xref: /openbmc/linux/drivers/i2c/busses/i2c-npcm7xx.c (revision a88ac5b09ceb0732a5f99b1b8f446cbf8fc44580)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 
23 enum i2c_mode {
24 	I2C_MASTER,
25 	I2C_SLAVE,
26 };
27 
28 /*
29  * External I2C Interface driver xfer indication values, which indicate status
30  * of the bus.
31  */
32 enum i2c_state_ind {
33 	I2C_NO_STATUS_IND = 0,
34 	I2C_SLAVE_RCV_IND,
35 	I2C_SLAVE_XMIT_IND,
36 	I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 	I2C_SLAVE_RESTART_IND,
38 	I2C_SLAVE_DONE_IND,
39 	I2C_MASTER_DONE_IND,
40 	I2C_NACK_IND,
41 	I2C_BUS_ERR_IND,
42 	I2C_WAKE_UP_IND,
43 	I2C_BLOCK_BYTES_ERR_IND,
44 	I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46 
47 /*
48  * Operation type values (used to define the operation currently running)
49  * module is interrupt driven, on each interrupt the current operation is
50  * checked to see if the module is currently reading or writing.
51  */
52 enum i2c_oper {
53 	I2C_NO_OPER = 0,
54 	I2C_WRITE_OPER,
55 	I2C_READ_OPER,
56 };
57 
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 	I2C_BANK_0 = 0,
61 	I2C_BANK_1,
62 };
63 
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 	I2C_DISABLE = 0,
67 	I2C_IDLE,
68 	I2C_MASTER_START,
69 	I2C_SLAVE_MATCH,
70 	I2C_OPER_STARTED,
71 	I2C_STOP_PENDING,
72 };
73 
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 	I2C_SLAVE_ADDR1 = 0,
78 	I2C_SLAVE_ADDR2,
79 	I2C_SLAVE_ADDR3,
80 	I2C_SLAVE_ADDR4,
81 	I2C_SLAVE_ADDR5,
82 	I2C_SLAVE_ADDR6,
83 	I2C_SLAVE_ADDR7,
84 	I2C_SLAVE_ADDR8,
85 	I2C_SLAVE_ADDR9,
86 	I2C_SLAVE_ADDR10,
87 	I2C_GC_ADDR,
88 	I2C_ARP_ADDR,
89 };
90 #endif
91 
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL			0xE4
94 
95 /* Common regs */
96 #define NPCM_I2CSDA			0x00
97 #define NPCM_I2CST			0x02
98 #define NPCM_I2CCST			0x04
99 #define NPCM_I2CCTL1			0x06
100 #define NPCM_I2CADDR1			0x08
101 #define NPCM_I2CCTL2			0x0A
102 #define NPCM_I2CADDR2			0x0C
103 #define NPCM_I2CCTL3			0x0E
104 #define NPCM_I2CCST2			0x18
105 #define NPCM_I2CCST3			0x19
106 #define I2C_VER				0x1F
107 
108 /* BANK 0 regs */
109 #define NPCM_I2CADDR3			0x10
110 #define NPCM_I2CADDR7			0x11
111 #define NPCM_I2CADDR4			0x12
112 #define NPCM_I2CADDR8			0x13
113 #define NPCM_I2CADDR5			0x14
114 #define NPCM_I2CADDR9			0x15
115 #define NPCM_I2CADDR6			0x16
116 #define NPCM_I2CADDR10			0x17
117 #define NPCM_I2CCTL4			0x1A
118 #define NPCM_I2CCTL5			0x1B
119 #define NPCM_I2CSCLLT			0x1C /* SCL Low Time */
120 #define NPCM_I2CFIF_CTL			0x1D /* FIFO Control */
121 #define NPCM_I2CSCLHT			0x1E /* SCL High Time */
122 
123 /* BANK 1 regs */
124 #define NPCM_I2CFIF_CTS			0x10 /* Both FIFOs Control and Status */
125 #define NPCM_I2CTXF_CTL			0x12 /* Tx-FIFO Control */
126 #define NPCM_I2CT_OUT			0x14 /* Bus T.O. */
127 #define NPCM_I2CPEC			0x16 /* PEC Data */
128 #define NPCM_I2CTXF_STS			0x1A /* Tx-FIFO Status */
129 #define NPCM_I2CRXF_STS			0x1C /* Rx-FIFO Status */
130 #define NPCM_I2CRXF_CTL			0x1E /* Rx-FIFO Control */
131 
132 #if IS_ENABLED(CONFIG_I2C_SLAVE)
133 /*
134  * npcm_i2caddr array:
135  * The module supports having multiple own slave addresses.
136  * Since the addr regs are sprinkled all over the address space,
137  * use this array to get the address or each register.
138  */
139 #define I2C_NUM_OWN_ADDR 10
140 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
141 
142 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
143 	NPCM_I2CADDR1, NPCM_I2CADDR2, NPCM_I2CADDR3, NPCM_I2CADDR4,
144 	NPCM_I2CADDR5, NPCM_I2CADDR6, NPCM_I2CADDR7, NPCM_I2CADDR8,
145 	NPCM_I2CADDR9, NPCM_I2CADDR10,
146 };
147 #endif
148 
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT			BIT(0)	/* Transmit mode */
151 #define NPCM_I2CST_MASTER		BIT(1)	/* Master mode */
152 #define NPCM_I2CST_NMATCH		BIT(2)	/* New match */
153 #define NPCM_I2CST_STASTR		BIT(3)	/* Stall after start */
154 #define NPCM_I2CST_NEGACK		BIT(4)	/* Negative ACK */
155 #define NPCM_I2CST_BER			BIT(5)	/* Bus error */
156 #define NPCM_I2CST_SDAST		BIT(6)	/* SDA status */
157 #define NPCM_I2CST_SLVSTP		BIT(7)	/* Slave stop */
158 
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY		BIT(0)	/* Busy */
161 #define NPCM_I2CCST_BB			BIT(1)	/* Bus busy */
162 #define NPCM_I2CCST_MATCH		BIT(2)	/* Address match */
163 #define NPCM_I2CCST_GCMATCH		BIT(3)	/* Global call match */
164 #define NPCM_I2CCST_TSDA		BIT(4)	/* Test SDA line */
165 #define NPCM_I2CCST_TGSCL		BIT(5)	/* Toggle SCL line */
166 #define NPCM_I2CCST_MATCHAF		BIT(6)	/* Match address field */
167 #define NPCM_I2CCST_ARPMATCH		BIT(7)	/* ARP address match */
168 
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START		BIT(0)	/* Generate start condition */
171 #define NPCM_I2CCTL1_STOP		BIT(1)	/* Generate stop condition */
172 #define NPCM_I2CCTL1_INTEN		BIT(2)	/* Interrupt enable */
173 #define NPCM_I2CCTL1_EOBINTE		BIT(3)
174 #define NPCM_I2CCTL1_ACK		BIT(4)
175 #define NPCM_I2CCTL1_GCMEN		BIT(5)	/* Global call match enable */
176 #define NPCM_I2CCTL1_NMINTE		BIT(6)	/* New match interrupt enable */
177 #define NPCM_I2CCTL1_STASTRE		BIT(7)	/* Stall after start enable */
178 
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS   \
181 	(NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
182 
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A			GENMASK(6, 0)	/* Address */
185 #define NPCM_I2CADDR_SAEN		BIT(7)		/* Slave address enable */
186 
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE			BIT(0)		/* Module enable */
189 #define I2CCTL2_SCLFRQ6_0		GENMASK(7, 1)	/* Bits 0:6 of frequency divisor */
190 
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7		GENMASK(1, 0)	/* Bits 7:8 of frequency divisor */
193 #define I2CCTL3_ARPMEN			BIT(2)	/* ARP match enable */
194 #define I2CCTL3_IDL_START		BIT(3)
195 #define I2CCTL3_400K_MODE		BIT(4)
196 #define I2CCTL3_BNK_SEL			BIT(5)
197 #define I2CCTL3_SDA_LVL			BIT(6)
198 #define I2CCTL3_SCL_LVL			BIT(7)
199 
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F		BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F		BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F		BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F		BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F		BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F		BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F		BIT(5)
208 #define NPCM_I2CCST2_INTSTS		BIT(7)
209 
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F		BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F		BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F		BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY		BIT(7)
215 
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT			GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE			BIT(7)
219 
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT			GENMASK(3, 0)
222 
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE		BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE		BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO	BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR		BIT(7)
228 
229 /* NPCM_I2CTXF_CTL reg field */
230 #define NPCM_I2CTXF_CTL_THR_TXIE	BIT(6)
231 
232 /* NPCM_I2CT_OUT reg fields */
233 #define NPCM_I2CT_OUT_TO_CKDIV		GENMASK(5, 0)
234 #define NPCM_I2CT_OUT_T_OUTIE		BIT(6)
235 #define NPCM_I2CT_OUT_T_OUTST		BIT(7)
236 
237 /* NPCM_I2CTXF_STS reg fields */
238 #define NPCM_I2CTXF_STS_TX_THST		BIT(6)
239 
240 /* NPCM_I2CRXF_STS reg fields */
241 #define NPCM_I2CRXF_STS_RX_THST		BIT(6)
242 
243 /* NPCM_I2CFIF_CTL reg fields */
244 #define NPCM_I2CFIF_CTL_FIFO_EN		BIT(4)
245 
246 /* NPCM_I2CRXF_CTL reg fields */
247 #define NPCM_I2CRXF_CTL_THR_RXIE	BIT(6)
248 
249 #define MAX_I2C_HW_FIFO_SIZE		32
250 
251 /* I2C_VER reg fields */
252 #define I2C_VER_VERSION			GENMASK(6, 0)
253 #define I2C_VER_FIFO_EN			BIT(7)
254 
255 /* stall/stuck timeout in us */
256 #define DEFAULT_STALL_COUNT		25
257 
258 /* SCLFRQ field position */
259 #define SCLFRQ_0_TO_6			GENMASK(6, 0)
260 #define SCLFRQ_7_TO_8			GENMASK(8, 7)
261 
262 /* supported clk settings. values in Hz. */
263 #define I2C_FREQ_MIN_HZ			10000
264 #define I2C_FREQ_MAX_HZ			I2C_MAX_FAST_MODE_PLUS_FREQ
265 
266 struct smb_timing_t {
267 	u32 core_clk;
268 	u8 hldt;
269 	u8 dbcnt;
270 	u16 sclfrq;
271 	u8 scllt;
272 	u8 sclht;
273 	bool fast_mode;
274 };
275 
276 static struct smb_timing_t smb_timing_100khz[] = {
277 	{
278 		.core_clk = 100000000, .hldt = 0x2A, .dbcnt = 0x4,
279 		.sclfrq = 0xFB, .scllt = 0x0, .sclht = 0x0,
280 		.fast_mode = false,
281 	},
282 	{
283 		.core_clk = 62500000, .hldt = 0x2A, .dbcnt = 0x1,
284 		.sclfrq = 0x9D, .scllt = 0x0, .sclht = 0x0,
285 		.fast_mode = false,
286 	},
287 	{
288 		.core_clk = 50000000, .hldt = 0x2A, .dbcnt = 0x1,
289 		.sclfrq = 0x7E, .scllt = 0x0, .sclht = 0x0,
290 		.fast_mode = false,
291 	},
292 	{
293 		.core_clk = 48000000, .hldt = 0x2A, .dbcnt = 0x1,
294 		.sclfrq = 0x79, .scllt = 0x0, .sclht = 0x0,
295 		.fast_mode = false,
296 	},
297 	{
298 		.core_clk = 40000000, .hldt = 0x2A, .dbcnt = 0x1,
299 		.sclfrq = 0x65, .scllt = 0x0, .sclht = 0x0,
300 		.fast_mode = false,
301 	},
302 	{
303 		.core_clk = 30000000, .hldt = 0x2A, .dbcnt = 0x1,
304 		.sclfrq = 0x4C, .scllt = 0x0, .sclht = 0x0,
305 		.fast_mode = false,
306 	},
307 	{
308 		.core_clk = 29000000, .hldt = 0x2A, .dbcnt = 0x1,
309 		.sclfrq = 0x49, .scllt = 0x0, .sclht = 0x0,
310 		.fast_mode = false,
311 	},
312 	{
313 		.core_clk = 26000000, .hldt = 0x2A, .dbcnt = 0x1,
314 		.sclfrq = 0x42, .scllt = 0x0, .sclht = 0x0,
315 		.fast_mode = false,
316 	},
317 	{
318 		.core_clk = 25000000, .hldt = 0x2A, .dbcnt = 0x1,
319 		.sclfrq = 0x3F, .scllt = 0x0, .sclht = 0x0,
320 		.fast_mode = false,
321 	},
322 	{
323 		.core_clk = 24000000, .hldt = 0x2A, .dbcnt = 0x1,
