xref: /openbmc/qemu/hw/net/cadence_gem.c (revision a53b931645183bd0c15dd19ae0708fc3c81ecf1d)
1 /*
2  * QEMU Cadence GEM emulation
3  *
4  * Copyright (c) 2011 Xilinx, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* for crc32 */
27 
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/registerfields.h"
32 #include "migration/vmstate.h"
33 #include "qapi/error.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "sysemu/dma.h"
37 #include "net/checksum.h"
38 #include "net/eth.h"
39 
40 #define CADENCE_GEM_ERR_DEBUG 0
41 #define DB_PRINT(...) do {\
42     if (CADENCE_GEM_ERR_DEBUG) {   \
43         qemu_log(": %s: ", __func__); \
44         qemu_log(__VA_ARGS__); \
45     } \
46 } while (0)
47 
48 REG32(NWCTRL, 0x0) /* Network Control reg */
49     FIELD(NWCTRL, LOOPBACK , 0, 1)
50     FIELD(NWCTRL, LOOPBACK_LOCAL , 1, 1)
51     FIELD(NWCTRL, ENABLE_RECEIVE, 2, 1)
52     FIELD(NWCTRL, ENABLE_TRANSMIT, 3, 1)
53     FIELD(NWCTRL, MAN_PORT_EN , 4, 1)
54     FIELD(NWCTRL, CLEAR_ALL_STATS_REGS , 5, 1)
55     FIELD(NWCTRL, INC_ALL_STATS_REGS, 6, 1)
56     FIELD(NWCTRL, STATS_WRITE_EN, 7, 1)
57     FIELD(NWCTRL, BACK_PRESSURE, 8, 1)
58     FIELD(NWCTRL, TRANSMIT_START , 9, 1)
59     FIELD(NWCTRL, TRANSMIT_HALT, 10, 1)
60     FIELD(NWCTRL, TX_PAUSE_FRAME_RE, 11, 1)
61     FIELD(NWCTRL, TX_PAUSE_FRAME_ZE, 12, 1)
62     FIELD(NWCTRL, STATS_TAKE_SNAP, 13, 1)
63     FIELD(NWCTRL, STATS_READ_SNAP, 14, 1)
64     FIELD(NWCTRL, STORE_RX_TS, 15, 1)
65     FIELD(NWCTRL, PFC_ENABLE, 16, 1)
66     FIELD(NWCTRL, PFC_PRIO_BASED, 17, 1)
67     FIELD(NWCTRL, FLUSH_RX_PKT_PCLK , 18, 1)
68     FIELD(NWCTRL, TX_LPI_EN, 19, 1)
69     FIELD(NWCTRL, PTP_UNICAST_ENA, 20, 1)
70     FIELD(NWCTRL, ALT_SGMII_MODE, 21, 1)
71     FIELD(NWCTRL, STORE_UDP_OFFSET, 22, 1)
72     FIELD(NWCTRL, EXT_TSU_PORT_EN, 23, 1)
73     FIELD(NWCTRL, ONE_STEP_SYNC_MO, 24, 1)
74     FIELD(NWCTRL, PFC_CTRL , 25, 1)
75     FIELD(NWCTRL, EXT_RXQ_SEL_EN , 26, 1)
76     FIELD(NWCTRL, OSS_CORRECTION_FIELD, 27, 1)
77     FIELD(NWCTRL, SEL_MII_ON_RGMII, 28, 1)
78     FIELD(NWCTRL, TWO_PT_FIVE_GIG, 29, 1)
79     FIELD(NWCTRL, IFG_EATS_QAV_CREDIT, 30, 1)
80 
81 REG32(NWCFG, 0x4) /* Network Config reg */
82     FIELD(NWCFG, SPEED, 0, 1)
83     FIELD(NWCFG, FULL_DUPLEX, 1, 1)
84     FIELD(NWCFG, DISCARD_NON_VLAN_FRAMES, 2, 1)
85     FIELD(NWCFG, JUMBO_FRAMES, 3, 1)
86     FIELD(NWCFG, PROMISC, 4, 1)
87     FIELD(NWCFG, NO_BROADCAST, 5, 1)
88     FIELD(NWCFG, MULTICAST_HASH_EN, 6, 1)
89     FIELD(NWCFG, UNICAST_HASH_EN, 7, 1)
90     FIELD(NWCFG, RECV_1536_BYTE_FRAMES, 8, 1)
91     FIELD(NWCFG, EXTERNAL_ADDR_MATCH_EN, 9, 1)
92     FIELD(NWCFG, GIGABIT_MODE_ENABLE, 10, 1)
93     FIELD(NWCFG, PCS_SELECT, 11, 1)
94     FIELD(NWCFG, RETRY_TEST, 12, 1)
95     FIELD(NWCFG, PAUSE_ENABLE, 13, 1)
96     FIELD(NWCFG, RECV_BUF_OFFSET, 14, 2)
97     FIELD(NWCFG, LEN_ERR_DISCARD, 16, 1)
98     FIELD(NWCFG, FCS_REMOVE, 17, 1)
99     FIELD(NWCFG, MDC_CLOCK_DIV, 18, 3)
100     FIELD(NWCFG, DATA_BUS_WIDTH, 21, 2)
101     FIELD(NWCFG, DISABLE_COPY_PAUSE_FRAMES, 23, 1)
102     FIELD(NWCFG, RECV_CSUM_OFFLOAD_EN, 24, 1)
103     FIELD(NWCFG, EN_HALF_DUPLEX_RX, 25, 1)
104     FIELD(NWCFG, IGNORE_RX_FCS, 26, 1)
105     FIELD(NWCFG, SGMII_MODE_ENABLE, 27, 1)
106     FIELD(NWCFG, IPG_STRETCH_ENABLE, 28, 1)
107     FIELD(NWCFG, NSP_ACCEPT, 29, 1)
108     FIELD(NWCFG, IGNORE_IPG_RX_ER, 30, 1)
109     FIELD(NWCFG, UNI_DIRECTION_ENABLE, 31, 1)
110 
111 REG32(NWSTATUS, 0x8) /* Network Status reg */
112 REG32(USERIO, 0xc) /* User IO reg */
113 
114 REG32(DMACFG, 0x10) /* DMA Control reg */
115     FIELD(DMACFG, SEND_BCAST_TO_ALL_QS, 31, 1)
116     FIELD(DMACFG, DMA_ADDR_BUS_WIDTH, 30, 1)
117     FIELD(DMACFG, TX_BD_EXT_MODE_EN , 29, 1)
118     FIELD(DMACFG, RX_BD_EXT_MODE_EN , 28, 1)
119     FIELD(DMACFG, FORCE_MAX_AMBA_BURST_TX, 26, 1)
120     FIELD(DMACFG, FORCE_MAX_AMBA_BURST_RX, 25, 1)
121     FIELD(DMACFG, FORCE_DISCARD_ON_ERR, 24, 1)
122     FIELD(DMACFG, RX_BUF_SIZE, 16, 8)
123     FIELD(DMACFG, CRC_ERROR_REPORT, 13, 1)
124     FIELD(DMACFG, INF_LAST_DBUF_SIZE_EN, 12, 1)
125     FIELD(DMACFG, TX_PBUF_CSUM_OFFLOAD, 11, 1)
126     FIELD(DMACFG, TX_PBUF_SIZE, 10, 1)
127     FIELD(DMACFG, RX_PBUF_SIZE, 8, 2)
128     FIELD(DMACFG, ENDIAN_SWAP_PACKET, 7, 1)
129     FIELD(DMACFG, ENDIAN_SWAP_MGNT, 6, 1)
130     FIELD(DMACFG, HDR_DATA_SPLIT_EN, 5, 1)
131     FIELD(DMACFG, AMBA_BURST_LEN , 0, 5)
132 #define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
133 
134 REG32(TXSTATUS, 0x14) /* TX Status reg */
135     FIELD(TXSTATUS, TX_USED_BIT_READ_MIDFRAME, 12, 1)
136     FIELD(TXSTATUS, TX_FRAME_TOO_LARGE, 11, 1)
137     FIELD(TXSTATUS, TX_DMA_LOCKUP, 10, 1)
138     FIELD(TXSTATUS, TX_MAC_LOCKUP, 9, 1)
139     FIELD(TXSTATUS, RESP_NOT_OK, 8, 1)
140     FIELD(TXSTATUS, LATE_COLLISION, 7, 1)
141     FIELD(TXSTATUS, TRANSMIT_UNDER_RUN, 6, 1)
142     FIELD(TXSTATUS, TRANSMIT_COMPLETE, 5, 1)
143     FIELD(TXSTATUS, AMBA_ERROR, 4, 1)
144     FIELD(TXSTATUS, TRANSMIT_GO, 3, 1)
145     FIELD(TXSTATUS, RETRY_LIMIT, 2, 1)
146     FIELD(TXSTATUS, COLLISION, 1, 1)
147     FIELD(TXSTATUS, USED_BIT_READ, 0, 1)
148 
149 REG32(RXQBASE, 0x18) /* RX Q Base address reg */
150 REG32(TXQBASE, 0x1c) /* TX Q Base address reg */
151 REG32(RXSTATUS, 0x20) /* RX Status reg */
152     FIELD(RXSTATUS, RX_DMA_LOCKUP, 5, 1)
153     FIELD(RXSTATUS, RX_MAC_LOCKUP, 4, 1)
154     FIELD(RXSTATUS, RESP_NOT_OK, 3, 1)
155     FIELD(RXSTATUS, RECEIVE_OVERRUN, 2, 1)
156     FIELD(RXSTATUS, FRAME_RECEIVED, 1, 1)
157     FIELD(RXSTATUS, BUF_NOT_AVAILABLE, 0, 1)
158 
159 REG32(ISR, 0x24) /* Interrupt Status reg */
160     FIELD(ISR, TX_LOCKUP, 31, 1)
161     FIELD(ISR, RX_LOCKUP, 30, 1)
162     FIELD(ISR, TSU_TIMER, 29, 1)
163     FIELD(ISR, WOL, 28, 1)
164     FIELD(ISR, RECV_LPI, 27, 1)
165     FIELD(ISR, TSU_SEC_INCR, 26, 1)
166     FIELD(ISR, PTP_PDELAY_RESP_XMIT, 25, 1)
167     FIELD(ISR, PTP_PDELAY_REQ_XMIT, 24, 1)
168     FIELD(ISR, PTP_PDELAY_RESP_RECV, 23, 1)
169     FIELD(ISR, PTP_PDELAY_REQ_RECV, 22, 1)
170     FIELD(ISR, PTP_SYNC_XMIT, 21, 1)
171     FIELD(ISR, PTP_DELAY_REQ_XMIT, 20, 1)
172     FIELD(ISR, PTP_SYNC_RECV, 19, 1)
173     FIELD(ISR, PTP_DELAY_REQ_RECV, 18, 1)
174     FIELD(ISR, PCS_LP_PAGE_RECV, 17, 1)
175     FIELD(ISR, PCS_AN_COMPLETE, 16, 1)
176     FIELD(ISR, EXT_IRQ, 15, 1)
177     FIELD(ISR, PAUSE_FRAME_XMIT, 14, 1)
178     FIELD(ISR, PAUSE_TIME_ELAPSED, 13, 1)
179     FIELD(ISR, PAUSE_FRAME_RECV, 12, 1)
180     FIELD(ISR, RESP_NOT_OK, 11, 1)
181     FIELD(ISR, RECV_OVERRUN, 10, 1)
182     FIELD(ISR, LINK_CHANGE, 9, 1)
183     FIELD(ISR, USXGMII_INT, 8, 1)
184     FIELD(ISR, XMIT_COMPLETE, 7, 1)
185     FIELD(ISR, AMBA_ERROR, 6, 1)
186     FIELD(ISR, RETRY_EXCEEDED, 5, 1)
187     FIELD(ISR, XMIT_UNDER_RUN, 4, 1)
188     FIELD(ISR, TX_USED, 3, 1)
189     FIELD(ISR, RX_USED, 2, 1)
190     FIELD(ISR, RECV_COMPLETE, 1, 1)
