xref: /openbmc/qemu/linux-user/sparc/signal.c (revision b6d32a06fc0984e537091cba08f2e1ed9f775d74)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "user-internals.h"
22 #include "signal-common.h"
23 #include "linux-user/trace.h"
24 
25 /* A Sparc register window */
26 struct target_reg_window {
27     abi_ulong locals[8];
28     abi_ulong ins[8];
29 };
30 
31 /* A Sparc stack frame. */
32 struct target_stackf {
33     /*
34      * Since qemu does not reference fp or callers_pc directly,
35      * it's simpler to treat fp and callers_pc as elements of ins[],
36      * and then bundle locals[] and ins[] into reg_window.
37      */
38     struct target_reg_window win;
39     /*
40      * Similarly, bundle structptr and xxargs into xargs[].
41      * This portion of the struct is part of the function call abi,
42      * and belongs to the callee for spilling argument registers.
43      */
44     abi_ulong xargs[8];
45 };
46 
47 struct target_siginfo_fpu {
48 #ifdef TARGET_SPARC64
49     uint64_t si_double_regs[32];
50     uint64_t si_fsr;
51     uint64_t si_gsr;
52     uint64_t si_fprs;
53 #else
54     /* It is more convenient for qemu to move doubles, not singles. */
55     uint64_t si_double_regs[16];
56     uint32_t si_fsr;
57     uint32_t si_fpqdepth;
58     struct {
59         uint32_t insn_addr;
60         uint32_t insn;
61     } si_fpqueue [16];
62 #endif
63 };
64 
65 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
66 struct target_signal_frame {
67     struct target_stackf ss;
68     struct target_pt_regs regs;
69     uint32_t si_mask;
70     abi_ulong fpu_save;
71     uint32_t insns[2] QEMU_ALIGNED(8);
72     abi_ulong extramask[TARGET_NSIG_WORDS - 1];
73     abi_ulong extra_size; /* Should be 0 */
74     abi_ulong rwin_save;
75 };
76 #endif
77 
78 struct target_rt_signal_frame {
79     struct target_stackf ss;
80     target_siginfo_t info;
81     struct target_pt_regs regs;
82 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
83     abi_ulong fpu_save;
84     target_stack_t stack;
85     target_sigset_t mask;
86 #else
87     target_sigset_t mask;
88     abi_ulong fpu_save;
89     uint32_t insns[2];
90     target_stack_t stack;
91     abi_ulong extra_size; /* Should be 0 */
92 #endif
93     abi_ulong rwin_save;
94 };
95 
get_sigframe(struct target_sigaction * sa,CPUSPARCState * env,size_t framesize)96 static abi_ulong get_sigframe(struct target_sigaction *sa,
97                               CPUSPARCState *env,
98                               size_t framesize)
99 {
100     abi_ulong sp = get_sp_from_cpustate(env);
101 
102     /*
103      * If we are on the alternate signal stack and would overflow it, don't.
104      * Return an always-bogus address instead so we will die with SIGSEGV.
105      */
106     if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
107         return -1;
108     }
109 
110     /* This is the X/Open sanctioned signal stack switching.  */
111     sp = target_sigsp(sp, sa) - framesize;
112 
113     /*
114      * Always align the stack frame.  This handles two cases.  First,
115      * sigaltstack need not be mindful of platform specific stack
116      * alignment.  Second, if we took this signal because the stack
117      * is not aligned properly, we'd like to take the signal cleanly
118      * and report that.
119      */
120     sp &= ~15UL;
121 
122     return sp;
123 }
124 
save_pt_regs(struct target_pt_regs * regs,CPUSPARCState * env)125 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
126 {
127     int i;
128 
129 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
130     __put_user(sparc64_tstate(env), &regs->tstate);
131     /* TODO: magic should contain PT_REG_MAGIC + %tt. */
132     __put_user(0, &regs->magic);
133 #else
134     __put_user(cpu_get_psr(env), &regs->psr);
135 #endif
136 
137     __put_user(env->pc, &regs->pc);
138     __put_user(env->npc, &regs->npc);
139     __put_user(env->y, &regs->y);
140 
141     for (i = 0; i < 8; i++) {
142         __put_user(env->gregs[i], &regs->u_regs[i]);
143     }
144     for (i = 0; i < 8; i++) {
145         __put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
146     }
147 }
148 
restore_pt_regs(struct target_pt_regs * regs,CPUSPARCState * env)149 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
150 {
151     int i;
152 
153 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
154     /* User can only change condition codes and %asi in %tstate. */
155     uint64_t tstate;
156     __get_user(tstate, &regs->tstate);
157     cpu_put_ccr(env, tstate >> 32);
158     env->asi = extract64(tstate, 24, 8);
159 #else
160     /*
161      * User can only change condition codes and FPU enabling in %psr.
