi_release_bus(struct udevice * dev)536 static int stm32_qspi_release_bus(struct udevice *dev)
537 {
538 	struct stm32_qspi_priv *priv;
539 	struct udevice *bus;
540 
541 	bus = dev->parent;
542 	priv = dev_get_priv(bus);
543 
544 	_stm32_qspi_disable(priv);
545 
546 	return 0;
547 }
548 
stm32_qspi_xfer(struct udevice * dev,unsigned int bitlen,const void * dout,void * din,unsigned long flags)549 static int stm32_qspi_xfer(struct udevice *dev, unsigned int bitlen,
550 			   const void *dout, void *din, unsigned long flags)
551 {
552 	struct stm32_qspi_priv *priv;
553 	struct udevice *bus;
554 	struct spi_flash *flash;
555 
556 	bus = dev->parent;
557 	priv = dev_get_priv(bus);
558 	flash = dev_get_uclass_priv(dev);
559 
560 	return _stm32_qspi_xfer(priv, flash, bitlen, (const u8 *)dout,
561 				(u8 *)din, flags);
562 }
563 
stm32_qspi_set_speed(struct udevice * bus,uint speed)564 static int stm32_qspi_set_speed(struct udevice *bus, uint speed)
565 {
566 	struct stm32_qspi_platdata *plat = bus->platdata;
567 	struct stm32_qspi_priv *priv = dev_get_priv(bus);
568 	u32 qspi_clk = priv->clock_rate;
569 	u32 prescaler = 255;
570 	u32 csht;
571 
572 	if (speed > plat->max_hz)
573 		speed = plat->max_hz;
574 
575 	if (speed > 0) {
576 		prescaler = DIV_ROUND_UP(qspi_clk, speed) - 1;
577 		if (prescaler > 255)
578 			prescaler = 255;
579 		else if (prescaler < 0)
580 			prescaler = 0;
581 	}
582 
583 	csht = DIV_ROUND_UP((5 * qspi_clk) / (prescaler + 1), 100000000);
584 	csht = (csht - 1) & STM32_QSPI_DCR_CSHT_MASK;
585 
586 	_stm32_qspi_wait_for_not_busy(priv);
587 
588 	clrsetbits_le32(&priv->regs->cr,
589 			STM32_QSPI_CR_PRESCALER_MASK <<
590 			STM32_QSPI_CR_PRESCALER_SHIFT,
591 			prescaler << STM32_QSPI_CR_PRESCALER_SHIFT);
592 
593 	clrsetbits_le32(&priv->regs->dcr,
594 			STM32_QSPI_DCR_CSHT_MASK << STM32_QSPI_DCR_CSHT_SHIFT,
595 			csht << STM32_QSPI_DCR_CSHT_SHIFT);
596 
597 	debug("%s: regs=%p, speed=%d\n", __func__, priv->regs,
598 	      (qspi_clk / (prescaler + 1)));
599 
600 	return 0;
601 }
602 
stm32_qspi_set_mode(struct udevice * bus,uint mode)603 static int stm32_qspi_set_mode(struct udevice *bus, uint mode)
604 {
605 	struct stm32_qspi_priv *priv = dev_get_priv(bus);
606 
607 	_stm32_qspi_wait_for_not_busy(priv);
608 
609 	if ((mode & SPI_CPHA) && (mode & SPI_CPOL))
610 		setbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
611 	else if (!(mode & SPI_CPHA) && !(mode & SPI_CPOL))
612 		clrbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
613 	else
614 		return -ENODEV;
615 
616 	if (mode & SPI_CS_HIGH)
617 		return -ENODEV;
618 
619 	if (mode & SPI_RX_QUAD)
620 		priv->mode |= SPI_RX_QUAD;
621 	else if (mode & SPI_RX_DUAL)
622 		priv->mode |= SPI_RX_DUAL;
623 	else
624 		priv->mode &= ~(SPI_RX_QUAD | SPI_RX_DUAL);
625 
626 	if (mode & SPI_TX_QUAD)
627 		priv->mode |= SPI_TX_QUAD;
628 	else if (mode & SPI_TX_DUAL)
629 		priv->mode |= SPI_TX_DUAL;
630 	else
631 		priv->mode &= ~(SPI_TX_QUAD | SPI_TX_DUAL);
632 
633 	debug("%s: regs=%p, mode=%d rx: ", __func__, priv->regs, mode);
634 
635 	if (mode & SPI_RX_QUAD)
636 		debug("quad, tx: ");
637 	else if (mode & SPI_RX_DUAL)
638 		debug("dual, tx: ");
639 	else
640 		debug("single, tx: ");
641 
642 	if (mode & SPI_TX_QUAD)
643 		debug("quad\n");
644 	else if (mode & SPI_TX_DUAL)
645 		debug("dual\n");
646 	else
647 		debug("single\n");
648 
649 	return 0;
650 }
651 
652 static const struct dm_spi_ops stm32_qspi_ops = {
653 	.claim_bus	= stm32_qspi_claim_bus,
654 	.release_bus	= stm32_qspi_release_bus,
655 	.xfer		= stm32_qspi_xfer,
656 	.set_speed	= stm32_qspi_set_speed,
657 	.set_mode	= stm32_qspi_set_mode,
658 };
659 
660 static const struct udevice_id stm32_qspi_ids[] = {
661 	{ .compatible = "st,stm32-qspi" },
662 	{ .compatible = "st,stm32f469-qspi" },
663 	{ }
664 };
665 
666 U_BOOT_DRIVER(stm32_qspi) = {
667 	.name	= "stm32_qspi",
668 	.id	= UCLASS_SPI,
669 	.of_match = stm32_qspi_ids,
670 	.ops	= &stm32_qspi_ops,
671 	.ofdata_to_platdata = stm32_qspi_ofdata_to_platdata,
672 	.platdata_auto_alloc_size = sizeof(struct stm32_qspi_platdata),
673 	.priv_auto_alloc_size = sizeof(struct stm32_qspi_priv),
674 	.probe	= stm32_qspi_probe,
675 	.remove = stm32_qspi_remove,
676 };
677