191     FIELD(ISR, MGNT_FRAME_SENT, 0, 1)
192 REG32(IER, 0x28) /* Interrupt Enable reg */
193 REG32(IDR, 0x2c) /* Interrupt Disable reg */
194 REG32(IMR, 0x30) /* Interrupt Mask reg */
195 
196 REG32(PHYMNTNC, 0x34) /* Phy Maintenance reg */
197     FIELD(PHYMNTNC, DATA, 0, 16)
198     FIELD(PHYMNTNC, REG_ADDR, 18, 5)
199     FIELD(PHYMNTNC, PHY_ADDR, 23, 5)
200     FIELD(PHYMNTNC, OP, 28, 2)
201     FIELD(PHYMNTNC, ST, 30, 2)
202 #define MDIO_OP_READ    0x2
203 #define MDIO_OP_WRITE   0x1
204 
205 REG32(RXPAUSE, 0x38) /* RX Pause Time reg */
206 REG32(TXPAUSE, 0x3c) /* TX Pause Time reg */
207 REG32(TXPARTIALSF, 0x40) /* TX Partial Store and Forward */
208 REG32(RXPARTIALSF, 0x44) /* RX Partial Store and Forward */
209 REG32(JUMBO_MAX_LEN, 0x48) /* Max Jumbo Frame Size */
210 REG32(HASHLO, 0x80) /* Hash Low address reg */
211 REG32(HASHHI, 0x84) /* Hash High address reg */
212 REG32(SPADDR1LO, 0x88) /* Specific addr 1 low reg */
213 REG32(SPADDR1HI, 0x8c) /* Specific addr 1 high reg */
214 REG32(SPADDR2LO, 0x90) /* Specific addr 2 low reg */
215 REG32(SPADDR2HI, 0x94) /* Specific addr 2 high reg */
216 REG32(SPADDR3LO, 0x98) /* Specific addr 3 low reg */
217 REG32(SPADDR3HI, 0x9c) /* Specific addr 3 high reg */
218 REG32(SPADDR4LO, 0xa0) /* Specific addr 4 low reg */
219 REG32(SPADDR4HI, 0xa4) /* Specific addr 4 high reg */
220 REG32(TIDMATCH1, 0xa8) /* Type ID1 Match reg */
221 REG32(TIDMATCH2, 0xac) /* Type ID2 Match reg */
222 REG32(TIDMATCH3, 0xb0) /* Type ID3 Match reg */
223 REG32(TIDMATCH4, 0xb4) /* Type ID4 Match reg */
224 REG32(WOLAN, 0xb8) /* Wake on LAN reg */
225 REG32(IPGSTRETCH, 0xbc) /* IPG Stretch reg */
226 REG32(SVLAN, 0xc0) /* Stacked VLAN reg */
227 REG32(MODID, 0xfc) /* Module ID reg */
228 REG32(OCTTXLO, 0x100) /* Octets transmitted Low reg */
229 REG32(OCTTXHI, 0x104) /* Octets transmitted High reg */
230 REG32(TXCNT, 0x108) /* Error-free Frames transmitted */
231 REG32(TXBCNT, 0x10c) /* Error-free Broadcast Frames */
232 REG32(TXMCNT, 0x110) /* Error-free Multicast Frame */
233 REG32(TXPAUSECNT, 0x114) /* Pause Frames Transmitted */
234 REG32(TX64CNT, 0x118) /* Error-free 64 TX */
235 REG32(TX65CNT, 0x11c) /* Error-free 65-127 TX */
236 REG32(TX128CNT, 0x120) /* Error-free 128-255 TX */
237 REG32(TX256CNT, 0x124) /* Error-free 256-511 */
238 REG32(TX512CNT, 0x128) /* Error-free 512-1023 TX */
239 REG32(TX1024CNT, 0x12c) /* Error-free 1024-1518 TX */
240 REG32(TX1519CNT, 0x130) /* Error-free larger than 1519 TX */
241 REG32(TXURUNCNT, 0x134) /* TX under run error counter */
242 REG32(SINGLECOLLCNT, 0x138) /* Single Collision Frames */
243 REG32(MULTCOLLCNT, 0x13c) /* Multiple Collision Frames */
244 REG32(EXCESSCOLLCNT, 0x140) /* Excessive Collision Frames */
245 REG32(LATECOLLCNT, 0x144) /* Late Collision Frames */
246 REG32(DEFERTXCNT, 0x148) /* Deferred Transmission Frames */
247 REG32(CSENSECNT, 0x14c) /* Carrier Sense Error Counter */
248 REG32(OCTRXLO, 0x150) /* Octets Received register Low */
249 REG32(OCTRXHI, 0x154) /* Octets Received register High */
250 REG32(RXCNT, 0x158) /* Error-free Frames Received */
251 REG32(RXBROADCNT, 0x15c) /* Error-free Broadcast Frames RX */
252 REG32(RXMULTICNT, 0x160) /* Error-free Multicast Frames RX */
253 REG32(RXPAUSECNT, 0x164) /* Pause Frames Received Counter */
254 REG32(RX64CNT, 0x168) /* Error-free 64 byte Frames RX */
255 REG32(RX65CNT, 0x16c) /* Error-free 65-127B Frames RX */
256 REG32(RX128CNT, 0x170) /* Error-free 128-255B Frames RX */
257 REG32(RX256CNT, 0x174) /* Error-free 256-512B Frames RX */
258 REG32(RX512CNT, 0x178) /* Error-free 512-1023B Frames RX */
259 REG32(RX1024CNT, 0x17c) /* Error-free 1024-1518B Frames RX */
260 REG32(RX1519CNT, 0x180) /* Error-free 1519-max Frames RX */
261 REG32(RXUNDERCNT, 0x184) /* Undersize Frames Received */
262 REG32(RXOVERCNT, 0x188) /* Oversize Frames Received */
263 REG32(RXJABCNT, 0x18c) /* Jabbers Received Counter */
264 REG32(RXFCSCNT, 0x190) /* Frame Check seq. Error Counter */
265 REG32(RXLENERRCNT, 0x194) /* Length Field Error Counter */
266 REG32(RXSYMERRCNT, 0x198) /* Symbol Error Counter */
267 REG32(RXALIGNERRCNT, 0x19c) /* Alignment Error Counter */
268 REG32(RXRSCERRCNT, 0x1a0) /* Receive Resource Error Counter */
269 REG32(RXORUNCNT, 0x1a4) /* Receive Overrun Counter */
270 REG32(RXIPCSERRCNT, 0x1a8) /* IP header Checksum Err Counter */
271 REG32(RXTCPCCNT, 0x1ac) /* TCP Checksum Error Counter */
272 REG32(RXUDPCCNT, 0x1b0) /* UDP Checksum Error Counter */
273 
274 REG32(1588S, 0x1d0) /* 1588 Timer Seconds */
275 REG32(1588NS, 0x1d4) /* 1588 Timer Nanoseconds */
276 REG32(1588ADJ, 0x1d8) /* 1588 Timer Adjust */
277 REG32(1588INC, 0x1dc) /* 1588 Timer Increment */
278 REG32(PTPETXS, 0x1e0) /* PTP Event Frame Transmitted (s) */
279 REG32(PTPETXNS, 0x1e4) /* PTP Event Frame Transmitted (ns) */
280 REG32(PTPERXS, 0x1e8) /* PTP Event Frame Received (s) */
281 REG32(PTPERXNS, 0x1ec) /* PTP Event Frame Received (ns) */
282 REG32(PTPPTXS, 0x1e0) /* PTP Peer Frame Transmitted (s) */
283 REG32(PTPPTXNS, 0x1e4) /* PTP Peer Frame Transmitted (ns) */
284 REG32(PTPPRXS, 0x1e8) /* PTP Peer Frame Received (s) */
285 REG32(PTPPRXNS, 0x1ec) /* PTP Peer Frame Received (ns) */
286 
287 /* Design Configuration Registers */
288 REG32(DESCONF, 0x280)
289 REG32(DESCONF2, 0x284)
290 REG32(DESCONF3, 0x288)
291 REG32(DESCONF4, 0x28c)
292 REG32(DESCONF5, 0x290)
293 REG32(DESCONF6, 0x294)
294     FIELD(DESCONF6, DMA_ADDR_64B, 23, 1)
295 REG32(DESCONF7, 0x298)
296 
297 REG32(INT_Q1_STATUS, 0x400)
298 REG32(INT_Q1_MASK, 0x640)
299 
300 REG32(TRANSMIT_Q1_PTR, 0x440)
301 REG32(TRANSMIT_Q7_PTR, 0x458)
302 
303 REG32(RECEIVE_Q1_PTR, 0x480)
304 REG32(RECEIVE_Q7_PTR, 0x498)
305 
306 REG32(TBQPH, 0x4c8)
307 REG32(RBQPH, 0x4d4)
308 
309 REG32(INT_Q1_ENABLE, 0x600)
310 REG32(INT_Q7_ENABLE, 0x618)
311 
312 REG32(INT_Q1_DISABLE, 0x620)
313 REG32(INT_Q7_DISABLE, 0x638)
314 
315 REG32(SCREENING_TYPE1_REG0, 0x500)
316     FIELD(SCREENING_TYPE1_REG0, QUEUE_NUM, 0, 4)
317     FIELD(SCREENING_TYPE1_REG0, DSTC_MATCH, 4, 8)
318     FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH, 12, 16)
319     FIELD(SCREENING_TYPE1_REG0, DSTC_ENABLE, 28, 1)
320     FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN, 29, 1)
321     FIELD(SCREENING_TYPE1_REG0, DROP_ON_MATCH, 30, 1)
322 
323 REG32(SCREENING_TYPE2_REG0, 0x540)
324     FIELD(SCREENING_TYPE2_REG0, QUEUE_NUM, 0, 4)
325     FIELD(SCREENING_TYPE2_REG0, VLAN_PRIORITY, 4, 3)
326     FIELD(SCREENING_TYPE2_REG0, VLAN_ENABLE, 8, 1)
327     FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_REG_INDEX, 9, 3)
328     FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE, 12, 1)
329     FIELD(SCREENING_TYPE2_REG0, COMPARE_A, 13, 5)
330     FIELD(SCREENING_TYPE2_REG0, COMPARE_A_ENABLE, 18, 1)
331     FIELD(SCREENING_TYPE2_REG0, COMPARE_B, 19, 5)