162      * But don't bother with FPU enabling, since a real kernel would
163      * just re-enable the FPU upon the next fpu trap.
164      */
165     uint32_t psr;
166     __get_user(psr, &regs->psr);
167     cpu_put_psr_icc(env, psr);
168 #endif
169 
170     /* Note that pc and npc are handled in the caller. */
171 
172     __get_user(env->y, &regs->y);
173 
174     for (i = 0; i < 8; i++) {
175         __get_user(env->gregs[i], &regs->u_regs[i]);
176     }
177     for (i = 0; i < 8; i++) {
178         __get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
179     }
180 }
181 
save_reg_win(struct target_reg_window * win,CPUSPARCState * env)182 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env)
183 {
184     int i;
185 
186     for (i = 0; i < 8; i++) {
187         __put_user(env->regwptr[i + WREG_L0], &win->locals[i]);
188     }
189     for (i = 0; i < 8; i++) {
190         __put_user(env->regwptr[i + WREG_I0], &win->ins[i]);
191     }
192 }
193 
save_fpu(struct target_siginfo_fpu * fpu,CPUSPARCState * env)194 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
195 {
196     int i;
197 
198 #ifdef TARGET_SPARC64
199     for (i = 0; i < 32; ++i) {
200         __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
201     }
202     __put_user(cpu_get_fsr(env), &fpu->si_fsr);
203     __put_user(env->gsr, &fpu->si_gsr);
204     __put_user(env->fprs, &fpu->si_fprs);
205 #else
206     for (i = 0; i < 16; ++i) {
207         __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
208     }
209     __put_user(cpu_get_fsr(env), &fpu->si_fsr);
210     __put_user(0, &fpu->si_fpqdepth);
211 #endif
212 }
213 
restore_fpu(struct target_siginfo_fpu * fpu,CPUSPARCState * env)214 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
215 {
216     target_ulong fsr;
217     int i;
218 
219 #ifdef TARGET_SPARC64
220     uint64_t fprs;
221     __get_user(fprs, &fpu->si_fprs);
222 
223     /* In case the user mucks about with FPRS, restore as directed. */
224     if (fprs & FPRS_DL) {
225         for (i = 0; i < 16; ++i) {
226             __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
227         }
228     }
229     if (fprs & FPRS_DU) {
230         for (i = 16; i < 32; ++i) {
231             __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
232         }
233     }
234     __get_user(env->gsr, &fpu->si_gsr);
235     env->fprs |= fprs;
236 #else
237     for (i = 0; i < 16; ++i) {
238         __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
239     }
240 #endif
241 
242     __get_user(fsr, &fpu->si_fsr);
243     cpu_put_fsr(env, fsr);
244 }
245 
246 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
install_sigtramp(uint32_t * tramp,int syscall)247 static void install_sigtramp(uint32_t *tramp, int syscall)
248 {
249     __put_user(0x82102000u + syscall, &tramp[0]); /* mov syscall, %g1 */
250     __put_user(0x91d02010u, &tramp[1]);           /* t 0x10 */
251 }
252 
setup_frame(int sig,struct target_sigaction * ka,target_sigset_t * set,CPUSPARCState * env)253 void setup_frame(int sig, struct target_sigaction *ka,
254                  target_sigset_t *set, CPUSPARCState *env)
255 {
256     abi_ulong sf_addr;
257     struct target_signal_frame *sf;
258     size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
259     int i;
260 
261     sf_addr = get_sigframe(ka, env, sf_size);
262     trace_user_setup_frame(env, sf_addr);
263 
264     sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
265     if (!sf) {
266         force_sigsegv(sig);
267         return;
268     }
269 
270     /* 2. Save the current process state */
271     save_pt_regs(&sf->regs, env);
272     __put_user(0, &sf->extra_size);
273 
274     save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
275     __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
276 
277     __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */
278 
279     __put_user(set->sig[0], &sf->si_mask);
280     for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
281         __put_user(set->sig[i + 1], &sf->extramask[i]);
282     }
283 
284     save_reg_win(&sf->ss.win, env);
285 
286     /* 3. signal handler back-trampoline and parameters */