324 		.sclfrq = 0x3D, .scllt = 0x0, .sclht = 0x0,
325 		.fast_mode = false,
326 	},
327 	{
328 		.core_clk = 20000000, .hldt = 0x2A, .dbcnt = 0x1,
329 		.sclfrq = 0x33, .scllt = 0x0, .sclht = 0x0,
330 		.fast_mode = false,
331 	},
332 	{
333 		.core_clk = 16180000, .hldt = 0x2A, .dbcnt = 0x1,
334 		.sclfrq = 0x29, .scllt = 0x0, .sclht = 0x0,
335 		.fast_mode = false,
336 	},
337 	{
338 		.core_clk = 15000000, .hldt = 0x23, .dbcnt = 0x1,
339 		.sclfrq = 0x26, .scllt = 0x0, .sclht = 0x0,
340 		.fast_mode = false,
341 	},
342 	{
343 		.core_clk = 13000000, .hldt = 0x1D, .dbcnt = 0x1,
344 		.sclfrq = 0x21, .scllt = 0x0, .sclht = 0x0,
345 		.fast_mode = false,
346 	},
347 	{
348 		.core_clk = 12000000, .hldt = 0x1B, .dbcnt = 0x1,
349 		.sclfrq = 0x1F, .scllt = 0x0, .sclht = 0x0,
350 		.fast_mode = false,
351 	},
352 	{
353 		.core_clk = 10000000, .hldt = 0x18, .dbcnt = 0x1,
354 		.sclfrq = 0x1A, .scllt = 0x0, .sclht = 0x0,
355 		.fast_mode = false,
356 	},
357 	{
358 		.core_clk = 9000000, .hldt = 0x16, .dbcnt = 0x1,
359 		.sclfrq = 0x17, .scllt = 0x0, .sclht = 0x0,
360 		.fast_mode = false,
361 	},
362 	{
363 		.core_clk = 8090000, .hldt = 0x14, .dbcnt = 0x1,
364 		.sclfrq = 0x15, .scllt = 0x0, .sclht = 0x0,
365 		.fast_mode = false,
366 	},
367 	{
368 		.core_clk = 7500000, .hldt = 0x7, .dbcnt = 0x1,
369 		.sclfrq = 0x13, .scllt = 0x0, .sclht = 0x0,
370 		.fast_mode = false,
371 	},
372 	{
373 		.core_clk = 6500000, .hldt = 0xE, .dbcnt = 0x1,
374 		.sclfrq = 0x11, .scllt = 0x0, .sclht = 0x0,
375 		.fast_mode = false,
376 	},
377 	{
378 		.core_clk = 4000000, .hldt = 0x9, .dbcnt = 0x1,
379 		.sclfrq = 0xB, .scllt = 0x0, .sclht = 0x0,
380 		.fast_mode = false,
381 	},
382 };
383 
384 static struct smb_timing_t smb_timing_400khz[] = {
385 	{
386 		.core_clk = 100000000, .hldt = 0x2A, .dbcnt = 0x3,
387 		.sclfrq = 0x0, .scllt = 0x47, .sclht = 0x35,
388 		.fast_mode = true,
389 	},
390 	{
391 		.core_clk = 62500000, .hldt = 0x2A, .dbcnt = 0x2,
392 		.sclfrq = 0x0, .scllt = 0x2C, .sclht = 0x22,
393 		.fast_mode = true,
394 	},
395 	{
396 		.core_clk = 50000000, .hldt = 0x21, .dbcnt = 0x1,
397 		.sclfrq = 0x0, .scllt = 0x24, .sclht = 0x1B,
398 		.fast_mode = true,
399 	},
400 	{
401 		.core_clk = 48000000, .hldt = 0x1E, .dbcnt = 0x1,
402 		.sclfrq = 0x0, .scllt = 0x24, .sclht = 0x19,
403 		.fast_mode = true,
404 	},
405 	{
406 		.core_clk = 40000000, .hldt = 0x1B, .dbcnt = 0x1,
407 		.sclfrq = 0x0, .scllt = 0x1E, .sclht = 0x14,
408 		.fast_mode = true,
409 	},
410 	{
411 		.core_clk = 33000000, .hldt = 0x15, .dbcnt = 0x1,
412 		.sclfrq = 0x0, .scllt = 0x19, .sclht = 0x11,
413 		.fast_mode = true,
414 	},
415 	{
416 		.core_clk = 30000000, .hldt = 0x15, .dbcnt = 0x1,
417 		.sclfrq = 0x0, .scllt = 0x19, .sclht = 0xD,
418 		.fast_mode = true,
419 	},
420 	{
421 		.core_clk = 29000000, .hldt = 0x11, .dbcnt = 0x1,
422 		.sclfrq = 0x0, .scllt = 0x15, .sclht = 0x10,
423 		.fast_mode = true,
424 	},
425 	{
426 		.core_clk = 26000000, .hldt = 0x10, .dbcnt = 0x1,
427 		.sclfrq = 0x0, .scllt = 0x13, .sclht = 0xE,
428 		.fast_mode = true,
429 	},
430 	{
431 		.core_clk = 25000000, .hldt = 0xF, .dbcnt = 0x1,
432 		.sclfrq = 0x0, .scllt = 0x13, .sclht = 0xD,
433 		.fast_mode = true,
434 	},
435 	{
436 		.core_clk = 24000000, .hldt = 0xD, .dbcnt = 0x1,
437 		.sclfrq = 0x0, .scllt = 0x12, .sclht = 0xD,
438 		.fast_mode = true,
439 	},
440 	{
441 		.core_clk = 20000000, .hldt = 0xB, .dbcnt = 0x1,
442 		.sclfrq = 0x0, .scllt = 0xF, .sclht = 0xA,
443 		.fast_mode = true,
444 	},
445 	{
446 		.core_clk = 16180000, .hldt = 0xA, .dbcnt = 0x1,
447 		.sclfrq = 0x0, .scllt = 0xC, .sclht = 0x9,
448 		.fast_mode = true,
449 	},
450 	{
451 		.core_clk = 15000000, .hldt = 0x9, .dbcnt = 0x1,
452 		.sclfrq = 0x0, .scllt = 0xB, .sclht = 0x8,
453 		.fast_mode = true,
454 	},
455 	{
456 		.core_clk = 13000000, .hldt = 0x7, .dbcnt = 0x1,
457 		.sclfrq = 0x0, .scllt = 0xA, .sclht = 0x7,
458 		.fast_mode = true,
459 	},
460 	{
461 		.core_clk = 12000000, .hldt = 0x7, .dbcnt = 0x1,
462 		.sclfrq = 0x0, .scllt = 0xA, .sclht = 0x6,
463 		.fast_mode = true,
464 	},
465 	{
466 		.core_clk = 10000000, .hldt = 0x6, .dbcnt = 0x1,
467 		.sclfrq = 0x0, .scllt = 0x8, .sclht = 0x5,
468 		.fast_mode = true,
469 	},
470 };
471 
472 static struct smb_timing_t smb_timing_1000khz[] = {
473 	{
474 		.core_clk = 100000000, .hldt = 0x15, .dbcnt = 0x4,
475 		.sclfrq = 0x0, .scllt = 0x1C, .sclht = 0x15,
476 		.fast_mode = true,
477 	},
478 	{
479 		.core_clk = 62500000, .hldt = 0xF, .dbcnt = 0x3,
480 		.sclfrq = 0x0, .scllt = 0x11, .sclht = 0xE,
481 		.fast_mode = true,
482 	},
483 	{
484 		.core_clk = 50000000, .hldt = 0xA, .dbcnt = 0x2,
485 		.sclfrq = 0x0, .scllt = 0xE, .sclht = 0xB,
486 		.fast_mode = true,
487 	},
488 	{
489 		.core_clk = 48000000, .hldt = 0x9, .dbcnt = 0x2,
490 		.sclfrq = 0x0, .scllt = 0xD, .sclht = 0xB,
491 		.fast_mode = true,
492 	},
493 	{
494 		.core_clk = 41000000, .hldt = 0x9, .dbcnt = 0x2,
495 		.sclfrq = 0x0, .scllt = 0xC, .sclht = 0x9,
496 		.fast_mode = true,
497 	},
498 	{
499 		.core_clk = 40000000, .hldt = 0x8, .dbcnt = 0x2,
500 		.sclfrq = 0x0, .scllt = 0xB, .sclht = 0x9,
501 		.fast_mode = true,
502 	},
503 	{
504 		.core_clk = 33000000, .hldt = 0x7, .dbcnt = 0x1,
505 		.sclfrq = 0x0, .scllt = 0xA, .sclht = 0x7,
506 		.fast_mode = true,
507 	},
508 	{
509 		.core_clk = 25000000, .hldt = 0x4, .dbcnt = 0x1,
510 		.sclfrq = 0x0, .scllt = 0x7, .sclht = 0x6,
511 		.fast_mode = true,
512 	},
513 	{
514 		.core_clk = 24000000, .hldt = 0x7, .dbcnt = 0x1,
515 		.sclfrq = 0x0, .scllt = 0x8, .sclht = 0x5,
516 		.fast_mode = true,
517 	},
518 	{
519 		.core_clk = 20000000, .hldt = 0x4, .dbcnt = 0x1,
520 		.sclfrq = 0x0, .scllt = 0x6, .sclht = 0x4,
521 		.fast_mode = true,
522 	},
523 };
524 
525 struct npcm_i2c_data {
526 	u8 fifo_size;
527 	u32 segctl_init_val;
528 	u8 txf_sts_tx_bytes;
529 	u8 rxf_sts_rx_bytes;
530 	u8 rxf_ctl_last_pec;
531 };
532 
533 static const struct npcm_i2c_data npxm7xx_i2c_data = {
534 	.fifo_size = 16,
535 	.segctl_init_val = 0x0333F000,
536 	.txf_sts_tx_bytes = GENMASK(4, 0),
537 	.rxf_sts_rx_bytes = GENMASK(4, 0),
538 	.rxf_ctl_last_pec = BIT(5),
539 };
540 
541 static const struct npcm_i2c_data npxm8xx_i2c_data = {
542 	.fifo_size = 32,
543 	.segctl_init_val = 0x9333F000,
544 	.txf_sts_tx_bytes = GENMASK(5, 0),
545 	.rxf_sts_rx_bytes = GENMASK(5, 0),
546 	.rxf_ctl_last_pec = BIT(7),
547 };
548 
549 /* Status of one I2C module */
550 struct npcm_i2c {
551 	struct i2c_adapter adap;
552 	struct device *dev;
553 	unsigned char __iomem *reg;
554 	const struct npcm_i2c_data *data;
555 	spinlock_t lock;   /* IRQ synchronization */
556 	struct completion cmd_complete;
557 	int cmd_err;
558 	struct i2c_msg *msgs;
559 	int msgs_num;
560 	int num;
561 	u32 apb_clk;
562 	struct i2c_bus_recovery_info rinfo;
563 	enum i2c_state state;
564 	enum i2c_oper operation;
565 	enum i2c_mode master_or_slave;
566 	enum i2c_state_ind stop_ind;
567 	u8 dest_addr;
568 	u8 *rd_buf;
569 	u16 rd_size;
570 	u16 rd_ind;
571 	u8 *wr_buf;
572 	u16 wr_size;
573 	u16 wr_ind;
574 	bool fifo_use;
575 	u16 PEC_mask; /* PEC bit mask per slave address */
576 	bool PEC_use;
577 	bool read_block_use;
578 	unsigned long int_time_stamp;
579 	unsigned long bus_freq; /* in Hz */
580 #if IS_ENABLED(CONFIG_I2C_SLAVE)
581 	u8 own_slave_addr;
582 	struct i2c_client *slave;
583 	int slv_rd_size;
584 	int slv_rd_ind;
585 	int slv_wr_size;
586 	int slv_wr_ind;
587 	u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
588 	u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
589 #endif
590 	struct dentry *debugfs; /* debugfs device directory */
591 	u64 ber_cnt;
592 	u64 rec_succ_cnt;
593 	u64 rec_fail_cnt;
594 	u64 nack_cnt;
595 	u64 timeout_cnt;
596 	u64 tx_complete_cnt;
597 	bool ber_state; /* Indicate the bus error state */
598 };
599 
npcm_i2c_select_bank(struct npcm_i2c * bus,enum i2c_bank bank)600 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
601 					enum i2c_bank bank)
602 {
603 	u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
604 
605 	if (bank == I2C_BANK_0)
606 		i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
607 	else
608 		i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
609 	iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
610 }
611 
npcm_i2c_init_params(struct npcm_i2c * bus)612 static void npcm_i2c_init_params(struct npcm_i2c *bus)
613 {
614 	bus->stop_ind = I2C_NO_STATUS_IND;
615 	bus->rd_size = 0;
616 	bus->wr_size = 0;
617 	bus->rd_ind = 0;
618 	bus->wr_ind = 0;
619 	bus->read_block_use = false;
620 	bus->int_time_stamp = 0;
621 	bus->PEC_use = false;
622 	bus->PEC_mask = 0;
623 #if IS_ENABLED(CONFIG_I2C_SLAVE)
624 	if (bus->slave)
625 		bus->master_or_slave = I2C_SLAVE;
626 #endif
627 }
628 
npcm_i2c_wr_byte(struct npcm_i2c * bus,u8 data)629 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
630 {
631 	iowrite8(data, bus->reg + NPCM_I2CSDA);
632 }
633 
npcm_i2c_rd_byte(struct npcm_i2c * bus)634 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
635 {
636 	return ioread8(bus->reg + NPCM_I2CSDA);
637 }
638 
npcm_i2c_get_SCL(struct i2c_adapter * _adap)639 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
640 {
641 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
642 
643 	return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
644 }
645 
npcm_i2c_get_SDA(struct i2c_adapter * _adap)646 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
647 {
648 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
649 
650 	return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
651 }
652 
npcm_i2c_get_index(struct npcm_i2c * bus)653 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
654 {
655 	if (bus->operation == I2C_READ_OPER)
656 		return bus->rd_ind;
657 	if (bus->operation == I2C_WRITE_OPER)