332     FIELD(SCREENING_TYPE2_REG0, COMPARE_B_ENABLE, 24, 1)
333     FIELD(SCREENING_TYPE2_REG0, COMPARE_C, 25, 5)
334     FIELD(SCREENING_TYPE2_REG0, COMPARE_C_ENABLE, 30, 1)
335     FIELD(SCREENING_TYPE2_REG0, DROP_ON_MATCH, 31, 1)
336 
337 REG32(SCREENING_TYPE2_ETHERTYPE_REG0, 0x6e0)
338 
339 REG32(TYPE2_COMPARE_0_WORD_0, 0x700)
340     FIELD(TYPE2_COMPARE_0_WORD_0, MASK_VALUE, 0, 16)
341     FIELD(TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE, 16, 16)
342 
343 REG32(TYPE2_COMPARE_0_WORD_1, 0x704)
344     FIELD(TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE, 0, 7)
345     FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET, 7, 2)
346     FIELD(TYPE2_COMPARE_0_WORD_1, DISABLE_MASK, 9, 1)
347     FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_VLAN_ID, 10, 1)
348 
349 /*****************************************/
350 
351 
352 
353 /* Marvell PHY definitions */
354 #define BOARD_PHY_ADDRESS    0 /* PHY address we will emulate a device at */
355 
356 #define PHY_REG_CONTROL      0
357 #define PHY_REG_STATUS       1
358 #define PHY_REG_PHYID1       2
359 #define PHY_REG_PHYID2       3
360 #define PHY_REG_ANEGADV      4
361 #define PHY_REG_LINKPABIL    5
362 #define PHY_REG_ANEGEXP      6
363 #define PHY_REG_NEXTP        7
364 #define PHY_REG_LINKPNEXTP   8
365 #define PHY_REG_100BTCTRL    9
366 #define PHY_REG_1000BTSTAT   10
367 #define PHY_REG_EXTSTAT      15
368 #define PHY_REG_PHYSPCFC_CTL 16
369 #define PHY_REG_PHYSPCFC_ST  17
370 #define PHY_REG_INT_EN       18
371 #define PHY_REG_INT_ST       19
372 #define PHY_REG_EXT_PHYSPCFC_CTL  20
373 #define PHY_REG_RXERR        21
374 #define PHY_REG_EACD         22
375 #define PHY_REG_LED          24
376 #define PHY_REG_LED_OVRD     25
377 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
378 #define PHY_REG_EXT_PHYSPCFC_ST   27
379 #define PHY_REG_CABLE_DIAG   28
380 
381 #define PHY_REG_CONTROL_RST       0x8000
382 #define PHY_REG_CONTROL_LOOP      0x4000
383 #define PHY_REG_CONTROL_ANEG      0x1000
384 #define PHY_REG_CONTROL_ANRESTART 0x0200
385 
386 #define PHY_REG_STATUS_LINK     0x0004
387 #define PHY_REG_STATUS_ANEGCMPL 0x0020
388 
389 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
390 #define PHY_REG_INT_ST_LINKC    0x0400
391 #define PHY_REG_INT_ST_ENERGY   0x0010
392 
393 /***********************************************************************/
394 #define GEM_RX_REJECT                   (-1)
395 #define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
396 #define GEM_RX_BROADCAST_ACCEPT         (-3)
397 #define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
398 #define GEM_RX_UNICAST_HASH_ACCEPT      (-5)
399 
400 #define GEM_RX_SAR_ACCEPT               0
401 
402 /***********************************************************************/
403 
404 #define DESC_1_USED 0x80000000
405 #define DESC_1_LENGTH 0x00001FFF
406 
407 #define DESC_1_TX_WRAP 0x40000000
408 #define DESC_1_TX_LAST 0x00008000
409 
410 #define DESC_0_RX_WRAP 0x00000002
411 #define DESC_0_RX_OWNERSHIP 0x00000001
412 
413 #define R_DESC_1_RX_SAR_SHIFT           25
414 #define R_DESC_1_RX_SAR_LENGTH          2
415 #define R_DESC_1_RX_SAR_MATCH           (1 << 27)
416 #define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
417 #define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
418 #define R_DESC_1_RX_BROADCAST           (1 << 31)
419 
420 #define DESC_1_RX_SOF 0x00004000
421 #define DESC_1_RX_EOF 0x00008000
422 
423 #define GEM_MODID_VALUE 0x00020118
424 
tx_desc_get_buffer(CadenceGEMState * s,uint32_t * desc)425 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
426 {
427     uint64_t ret = desc[0];
428 
429     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
430         ret |= (uint64_t)desc[2] << 32;
431     }
432     return ret;
433 }
434 
tx_desc_get_used(uint32_t * desc)435 static inline unsigned tx_desc_get_used(uint32_t *desc)
436 {
437     return (desc[1] & DESC_1_USED) ? 1 : 0;
438 }
439 
tx_desc_set_used(uint32_t * desc)440 static inline void tx_desc_set_used(uint32_t *desc)
441 {
442     desc[1] |= DESC_1_USED;
443 }
444 
tx_desc_get_wrap(uint32_t * desc)445 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
446 {
447     return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
448 }
449 
tx_desc_get_last(uint32_t * desc)450 static inline unsigned tx_desc_get_last(uint32_t *desc)
451 {
452     return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
453 }
454 
tx_desc_get_length(uint32_t * desc)455 static inline unsigned tx_desc_get_length(uint32_t *desc)
456 {
457     return desc[1] & DESC_1_LENGTH;
458 }
459 
print_gem_tx_desc(uint32_t * desc,uint8_t queue)460 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
461 {
462     DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
463     DB_PRINT("bufaddr: 0x%08x\n", *desc);
464     DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
465     DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
466     DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
467     DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
468 }
469 
rx_desc_get_buffer(CadenceGEMState * s,uint32_t * desc)470 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
471 {
472     uint64_t ret = desc[0] & ~0x3UL;
473 
474     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
475         ret |= (uint64_t)desc[2] << 32;
476     }
477     return ret;
478 }
479 
gem_get_desc_len(CadenceGEMState * s,bool rx_n_tx)480 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
481 {
482     int ret = 2;
483 
484     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
485         ret += 2;
486     }
487     if (s->regs[R_DMACFG] & (rx_n_tx ? R_DMACFG_RX_BD_EXT_MODE_EN_MASK
488                                      : R_DMACFG_TX_BD_EXT_MODE_EN_MASK)) {
489         ret += 2;
490     }
491 
492     assert(ret <= DESC_MAX_NUM_WORDS);
493     return ret;
494 }
495 
rx_desc_get_wrap(uint32_t * desc)496 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
497 {
498     return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
499 }
500 
rx_desc_get_ownership(uint32_t * desc)501 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
502 {
503     return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
504 }
505 
rx_desc_set_ownership(uint32_t * desc)506 static inline void rx_desc_set_ownership(uint32_t *desc)
507 {
508     desc[0] |= DESC_0_RX_OWNERSHIP;
509 }
510 
rx_desc_set_sof(uint32_t * desc)511 static inline void rx_desc_set_sof(uint32_t *desc)
512 {
513     desc[1] |= DESC_1_RX_SOF;
514 }
515 
rx_desc_clear_control(uint32_t * desc)516 static inline void rx_desc_clear_control(uint32_t *desc)
517 {
518     desc[1]  = 0;
519 }
520 
rx_desc_set_eof(uint32_t * desc)521 static inline void rx_desc_set_eof(uint32_t *desc)
522 {
523     desc[1] |= DESC_1_RX_EOF;
524 }
525 