287     env->regwptr[WREG_SP] = sf_addr;
288     env->regwptr[WREG_O0] = sig;
289     env->regwptr[WREG_O1] = sf_addr +
290             offsetof(struct target_signal_frame, regs);
291     env->regwptr[WREG_O2] = sf_addr +
292             offsetof(struct target_signal_frame, regs);
293 
294     /* 4. signal handler */
295     env->pc = ka->_sa_handler;
296     env->npc = env->pc + 4;
297 
298     /* 5. return to kernel instructions */
299     if (ka->ka_restorer) {
300         env->regwptr[WREG_O7] = ka->ka_restorer;
301     } else {
302         /* Not used, but retain for ABI compatibility. */
303         install_sigtramp(sf->insns, TARGET_NR_sigreturn);
304         env->regwptr[WREG_O7] = default_sigreturn;
305     }
306     unlock_user(sf, sf_addr, sf_size);
307 }
308 #endif /* TARGET_ARCH_HAS_SETUP_FRAME */
309 
setup_rt_frame(int sig,struct target_sigaction * ka,target_siginfo_t * info,target_sigset_t * set,CPUSPARCState * env)310 void setup_rt_frame(int sig, struct target_sigaction *ka,
311                     target_siginfo_t *info,
312                     target_sigset_t *set, CPUSPARCState *env)
313 {
314     abi_ulong sf_addr;
315     struct target_rt_signal_frame *sf;
316     size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
317 
318     sf_addr = get_sigframe(ka, env, sf_size);
319     trace_user_setup_rt_frame(env, sf_addr);
320 
321     sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
322     if (!sf) {
323         force_sigsegv(sig);
324         return;
325     }
326 
327     /* 2. Save the current process state */
328     save_reg_win(&sf->ss.win, env);
329     save_pt_regs(&sf->regs, env);
330 
331     save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
332     __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
333 
334     __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */
335 
336     sf->info = *info;
337     tswap_sigset(&sf->mask, set);
338     target_save_altstack(&sf->stack, env);
339 
340 #ifdef TARGET_ABI32
341     __put_user(0, &sf->extra_size);
342 #endif
343 
344     /* 3. signal handler back-trampoline and parameters */
345     env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS;
346     env->regwptr[WREG_O0] = sig;
347     env->regwptr[WREG_O1] =
348         sf_addr + offsetof(struct target_rt_signal_frame, info);
349 #ifdef TARGET_ABI32
350     env->regwptr[WREG_O2] =
351         sf_addr + offsetof(struct target_rt_signal_frame, regs);
352 #else
353     env->regwptr[WREG_O2] = env->regwptr[WREG_O1];
354 #endif
355 
356     /* 4. signal handler */
357     env->pc = ka->_sa_handler;
358     env->npc = env->pc + 4;
359 
360     /* 5. return to kernel instructions */
361 #ifdef TARGET_ABI32
362     if (ka->ka_restorer) {
363         env->regwptr[WREG_O7] = ka->ka_restorer;
364     } else {
365         /* Not used, but retain for ABI compatibility. */
366         install_sigtramp(sf->insns, TARGET_NR_rt_sigreturn);
367         env->regwptr[WREG_O7] = default_rt_sigreturn;
368     }
369 #else
370     env->regwptr[WREG_O7] = ka->ka_restorer;
371 #endif
372 
373     unlock_user(sf, sf_addr, sf_size);
374 }
375 
do_sigreturn(CPUSPARCState * env)376 long do_sigreturn(CPUSPARCState *env)
377 {
378 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
379     abi_ulong sf_addr;
380     struct target_signal_frame *sf = NULL;
381     abi_ulong pc, npc, ptr;
382     target_sigset_t set;
383     sigset_t host_set;
384     int i;
385 
386     sf_addr = env->regwptr[WREG_SP];
387     trace_user_do_sigreturn(env, sf_addr);
388 
389     /* 1. Make sure we are not getting garbage from the user */
390     if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
391         goto segv_and_exit;
392     }
393 
394     /* Make sure stack pointer is aligned.  */
395     __get_user(ptr, &sf->regs.u_regs[14]);
396     if (ptr & 7) {
397         goto segv_and_exit;
398     }
399 
400     /* Make sure instruction pointers are aligned.  */
401     __get_user(pc, &sf->regs.pc);
402     __get_user(npc, &sf->regs.npc);
403     if ((pc | npc) & 3) {
404         goto segv_and_exit;
405     }
406 
407     /* 2. Restore the state */
408     restore_pt_regs(&sf->regs, env);
409     env->pc = pc;