658 		return bus->wr_ind;
659 	return 0;
660 }
661 
662 /* quick protocol (just address) */
npcm_i2c_is_quick(struct npcm_i2c * bus)663 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
664 {
665 	return bus->wr_size == 0 && bus->rd_size == 0;
666 }
667 
npcm_i2c_disable(struct npcm_i2c * bus)668 static void npcm_i2c_disable(struct npcm_i2c *bus)
669 {
670 	u8 i2cctl2;
671 
672 #if IS_ENABLED(CONFIG_I2C_SLAVE)
673 	int i;
674 
675 	/* Slave addresses removal */
676 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
677 		iowrite8(0, bus->reg + npcm_i2caddr[i]);
678 
679 #endif
680 	/* Disable module */
681 	i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
682 	i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
683 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
684 
685 	bus->state = I2C_DISABLE;
686 }
687 
npcm_i2c_enable(struct npcm_i2c * bus)688 static void npcm_i2c_enable(struct npcm_i2c *bus)
689 {
690 	u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
691 
692 	i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
693 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
694 	bus->state = I2C_IDLE;
695 }
696 
697 /* enable\disable end of busy (EOB) interrupts */
npcm_i2c_eob_int(struct npcm_i2c * bus,bool enable)698 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
699 {
700 	u8 val;
701 
702 	/* Clear EO_BUSY pending bit: */
703 	val = ioread8(bus->reg + NPCM_I2CCST3);
704 	val = val | NPCM_I2CCST3_EO_BUSY;
705 	iowrite8(val, bus->reg + NPCM_I2CCST3);
706 
707 	val = ioread8(bus->reg + NPCM_I2CCTL1);
708 	val &= ~NPCM_I2CCTL1_RWS;
709 	if (enable)
710 		val |= NPCM_I2CCTL1_EOBINTE;
711 	else
712 		val &= ~NPCM_I2CCTL1_EOBINTE;
713 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
714 }
715 
npcm_i2c_tx_fifo_empty(struct npcm_i2c * bus)716 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
717 {
718 	u8 tx_fifo_sts;
719 
720 	tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
721 	/* check if TX FIFO is not empty */
722 	if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
723 		return false;
724 
725 	/* check if TX FIFO status bit is set: */
726 	return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
727 }
728 
npcm_i2c_rx_fifo_full(struct npcm_i2c * bus)729 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
730 {
731 	u8 rx_fifo_sts;
732 
733 	rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
734 	/* check if RX FIFO is not empty: */
735 	if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
736 		return false;
737 
738 	/* check if rx fifo full status is set: */
739 	return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
740 }
741 
npcm_i2c_clear_fifo_int(struct npcm_i2c * bus)742 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
743 {
744 	u8 val;
745 
746 	val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
747 	val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
748 	iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
749 }
750 
npcm_i2c_clear_tx_fifo(struct npcm_i2c * bus)751 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
752 {
753 	u8 val;
754 
755 	val = ioread8(bus->reg + NPCM_I2CTXF_STS);
756 	val = val | NPCM_I2CTXF_STS_TX_THST;
757 	iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
758 }
759 
npcm_i2c_clear_rx_fifo(struct npcm_i2c * bus)760 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
761 {
762 	u8 val;
763 
764 	val = ioread8(bus->reg + NPCM_I2CRXF_STS);
765 	val = val | NPCM_I2CRXF_STS_RX_THST;
766 	iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
767 }
768 
npcm_i2c_int_enable(struct npcm_i2c * bus,bool enable)769 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
770 {
771 	u8 val;
772 
773 	val = ioread8(bus->reg + NPCM_I2CCTL1);
774 	val &= ~NPCM_I2CCTL1_RWS;
775 	if (enable)
776 		val |= NPCM_I2CCTL1_INTEN;
777 	else
778 		val &= ~NPCM_I2CCTL1_INTEN;
779 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
780 }
781 
npcm_i2c_master_start(struct npcm_i2c * bus)782 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
783 {
784 	u8 val;
785 
786 	val = ioread8(bus->reg + NPCM_I2CCTL1);
787 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
788 	val |= NPCM_I2CCTL1_START;
789 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
790 }
791 
npcm_i2c_master_stop(struct npcm_i2c * bus)792 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
793 {
794 	u8 val;
795 
796 	/*
797 	 * override HW issue: I2C may fail to supply stop condition in Master
798 	 * Write operation.
799 	 * Need to delay at least 5 us from the last int, before issueing a stop
800 	 */
801 	udelay(10); /* function called from interrupt, can't sleep */
802 	val = ioread8(bus->reg + NPCM_I2CCTL1);
803 	val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
804 	val |= NPCM_I2CCTL1_STOP;
805 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
806 
807 	if (!bus->fifo_use)
808 		return;
809 
810 	npcm_i2c_select_bank(bus, I2C_BANK_1);
811 
812 	if (bus->operation == I2C_READ_OPER)
813 		npcm_i2c_clear_rx_fifo(bus);
814 	else
815 		npcm_i2c_clear_tx_fifo(bus);
816 	npcm_i2c_clear_fifo_int(bus);
817 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
818 }
819 
npcm_i2c_stall_after_start(struct npcm_i2c * bus,bool stall)820 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
821 {
822 	u8 val;
823 
824 	val = ioread8(bus->reg + NPCM_I2CCTL1);
825 	val &= ~NPCM_I2CCTL1_RWS;
826 	if (stall)
827 		val |= NPCM_I2CCTL1_STASTRE;
828 	else
829 		val &= ~NPCM_I2CCTL1_STASTRE;
830 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
831 }
832 
npcm_i2c_nack(struct npcm_i2c * bus)833 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
834 {
835 	u8 val;
836 
837 	val = ioread8(bus->reg + NPCM_I2CCTL1);
838 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
839 	val |= NPCM_I2CCTL1_ACK;
840 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
841 }
842 
npcm_i2c_clear_master_status(struct npcm_i2c * bus)843 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
844 {
845 	u8 val;
846 
847 	/* Clear NEGACK, STASTR and BER bits */
848 	val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
849 	iowrite8(val, bus->reg + NPCM_I2CST);
850 }
851 
852 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_slave_int_enable(struct npcm_i2c * bus,bool enable)853 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
854 {
855 	u8 i2cctl1;
856 
857 	/* enable interrupt on slave match: */
858 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
859 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
860 	if (enable)
861 		i2cctl1 |= NPCM_I2CCTL1_NMINTE;
862 	else
863 		i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
864 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
865 }
866 
npcm_i2c_slave_enable(struct npcm_i2c * bus,enum i2c_addr addr_type,u8 addr,bool enable)867 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
868 				 u8 addr, bool enable)
869 {
870 	u8 i2cctl1;
871 	u8 i2cctl3;
872 	u8 sa_reg;
873 
874 	sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
875 	if (addr_type == I2C_GC_ADDR) {
876 		i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
877 		if (enable)
878 			i2cctl1 |= NPCM_I2CCTL1_GCMEN;
879 		else
880 			i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
881 		iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
882 		return 0;
883 	} else if (addr_type == I2C_ARP_ADDR) {
884 		i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
885 		if (enable)
886 			i2cctl3 |= I2CCTL3_ARPMEN;
887 		else
888 			i2cctl3 &= ~I2CCTL3_ARPMEN;
889 		iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
890 		return 0;
891 	}
892 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
893 		dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
894 
895 	if (addr_type >= I2C_ARP_ADDR)
896 		return -EFAULT;
897 
898 	/* Set and enable the address */
899 	iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
900 	npcm_i2c_slave_int_enable(bus, enable);
901 
902 	return 0;
903 }
904 #endif
905 
npcm_i2c_reset(struct npcm_i2c * bus)906 static void npcm_i2c_reset(struct npcm_i2c *bus)
907 {
908 	/*
909 	 * Save I2CCTL1 relevant bits. It is being cleared when the module
910 	 *  is disabled.
911 	 */
912 	u8 i2cctl1;
913 #if IS_ENABLED(CONFIG_I2C_SLAVE)
914 	u8 addr;
915 #endif
916 
917 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
918 
919 	npcm_i2c_disable(bus);
920 	npcm_i2c_enable(bus);
921 
922 	/* Restore NPCM_I2CCTL1 Status */
923 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
924 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
925 
926 	/* Clear BB (BUS BUSY) bit */
927 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
928 	iowrite8(0xFF, bus->reg + NPCM_I2CST);
929 
930 	/* Clear and disable EOB */
931 	npcm_i2c_eob_int(bus, false);
932 
933 	/* Clear all fifo bits: */
934 	iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
935 
936 #if IS_ENABLED(CONFIG_I2C_SLAVE)
937 	if (bus->slave) {
938 		addr = bus->slave->addr;
939 		npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
940 	}
941 #endif
942 
943 	/* Clear status bits for spurious interrupts */
944 	npcm_i2c_clear_master_status(bus);
945 
946 	bus->state = I2C_IDLE;
947 }
948 
npcm_i2c_is_master(struct npcm_i2c * bus)949 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
950 {
951 	return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
952 }
953 
npcm_i2c_callback(struct npcm_i2c * bus,enum i2c_state_ind op_status,u16 info)954 static void npcm_i2c_callback(struct npcm_i2c *bus,
955 			      enum i2c_state_ind op_status, u16 info)
956 {
957 	struct i2c_msg *msgs;
958 	int msgs_num;
959 	bool do_complete = false;
960 
961 	msgs = bus->msgs;
962 	msgs_num = bus->msgs_num;
963 	/*
964 	 * check that transaction was not timed-out, and msgs still
965 	 * holds a valid value.