rx_desc_set_length(uint32_t * desc,unsigned len)526 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
527 {
528     desc[1] &= ~DESC_1_LENGTH;
529     desc[1] |= len;
530 }
531 
rx_desc_set_broadcast(uint32_t * desc)532 static inline void rx_desc_set_broadcast(uint32_t *desc)
533 {
534     desc[1] |= R_DESC_1_RX_BROADCAST;
535 }
536 
rx_desc_set_unicast_hash(uint32_t * desc)537 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
538 {
539     desc[1] |= R_DESC_1_RX_UNICAST_HASH;
540 }
541 
rx_desc_set_multicast_hash(uint32_t * desc)542 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
543 {
544     desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
545 }
546 
rx_desc_set_sar(uint32_t * desc,int sar_idx)547 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
548 {
549     desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
550                         sar_idx);
551     desc[1] |= R_DESC_1_RX_SAR_MATCH;
552 }
553 
554 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
555 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
556 
gem_get_max_buf_len(CadenceGEMState * s,bool tx)557 static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
558 {
559     uint32_t size;
560     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, JUMBO_FRAMES)) {
561         size = s->regs[R_JUMBO_MAX_LEN];
562         if (size > s->jumbo_max_len) {
563             size = s->jumbo_max_len;
564             qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
565                 " greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
566         }
567     } else if (tx) {
568         size = 1518;
569     } else {
570         size = FIELD_EX32(s->regs[R_NWCFG],
571                           NWCFG, RECV_1536_BYTE_FRAMES) ? 1538 : 1518;
572     }
573     return size;
574 }
575 
gem_set_isr(CadenceGEMState * s,int q,uint32_t flag)576 static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
577 {
578     if (q == 0) {
579         s->regs[R_ISR] |= flag & ~(s->regs[R_IMR]);
580     } else {
581         s->regs[R_INT_Q1_STATUS + q - 1] |= flag &
582                                       ~(s->regs[R_INT_Q1_MASK + q - 1]);
583     }
584 }
585 
586 /*
587  * gem_init_register_masks:
588  * One time initialization.
589  * Set masks to identify which register bits have magical clear properties
590  */
gem_init_register_masks(CadenceGEMState * s)591 static void gem_init_register_masks(CadenceGEMState *s)
592 {
593     unsigned int i;
594     /* Mask of register bits which are read only */
595     memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
596     s->regs_ro[R_NWCTRL]   = 0xFFF80000;
597     s->regs_ro[R_NWSTATUS] = 0xFFFFFFFF;
598     s->regs_ro[R_DMACFG]   = 0x8E00F000;
599     s->regs_ro[R_TXSTATUS] = 0xFFFFFE08;
600     s->regs_ro[R_RXQBASE]  = 0x00000003;
601     s->regs_ro[R_TXQBASE]  = 0x00000003;
602     s->regs_ro[R_RXSTATUS] = 0xFFFFFFF0;
603     s->regs_ro[R_ISR]      = 0xFFFFFFFF;
604     s->regs_ro[R_IMR]      = 0xFFFFFFFF;
605     s->regs_ro[R_MODID]    = 0xFFFFFFFF;
606     for (i = 0; i < s->num_priority_queues; i++) {
607         s->regs_ro[R_INT_Q1_STATUS + i] = 0xFFFFFFFF;
608         s->regs_ro[R_INT_Q1_ENABLE + i] = 0xFFFFF319;
609         s->regs_ro[R_INT_Q1_DISABLE + i] = 0xFFFFF319;
610         s->regs_ro[R_INT_Q1_MASK + i] = 0xFFFFFFFF;
611     }
612 
613     /* Mask of register bits which are clear on read */
614     memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
615     s->regs_rtc[R_ISR]      = 0xFFFFFFFF;
616     for (i = 0; i < s->num_priority_queues; i++) {
617         s->regs_rtc[R_INT_Q1_STATUS + i] = 0x00000CE6;
618     }
619 
620     /* Mask of register bits which are write 1 to clear */
621     memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
622     s->regs_w1c[R_TXSTATUS] = 0x000001F7;
623     s->regs_w1c[R_RXSTATUS] = 0x0000000F;
624 
625     /* Mask of register bits which are write only */
626     memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
627     s->regs_wo[R_NWCTRL]   = 0x00073E60;
628     s->regs_wo[R_IER]      = 0x07FFFFFF;
629     s->regs_wo[R_IDR]      = 0x07FFFFFF;
630     for (i = 0; i < s->num_priority_queues; i++) {
631         s->regs_wo[R_INT_Q1_ENABLE + i] = 0x00000CE6;
632         s->regs_wo[R_INT_Q1_DISABLE + i] = 0x00000CE6;
633     }
634 }
635 
636 /*
637  * phy_update_link:
638  * Make the emulated PHY link state match the QEMU "interface" state.
639  */
phy_update_link(CadenceGEMState * s)640 static void phy_update_link(CadenceGEMState *s)
641 {
642     DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
643 
644     /* Autonegotiation status mirrors link status.  */
645     if (qemu_get_queue(s->nic)->link_down) {
646         s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
647                                          PHY_REG_STATUS_LINK);
648         s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
649     } else {
650         s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
651                                          PHY_REG_STATUS_LINK);
652         s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
653                                         PHY_REG_INT_ST_ANEGCMPL |
654                                         PHY_REG_INT_ST_ENERGY);
655     }
656 }
657 
gem_can_receive(NetClientState * nc)658 static bool gem_can_receive(NetClientState *nc)
659 {
660     CadenceGEMState *s;
661     int i;
662 
663     s = qemu_get_nic_opaque(nc);
664 
665     /* Do nothing if receive is not enabled. */
666     if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_RECEIVE)) {
667         if (s->can_rx_state != 1) {
668             s->can_rx_state = 1;
669             DB_PRINT("can't receive - no enable\n");
670         }
671         return false;
672     }
673 
674     for (i = 0; i < s->num_priority_queues; i++) {
675         if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
676             break;
677         }
678     };
679 
680     if (i == s->num_priority_queues) {
681         if (s->can_rx_state != 2) {
682             s->can_rx_state = 2;
683             DB_PRINT("can't receive - all the buffer descriptors are busy\n");
684         }
685         return false;
686     }
687 
688     if (s->can_rx_state != 0) {
689         s->can_rx_state = 0;
690         DB_PRINT("can receive\n");
691     }
692     return true;
693 }
694 
695 /*
696  * gem_update_int_status:
697  * Raise or lower interrupt based on current status.
698  */
gem_update_int_status(CadenceGEMState * s)699 static void gem_update_int_status(CadenceGEMState *s)
700 {
701     int i;
702 
703     qemu_set_irq(s->irq[0], !!s->regs[R_ISR]);
704 
705     for (i = 1; i < s->num_priority_queues; ++i) {
706         qemu_set_irq(s->irq[i], !!s->regs[R_INT_Q1_STATUS + i - 1]);
707     }
708 }
709 
710 /*
711  * gem_receive_updatestats:
712  * Increment receive statistics.