410     env->npc = npc;
411 
412     __get_user(ptr, &sf->fpu_save);
413     if (ptr) {
414         struct target_siginfo_fpu *fpu;
415         if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
416             goto segv_and_exit;
417         }
418         restore_fpu(fpu, env);
419         unlock_user_struct(fpu, ptr, 0);
420     }
421 
422     __get_user(ptr, &sf->rwin_save);
423     if (ptr) {
424         goto segv_and_exit;  /* TODO: restore_rwin */
425     }
426 
427     __get_user(set.sig[0], &sf->si_mask);
428     for (i = 1; i < TARGET_NSIG_WORDS; i++) {
429         __get_user(set.sig[i], &sf->extramask[i - 1]);
430     }
431 
432     target_to_host_sigset_internal(&host_set, &set);
433     set_sigmask(&host_set);
434 
435     unlock_user_struct(sf, sf_addr, 0);
436     return -QEMU_ESIGRETURN;
437 
438  segv_and_exit:
439     unlock_user_struct(sf, sf_addr, 0);
440     force_sig(TARGET_SIGSEGV);
441     return -QEMU_ESIGRETURN;
442 #else
443     return -TARGET_ENOSYS;
444 #endif
445 }
446 
do_rt_sigreturn(CPUSPARCState * env)447 long do_rt_sigreturn(CPUSPARCState *env)
448 {
449     abi_ulong sf_addr, tpc, tnpc, ptr;
450     struct target_rt_signal_frame *sf = NULL;
451     sigset_t set;
452 
453     sf_addr = get_sp_from_cpustate(env);
454     trace_user_do_rt_sigreturn(env, sf_addr);
455 
456     /* 1. Make sure we are not getting garbage from the user */
457     if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
458         goto segv_and_exit;
459     }
460 
461     /* Validate SP alignment.  */
462     __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]);
463     if ((ptr + TARGET_STACK_BIAS) & 7) {
464         goto segv_and_exit;
465     }
466 
467     /* Validate PC and NPC alignment.  */
468     __get_user(tpc, &sf->regs.pc);
469     __get_user(tnpc, &sf->regs.npc);
470     if ((tpc | tnpc) & 3) {
471         goto segv_and_exit;
472     }
473 
474     /* 2. Restore the state */
475     restore_pt_regs(&sf->regs, env);
476 
477     __get_user(ptr, &sf->fpu_save);
478     if (ptr) {
479         struct target_siginfo_fpu *fpu;
480         if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
481             goto segv_and_exit;
482         }
483         restore_fpu(fpu, env);
484         unlock_user_struct(fpu, ptr, 0);
485     }
486 
487     __get_user(ptr, &sf->rwin_save);
488     if (ptr) {
489         goto segv_and_exit;  /* TODO: restore_rwin_state */
490     }
491 
492     target_restore_altstack(&sf->stack, env);
493     target_to_host_sigset(&set, &sf->mask);
494     set_sigmask(&set);
495 
496     env->pc = tpc;
497     env->npc = tnpc;
498 
499     unlock_user_struct(sf, sf_addr, 0);
500     return -QEMU_ESIGRETURN;
501 
502  segv_and_exit:
503     unlock_user_struct(sf, sf_addr, 0);
504     force_sig(TARGET_SIGSEGV);
505     return -QEMU_ESIGRETURN;
506 }
507 
508 #ifdef TARGET_ABI32
setup_sigtramp(abi_ulong sigtramp_page)509 void setup_sigtramp(abi_ulong sigtramp_page)
510 {
511     uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 2 * 8, 0);
512     assert(tramp != NULL);
513 
514     default_sigreturn = sigtramp_page;
515     install_sigtramp(tramp, TARGET_NR_sigreturn);
516 
517     default_rt_sigreturn = sigtramp_page + 8;
518     install_sigtramp(tramp + 2, TARGET_NR_rt_sigreturn);
519 
520     unlock_user(tramp, sigtramp_page, 2 * 8);
521 }
522 #endif
523 
524 #ifdef TARGET_SPARC64
525 #define SPARC_MC_TSTATE 0
526 #define SPARC_MC_PC 1
527 #define SPARC_MC_NPC 2
528 #define SPARC_MC_Y 3
529 #define SPARC_MC_G1 4
530 #define SPARC_MC_G2 5
531 #define SPARC_MC_G3 6
532 #define SPARC_MC_G4 7
533 #define SPARC_MC_G5 8
534 #define SPARC_MC_G6 9
535 #define SPARC_MC_G7 10
536 #define SPARC_MC_O0 11
537 #define SPARC_MC_O1 12
538 #define SPARC_MC_O2 13
539 #define SPARC_MC_O3 14
540 #define SPARC_MC_O4 15
541 #define SPARC_MC_O5 16
542 #define SPARC_MC_O6 17
543 #define SPARC_MC_O7 18
544 #define SPARC_MC_NGREG 19
545 
546 typedef abi_ulong target_mc_greg_t;
547 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
548 
549 /*
550  * Note the manual 16-alignment; the kernel gets this because it
551  * includes a "long double qregs[16]" in the mcpu_fregs union,
552  * which we can't do.