966 	 */
967 	if (!msgs)
968 		return;
969 
970 	if (completion_done(&bus->cmd_complete))
971 		return;
972 
973 	switch (op_status) {
974 	case I2C_MASTER_DONE_IND:
975 		bus->cmd_err = bus->msgs_num;
976 		if (bus->tx_complete_cnt < ULLONG_MAX)
977 			bus->tx_complete_cnt++;
978 		fallthrough;
979 	case I2C_BLOCK_BYTES_ERR_IND:
980 		/* Master tx finished and all transmit bytes were sent */
981 		if (bus->msgs) {
982 			if (msgs[0].flags & I2C_M_RD)
983 				msgs[0].len = info;
984 			else if (msgs_num == 2 &&
985 				 msgs[1].flags & I2C_M_RD)
986 				msgs[1].len = info;
987 		}
988 		do_complete = true;
989 		break;
990 	case I2C_NACK_IND:
991 		/* MASTER transmit got a NACK before tx all bytes */
992 		bus->cmd_err = -ENXIO;
993 		do_complete = true;
994 		break;
995 	case I2C_BUS_ERR_IND:
996 		/* Bus error */
997 		bus->cmd_err = -EAGAIN;
998 		do_complete = true;
999 		break;
1000 	case I2C_WAKE_UP_IND:
1001 		/* I2C wake up */
1002 		break;
1003 	default:
1004 		break;
1005 	}
1006 
1007 	bus->operation = I2C_NO_OPER;
1008 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1009 	if (bus->slave)
1010 		bus->master_or_slave = I2C_SLAVE;
1011 #endif
1012 	if (do_complete)
1013 		complete(&bus->cmd_complete);
1014 }
1015 
npcm_i2c_fifo_usage(struct npcm_i2c * bus)1016 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
1017 {
1018 	if (bus->operation == I2C_WRITE_OPER)
1019 		return (bus->data->txf_sts_tx_bytes &
1020 			ioread8(bus->reg + NPCM_I2CTXF_STS));
1021 	if (bus->operation == I2C_READ_OPER)
1022 		return (bus->data->rxf_sts_rx_bytes &
1023 			ioread8(bus->reg + NPCM_I2CRXF_STS));
1024 	return 0;
1025 }
1026 
npcm_i2c_write_to_fifo_master(struct npcm_i2c * bus,u16 max_bytes)1027 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
1028 {
1029 	u8 size_free_fifo;
1030 
1031 	/*
1032 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
1033 	 * to write
1034 	 */
1035 	size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
1036 	while (max_bytes-- && size_free_fifo) {
1037 		if (bus->wr_ind < bus->wr_size)
1038 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1039 		else
1040 			npcm_i2c_wr_byte(bus, 0xFF);
1041 		size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
1042 	}
1043 }
1044 
1045 /*
1046  * npcm_i2c_set_fifo:
1047  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
1048  * configured. same for nwrite
1049  */
npcm_i2c_set_fifo(struct npcm_i2c * bus,int nread,int nwrite)1050 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
1051 {
1052 	u8 rxf_ctl = 0;
1053 
1054 	if (!bus->fifo_use)
1055 		return;
1056 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1057 	npcm_i2c_clear_tx_fifo(bus);
1058 	npcm_i2c_clear_rx_fifo(bus);
1059 
1060 	/* configure RX FIFO */
1061 	if (nread > 0) {
1062 		rxf_ctl = min_t(int, nread, bus->data->fifo_size);
1063 
1064 		/* set LAST bit. if LAST is set next FIFO packet is nacked */
1065 		if (nread <= bus->data->fifo_size)
1066 			rxf_ctl |= bus->data->rxf_ctl_last_pec;
1067 
1068 		/*
1069 		 * if we are about to read the first byte in blk rd mode,
1070 		 * don't NACK it. If slave returns zero size HW can't NACK
1071 		 * it immediately, it will read extra byte and then NACK.
1072 		 */
1073 		if (bus->rd_ind == 0 && bus->read_block_use) {
1074 			/* set fifo to read one byte, no last: */
1075 			rxf_ctl = 1;
1076 		}
1077 
1078 		/* set fifo size: */
1079 		iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
1080 	}
1081 
1082 	/* configure TX FIFO */
1083 	if (nwrite > 0) {
1084 		if (nwrite > bus->data->fifo_size)
1085 			/* data to send is more then FIFO size. */
1086 			iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
1087 		else
1088 			iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
1089 
1090 		npcm_i2c_clear_tx_fifo(bus);
1091 	}
1092 }
1093 
npcm_i2c_read_fifo(struct npcm_i2c * bus,u8 bytes_in_fifo)1094 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
1095 {
1096 	u8 data;
1097 
1098 	while (bytes_in_fifo--) {
1099 		data = npcm_i2c_rd_byte(bus);
1100 		if (bus->rd_ind < bus->rd_size)
1101 			bus->rd_buf[bus->rd_ind++] = data;
1102 	}
1103 }
1104 
npcm_i2c_master_abort(struct npcm_i2c * bus)1105 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
1106 {
1107 	/* Only current master is allowed to issue a stop condition */
1108 	if (!npcm_i2c_is_master(bus))
1109 		return;
1110 
1111 	npcm_i2c_eob_int(bus, true);
1112 	npcm_i2c_master_stop(bus);
1113 	npcm_i2c_clear_master_status(bus);
1114 }
1115 
1116 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_get_slave_addr(struct npcm_i2c * bus,enum i2c_addr addr_type)1117 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
1118 {
1119 	u8 slave_add;
1120 
1121 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
1122 		dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
1123 
1124 	slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
1125 
1126 	return slave_add;
1127 }
1128 
npcm_i2c_remove_slave_addr(struct npcm_i2c * bus,u8 slave_add)1129 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
1130 {
1131 	int i;
1132 
1133 	/* Set the enable bit */
1134 	slave_add |= 0x80;
1135 
1136 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
1137 		if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
1138 			iowrite8(0, bus->reg + npcm_i2caddr[i]);
1139 	}
1140 
1141 	return 0;
1142 }
1143 
npcm_i2c_write_fifo_slave(struct npcm_i2c * bus,u16 max_bytes)1144 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
1145 {
1146 	/*
1147 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
1148 	 * to write
1149 	 */
1150 	npcm_i2c_clear_fifo_int(bus);
1151 	npcm_i2c_clear_tx_fifo(bus);
1152 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1153 	while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
1154 		if (bus->slv_wr_size <= 0)
1155 			break;
1156 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
1157 		npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
1158 		bus->slv_wr_ind++;
1159 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
1160 		bus->slv_wr_size--;
1161 	}
1162 }
1163 
npcm_i2c_read_fifo_slave(struct npcm_i2c * bus,u8 bytes_in_fifo)1164 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
1165 {
1166 	u8 data;
1167 
1168 	if (!bus->slave)
1169 		return;
1170 
1171 	while (bytes_in_fifo--) {
1172 		data = npcm_i2c_rd_byte(bus);
1173 
1174 		bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
1175 		bus->slv_rd_buf[bus->slv_rd_ind] = data;
1176 		bus->slv_rd_ind++;
1177 
1178 		/* 1st byte is length in block protocol: */
1179 		if (bus->slv_rd_ind == 1 && bus->read_block_use)
1180 			bus->slv_rd_size = data + bus->PEC_use + 1;
1181 	}
1182 }
1183 
npcm_i2c_slave_get_wr_buf(struct npcm_i2c * bus)1184 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
1185 {
1186 	int i;
1187 	u8 value;
1188 	int ind;
1189 	int ret = bus->slv_wr_ind;
1190 
1191 	/* fill a cyclic buffer */
1192 	for (i = 0; i < bus->data->fifo_size; i++) {
1193 		if (bus->slv_wr_size >= bus->data->fifo_size)
1194 			break;
1195 		if (bus->state == I2C_SLAVE_MATCH) {
1196 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
1197 			bus->state = I2C_OPER_STARTED;
1198 		} else {
1199 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
1200 		}
1201 		ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
1202 		bus->slv_wr_buf[ind] = value;
1203 		bus->slv_wr_size++;
1204 	}
1205 	return bus->data->fifo_size - ret;
1206 }
1207 
npcm_i2c_slave_send_rd_buf(struct npcm_i2c * bus)1208 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
1209 {
1210 	int i;
1211 
1212 	for (i = 0; i < bus->slv_rd_ind; i++)
1213 		i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
1214 				&bus->slv_rd_buf[i]);
1215 	/*
1216 	 * once we send bytes up, need to reset the counter of the wr buf
1217 	 * got data from master (new offset in device), ignore wr fifo:
1218 	 */
1219 	if (bus->slv_rd_ind) {
1220 		bus->slv_wr_size = 0;
1221 		bus->slv_wr_ind = 0;
1222 	}
1223 
1224 	bus->slv_rd_ind = 0;
1225 	bus->slv_rd_size = bus->adap.quirks->max_read_len;
1226 
1227 	npcm_i2c_clear_fifo_int(bus);
1228 	npcm_i2c_clear_rx_fifo(bus);
1229 }
1230 
npcm_i2c_slave_receive(struct npcm_i2c * bus,u16 nread,u8 * read_data)1231 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
1232 				   u8 *read_data)
1233 {
1234 	bus->state = I2C_OPER_STARTED;
1235 	bus->operation = I2C_READ_OPER;
1236 	bus->slv_rd_size = nread;
1237 	bus->slv_rd_ind = 0;
1238 
1239 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1240 	iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1241 	npcm_i2c_clear_tx_fifo(bus);
1242 	npcm_i2c_clear_rx_fifo(bus);
1243 }
1244 
npcm_i2c_slave_xmit(struct npcm_i2c * bus,u16 nwrite,u8 * write_data)1245 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
1246 				u8 *write_data)
1247 {
1248 	if (nwrite == 0)
1249 		return;
1250 
1251 	bus->operation = I2C_WRITE_OPER;
1252 
1253 	/* get the next buffer */
1254 	npcm_i2c_slave_get_wr_buf(bus);
1255 	npcm_i2c_write_fifo_slave(bus, nwrite);
1256 }
1257 
1258 /*
1259  * npcm_i2c_slave_wr_buf_sync:
1260  * currently slave IF only supports single byte operations.
1261  * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1262  * at a time, pack them in buffer, and then transmit them all together
1263  * to the FIFO and onward to the bus.
1264  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1265  * sending a NACK wherever the backend requests for it is not supported.
1266  * the next two functions allow reading to local buffer before writing it all
1267  * to the HW FIFO.
1268  */
npcm_i2c_slave_wr_buf_sync(struct npcm_i2c * bus)1269 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1270 {
1271 	int left_in_fifo;
1272 
1273 	left_in_fifo = bus->data->txf_sts_tx_bytes &
1274 			ioread8(bus->reg + NPCM_I2CTXF_STS);
1275 
1276 	/* fifo already full: */
1277 	if (left_in_fifo >= bus->data->fifo_size ||
1278 	    bus->slv_wr_size >= bus->data->fifo_size)
1279 		return;
1280 
1281 	/* update the wr fifo index back to the untransmitted bytes: */
1282 	bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1283 	bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1284 
1285 	if (bus->slv_wr_ind < 0)
1286 		bus->slv_wr_ind += bus->data->fifo_size;
1287 }
1288 
npcm_i2c_slave_rd_wr(struct npcm_i2c * bus)1289 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1290 {
1291 	if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1292 		/*
1293 		 * Slave got an address match with direction bit 1 so it should
1294 		 * transmit data. Write till the master will NACK
1295 		 */
1296 		bus->operation = I2C_WRITE_OPER;
1297 		npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1298 				    bus->slv_wr_buf);
1299 	} else {
1300 		/*
1301 		 * Slave got an address match with direction bit 0 so it should
1302 		 * receive data.
1303 		 * this module does not support saying no to bytes.
1304 		 * it will always ACK.