713  */
gem_receive_updatestats(CadenceGEMState * s,const uint8_t * packet,unsigned bytes)714 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
715                                     unsigned bytes)
716 {
717     uint64_t octets;
718 
719     /* Total octets (bytes) received */
720     octets = ((uint64_t)(s->regs[R_OCTRXLO]) << 32) |
721              s->regs[R_OCTRXHI];
722     octets += bytes;
723     s->regs[R_OCTRXLO] = octets >> 32;
724     s->regs[R_OCTRXHI] = octets;
725 
726     /* Error-free Frames received */
727     s->regs[R_RXCNT]++;
728 
729     /* Error-free Broadcast Frames counter */
730     if (!memcmp(packet, broadcast_addr, 6)) {
731         s->regs[R_RXBROADCNT]++;
732     }
733 
734     /* Error-free Multicast Frames counter */
735     if (packet[0] == 0x01) {
736         s->regs[R_RXMULTICNT]++;
737     }
738 
739     if (bytes <= 64) {
740         s->regs[R_RX64CNT]++;
741     } else if (bytes <= 127) {
742         s->regs[R_RX65CNT]++;
743     } else if (bytes <= 255) {
744         s->regs[R_RX128CNT]++;
745     } else if (bytes <= 511) {
746         s->regs[R_RX256CNT]++;
747     } else if (bytes <= 1023) {
748         s->regs[R_RX512CNT]++;
749     } else if (bytes <= 1518) {
750         s->regs[R_RX1024CNT]++;
751     } else {
752         s->regs[R_RX1519CNT]++;
753     }
754 }
755 
756 /*
757  * Get the MAC Address bit from the specified position
758  */
get_bit(const uint8_t * mac,unsigned bit)759 static unsigned get_bit(const uint8_t *mac, unsigned bit)
760 {
761     unsigned byte;
762 
763     byte = mac[bit / 8];
764     byte >>= (bit & 0x7);
765     byte &= 1;
766 
767     return byte;
768 }
769 
770 /*
771  * Calculate a GEM MAC Address hash index
772  */
calc_mac_hash(const uint8_t * mac)773 static unsigned calc_mac_hash(const uint8_t *mac)
774 {
775     int index_bit, mac_bit;
776     unsigned hash_index;
777 
778     hash_index = 0;
779     mac_bit = 5;
780     for (index_bit = 5; index_bit >= 0; index_bit--) {
781         hash_index |= (get_bit(mac,  mac_bit) ^
782                                get_bit(mac, mac_bit + 6) ^
783                                get_bit(mac, mac_bit + 12) ^
784                                get_bit(mac, mac_bit + 18) ^
785                                get_bit(mac, mac_bit + 24) ^
786                                get_bit(mac, mac_bit + 30) ^
787                                get_bit(mac, mac_bit + 36) ^
788                                get_bit(mac, mac_bit + 42)) << index_bit;
789         mac_bit--;
790     }
791 
792     return hash_index;
793 }
794 
795 /*
796  * gem_mac_address_filter:
797  * Accept or reject this destination address?
798  * Returns:
799  * GEM_RX_REJECT: reject
800  * >= 0: Specific address accept (which matched SAR is returned)
801  * others for various other modes of accept:
802  * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
803  * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
804  */
gem_mac_address_filter(CadenceGEMState * s,const uint8_t * packet)805 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
806 {
807     uint8_t *gem_spaddr;
808     int i, is_mc;
809 
810     /* Promiscuous mode? */
811     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, PROMISC)) {
812         return GEM_RX_PROMISCUOUS_ACCEPT;
813     }
814 
815     if (!memcmp(packet, broadcast_addr, 6)) {
816         /* Reject broadcast packets? */
817         if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, NO_BROADCAST)) {
818             return GEM_RX_REJECT;
819         }
820         return GEM_RX_BROADCAST_ACCEPT;
821     }
822 
823     /* Accept packets -w- hash match? */
824     is_mc = is_multicast_ether_addr(packet);
825     if ((is_mc && (FIELD_EX32(s->regs[R_NWCFG], NWCFG, MULTICAST_HASH_EN))) ||
826         (!is_mc && FIELD_EX32(s->regs[R_NWCFG], NWCFG, UNICAST_HASH_EN))) {
827         uint64_t buckets;
828         unsigned hash_index;
829 
830         hash_index = calc_mac_hash(packet);
831         buckets = ((uint64_t)s->regs[R_HASHHI] << 32) | s->regs[R_HASHLO];
832         if ((buckets >> hash_index) & 1) {
833             return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
834                          : GEM_RX_UNICAST_HASH_ACCEPT;
835         }
836     }
837 
838     /* Check all 4 specific addresses */
839     gem_spaddr = (uint8_t *)&(s->regs[R_SPADDR1LO]);
840     for (i = 3; i >= 0; i--) {
841         if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
842             return GEM_RX_SAR_ACCEPT + i;
843         }
844     }
845 
846     /* No address match; reject the packet */
847     return GEM_RX_REJECT;
848 }
849 
850 /* Figure out which queue the received data should be sent to */
get_queue_from_screen(CadenceGEMState * s,uint8_t * rxbuf_ptr,unsigned rxbufsize)851 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
852                                  unsigned rxbufsize)
853 {
854     uint32_t reg;
855     bool matched, mismatched;
856     int i, j;
857 
858     for (i = 0; i < s->num_type1_screeners; i++) {
859         reg = s->regs[R_SCREENING_TYPE1_REG0 + i];
860         matched = false;
861         mismatched = false;
862 
863         /* Screening is based on UDP Port */
864         if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN)) {
865             uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
866             if (udp_port == FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH)) {
867                 matched = true;
868             } else {
869                 mismatched = true;
870             }
871         }
872 
873         /* Screening is based on DS/TC */
874         if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_ENABLE)) {
875             uint8_t dscp = rxbuf_ptr[14 + 1];
876             if (dscp == FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_MATCH)) {
877                 matched = true;
878             } else {
879                 mismatched = true;
880             }
881         }
882 
883         if (matched && !mismatched) {
884             return FIELD_EX32(reg, SCREENING_TYPE1_REG0, QUEUE_NUM);
885         }
886     }
887 
888     for (i = 0; i < s->num_type2_screeners; i++) {
889         reg = s->regs[R_SCREENING_TYPE2_REG0 + i];
890         matched = false;
891         mismatched = false;
892 
893         if (FIELD_EX32(reg, SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE)) {
894             uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
895             int et_idx = FIELD_EX32(reg, SCREENING_TYPE2_REG0,
896                                     ETHERTYPE_REG_INDEX);
897 
898             if (et_idx > s->num_type2_screeners) {
899                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
900                               "register index: %d\n", et_idx);
901             }
902             if (type == s->regs[R_SCREENING_TYPE2_ETHERTYPE_REG0 +
903                                 et_idx]) {
904                 matched = true;
905             } else {
906                 mismatched = true;
907             }
908         }
909 
910         /* Compare A, B, C */
911         for (j = 0; j < 3; j++) {
912             uint32_t cr0, cr1, mask, compare;
913             uint16_t rx_cmp;
914             int offset;
915             int cr_idx = extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_SHIFT + j * 6,
916                                    R_SCREENING_TYPE2_REG0_COMPARE_A_LENGTH);
917 
918             if (!extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_SHIFT + j * 6,
919                            R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_LENGTH)) {
920                 continue;
921             }
922 
923             if (cr_idx > s->num_type2_screeners) {
924                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
925                               "register index: %d\n", cr_idx);
926             }
927 
928             cr0 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
929             cr1 = s->regs[R_TYPE2_COMPARE_0_WORD_1 + cr_idx * 2];
930             offset = FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE);
931 
932             switch (FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET)) {
933             case 3: /* Skip UDP header */
934                 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
935                               "unimplemented - assuming UDP\n");
936                 offset += 8;
937                 /* Fallthrough */
938             case 2: /* skip the IP header */
939                 offset += 20;
940                 /* Fallthrough */
941             case 1: /* Count from after the ethertype */
942                 offset += 14;
943                 break;
944             case 0:
945                 /* Offset from start of frame */
946                 break;
947             }
948 
949             rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
950             mask = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, MASK_VALUE);
951             compare = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE);
952 
953             if ((rx_cmp & mask) == (compare & mask)) {
954                 matched = true;
955             } else {
956                 mismatched = true;
957             }
958         }
959 
960         if (matched && !mismatched) {
961             return FIELD_EX32(reg, SCREENING_TYPE2_REG0, QUEUE_NUM);
962         }
963     }
964 
965     /* We made it here, assume it's queue 0 */
966     return 0;
967 }
968 
gem_get_queue_base_addr(CadenceGEMState * s,bool tx,int q)969 static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
970 {
971     uint32_t base_addr = 0;
972 
973     switch (q) {
974     case 0:
975         base_addr = s->regs[tx ? R_TXQBASE : R_RXQBASE];
976         break;
977     case 1 ... (MAX_PRIORITY_QUEUES - 1):
978         base_addr = s->regs[(tx ? R_TRANSMIT_Q1_PTR :
979                                  R_RECEIVE_Q1_PTR) + q - 1];
980         break;
981     default:
982         g_assert_not_reached();
983     };
984 
985     return base_addr;
986 }
987 
gem_get_tx_queue_base_addr(CadenceGEMState * s,int q)988 static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
989 {
990     return gem_get_queue_base_addr(s, true, q);
991 }
992 
gem_get_rx_queue_base_addr(CadenceGEMState * s,int q)993 static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
994 {
995     return gem_get_queue_base_addr(s, false, q);
996 }
997 
gem_get_desc_addr(CadenceGEMState * s,bool tx,int q)998 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
999 {
1000     hwaddr desc_addr = 0;
1001 
1002     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
1003         desc_addr = s->regs[tx ? R_TBQPH : R_RBQPH];
1004     }
1005     desc_addr <<= 32;
1006     desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
1007     return desc_addr;
1008 }
1009 
gem_get_tx_desc_addr(CadenceGEMState * s,int q)1010 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
1011 {
1012     return gem_get_desc_addr(s, true, q);
1013 }
1014 
gem_get_rx_desc_addr(CadenceGEMState * s,int q)1015 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
1016 {
1017     return gem_get_desc_addr(s, false, q);
1018 }
1019 
gem_get_rx_desc(CadenceGEMState * s,int q)1020 static void gem_get_rx_desc(CadenceGEMState *s, int q)
1021 {
1022     hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
1023 
1024     DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
1025 
1026     /* read current descriptor */
1027     address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1028                        s->rx_desc[q],
1029                        sizeof(uint32_t) * gem_get_desc_len(s, true));
1030 
1031     /* Descriptor owned by software ? */
1032     if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
1033         DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
1034         s->regs[R_RXSTATUS] |= R_RXSTATUS_BUF_NOT_AVAILABLE_MASK;
1035         gem_set_isr(s, q, R_ISR_RX_USED_MASK);
1036         /* Handle interrupt consequences */
1037         gem_update_int_status(s);
1038     }
1039 }
1040 
1041 /*
1042  * gem_receive:
1043  * Fit a packet handed to us by QEMU into the receive descriptor ring.