553  */
554 struct target_mc_fpu {
555     union {
556         uint32_t sregs[32];
557         uint64_t dregs[32];
558         //uint128_t qregs[16];
559     } mcfpu_fregs;
560     abi_ulong mcfpu_fsr;
561     abi_ulong mcfpu_fprs;
562     abi_ulong mcfpu_gsr;
563     abi_ulong mcfpu_fq;
564     unsigned char mcfpu_qcnt;
565     unsigned char mcfpu_qentsz;
566     unsigned char mcfpu_enab;
567 } __attribute__((aligned(16)));
568 typedef struct target_mc_fpu target_mc_fpu_t;
569 
570 typedef struct {
571     target_mc_gregset_t mc_gregs;
572     target_mc_greg_t mc_fp;
573     target_mc_greg_t mc_i7;
574     target_mc_fpu_t mc_fpregs;
575 } target_mcontext_t;
576 
577 struct target_ucontext {
578     abi_ulong tuc_link;
579     abi_ulong tuc_flags;
580     target_sigset_t tuc_sigmask;
581     target_mcontext_t tuc_mcontext;
582 };
583 
584 /* {set, get}context() needed for 64-bit SparcLinux userland. */
sparc64_set_context(CPUSPARCState * env)585 void sparc64_set_context(CPUSPARCState *env)
586 {
587     abi_ulong ucp_addr;
588     struct target_ucontext *ucp;
589     target_mc_gregset_t *grp;
590     target_mc_fpu_t *fpup;
591     target_ulong pc, npc, tstate;
592     unsigned int i;
593     unsigned char fenab;
594 
595     ucp_addr = env->regwptr[WREG_O0];
596     if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
597         goto do_sigsegv;
598     }
599     grp  = &ucp->tuc_mcontext.mc_gregs;
600     __get_user(pc, &((*grp)[SPARC_MC_PC]));
601     __get_user(npc, &((*grp)[SPARC_MC_NPC]));
602     if ((pc | npc) & 3) {
603         goto do_sigsegv;
604     }
605     if (env->regwptr[WREG_O1]) {
606         target_sigset_t target_set;
607         sigset_t set;
608 
609         if (TARGET_NSIG_WORDS == 1) {
610             __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
611         } else {
612             abi_ulong *src, *dst;
613             src = ucp->tuc_sigmask.sig;
614             dst = target_set.sig;
615             for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
616                 __get_user(*dst, src);
617             }
618         }
619         target_to_host_sigset_internal(&set, &target_set);
620         set_sigmask(&set);
621     }
622     env->pc = pc;
623     env->npc = npc;
624     __get_user(env->y, &((*grp)[SPARC_MC_Y]));
625     __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
626     /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
627     env->asi = (tstate >> 24) & 0xff;
628     cpu_put_ccr(env, (tstate >> 32) & 0xff);
629     __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
630     __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
631     __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
632     __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
633     __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
634     __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
635     /* Skip g7 as that's the thread register in userspace */
636 
637     /*
638      * Note that unlike the kernel, we didn't need to mess with the
639      * guest register window state to save it into a pt_regs to run
640      * the kernel. So for us the guest's O regs are still in WREG_O*
641      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
642      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
643      * need to be written back to userspace memory.