1305 		 */
1306 		bus->operation = I2C_READ_OPER;
1307 		npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1308 		bus->stop_ind = I2C_SLAVE_RCV_IND;
1309 		npcm_i2c_slave_send_rd_buf(bus);
1310 		npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1311 				       bus->slv_rd_buf);
1312 	}
1313 }
1314 
npcm_i2c_int_slave_handler(struct npcm_i2c * bus)1315 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1316 {
1317 	u8 val;
1318 	irqreturn_t ret = IRQ_NONE;
1319 	u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1320 
1321 	/* Slave: A NACK has occurred */
1322 	if (NPCM_I2CST_NEGACK & i2cst) {
1323 		bus->stop_ind = I2C_NACK_IND;
1324 		npcm_i2c_slave_wr_buf_sync(bus);
1325 		if (bus->fifo_use)
1326 			/* clear the FIFO */
1327 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1328 				 bus->reg + NPCM_I2CFIF_CTS);
1329 
1330 		/* In slave write, NACK is OK, otherwise it is a problem */
1331 		bus->stop_ind = I2C_NO_STATUS_IND;
1332 		bus->operation = I2C_NO_OPER;
1333 		bus->own_slave_addr = 0xFF;
1334 
1335 		/*
1336 		 * Slave has to wait for STOP to decide this is the end
1337 		 * of the transaction. tx is not yet considered as done
1338 		 */
1339 		iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1340 
1341 		ret = IRQ_HANDLED;
1342 	}
1343 
1344 	/* Slave mode: a Bus Error (BER) has been identified */
1345 	if (NPCM_I2CST_BER & i2cst) {
1346 		/*
1347 		 * Check whether bus arbitration or Start or Stop during data
1348 		 * xfer bus arbitration problem should not result in recovery
1349 		 */
1350 		bus->stop_ind = I2C_BUS_ERR_IND;
1351 
1352 		/* wait for bus busy before clear fifo */
1353 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1354 
1355 		bus->state = I2C_IDLE;
1356 
1357 		/*
1358 		 * in BER case we might get 2 interrupts: one for slave one for
1359 		 * master ( for a channel which is master\slave switching)
1360 		 */
1361 		if (completion_done(&bus->cmd_complete) == false) {
1362 			bus->cmd_err = -EIO;
1363 			complete(&bus->cmd_complete);
1364 		}
1365 		bus->own_slave_addr = 0xFF;
1366 		iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1367 		ret = IRQ_HANDLED;
1368 	}
1369 
1370 	/* A Slave Stop Condition has been identified */
1371 	if (NPCM_I2CST_SLVSTP & i2cst) {
1372 		u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1373 
1374 		bus->stop_ind = I2C_SLAVE_DONE_IND;
1375 
1376 		if (bus->operation == I2C_READ_OPER)
1377 			npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1378 
1379 		/* if the buffer is empty nothing will be sent */
1380 		npcm_i2c_slave_send_rd_buf(bus);
1381 
1382 		/* Slave done transmitting or receiving */
1383 		bus->stop_ind = I2C_NO_STATUS_IND;
1384 
1385 		/*
1386 		 * Note, just because we got here, it doesn't mean we through
1387 		 * away the wr buffer.
1388 		 * we keep it until the next received offset.
1389 		 */
1390 		bus->operation = I2C_NO_OPER;
1391 		bus->own_slave_addr = 0xFF;
1392 		i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1393 		iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1394 		if (bus->fifo_use) {
1395 			npcm_i2c_clear_fifo_int(bus);
1396 			npcm_i2c_clear_rx_fifo(bus);
1397 			npcm_i2c_clear_tx_fifo(bus);
1398 
1399 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1400 				 bus->reg + NPCM_I2CFIF_CTS);
1401 		}
1402 		bus->state = I2C_IDLE;
1403 		ret = IRQ_HANDLED;
1404 	}
1405 
1406 	/* restart condition occurred and Rx-FIFO was not empty */
1407 	if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1408 				       ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1409 		bus->stop_ind = I2C_SLAVE_RESTART_IND;
1410 		bus->master_or_slave = I2C_SLAVE;
1411 		if (bus->operation == I2C_READ_OPER)
1412 			npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1413 		bus->operation = I2C_WRITE_OPER;
1414 		iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1415 		val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1416 		      NPCM_I2CFIF_CTS_RXF_TXE;
1417 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1418 		npcm_i2c_slave_rd_wr(bus);
1419 		ret = IRQ_HANDLED;
1420 	}
1421 
1422 	/* A Slave Address Match has been identified */
1423 	if (NPCM_I2CST_NMATCH & i2cst) {
1424 		u8 info = 0;
1425 
1426 		/* Address match automatically implies slave mode */
1427 		bus->master_or_slave = I2C_SLAVE;
1428 		npcm_i2c_clear_fifo_int(bus);
1429 		npcm_i2c_clear_rx_fifo(bus);
1430 		npcm_i2c_clear_tx_fifo(bus);
1431 		iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1432 		iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1433 		if (NPCM_I2CST_XMIT & i2cst) {
1434 			bus->operation = I2C_WRITE_OPER;
1435 		} else {
1436 			i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1437 					&info);
1438 			bus->operation = I2C_READ_OPER;
1439 		}
1440 		if (bus->own_slave_addr == 0xFF) {
1441 			/* Check which type of address match */
1442 			val = ioread8(bus->reg + NPCM_I2CCST);
1443 			if (NPCM_I2CCST_MATCH & val) {
1444 				u16 addr;
1445 				enum i2c_addr eaddr;
1446 				u8 i2ccst2;
1447 				u8 i2ccst3;
1448 
1449 				i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1450 				i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1451 
1452 				/*
1453 				 * the i2c module can response to 10 own SA.
1454 				 * check which one was addressed by the master.
1455 				 * respond to the first one.
1456 				 */
1457 				addr = ((i2ccst3 & 0x07) << 7) |
1458 					(i2ccst2 & 0x7F);
1459 				info = ffs(addr);
1460 				eaddr = (enum i2c_addr)info;
1461 				addr = npcm_i2c_get_slave_addr(bus, eaddr);
1462 				addr &= 0x7F;
1463 				bus->own_slave_addr = addr;
1464 				if (bus->PEC_mask & BIT(info))
1465 					bus->PEC_use = true;
1466 				else
1467 					bus->PEC_use = false;
1468 			} else {
1469 				if (NPCM_I2CCST_GCMATCH & val)
1470 					bus->own_slave_addr = 0;
1471 				if (NPCM_I2CCST_ARPMATCH & val)
1472 					bus->own_slave_addr = 0x61;
1473 			}
1474 		} else {
1475 			/*
1476 			 *  Slave match can happen in two options:
1477 			 *  1. Start, SA, read (slave read without further ado)
1478 			 *  2. Start, SA, read, data, restart, SA, read,  ...
1479 			 *     (slave read in fragmented mode)
1480 			 *  3. Start, SA, write, data, restart, SA, read, ..
1481 			 *     (regular write-read mode)
1482 			 */
1483 			if ((bus->state == I2C_OPER_STARTED &&
1484 			     bus->operation == I2C_READ_OPER &&
1485 			     bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1486 			     bus->stop_ind == I2C_SLAVE_RCV_IND) {
1487 				/* slave tx after slave rx w/o STOP */
1488 				bus->stop_ind = I2C_SLAVE_RESTART_IND;
1489 			}
1490 		}
1491 
1492 		if (NPCM_I2CST_XMIT & i2cst)
1493 			bus->stop_ind = I2C_SLAVE_XMIT_IND;
1494 		else
1495 			bus->stop_ind = I2C_SLAVE_RCV_IND;
1496 		bus->state = I2C_SLAVE_MATCH;
1497 		npcm_i2c_slave_rd_wr(bus);
1498 		iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1499 		ret = IRQ_HANDLED;
1500 	}
1501 
1502 	/* Slave SDA status is set - tx or rx */
1503 	if ((NPCM_I2CST_SDAST & i2cst) ||
1504 	    (bus->fifo_use &&
1505 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1506 		npcm_i2c_slave_rd_wr(bus);
1507 		iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1508 		ret = IRQ_HANDLED;
1509 	} /* SDAST */
1510 
1511 	/*
1512 	 * If irq is not one of the above, make sure EOB is disabled and all
1513 	 * status bits are cleared.
1514 	 */
1515 	if (ret == IRQ_NONE) {
1516 		npcm_i2c_eob_int(bus, false);
1517 		npcm_i2c_clear_master_status(bus);
1518 	}
1519 
1520 	return IRQ_HANDLED;
1521 }
1522 
npcm_i2c_reg_slave(struct i2c_client * client)1523 static int npcm_i2c_reg_slave(struct i2c_client *client)
1524 {
1525 	unsigned long lock_flags;
1526 	struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1527 
1528 	bus->slave = client;
1529 
1530 	if (client->flags & I2C_CLIENT_TEN)
1531 		return -EAFNOSUPPORT;
1532 
1533 	spin_lock_irqsave(&bus->lock, lock_flags);
1534 
1535 	npcm_i2c_init_params(bus);
1536 	bus->slv_rd_size = 0;
1537 	bus->slv_wr_size = 0;
1538 	bus->slv_rd_ind = 0;
1539 	bus->slv_wr_ind = 0;
1540 	if (client->flags & I2C_CLIENT_PEC)
1541 		bus->PEC_use = true;
1542 
1543 	dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1544 		 client->addr, bus->PEC_use);
1545 
1546 	npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1547 	npcm_i2c_clear_fifo_int(bus);
1548 	npcm_i2c_clear_rx_fifo(bus);
1549 	npcm_i2c_clear_tx_fifo(bus);
1550 	npcm_i2c_slave_int_enable(bus, true);
1551 
1552 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1553 	return 0;
1554 }
1555 
npcm_i2c_unreg_slave(struct i2c_client * client)1556 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1557 {
1558 	struct npcm_i2c *bus = client->adapter->algo_data;
1559 	unsigned long lock_flags;
1560 
1561 	spin_lock_irqsave(&bus->lock, lock_flags);
1562 	if (!bus->slave) {
1563 		spin_unlock_irqrestore(&bus->lock, lock_flags);
1564 		return -EINVAL;
1565 	}
1566 	npcm_i2c_slave_int_enable(bus, false);
1567 	npcm_i2c_remove_slave_addr(bus, client->addr);
1568 	bus->slave = NULL;
1569 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1570 	return 0;
1571 }
1572 #endif /* CONFIG_I2C_SLAVE */
1573 
npcm_i2c_master_fifo_read(struct npcm_i2c * bus)1574 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1575 {
1576 	int rcount;
1577 	int fifo_bytes;
1578 	enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1579 
1580 	fifo_bytes = npcm_i2c_fifo_usage(bus);
1581 	rcount = bus->rd_size - bus->rd_ind;
1582 
1583 	/*
1584 	 * In order not to change the RX_TRH during transaction (we found that
1585 	 * this might be problematic if it takes too much time to read the FIFO)
1586 	 * we read the data in the following way. If the number of bytes to
1587 	 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1588 	 * and in the next int we read rest of the data.
1589 	 */
1590 	if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1591 		fifo_bytes = rcount - bus->data->fifo_size;
1592 
1593 	if (rcount <= fifo_bytes) {
1594 		/* last bytes are about to be read - end of tx */
1595 		bus->state = I2C_STOP_PENDING;
1596 		bus->stop_ind = ind;
1597 		npcm_i2c_eob_int(bus, true);
1598 		/* Stop should be set before reading last byte. */
1599 		npcm_i2c_master_stop(bus);
1600 		npcm_i2c_read_fifo(bus, fifo_bytes);
1601 	} else {
1602 		npcm_i2c_read_fifo(bus, fifo_bytes);
1603 		rcount = bus->rd_size - bus->rd_ind;
1604 		npcm_i2c_set_fifo(bus, rcount, -1);
1605 	}
1606 }
1607 
npcm_i2c_irq_master_handler_write(struct npcm_i2c * bus)1608 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1609 {
1610 	u16 wcount;
1611 
1612 	if (bus->fifo_use)
1613 		npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1614 
1615 	/* Master write operation - last byte handling */
1616 	if (bus->wr_ind == bus->wr_size) {
1617 		if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1618 			/*
1619 			 * No more bytes to send (to add to the FIFO),
1620 			 * however the FIFO is not empty yet. It is
1621 			 * still in the middle of tx. Currently there's nothing
1622 			 * to do except for waiting to the end of the tx
1623 			 * We will get an int when the FIFO will get empty.
1624 			 */
1625 			return;
1626 
1627 		if (bus->rd_size == 0) {
1628 			/* all bytes have been written, in wr only operation */
1629 			npcm_i2c_eob_int(bus, true);
1630 			bus->state = I2C_STOP_PENDING;
1631 			bus->stop_ind = I2C_MASTER_DONE_IND;
1632 			npcm_i2c_master_stop(bus);
1633 			/* Clear SDA Status bit (by writing dummy byte) */
1634 			npcm_i2c_wr_byte(bus, 0xFF);
1635 
1636 		} else {
1637 			/* last write-byte written on previous int - restart */
1638 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1639 			/* Generate repeated start upon next write to SDA */
1640 			npcm_i2c_master_start(bus);
1641 
1642 			/*
1643 			 * Receiving one byte only - stall after successful
1644 			 * completion of send address byte. If we NACK here, and
1645 			 * slave doesn't ACK the address, we might
1646 			 * unintentionally NACK the next multi-byte read.