1044  */
gem_receive(NetClientState * nc,const uint8_t * buf,size_t size)1045 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1046 {
1047     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1048     unsigned   rxbufsize, bytes_to_copy;
1049     unsigned   rxbuf_offset;
1050     uint8_t   *rxbuf_ptr;
1051     bool first_desc = true;
1052     int maf;
1053     int q = 0;
1054 
1055     /* Is this destination MAC address "for us" ? */
1056     maf = gem_mac_address_filter(s, buf);
1057     if (maf == GEM_RX_REJECT) {
1058         return size;  /* no, drop silently b/c it's not an error */
1059     }
1060 
1061     /* Discard packets with receive length error enabled ? */
1062     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, LEN_ERR_DISCARD)) {
1063         unsigned type_len;
1064 
1065         /* Fish the ethertype / length field out of the RX packet */
1066         type_len = buf[12] << 8 | buf[13];
1067         /* It is a length field, not an ethertype */
1068         if (type_len < 0x600) {
1069             if (size < type_len) {
1070                 /* discard */
1071                 return -1;
1072             }
1073         }
1074     }
1075 
1076     /*
1077      * Determine configured receive buffer offset (probably 0)
1078      */
1079     rxbuf_offset = FIELD_EX32(s->regs[R_NWCFG], NWCFG, RECV_BUF_OFFSET);
1080 
1081     /* The configure size of each receive buffer.  Determines how many
1082      * buffers needed to hold this packet.
1083      */
1084     rxbufsize = FIELD_EX32(s->regs[R_DMACFG], DMACFG, RX_BUF_SIZE);
1085     rxbufsize *= GEM_DMACFG_RBUFSZ_MUL;
1086 
1087     bytes_to_copy = size;
1088 
1089     /* Hardware allows a zero value here but warns against it. To avoid QEMU
1090      * indefinite loops we enforce a minimum value here
1091      */
1092     if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
1093         rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
1094     }
1095 
1096     /* Pad to minimum length. Assume FCS field is stripped, logic
1097      * below will increment it to the real minimum of 64 when
1098      * not FCS stripping
1099      */
1100     if (size < 60) {
1101         size = 60;
1102     }
1103 
1104     /* Strip of FCS field ? (usually yes) */
1105     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, FCS_REMOVE)) {
1106         rxbuf_ptr = (void *)buf;
1107     } else {
1108         uint32_t crc_val;
1109 
1110         if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
1111             size = MAX_FRAME_SIZE - sizeof(crc_val);
1112         }
1113         bytes_to_copy = size;
1114         /* The application wants the FCS field, which QEMU does not provide.
1115          * We must try and calculate one.
1116          */
1117 
1118         memcpy(s->rx_packet, buf, size);
1119         memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
1120         rxbuf_ptr = s->rx_packet;
1121         crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
1122         memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
1123 
1124         bytes_to_copy += 4;
1125         size += 4;
1126     }
1127 
1128     DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
1129 
1130     /* Find which queue we are targeting */
1131     q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
1132 
1133     if (size > gem_get_max_buf_len(s, false)) {
1134         qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
1135         gem_set_isr(s, q, R_ISR_AMBA_ERROR_MASK);
1136         return -1;
1137     }
1138 
1139     while (bytes_to_copy) {
1140         hwaddr desc_addr;
1141 
1142         /* Do nothing if receive is not enabled. */
1143         if (!gem_can_receive(nc)) {
1144             return -1;
1145         }
1146 
1147         DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
1148                 MIN(bytes_to_copy, rxbufsize),
1149                 rx_desc_get_buffer(s, s->rx_desc[q]));
1150 
1151         /* Copy packet data to emulated DMA buffer */
1152         address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1153                                                                   rxbuf_offset,
1154                             MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1155                             MIN(bytes_to_copy, rxbufsize));
1156         rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1157         bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1158 
1159         rx_desc_clear_control(s->rx_desc[q]);
1160 
1161         /* Update the descriptor.  */
1162         if (first_desc) {
1163             rx_desc_set_sof(s->rx_desc[q]);
1164             first_desc = false;
1165         }
1166         if (bytes_to_copy == 0) {
1167             rx_desc_set_eof(s->rx_desc[q]);
1168             rx_desc_set_length(s->rx_desc[q], size);
1169         }
1170         rx_desc_set_ownership(s->rx_desc[q]);
1171 
1172         switch (maf) {
1173         case GEM_RX_PROMISCUOUS_ACCEPT:
1174             break;
1175         case GEM_RX_BROADCAST_ACCEPT:
1176             rx_desc_set_broadcast(s->rx_desc[q]);
1177             break;
1178         case GEM_RX_UNICAST_HASH_ACCEPT:
1179             rx_desc_set_unicast_hash(s->rx_desc[q]);
1180             break;
1181         case GEM_RX_MULTICAST_HASH_ACCEPT:
1182             rx_desc_set_multicast_hash(s->rx_desc[q]);
1183             break;
1184         case GEM_RX_REJECT:
1185             abort();
1186         default: /* SAR */
1187             rx_desc_set_sar(s->rx_desc[q], maf);
1188         }
1189 
1190         /* Descriptor write-back.  */
1191         desc_addr = gem_get_rx_desc_addr(s, q);
1192         address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1193                             s->rx_desc[q],
1194                             sizeof(uint32_t) * gem_get_desc_len(s, true));
1195 
1196         /* Next descriptor */
1197         if (rx_desc_get_wrap(s->rx_desc[q])) {
1198             DB_PRINT("wrapping RX descriptor list\n");
1199             s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
1200         } else {
1201             DB_PRINT("incrementing RX descriptor list\n");
1202             s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1203         }
1204 
1205         gem_get_rx_desc(s, q);
1206     }
1207 
1208     /* Count it */
1209     gem_receive_updatestats(s, buf, size);
1210 
1211     s->regs[R_RXSTATUS] |= R_RXSTATUS_FRAME_RECEIVED_MASK;
1212     gem_set_isr(s, q, R_ISR_RECV_COMPLETE_MASK);
1213 
1214     /* Handle interrupt consequences */
1215     gem_update_int_status(s);
1216 
1217     return size;
1218 }
1219 
1220 /*
1221  * gem_transmit_updatestats:
1222  * Increment transmit statistics.
1223  */
gem_transmit_updatestats(CadenceGEMState * s,const uint8_t * packet,unsigned bytes)1224 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1225                                      unsigned bytes)
1226 {
1227     uint64_t octets;
1228 
1229     /* Total octets (bytes) transmitted */
1230     octets = ((uint64_t)(s->regs[R_OCTTXLO]) << 32) |
1231              s->regs[R_OCTTXHI];
1232     octets += bytes;
1233     s->regs[R_OCTTXLO] = octets >> 32;
1234     s->regs[R_OCTTXHI] = octets;
1235 
1236     /* Error-free Frames transmitted */
1237     s->regs[R_TXCNT]++;
1238 
1239     /* Error-free Broadcast Frames counter */
1240     if (!memcmp(packet, broadcast_addr, 6)) {
1241         s->regs[R_TXBCNT]++;
1242     }
1243 
1244     /* Error-free Multicast Frames counter */
1245     if (packet[0] == 0x01) {
1246         s->regs[R_TXMCNT]++;
1247     }
1248 
1249     if (bytes <= 64) {
1250         s->regs[R_TX64CNT]++;
1251     } else if (bytes <= 127) {
1252         s->regs[R_TX65CNT]++;
1253     } else if (bytes <= 255) {
1254         s->regs[R_TX128CNT]++;
1255     } else if (bytes <= 511) {
1256         s->regs[R_TX256CNT]++;
1257     } else if (bytes <= 1023) {
1258         s->regs[R_TX512CNT]++;
1259     } else if (bytes <= 1518) {
1260         s->regs[R_TX1024CNT]++;
1261     } else {
1262         s->regs[R_TX1519CNT]++;
1263     }
1264 }
1265 
1266 /*
1267  * gem_transmit:
1268  * Fish packets out of the descriptor ring and feed them to QEMU
1269  */
gem_transmit(CadenceGEMState * s)1270 static void gem_transmit(CadenceGEMState *s)
1271 {
1272     uint32_t desc[DESC_MAX_NUM_WORDS];
1273     hwaddr packet_desc_addr;
1274     uint8_t     *p;
1275     unsigned    total_bytes;
1276     int q = 0;
1277 
1278     /* Do nothing if transmit is not enabled. */
1279     if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1280         return;
1281     }
1282 
1283     DB_PRINT("\n");
1284 
1285     /* The packet we will hand off to QEMU.
1286      * Packets scattered across multiple descriptors are gathered to this
1287      * one contiguous buffer first.