644      */
645     __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
646     __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
647     __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
648     __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
649     __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
650     __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
651     __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
652     __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
653 
654     __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
655     __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
656 
657     fpup = &ucp->tuc_mcontext.mc_fpregs;
658 
659     __get_user(fenab, &(fpup->mcfpu_enab));
660     if (fenab) {
661         abi_ulong fprs;
662         abi_ulong fsr;
663 
664         /*
665          * We use the FPRS from the guest only in deciding whether
666          * to restore the upper, lower, or both banks of the FPU regs.
667          * The kernel here writes the FPU register data into the
668          * process's current_thread_info state and unconditionally
669          * clears FPRS and TSTATE_PEF: this disables the FPU so that the
670          * next FPU-disabled trap will copy the data out of
671          * current_thread_info and into the real FPU registers.
672          * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
673          * so we always load the data directly into the FPU registers
674          * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
675          * Note that because we (and the kernel) always write zeroes for
676          * the fenab and fprs in sparc64_get_context() none of this code
677          * will execute unless the guest manually constructed or changed
678          * the context structure.
679          */
680         __get_user(fprs, &(fpup->mcfpu_fprs));
681         if (fprs & FPRS_DL) {
682             for (i = 0; i < 16; i++) {
683                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
684             }
685         }
686         if (fprs & FPRS_DU) {
687             for (i = 16; i < 32; i++) {
688                 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
689             }
690         }
691         __get_user(fsr, &(fpup->mcfpu_fsr));
692         cpu_put_fsr(env, fsr);
693         __get_user(env->gsr, &(fpup->mcfpu_gsr));
694     }
695     unlock_user_struct(ucp, ucp_addr, 0);
696     return;
697 do_sigsegv:
698     unlock_user_struct(ucp, ucp_addr, 0);
699     force_sig(TARGET_SIGSEGV);
700 }
701 
sparc64_get_context(CPUSPARCState * env)702 void sparc64_get_context(CPUSPARCState *env)
703 {
704     abi_ulong ucp_addr;
705     struct target_ucontext *ucp;
706     target_mc_gregset_t *grp;
707     target_mcontext_t *mcp;
708     int err;
709     unsigned int i;
710     target_sigset_t target_set;
711     sigset_t set;
712 
713     ucp_addr = env->regwptr[WREG_O0];
714     if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
715         goto do_sigsegv;
716     }
717 
718     memset(ucp, 0, sizeof(*ucp));
719 
720     mcp = &ucp->tuc_mcontext;
721     grp = &mcp->mc_gregs;
722 
723     /* Skip over the trap instruction, first. */
724     env->pc = env->npc;
725     env->npc += 4;
726 
727     /* If we're only reading the signal mask then do_sigprocmask()
728      * is guaranteed not to fail, which is important because we don't
729      * have any way to signal a failure or restart this operation since
730      * this is not a normal syscall.
731      */
732     err = do_sigprocmask(0, NULL, &set);
733     assert(err == 0);
734     host_to_target_sigset_internal(&target_set, &set);
735     if (TARGET_NSIG_WORDS == 1) {
736         __put_user(target_set.sig[0],
737                    (abi_ulong *)&ucp->tuc_sigmask);
738     } else {
739         abi_ulong *src, *dst;
740         src = target_set.sig;
741         dst = ucp->tuc_sigmask.sig;
742         for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
743             __put_user(*src, dst);
744         }
745     }
746 
747     __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
748     __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
749     __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
750     __put_user(env->y, &((*grp)[SPARC_MC_Y]));
751     __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
752     __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
753     __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
754     __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
755     __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
756     __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
757     __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
758 
759     /*
760      * Note that unlike the kernel, we didn't need to mess with the
761      * guest register window state to save it into a pt_regs to run
762      * the kernel. So for us the guest's O regs are still in WREG_O*
763      * (unlike the kernel which has put them in UREG_I* in a pt_regs)
764      * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
765      * need to be fished out of userspace memory.
766      */
767     __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
768     __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
769     __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
770     __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
771     __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
772     __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
773     __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
774     __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
775 
776     __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
777     __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
778 
779     /*
780      * We don't write out the FPU state. This matches the kernel's
781      * implementation (which has the code for doing this but
782      * hidden behind an "if (fenab)" where fenab is always 0).
783      */
784 
785     unlock_user_struct(ucp, ucp_addr, 1);
786     return;
787 do_sigsegv:
788     unlock_user_struct(ucp, ucp_addr, 1);
789     force_sig(TARGET_SIGSEGV);
790 }
791 #endif /* TARGET_SPARC64 */
792