1647 			 */
1648 			if (bus->rd_size == 1)
1649 				npcm_i2c_stall_after_start(bus, true);
1650 
1651 			/* Next int will occur on read */
1652 			bus->operation = I2C_READ_OPER;
1653 			/* send the slave address in read direction */
1654 			npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1655 		}
1656 	} else {
1657 		/* write next byte not last byte and not slave address */
1658 		if (!bus->fifo_use || bus->wr_size == 1) {
1659 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1660 		} else {
1661 			wcount = bus->wr_size - bus->wr_ind;
1662 			npcm_i2c_set_fifo(bus, -1, wcount);
1663 			if (wcount)
1664 				npcm_i2c_write_to_fifo_master(bus, wcount);
1665 		}
1666 	}
1667 }
1668 
npcm_i2c_irq_master_handler_read(struct npcm_i2c * bus)1669 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1670 {
1671 	u16 block_extra_bytes_size;
1672 	u8 data;
1673 
1674 	/* added bytes to the packet: */
1675 	block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1676 
1677 	/*
1678 	 * Perform master read, distinguishing between last byte and the rest of
1679 	 * the bytes. The last byte should be read when the clock is stopped
1680 	 */
1681 	if (bus->rd_ind == 0) { /* first byte handling: */
1682 		if (bus->read_block_use) {
1683 			/* first byte in block protocol is the size: */
1684 			data = npcm_i2c_rd_byte(bus);
1685 			data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1686 			bus->rd_size = data + block_extra_bytes_size;
1687 			bus->rd_buf[bus->rd_ind++] = data;
1688 
1689 			/* clear RX FIFO interrupt status: */
1690 			if (bus->fifo_use) {
1691 				data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1692 				data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1693 				iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1694 			}
1695 
1696 			npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1697 			npcm_i2c_stall_after_start(bus, false);
1698 		} else {
1699 			npcm_i2c_clear_tx_fifo(bus);
1700 			npcm_i2c_master_fifo_read(bus);
1701 		}
1702 	} else {
1703 		if (bus->rd_size == block_extra_bytes_size &&
1704 		    bus->read_block_use) {
1705 			bus->state = I2C_STOP_PENDING;
1706 			bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1707 			bus->cmd_err = -EIO;
1708 			npcm_i2c_eob_int(bus, true);
1709 			npcm_i2c_master_stop(bus);
1710 			npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1711 		} else {
1712 			npcm_i2c_master_fifo_read(bus);
1713 		}
1714 	}
1715 }
1716 
npcm_i2c_irq_handle_nmatch(struct npcm_i2c * bus)1717 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1718 {
1719 	iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1720 	npcm_i2c_nack(bus);
1721 	bus->stop_ind = I2C_BUS_ERR_IND;
1722 	npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1723 }
1724 
1725 /* A NACK has occurred */
npcm_i2c_irq_handle_nack(struct npcm_i2c * bus)1726 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1727 {
1728 	u8 val;
1729 
1730 	if (bus->nack_cnt < ULLONG_MAX)
1731 		bus->nack_cnt++;
1732 
1733 	if (bus->fifo_use) {
1734 		/*
1735 		 * if there are still untransmitted bytes in TX FIFO
1736 		 * reduce them from wr_ind
1737 		 */
1738 		if (bus->operation == I2C_WRITE_OPER)
1739 			bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1740 
1741 		/* clear the FIFO */
1742 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1743 	}
1744 
1745 	/* In master write operation, got unexpected NACK */
1746 	bus->stop_ind = I2C_NACK_IND;
1747 	/* Only current master is allowed to issue Stop Condition */
1748 	if (npcm_i2c_is_master(bus)) {
1749 		/* stopping in the middle */
1750 		npcm_i2c_eob_int(bus, false);
1751 		npcm_i2c_master_stop(bus);
1752 
1753 		/* Clear SDA Status bit (by reading dummy byte) */
1754 		npcm_i2c_rd_byte(bus);
1755 
1756 		/*
1757 		 * The bus is released from stall only after the SW clears
1758 		 * NEGACK bit. Then a Stop condition is sent.
1759 		 */
1760 		npcm_i2c_clear_master_status(bus);
1761 		readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1762 					  !(val & NPCM_I2CCST_BUSY), 10, 200);
1763 		/* Verify no status bits are still set after bus is released */
1764 		npcm_i2c_clear_master_status(bus);
1765 	}
1766 	bus->state = I2C_IDLE;
1767 
1768 	/*
1769 	 * In Master mode, NACK should be cleared only after STOP.
1770 	 * In such case, the bus is released from stall only after the
1771 	 * software clears NACK bit. Then a Stop condition is sent.
1772 	 */
1773 	npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1774 }
1775 
1776 	/* Master mode: a Bus Error has been identified */
npcm_i2c_irq_handle_ber(struct npcm_i2c * bus)1777 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1778 {
1779 	if (bus->ber_cnt < ULLONG_MAX)
1780 		bus->ber_cnt++;
1781 	bus->stop_ind = I2C_BUS_ERR_IND;
1782 	if (npcm_i2c_is_master(bus)) {
1783 		npcm_i2c_master_abort(bus);
1784 	} else {
1785 		bus->ber_state = true;
1786 		npcm_i2c_clear_master_status(bus);
1787 
1788 		/* Clear BB (BUS BUSY) bit */
1789 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1790 
1791 		bus->cmd_err = -EAGAIN;
1792 		npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1793 	}
1794 	bus->state = I2C_IDLE;
1795 }
1796 
1797 	/* EOB: a master End Of Busy (meaning STOP completed) */
npcm_i2c_irq_handle_eob(struct npcm_i2c * bus)1798 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1799 {
1800 	npcm_i2c_eob_int(bus, false);
1801 	bus->state = I2C_IDLE;
1802 	npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1803 }
1804 
1805 /* Address sent and requested stall occurred (Master mode) */
npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c * bus)1806 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1807 {
1808 	if (npcm_i2c_is_quick(bus)) {
1809 		bus->state = I2C_STOP_PENDING;
1810 		bus->stop_ind = I2C_MASTER_DONE_IND;
1811 		npcm_i2c_eob_int(bus, true);
1812 		npcm_i2c_master_stop(bus);
1813 	} else if ((bus->rd_size == 1) && !bus->read_block_use) {
1814 		/*
1815 		 * Receiving one byte only - set NACK after ensuring
1816 		 * slave ACKed the address byte.
1817 		 */
1818 		npcm_i2c_nack(bus);
1819 	}
1820 
1821 	/* Reset stall-after-address-byte */
1822 	npcm_i2c_stall_after_start(bus, false);
1823 
1824 	/* Clear stall only after setting STOP */
1825 	iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1826 }
1827 
1828 /* SDA status is set - TX or RX, master */
npcm_i2c_irq_handle_sda(struct npcm_i2c * bus,u8 i2cst)1829 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1830 {
1831 	u8 fif_cts;
1832 
1833 	if (!npcm_i2c_is_master(bus))
1834 		return;
1835 
1836 	if (bus->state == I2C_IDLE) {
1837 		bus->stop_ind = I2C_WAKE_UP_IND;
1838 
1839 		if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1840 			/*
1841 			 * Need to stall after successful
1842 			 * completion of sending address byte
1843 			 */
1844 			npcm_i2c_stall_after_start(bus, true);
1845 		else
1846 			npcm_i2c_stall_after_start(bus, false);
1847 
1848 		/*
1849 		 * Receiving one byte only - stall after successful completion
1850 		 * of sending address byte If we NACK here, and slave doesn't
1851 		 * ACK the address, we might unintentionally NACK the next
1852 		 * multi-byte read
1853 		 */
1854 		if (bus->wr_size == 0 && bus->rd_size == 1)
1855 			npcm_i2c_stall_after_start(bus, true);
1856 
1857 		/* Initiate I2C master tx */
1858 
1859 		/* select bank 1 for FIFO regs */
1860 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1861 
1862 		fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1863 		fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1864 
1865 		/* clear FIFO and relevant status bits. */
1866 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1867 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1868 
1869 		/* re-enable */
1870 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1871 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1872 
1873 		/*
1874 		 * Configure the FIFO threshold:
1875 		 * according to the needed # of bytes to read.
1876 		 * Note: due to HW limitation can't config the rx fifo before it
1877 		 * got and ACK on the restart. LAST bit will not be reset unless
1878 		 * RX completed. It will stay set on the next tx.
1879 		 */
1880 		if (bus->wr_size)
1881 			npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1882 		else
1883 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1884 
1885 		bus->state = I2C_OPER_STARTED;
1886 
1887 		if (npcm_i2c_is_quick(bus) || bus->wr_size)
1888 			npcm_i2c_wr_byte(bus, bus->dest_addr);
1889 		else
1890 			npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1891 	/* SDA interrupt, after start\restart */
1892 	} else {
1893 		if (bus->operation == I2C_WRITE_OPER)
1894 			npcm_i2c_irq_master_handler_write(bus);
1895 		else if (bus->operation == I2C_READ_OPER)
1896 			npcm_i2c_irq_master_handler_read(bus);
1897 	}
1898 }
1899 
npcm_i2c_int_master_handler(struct npcm_i2c * bus)1900 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1901 {
1902 	u8 i2cst;
1903 	int ret = -EIO;
1904 
1905 	i2cst = ioread8(bus->reg + NPCM_I2CST);
1906 
1907 	if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1908 		npcm_i2c_irq_handle_nmatch(bus);
1909 		return 0;
1910 	}
1911 	/* A NACK has occurred */
1912 	if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1913 		npcm_i2c_irq_handle_nack(bus);
1914 		return 0;
1915 	}
1916 
1917 	/* Master mode: a Bus Error has been identified */
1918 	if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1919 		npcm_i2c_irq_handle_ber(bus);
1920 		return 0;
1921 	}
1922 
1923 	/* EOB: a master End Of Busy (meaning STOP completed) */
1924 	if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1925 		       ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1926 	    (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1927 		       ioread8(bus->reg + NPCM_I2CCST3)))) {
1928 		npcm_i2c_irq_handle_eob(bus);
1929 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1930 		/* reenable slave if it was enabled */
1931 		if (bus->slave)
1932 			iowrite8(bus->slave->addr | NPCM_I2CADDR_SAEN,
1933 				 bus->reg + NPCM_I2CADDR1);
1934 #endif
1935 		return 0;
1936 	}
1937 
1938 	/* Address sent and requested stall occurred (Master mode) */
1939 	if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1940 		npcm_i2c_irq_handle_stall_after_start(bus);
1941 		ret = 0;
1942 	}
1943 
1944 	/* SDA status is set - TX or RX, master */
1945 	if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1946 	    (bus->fifo_use &&
1947 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1948 		npcm_i2c_irq_handle_sda(bus, i2cst);
1949 		ret = 0;
1950 	}
1951 
1952 	return ret;
1953 }
1954 
1955 /* recovery using TGCLK functionality of the module */
npcm_i2c_recovery_tgclk(struct i2c_adapter * _adap)1956 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1957 {
1958 	u8               val;
1959 	u8               fif_cts;
1960 	bool             done = false;
1961 	int              status = -ENOTRECOVERABLE;
1962 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1963 	/* Allow 3 bytes (27 toggles) to be read from the slave: */
1964 	int              iter = 27;
1965 
1966 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1967 		dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1968 			bus->num, bus->dest_addr);
1969 		npcm_i2c_reset(bus);
1970 		bus->ber_state = false;
1971 		return 0;
1972 	}
1973 
1974 	npcm_i2c_int_enable(bus, false);
1975 	npcm_i2c_disable(bus);
1976 	npcm_i2c_enable(bus);
1977 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1978 	npcm_i2c_clear_tx_fifo(bus);
1979 	npcm_i2c_clear_rx_fifo(bus);
1980 	iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1981 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1982 	npcm_i2c_stall_after_start(bus, false);
1983 
1984 	/* select bank 1 for FIFO regs */
1985 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1986 
1987 	/* clear FIFO and relevant status bits. */
1988 	fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1989 	fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1990 	fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1991 	iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1992 	npcm_i2c_set_fifo(bus, -1, 0);
1993 
1994 	/* Repeat the following sequence until SDA is released */
1995 	do {
1996 		/* Issue a single SCL toggle */
1997 		iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1998 		usleep_range(20, 30);
1999 		/* If SDA line is inactive (high), stop */
2000 		if (npcm_i2c_get_SDA(_adap)) {
2001 			done = true;
2002 			status = 0;
2003 		}
2004 	} while (!done && iter--);
2005 
2006 	/* If SDA line is released: send start-addr-stop, to re-sync. */
2007 	if (npcm_i2c_get_SDA(_adap)) {
2008 		/* Send an address byte in write direction: */
2009 		npcm_i2c_wr_byte(bus, bus->dest_addr);
2010 		npcm_i2c_master_start(bus);
2011 		/* Wait until START condition is sent */
2012 		status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
2013 					    20, 200);
2014 		/* If START condition was sent */
2015 		if (npcm_i2c_is_master(bus) > 0) {
2016 			usleep_range(20, 30);
2017 			npcm_i2c_master_stop(bus);
2018 			usleep_range(200, 500);
2019 		}
2020 	}
2021 	npcm_i2c_reset(bus);
2022 	npcm_i2c_int_enable(bus, true);
2023 
2024 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
2025 		status = 0;
2026 	else
2027 		status = -ENOTRECOVERABLE;
2028 	if (status) {
2029 		if (bus->rec_fail_cnt < ULLONG_MAX)
2030 			bus->rec_fail_cnt++;
2031 	} else {
2032 		if (bus->rec_succ_cnt < ULLONG_MAX)
2033 			bus->rec_succ_cnt++;
2034 	}
2035 	bus->ber_state = false;
2036 	return status;
2037 }
2038 
2039 /* recovery using bit banging functionality of the module */
npcm_i2c_recovery_init(struct i2c_adapter * _adap)2040 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
2041 {
2042 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
2043 	struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
2044 
2045 	rinfo->recover_bus = npcm_i2c_recovery_tgclk;
2046 
2047 	/*
2048 	 * npcm i2c HW allows direct reading of SCL and SDA.