1288      */
1289     p = s->tx_packet;
1290     total_bytes = 0;
1291 
1292     for (q = s->num_priority_queues - 1; q >= 0; q--) {
1293         /* read current descriptor */
1294         packet_desc_addr = gem_get_tx_desc_addr(s, q);
1295 
1296         DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1297         address_space_read(&s->dma_as, packet_desc_addr,
1298                            MEMTXATTRS_UNSPECIFIED, desc,
1299                            sizeof(uint32_t) * gem_get_desc_len(s, false));
1300         /* Handle all descriptors owned by hardware */
1301         while (tx_desc_get_used(desc) == 0) {
1302 
1303             /* Do nothing if transmit is not enabled. */
1304             if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1305                 return;
1306             }
1307             print_gem_tx_desc(desc, q);
1308 
1309             /* The real hardware would eat this (and possibly crash).
1310              * For QEMU let's lend a helping hand.
1311              */
1312             if ((tx_desc_get_buffer(s, desc) == 0) ||
1313                 (tx_desc_get_length(desc) == 0)) {
1314                 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1315                          packet_desc_addr);
1316                 break;
1317             }
1318 
1319             if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
1320                                                (p - s->tx_packet)) {
1321                 qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
1322                          HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
1323                          packet_desc_addr, tx_desc_get_length(desc),
1324                          gem_get_max_buf_len(s, true) - (p - s->tx_packet));
1325                 gem_set_isr(s, q, R_ISR_AMBA_ERROR_MASK);
1326                 break;
1327             }
1328 
1329             /* Gather this fragment of the packet from "dma memory" to our
1330              * contig buffer.
1331              */
1332             address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1333                                MEMTXATTRS_UNSPECIFIED,
1334                                p, tx_desc_get_length(desc));
1335             p += tx_desc_get_length(desc);
1336             total_bytes += tx_desc_get_length(desc);
1337 
1338             /* Last descriptor for this packet; hand the whole thing off */
1339             if (tx_desc_get_last(desc)) {
1340                 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1341                 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1342 
1343                 /* Modify the 1st descriptor of this packet to be owned by
1344                  * the processor.
1345                  */
1346                 address_space_read(&s->dma_as, desc_addr,
1347                                    MEMTXATTRS_UNSPECIFIED, desc_first,
1348                                    sizeof(desc_first));
1349                 tx_desc_set_used(desc_first);
1350                 address_space_write(&s->dma_as, desc_addr,
1351                                     MEMTXATTRS_UNSPECIFIED, desc_first,
1352                                     sizeof(desc_first));
1353                 /* Advance the hardware current descriptor past this packet */
1354                 if (tx_desc_get_wrap(desc)) {
1355                     s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
1356                 } else {
1357                     s->tx_desc_addr[q] = packet_desc_addr +
1358                                          4 * gem_get_desc_len(s, false);
1359                 }
1360                 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1361 
1362                 s->regs[R_TXSTATUS] |= R_TXSTATUS_TRANSMIT_COMPLETE_MASK;
1363                 gem_set_isr(s, q, R_ISR_XMIT_COMPLETE_MASK);
1364 
1365                 /* Handle interrupt consequences */
1366                 gem_update_int_status(s);
1367 
1368                 /* Is checksum offload enabled? */
1369                 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, TX_PBUF_CSUM_OFFLOAD)) {
1370                     net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL);
1371                 }
1372 
1373                 /* Update MAC statistics */
1374                 gem_transmit_updatestats(s, s->tx_packet, total_bytes);
1375 
1376                 /* Send the packet somewhere */
1377                 if (s->phy_loop || FIELD_EX32(s->regs[R_NWCTRL], NWCTRL,
1378                                               LOOPBACK_LOCAL)) {
1379                     qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet,
1380                                         total_bytes);
1381                 } else {
1382                     qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
1383                                      total_bytes);
1384                 }
1385 
1386                 /* Prepare for next packet */
1387                 p = s->tx_packet;
1388                 total_bytes = 0;
1389             }
1390 
1391             /* read next descriptor */
1392             if (tx_desc_get_wrap(desc)) {
1393                 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
1394                     packet_desc_addr = s->regs[R_TBQPH];
1395                     packet_desc_addr <<= 32;
1396                 } else {
1397                     packet_desc_addr = 0;
1398                 }
1399                 packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
1400             } else {
1401                 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1402             }
1403             DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1404             address_space_read(&s->dma_as, packet_desc_addr,
1405                                MEMTXATTRS_UNSPECIFIED, desc,
1406                                sizeof(uint32_t) * gem_get_desc_len(s, false));
1407         }
1408 
1409         if (tx_desc_get_used(desc)) {
1410             s->regs[R_TXSTATUS] |= R_TXSTATUS_USED_BIT_READ_MASK;
1411             /* IRQ TXUSED is defined only for queue 0 */
1412             if (q == 0) {
1413                 gem_set_isr(s, 0, R_ISR_TX_USED_MASK);
1414             }
1415             gem_update_int_status(s);
1416         }
1417     }
1418 }
1419 
gem_phy_reset(CadenceGEMState * s)1420 static void gem_phy_reset(CadenceGEMState *s)
1421 {
1422     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1423     s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1424     s->phy_regs[PHY_REG_STATUS] = 0x7969;
1425     s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1426     s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1427     s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1428     s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1429     s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1430     s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1431     s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1432     s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1433     s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1434     s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1435     s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1436     s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1437     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1438     s->phy_regs[PHY_REG_LED] = 0x4100;
1439     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1440     s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1441 
1442     phy_update_link(s);
1443 }
1444 
gem_reset(DeviceState * d)1445 static void gem_reset(DeviceState *d)
1446 {
1447     int i;
1448     CadenceGEMState *s = CADENCE_GEM(d);
1449     const uint8_t *a;
1450     uint32_t queues_mask = 0;
1451 
1452     DB_PRINT("\n");
1453 
1454     /* Set post reset register values */
1455     memset(&s->regs[0], 0, sizeof(s->regs));
1456     s->regs[R_NWCFG] = 0x00080000;
1457     s->regs[R_NWSTATUS] = 0x00000006;
1458     s->regs[R_DMACFG] = 0x00020784;
1459     s->regs[R_IMR] = 0x07ffffff;
1460     s->regs[R_TXPAUSE] = 0x0000ffff;
1461     s->regs[R_TXPARTIALSF] = 0x000003ff;
1462     s->regs[R_RXPARTIALSF] = 0x000003ff;
1463     s->regs[R_MODID] = s->revision;
1464     s->regs[R_DESCONF] = 0x02D00111;
1465     s->regs[R_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
1466     s->regs[R_DESCONF5] = 0x002f2045;
1467     s->regs[R_DESCONF6] = R_DESCONF6_DMA_ADDR_64B_MASK;
1468     s->regs[R_INT_Q1_MASK] = 0x00000CE6;
1469     s->regs[R_JUMBO_MAX_LEN] = s->jumbo_max_len;
1470 
1471     if (s->num_priority_queues > 1) {
1472         queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1473         s->regs[R_DESCONF6] |= queues_mask;
1474     }
1475 
1476     /* Set MAC address */
1477     a = &s->conf.macaddr.a[0];
1478     s->regs[R_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1479     s->regs[R_SPADDR1HI] = a[4] | (a[5] << 8);
1480 
1481     for (i = 0; i < 4; i++) {
1482         s->sar_active[i] = false;
1483     }
1484 
1485     gem_phy_reset(s);
1486 
1487     gem_update_int_status(s);
1488 }
1489 
gem_phy_read(CadenceGEMState * s,unsigned reg_num)1490 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1491 {
1492     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1493     return s->phy_regs[reg_num];
1494 }
1495 
gem_phy_write(CadenceGEMState * s,unsigned reg_num,uint16_t val)1496 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1497 {
1498     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1499 
1500     switch (reg_num) {
1501     case PHY_REG_CONTROL:
1502         if (val & PHY_REG_CONTROL_RST) {
1503             /* Phy reset */
1504             gem_phy_reset(s);
1505             val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1506             s->phy_loop = 0;
1507         }
1508         if (val & PHY_REG_CONTROL_ANEG) {
1509             /* Complete autonegotiation immediately */
1510             val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1511             s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1512         }
1513         if (val & PHY_REG_CONTROL_LOOP) {
1514             DB_PRINT("PHY placed in loopback\n");
1515             s->phy_loop = 1;
1516         } else {
1517             s->phy_loop = 0;
1518         }
1519         break;
1520     }
1521     s->phy_regs[reg_num] = val;
1522 }
1523 
gem_handle_phy_access(CadenceGEMState * s)1524 static void gem_handle_phy_access(CadenceGEMState *s)
1525 {
1526     uint32_t val = s->regs[R_PHYMNTNC];
1527     uint32_t phy_addr, reg_num;
1528 
1529     phy_addr = FIELD_EX32(val, PHYMNTNC, PHY_ADDR);
1530 
1531     if (phy_addr != s->phy_addr) {
1532         /* no phy at this address */
1533         if (FIELD_EX32(val, PHYMNTNC, OP) == MDIO_OP_READ) {
1534             s->regs[R_PHYMNTNC] = FIELD_DP32(val, PHYMNTNC, DATA, 0xffff);
1535         }
1536         return;
1537     }
1538 
1539     reg_num = FIELD_EX32(val, PHYMNTNC, REG_ADDR);
1540 
1541     switch (FIELD_EX32(val, PHYMNTNC, OP)) {
1542     case MDIO_OP_READ:
1543         s->regs[R_PHYMNTNC] = FIELD_DP32(val, PHYMNTNC, DATA,
1544                                          gem_phy_read(s, reg_num));
1545         break;
1546 
1547     case MDIO_OP_WRITE:
1548         gem_phy_write(s, reg_num, val);
1549         break;
1550 
1551     default:
1552         break; /* only clause 22 operations are supported */
1553     }
1554 }
1555 
1556 /*
1557  * gem_read32:
1558  * Read a GEM register.
1559  */
gem_read(void * opaque,hwaddr offset,unsigned size)1560 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1561 {
1562     CadenceGEMState *s;
1563     uint32_t retval;
1564     s = opaque;
1565 
1566     offset >>= 2;
1567     retval = s->regs[offset];
1568 
1569     DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1570 
1571     switch (offset) {
1572     case R_ISR:
1573         DB_PRINT("lowering irqs on ISR read\n");
1574         /* The interrupts get updated at the end of the function. */
1575         break;
1576     }
1577 
1578     /* Squash read to clear bits */
1579     s->regs[offset] &= ~(s->regs_rtc[offset]);
1580 
1581     /* Do not provide write only bits */
1582     retval &= ~(s->regs_wo[offset]);
1583 
1584     DB_PRINT("0x%08x\n", retval);
1585     gem_update_int_status(s);
1586     return retval;
1587 }
1588 
1589 /*
1590  * gem_write32:
1591  * Write a GEM register.
1592  */
gem_write(void * opaque,hwaddr offset,uint64_t val,unsigned size)1593 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1594         unsigned size)
1595 {
1596     CadenceGEMState *s = (CadenceGEMState *)opaque;
1597     uint32_t readonly;
1598     int i;
1599 
1600     DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1601     offset >>= 2;
1602 
1603     /* Squash bits which are read only in write value */
1604     val &= ~(s->regs_ro[offset]);
1605     /* Preserve (only) bits which are read only and wtc in register */
1606     readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1607 
1608     /* Copy register write to backing store */
1609     s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1610 
1611     /* do w1c */
1612     s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1613 
1614     /* Handle register write side effects */
1615     switch (offset) {
1616     case R_NWCTRL:
1617         if (FIELD_EX32(val, NWCTRL, ENABLE_RECEIVE)) {
1618             for (i = 0; i < s->num_priority_queues; ++i) {
1619                 gem_get_rx_desc(s, i);
1620             }
1621         }
1622         if (FIELD_EX32(val, NWCTRL, TRANSMIT_START)) {
1623             gem_transmit(s);
1624         }
1625         if (!(FIELD_EX32(val, NWCTRL, ENABLE_TRANSMIT))) {
1626             /* Reset to start of Q when transmit disabled. */
1627             for (i = 0; i < s->num_priority_queues; i++) {
1628                 s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
1629             }
1630         }
1631         if (gem_can_receive(qemu_get_queue(s->nic))) {
1632             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1633         }
1634         break;
1635 
1636     case R_TXSTATUS:
1637         gem_update_int_status(s);
1638         break;
1639     case R_RXQBASE:
1640         s->rx_desc_addr[0] = val;
1641         break;
1642     case R_RECEIVE_Q1_PTR ... R_RECEIVE_Q7_PTR:
1643         s->rx_desc_addr[offset - R_RECEIVE_Q1_PTR + 1] = val;
1644         break;
1645     case R_TXQBASE:
1646         s->tx_desc_addr[0] = val;
1647         break;
1648     case R_TRANSMIT_Q1_PTR ... R_TRANSMIT_Q7_PTR:
1649         s->tx_desc_addr[offset - R_TRANSMIT_Q1_PTR + 1] = val;
1650         break;
1651     case R_RXSTATUS:
1652         gem_update_int_status(s);
1653         break;
1654     case R_IER:
1655         s->regs[R_IMR] &= ~val;
1656         gem_update_int_status(s);
1657         break;
1658     case R_JUMBO_MAX_LEN:
1659         s->regs[R_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
1660         break;
1661     case R_INT_Q1_ENABLE ... R_INT_Q7_ENABLE:
1662         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_ENABLE] &= ~val;
1663         gem_update_int_status(s);
1664         break;
1665     case R_IDR:
1666         s->regs[R_IMR] |= val;
1667         gem_update_int_status(s);
1668         break;
1669     case R_INT_Q1_DISABLE ... R_INT_Q7_DISABLE:
1670         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_DISABLE] |= val;
1671         gem_update_int_status(s);
1672         break;
1673     case R_SPADDR1LO:
1674     case R_SPADDR2LO:
1675     case R_SPADDR3LO:
1676     case R_SPADDR4LO:
1677         s->sar_active[(offset - R_SPADDR1LO) / 2] = false;
1678         break;
1679     case R_SPADDR1HI:
1680     case R_SPADDR2HI:
1681     case R_SPADDR3HI:
1682     case R_SPADDR4HI:
1683         s->sar_active[(offset - R_SPADDR1HI) / 2] = true;
1684         break;
1685     case R_PHYMNTNC:
1686         gem_handle_phy_access(s);
1687         break;
1688     }
1689 
1690     DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1691 }
1692 
1693 static const MemoryRegionOps gem_ops = {
1694     .read = gem_read,
1695     .write = gem_write,
1696     .endianness = DEVICE_LITTLE_ENDIAN,
1697 };
1698 
gem_set_link(NetClientState * nc)1699 static void gem_set_link(NetClientState *nc)
1700 {
1701     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1702 
1703     DB_PRINT("\n");
1704     phy_update_link(s);
1705     gem_update_int_status(s);
1706 }
1707 
1708 static NetClientInfo net_gem_info = {
1709     .type = NET_CLIENT_DRIVER_NIC,
1710     .size = sizeof(NICState),
1711     .can_receive = gem_can_receive,
1712     .receive = gem_receive,
1713     .link_status_changed = gem_set_link,
1714 };
1715 
gem_realize(DeviceState * dev,Error ** errp)1716 static void gem_realize(DeviceState *dev, Error **errp)
1717 {
1718     CadenceGEMState *s = CADENCE_GEM(dev);
1719     int i;
1720 
1721     address_space_init(&s->dma_as,
1722                        s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1723 
1724     if (s->num_priority_queues == 0 ||
1725         s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1726         error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1727                    s->num_priority_queues);
1728         return;
1729     } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1730         error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1731                    s->num_type1_screeners);
1732         return;
1733     } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1734         error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1735                    s->num_type2_screeners);
1736         return;
1737     }
1738 
1739     for (i = 0; i < s->num_priority_queues; ++i) {
1740         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1741     }
1742 
1743     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1744 
1745     s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1746                           object_get_typename(OBJECT(dev)), dev->id,
1747                           &dev->mem_reentrancy_guard, s);
1748 
1749     if (s->jumbo_max_len > MAX_FRAME_SIZE) {
1750         error_setg(errp, "jumbo-max-len is greater than %d",
1751                   MAX_FRAME_SIZE);
1752         return;
1753     }
1754 }
1755 
gem_init(Object * obj)1756 static void gem_init(Object *obj)
1757 {
1758     CadenceGEMState *s = CADENCE_GEM(obj);
1759     DeviceState *dev = DEVICE(obj);
1760 
1761     DB_PRINT("\n");
1762 
1763     gem_init_register_masks(s);
1764     memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1765                           "enet", sizeof(s->regs));
1766 
1767     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1768 }
1769 
1770 static const VMStateDescription vmstate_cadence_gem = {
1771     .name = "cadence_gem",
1772     .version_id = 4,
1773     .minimum_version_id = 4,
1774     .fields = (const VMStateField[]) {
1775         VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1776         VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1777         VMSTATE_UINT8(phy_loop, CadenceGEMState),
1778         VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1779                              MAX_PRIORITY_QUEUES),
1780         VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1781                              MAX_PRIORITY_QUEUES),
1782         VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1783         VMSTATE_END_OF_LIST(),
1784     }
1785 };
1786 
1787 static Property gem_properties[] = {
1788     DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1789     DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1790                        GEM_MODID_VALUE),
1791     DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS),
1792     DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1793                       num_priority_queues, 1),
1794     DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1795                       num_type1_screeners, 4),
1796     DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1797                       num_type2_screeners, 4),
1798     DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
1799                        jumbo_max_len, 10240),
1800     DEFINE_PROP_LINK("dma", CadenceGEMState, dma_mr,
1801                      TYPE_MEMORY_REGION, MemoryRegion *),
1802     DEFINE_PROP_END_OF_LIST(),
1803 };
1804 
gem_class_init(ObjectClass * klass,void * data)1805 static void gem_class_init(ObjectClass *klass, void *data)
1806 {
1807     DeviceClass *dc = DEVICE_CLASS(klass);
1808 
1809     dc->realize = gem_realize;
1810     device_class_set_props(dc, gem_properties);
1811     dc->vmsd = &vmstate_cadence_gem;
1812     device_class_set_legacy_reset(dc, gem_reset);
1813 }
1814 
1815 static const TypeInfo gem_info = {
1816     .name  = TYPE_CADENCE_GEM,
1817     .parent = TYPE_SYS_BUS_DEVICE,
1818     .instance_size  = sizeof(CadenceGEMState),
1819     .instance_init = gem_init,
1820     .class_init = gem_class_init,
1821 };
1822 
gem_register_types(void)1823 static void gem_register_types(void)
1824 {
1825     type_register_static(&gem_info);
1826 }
1827 
1828 type_init(gem_register_types)
1829