2049 	 * However, it does not support setting SCL and SDA directly.
2050 	 * The recovery function can toggle SCL when SDA is low (but not set)
2051 	 * Getter functions used internally, and can be used externally.
2052 	 */
2053 	rinfo->get_scl = npcm_i2c_get_SCL;
2054 	rinfo->get_sda = npcm_i2c_get_SDA;
2055 	_adap->bus_recovery_info = rinfo;
2056 }
2057 
2058 /* SCLFRQ min/max field values */
2059 #define SCLFRQ_MIN  10
2060 #define SCLFRQ_MAX  511
2061 #define clk_coef(freq, mul)	DIV_ROUND_UP((freq) * (mul), 1000000)
2062 
2063 /*
2064  * npcm_i2c_init_clk: init HW timing parameters.
2065  * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
2066  * and bus frequency.
2067  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
2068  * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
2069  * by the HW designer, given core clock range (equations in comments below).
2070  *
2071  */
npcm_i2c_init_clk(struct npcm_i2c * bus,u32 bus_freq_hz)2072 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
2073 {
2074 	struct  smb_timing_t *smb_timing;
2075 	u8   scl_table_cnt = 0, table_size = 0;
2076 	u8   fast_mode = 0;
2077 
2078 	bus->bus_freq = bus_freq_hz;
2079 
2080 	switch (bus_freq_hz) {
2081 	case I2C_MAX_STANDARD_MODE_FREQ:
2082 		smb_timing = smb_timing_100khz;
2083 		table_size = ARRAY_SIZE(smb_timing_100khz);
2084 		break;
2085 	case I2C_MAX_FAST_MODE_FREQ:
2086 		smb_timing = smb_timing_400khz;
2087 		table_size = ARRAY_SIZE(smb_timing_400khz);
2088 		fast_mode = I2CCTL3_400K_MODE;
2089 		break;
2090 	case I2C_MAX_FAST_MODE_PLUS_FREQ:
2091 		smb_timing = smb_timing_1000khz;
2092 		table_size = ARRAY_SIZE(smb_timing_1000khz);
2093 		fast_mode = I2CCTL3_400K_MODE;
2094 		break;
2095 	default:
2096 		return -EINVAL;
2097 	}
2098 
2099 	for (scl_table_cnt = 0; scl_table_cnt < table_size; scl_table_cnt++)
2100 		if (bus->apb_clk >= smb_timing[scl_table_cnt].core_clk)
2101 			break;
2102 
2103 	if (scl_table_cnt == table_size)
2104 		return -EINVAL;
2105 
2106 	/* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
2107 	iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, smb_timing[scl_table_cnt].sclfrq & 0x7F),
2108 		 bus->reg + NPCM_I2CCTL2);
2109 
2110 	/* bits [8:7] are in I2CCTL3 reg */
2111 	iowrite8(FIELD_PREP(I2CCTL3_SCLFRQ8_7, (smb_timing[scl_table_cnt].sclfrq >> 7) & 0x3) |
2112 		 fast_mode,
2113 		 bus->reg + NPCM_I2CCTL3);
2114 
2115 	/* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
2116 	npcm_i2c_select_bank(bus, I2C_BANK_0);
2117 
2118 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
2119 		/*
2120 		 * Set SCL Low/High Time:
2121 		 * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
2122 		 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
2123 		 */
2124 		iowrite8(smb_timing[scl_table_cnt].scllt, bus->reg + NPCM_I2CSCLLT);
2125 		iowrite8(smb_timing[scl_table_cnt].sclht, bus->reg + NPCM_I2CSCLHT);
2126 
2127 		iowrite8(smb_timing[scl_table_cnt].dbcnt, bus->reg + NPCM_I2CCTL5);
2128 	}
2129 
2130 	iowrite8(smb_timing[scl_table_cnt].hldt, bus->reg + NPCM_I2CCTL4);
2131 
2132 	/* Return to Bank 1, and stay there by default: */
2133 	npcm_i2c_select_bank(bus, I2C_BANK_1);
2134 
2135 	return 0;
2136 }
2137 
npcm_i2c_init_module(struct npcm_i2c * bus,enum i2c_mode mode,u32 bus_freq_hz)2138 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
2139 				u32 bus_freq_hz)
2140 {
2141 	u8 val;
2142 	int ret;
2143 
2144 	/* Check whether module already enabled or frequency is out of bounds */
2145 	if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
2146 	    bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
2147 		return -EINVAL;
2148 
2149 	npcm_i2c_int_enable(bus, false);
2150 	npcm_i2c_disable(bus);
2151 
2152 	/* Configure FIFO mode : */
2153 	if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
2154 		bus->fifo_use = true;
2155 		npcm_i2c_select_bank(bus, I2C_BANK_0);
2156 		val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
2157 		val |= NPCM_I2CFIF_CTL_FIFO_EN;
2158 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
2159 		npcm_i2c_select_bank(bus, I2C_BANK_1);
2160 	} else {
2161 		bus->fifo_use = false;
2162 	}
2163 
2164 	/* Configure I2C module clock frequency */
2165 	ret = npcm_i2c_init_clk(bus, bus_freq_hz);
2166 	if (ret) {
2167 		dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
2168 		return ret;
2169 	}
2170 
2171 	/* Enable module (before configuring CTL1) */
2172 	npcm_i2c_enable(bus);
2173 	bus->state = I2C_IDLE;
2174 	val = ioread8(bus->reg + NPCM_I2CCTL1);
2175 	val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
2176 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
2177 
2178 	npcm_i2c_reset(bus);
2179 
2180 	/* Check HW is OK: SDA and SCL should be high at this point. */
2181 	if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
2182 		dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
2183 		dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
2184 			npcm_i2c_get_SCL(&bus->adap));
2185 		return -ENXIO;
2186 	}
2187 
2188 	npcm_i2c_int_enable(bus, true);
2189 	return 0;
2190 }
2191 
__npcm_i2c_init(struct npcm_i2c * bus,struct platform_device * pdev)2192 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
2193 {
2194 	u32 clk_freq_hz;
2195 	int ret;
2196 
2197 	/* Initialize the internal data structures */
2198 	bus->state = I2C_DISABLE;
2199 	bus->master_or_slave = I2C_SLAVE;
2200 	bus->int_time_stamp = 0;
2201 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2202 	bus->slave = NULL;
2203 #endif
2204 
2205 	ret = device_property_read_u32(&pdev->dev, "clock-frequency",
2206 				       &clk_freq_hz);
2207 	if (ret) {
2208 		dev_info(&pdev->dev, "Could not read clock-frequency property");
2209 		clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2210 	}
2211 
2212 	ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2213 	if (ret) {
2214 		dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2215 		return ret;
2216 	}
2217 
2218 	return 0;
2219 }
2220 
npcm_i2c_bus_irq(int irq,void * dev_id)2221 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2222 {
2223 	struct npcm_i2c *bus = dev_id;
2224 
2225 	if (npcm_i2c_is_master(bus))
2226 		bus->master_or_slave = I2C_MASTER;
2227 
2228 	if (bus->master_or_slave == I2C_MASTER) {
2229 		bus->int_time_stamp = jiffies;
2230 		if (!npcm_i2c_int_master_handler(bus))
2231 			return IRQ_HANDLED;
2232 	}
2233 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2234 	if (bus->slave) {
2235 		bus->master_or_slave = I2C_SLAVE;
2236 		if (npcm_i2c_int_slave_handler(bus))
2237 			return IRQ_HANDLED;
2238 	}
2239 #endif
2240 	/* Clear status bits for spurious interrupts */
2241 	npcm_i2c_clear_master_status(bus);
2242 
2243 	return IRQ_HANDLED;
2244 }
2245 
npcm_i2c_master_start_xmit(struct npcm_i2c * bus,u16 nwrite,u16 nread,u8 * write_data,u8 * read_data,bool use_PEC,bool use_read_block)2246 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2247 				       u16 nwrite, u16 nread,
2248 				       u8 *write_data, u8 *read_data,
2249 				       bool use_PEC, bool use_read_block)
2250 {
2251 	if (bus->state != I2C_IDLE) {
2252 		bus->cmd_err = -EBUSY;
2253 		return false;
2254 	}
2255 	bus->wr_buf = write_data;
2256 	bus->wr_size = nwrite;
2257 	bus->wr_ind = 0;
2258 	bus->rd_buf = read_data;
2259 	bus->rd_size = nread;
2260 	bus->rd_ind = 0;
2261 	bus->PEC_use = 0;
2262 
2263 	/* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2264 	if (nread)
2265 		bus->PEC_use = use_PEC;
2266 
2267 	bus->read_block_use = use_read_block;
2268 	if (nread && !nwrite)
2269 		bus->operation = I2C_READ_OPER;
2270 	else
2271 		bus->operation = I2C_WRITE_OPER;
2272 	if (bus->fifo_use) {
2273 		u8 i2cfif_cts;
2274 
2275 		npcm_i2c_select_bank(bus, I2C_BANK_1);
2276 		/* clear FIFO and relevant status bits. */
2277 		i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2278 		i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2279 		i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2280 		iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2281 	}
2282 
2283 	bus->state = I2C_IDLE;
2284 	npcm_i2c_stall_after_start(bus, true);
2285 	npcm_i2c_master_start(bus);
2286 	return true;
2287 }
2288 
npcm_i2c_master_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)2289 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2290 				int num)
2291 {
2292 	struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2293 	struct i2c_msg *msg0, *msg1;
2294 	unsigned long time_left, flags;
2295 	u16 nwrite, nread;
2296 	u8 *write_data, *read_data;
2297 	unsigned long timeout;
2298 	bool read_block = false;
2299 	bool read_PEC = false;
2300 	u8 bus_busy;
2301 	unsigned long timeout_usec;
2302 
2303 	if (bus->state == I2C_DISABLE) {
2304 		dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2305 		return -EINVAL;
2306 	}
2307 
2308 	msg0 = &msgs[0];
2309 	if (msg0->flags & I2C_M_RD) { /* read */
2310 		nwrite = 0;
2311 		write_data = NULL;
2312 		read_data = msg0->buf;
2313 		if (msg0->flags & I2C_M_RECV_LEN) {
2314 			nread = 1;
2315 			read_block = true;
2316 			if (msg0->flags & I2C_CLIENT_PEC)
2317 				read_PEC = true;
2318 		} else {
2319 			nread = msg0->len;
2320 		}
2321 	} else { /* write */
2322 		nwrite = msg0->len;
2323 		write_data = msg0->buf;
2324 		nread = 0;
2325 		read_data = NULL;
2326 		if (num == 2) {
2327 			msg1 = &msgs[1];
2328 			read_data = msg1->buf;
2329 			if (msg1->flags & I2C_M_RECV_LEN) {
2330 				nread = 1;
2331 				read_block = true;
2332 				if (msg1->flags & I2C_CLIENT_PEC)
2333 					read_PEC = true;
2334 			} else {
2335 				nread = msg1->len;
2336 				read_block = false;
2337 			}
2338 		}
2339 	}
2340 
2341 	if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2342 		dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2343 		return -EINVAL;
2344 	}
2345 
2346 	time_left = jiffies + bus->adap.timeout / bus->adap.retries + 1;
2347 	do {
2348 		/*
2349 		 * we must clear slave address immediately when the bus is not
2350 		 * busy, so we spinlock it, but we don't keep the lock for the
2351 		 * entire while since it is too long.
2352 		 */
2353 		spin_lock_irqsave(&bus->lock, flags);
2354 		bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2355 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2356 		if (!bus_busy && bus->slave)
2357 			iowrite8((bus->slave->addr & 0x7F),
2358 				 bus->reg + NPCM_I2CADDR1);
2359 #endif
2360 		spin_unlock_irqrestore(&bus->lock, flags);
2361 
2362 	} while (time_is_after_jiffies(time_left) && bus_busy);
2363 
2364 	/*
2365 	 * Store the address early in a global position to ensure it is
2366 	 * accessible for a potential call to i2c_recover_bus().
2367 	 *
2368 	 * Since the transfer might be a read operation, remove the I2C_M_RD flag
2369 	 * from the bus->dest_addr for the i2c_recover_bus() call later.
2370 	 *
2371 	 * The i2c_recover_bus() uses the address in a write direction to recover
2372 	 * the i2c bus if some error condition occurs.
2373 	 *
2374 	 * Remove the I2C_M_RD flag from the address since npcm_i2c_master_start_xmit()
2375 	 * handles the read/write operation internally.
2376 	 */
2377 	bus->dest_addr = i2c_8bit_addr_from_msg(msg0) & ~I2C_M_RD;
2378 
2379 	/*
2380 	 * Check the BER (bus error) state, when ber_state is true, it means that the module
2381 	 * detects the bus error which is caused by some factor like that the electricity
2382 	 * noise occurs on the bus. Under this condition, the module is reset and the bus
2383 	 * gets recovered.
2384 	 *
2385 	 * While ber_state is false, the module reset and bus recovery also get done as the
2386 	 * bus is busy.
2387 	 */
2388 	if (bus_busy || bus->ber_state) {
2389 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2390 		npcm_i2c_reset(bus);
2391 		i2c_recover_bus(adap);
2392 		return -EAGAIN;
2393 	}
2394 
2395 	npcm_i2c_init_params(bus);
2396 	bus->msgs = msgs;
2397 	bus->msgs_num = num;
2398 	bus->cmd_err = 0;
2399 	bus->read_block_use = read_block;
2400 
2401 	reinit_completion(&bus->cmd_complete);
2402 
2403 	npcm_i2c_int_enable(bus, true);
2404 
2405 	if (npcm_i2c_master_start_xmit(bus, nwrite, nread,
2406 				       write_data, read_data, read_PEC,
2407 				       read_block)) {
2408 		/*
2409 		 * Adaptive TimeOut: estimated time in usec + 100% margin:
2410 		 * 2: double the timeout for clock stretching case
2411 		 * 9: bits per transaction (including the ack/nack)
2412 		 */
2413 		timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2414 		timeout = max_t(unsigned long, bus->adap.timeout / bus->adap.retries,
2415 				usecs_to_jiffies(timeout_usec));
2416 		time_left = wait_for_completion_timeout(&bus->cmd_complete,
2417 							timeout);
2418 
2419 		if (time_left == 0) {
2420 			if (bus->timeout_cnt < ULLONG_MAX)
2421 				bus->timeout_cnt++;
2422 			if (bus->master_or_slave == I2C_MASTER) {
2423 				i2c_recover_bus(adap);
2424 				bus->cmd_err = -EIO;
2425 				bus->state = I2C_IDLE;
2426 			}
2427 		}
2428 	}
2429 
2430 	/* if there was BER, check if need to recover the bus: */
2431 	if (bus->cmd_err == -EAGAIN)
2432 		bus->cmd_err = i2c_recover_bus(adap);
2433 
2434 	/*
2435 	 * After any type of error, check if LAST bit is still set,
2436 	 * due to a HW issue.
2437 	 * It cannot be cleared without resetting the module.
2438 	 */
2439 	else if (bus->cmd_err &&
2440 		 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2441 		npcm_i2c_reset(bus);
2442 
2443 	/* After any xfer, successful or not, stall and EOB must be disabled */
2444 	npcm_i2c_stall_after_start(bus, false);
2445 	npcm_i2c_eob_int(bus, false);
2446 
2447 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2448 	/* reenable slave if it was enabled */
2449 	if (bus->slave)
2450 		iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2451 			 bus->reg + NPCM_I2CADDR1);
2452 #else
2453 	npcm_i2c_int_enable(bus, false);
2454 #endif
2455 	return bus->cmd_err;
2456 }
2457 
npcm_i2c_functionality(struct i2c_adapter * adap)2458 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2459 {
2460 	return I2C_FUNC_I2C |
2461 	       I2C_FUNC_SMBUS_EMUL |
2462 	       I2C_FUNC_SMBUS_BLOCK_DATA |
2463 	       I2C_FUNC_SMBUS_PEC |
2464 	       I2C_FUNC_SLAVE;
2465 }
2466 
2467 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2468 	.max_read_len = 32768,
2469 	.max_write_len = 32768,
2470 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
2471 };
2472 
2473 static const struct i2c_algorithm npcm_i2c_algo = {
2474 	.master_xfer = npcm_i2c_master_xfer,
2475 	.functionality = npcm_i2c_functionality,
2476 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2477 	.reg_slave	= npcm_i2c_reg_slave,
2478 	.unreg_slave	= npcm_i2c_unreg_slave,
2479 #endif
2480 };
2481 
2482 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2483 static struct dentry *npcm_i2c_debugfs_dir;
2484 
npcm_i2c_init_debugfs(struct platform_device * pdev,struct npcm_i2c * bus)2485 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2486 				  struct npcm_i2c *bus)
2487 {
2488 	struct dentry *d;
2489 
2490 	if (!npcm_i2c_debugfs_dir)
2491 		return;
2492 	d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2493 	if (IS_ERR_OR_NULL(d))
2494 		return;
2495 	debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2496 	debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2497 	debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2498 	debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2499 	debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2500 	debugfs_create_u64("tx_complete_cnt", 0444, d, &bus->tx_complete_cnt);
2501 
2502 	bus->debugfs = d;
2503 }
2504 
npcm_i2c_probe_bus(struct platform_device * pdev)2505 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2506 {
2507 	struct device_node *np = pdev->dev.of_node;
2508 	static struct regmap *gcr_regmap;
2509 	struct device *dev = &pdev->dev;
2510 	struct i2c_adapter *adap;
2511 	struct npcm_i2c *bus;
2512 	struct clk *i2c_clk;
2513 	int irq;
2514 	int ret;
2515 
2516 	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2517 	if (!bus)
2518 		return -ENOMEM;
2519 
2520 	bus->dev = &pdev->dev;
2521 
2522 	bus->data = of_device_get_match_data(dev);
2523 	if (!bus->data) {
2524 		dev_err(dev, "OF data missing\n");
2525 		return -EINVAL;
2526 	}
2527 
2528 	bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2529 	/* core clk must be acquired to calculate module timing settings */
2530 	i2c_clk = devm_clk_get(&pdev->dev, NULL);
2531 	if (IS_ERR(i2c_clk))
2532 		return PTR_ERR(i2c_clk);
2533 	bus->apb_clk = clk_get_rate(i2c_clk);
2534 
2535 	gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2536 	if (IS_ERR(gcr_regmap))
2537 		gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2538 
2539 	if (IS_ERR(gcr_regmap))
2540 		return PTR_ERR(gcr_regmap);
2541 	regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2542 
2543 	bus->reg = devm_platform_ioremap_resource(pdev, 0);
2544 	if (IS_ERR(bus->reg))
2545 		return PTR_ERR(bus->reg);
2546 
2547 	spin_lock_init(&bus->lock);
2548 	init_completion(&bus->cmd_complete);
2549 
2550 	adap = &bus->adap;
2551 	adap->owner = THIS_MODULE;
2552 	adap->retries = 3;
2553 	/*
2554 	 * The users want to connect a lot of masters on the same bus.
2555 	 * This timeout is used to determine the time it takes to take bus ownership.
2556 	 * The transactions are very long, so waiting 35ms is not enough.
2557 	 */
2558 	adap->timeout = 2 * HZ;
2559 	adap->algo = &npcm_i2c_algo;
2560 	adap->quirks = &npcm_i2c_quirks;
2561 	adap->algo_data = bus;
2562 	adap->dev.parent = &pdev->dev;
2563 	adap->dev.of_node = pdev->dev.of_node;
2564 	adap->nr = pdev->id;
2565 
2566 	irq = platform_get_irq(pdev, 0);
2567 	if (irq < 0)
2568 		return irq;
2569 
2570 	ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2571 			       dev_name(bus->dev), bus);
2572 	if (ret)
2573 		return ret;
2574 
2575 	ret = __npcm_i2c_init(bus, pdev);
2576 	if (ret)
2577 		return ret;
2578 
2579 	npcm_i2c_recovery_init(adap);
2580 
2581 	i2c_set_adapdata(adap, bus);
2582 
2583 	snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2584 		 bus->num);
2585 	ret = i2c_add_numbered_adapter(&bus->adap);
2586 	if (ret)
2587 		return ret;
2588 
2589 	platform_set_drvdata(pdev, bus);
2590 	npcm_i2c_init_debugfs(pdev, bus);
2591 	return 0;
2592 }
2593 
npcm_i2c_remove_bus(struct platform_device * pdev)2594 static void npcm_i2c_remove_bus(struct platform_device *pdev)
2595 {
2596 	unsigned long lock_flags;
2597 	struct npcm_i2c *bus = platform_get_drvdata(pdev);
2598 
2599 	debugfs_remove_recursive(bus->debugfs);
2600 	spin_lock_irqsave(&bus->lock, lock_flags);
2601 	npcm_i2c_disable(bus);
2602 	spin_unlock_irqrestore(&bus->lock, lock_flags);
2603 	i2c_del_adapter(&bus->adap);
2604 }
2605 
2606 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2607 	{ .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2608 	{ .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2609 	{}
2610 };
2611 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2612 
2613 static struct platform_driver npcm_i2c_bus_driver = {
2614 	.probe = npcm_i2c_probe_bus,
2615 	.remove_new = npcm_i2c_remove_bus,
2616 	.driver = {
2617 		.name = "nuvoton-i2c",
2618 		.of_match_table = npcm_i2c_bus_of_table,
2619 	}
2620 };
2621 
npcm_i2c_init(void)2622 static int __init npcm_i2c_init(void)
2623 {
2624 	int ret;
2625 
2626 	npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2627 
2628 	ret = platform_driver_register(&npcm_i2c_bus_driver);
2629 	if (ret) {
2630 		debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2631 		return ret;
2632 	}
2633 
2634 	return 0;
2635 }
2636 module_init(npcm_i2c_init);
2637 
npcm_i2c_exit(void)2638 static void __exit npcm_i2c_exit(void)
2639 {
2640 	platform_driver_unregister(&npcm_i2c_bus_driver);
2641 	debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2642 }
2643 module_exit(npcm_i2c_exit);
2644 
2645 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2646 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2647 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2648 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2649 MODULE_LICENSE("GPL v2");
2650