xref: /openbmc/qemu/hw/block/nand.c (revision 65cb7129f4160c7e07a0da107f888ec73ae96776)
1 /*
2  * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
3  * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4  * Samsung Electronic.
5  *
6  * Copyright (c) 2006 Openedhand Ltd.
7  * Written by Andrzej Zaborowski <balrog@zabor.org>
8  *
9  * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10  * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11  * from ST Microelectronics.
12  *
13  * This code is licensed under the GNU GPL v2.
14  *
15  * Contributions after 2012-01-13 are licensed under the terms of the
16  * GNU GPL, version 2 or (at your option) any later version.
17  */
18 
19 #ifndef NAND_IO
20 
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/qdev-properties.h"
24 #include "hw/qdev-properties-system.h"
25 #include "hw/block/flash.h"
26 #include "system/block-backend.h"
27 #include "migration/vmstate.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/module.h"
31 #include "qom/object.h"
32 
33 # define NAND_CMD_READ0         0x00
34 # define NAND_CMD_READ1         0x01
35 # define NAND_CMD_READ2         0x50
36 # define NAND_CMD_LPREAD2       0x30
37 # define NAND_CMD_NOSERIALREAD2 0x35
38 # define NAND_CMD_RANDOMREAD1   0x05
39 # define NAND_CMD_RANDOMREAD2   0xe0
40 # define NAND_CMD_READID        0x90
41 # define NAND_CMD_RESET         0xff
42 # define NAND_CMD_PAGEPROGRAM1  0x80
43 # define NAND_CMD_PAGEPROGRAM2  0x10
44 # define NAND_CMD_CACHEPROGRAM2 0x15
45 # define NAND_CMD_BLOCKERASE1   0x60
46 # define NAND_CMD_BLOCKERASE2   0xd0
47 # define NAND_CMD_READSTATUS    0x70
48 # define NAND_CMD_COPYBACKPRG1  0x85
49 
50 # define NAND_IOSTATUS_ERROR    (1 << 0)
51 # define NAND_IOSTATUS_PLANE0   (1 << 1)
52 # define NAND_IOSTATUS_PLANE1   (1 << 2)
53 # define NAND_IOSTATUS_PLANE2   (1 << 3)
54 # define NAND_IOSTATUS_PLANE3   (1 << 4)
55 # define NAND_IOSTATUS_READY    (1 << 6)
56 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
57 
58 # define MAX_PAGE       0x800
59 # define MAX_OOB        0x40
60 
61 typedef struct NANDFlashState NANDFlashState;
62 struct NANDFlashState {
63     DeviceState parent_obj;
64 
65     uint8_t manf_id, chip_id;
66     uint8_t buswidth; /* in BYTES */
67     int size, pages;
68     int page_shift, oob_shift, erase_shift, addr_shift;
69     uint8_t *storage;
70     BlockBackend *blk;
71     int mem_oob;
72 
73     uint8_t cle, ale, ce, wp, gnd;
74 
75     uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
76     uint8_t *ioaddr;
77     int iolen;
78 
79     uint32_t cmd;
80     uint64_t addr;
81     int addrlen;
82     int status;
83     int offset;
84 
85     void (*blk_write)(NANDFlashState *s);
86     void (*blk_erase)(NANDFlashState *s);
87     /*
88      * Returns %true when block containing (@addr + @offset) is
89      * successfully loaded, otherwise %false.
90      */
91     bool (*blk_load)(NANDFlashState *s, uint64_t addr, unsigned offset);
92 
93     uint32_t ioaddr_vmstate;
94 };
95 
96 #define TYPE_NAND "nand"
97 
OBJECT_DECLARE_SIMPLE_TYPE(NANDFlashState,NAND)98 OBJECT_DECLARE_SIMPLE_TYPE(NANDFlashState, NAND)
99 
100 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
101 {
102     /* Like memcpy() but we logical-AND the data into the destination */
103     int i;
104     for (i = 0; i < n; i++) {
105         dest[i] &= src[i];
106     }
107 }
108 
109 # define NAND_NO_AUTOINCR   0x00000001
110 # define NAND_BUSWIDTH_16   0x00000002
111 # define NAND_NO_PADDING    0x00000004
112 # define NAND_CACHEPRG      0x00000008
113 # define NAND_COPYBACK      0x00000010
114 # define NAND_IS_AND        0x00000020
115 # define NAND_4PAGE_ARRAY   0x00000040
116 # define NAND_NO_READRDY    0x00000100
117 # define NAND_SAMSUNG_LP    (NAND_NO_PADDING | NAND_COPYBACK)
118 
119 # define NAND_IO
120 
121 # define PAGE(addr)          ((addr) >> ADDR_SHIFT)
122 # define PAGE_START(page)    (PAGE(page) * (NAND_PAGE_SIZE + OOB_SIZE))
123 # define PAGE_MASK           ((1 << ADDR_SHIFT) - 1)
124 # define OOB_SHIFT           (PAGE_SHIFT - 5)
125 # define OOB_SIZE            (1 << OOB_SHIFT)
126 # define SECTOR(addr)        ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
127 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
128 
129 # define NAND_PAGE_SIZE     256
130 # define PAGE_SHIFT         8
131 # define PAGE_SECTORS       1
132 # define ADDR_SHIFT         8
133 # include "nand.c"
134 # define NAND_PAGE_SIZE     512
135 # define PAGE_SHIFT         9
136 # define PAGE_SECTORS       1
137 # define ADDR_SHIFT         8
138 # include "nand.c"
139 # define NAND_PAGE_SIZE     2048
140 # define PAGE_SHIFT         11
141 # define PAGE_SECTORS       4
142 # define ADDR_SHIFT         16
143 # include "nand.c"
144 
145 /* Information based on Linux drivers/mtd/nand/raw/nand_ids.c */
146 static const struct {
147     int size;
148     int width;
149     int page_shift;
150     int erase_shift;
151     uint32_t options;
152 } nand_flash_ids[0x100] = {
153     [0 ... 0xff] = { 0 },
154 
155     [0x6b] = { 4,   8,  9, 4, 0 },
156     [0xe3] = { 4,   8,  9, 4, 0 },
157     [0xe5] = { 4,   8,  9, 4, 0 },
158     [0xd6] = { 8,   8,  9, 4, 0 },
159     [0xe6] = { 8,   8,  9, 4, 0 },
160 
161     [0x33] = { 16,  8,  9, 5, 0 },
162     [0x73] = { 16,  8,  9, 5, 0 },
163     [0x43] = { 16,  16, 9, 5, NAND_BUSWIDTH_16 },
164     [0x53] = { 16,  16, 9, 5, NAND_BUSWIDTH_16 },
165 
166     [0x35] = { 32,  8,  9, 5, 0 },
167     [0x75] = { 32,  8,  9, 5, 0 },
168     [0x45] = { 32,  16, 9, 5, NAND_BUSWIDTH_16 },
169     [0x55] = { 32,  16, 9, 5, NAND_BUSWIDTH_16 },
170 
171     [0x36] = { 64,  8,  9, 5, 0 },
172     [0x76] = { 64,  8,  9, 5, 0 },
173     [0x46] = { 64,  16, 9, 5, NAND_BUSWIDTH_16 },
174     [0x56] = { 64,  16, 9, 5, NAND_BUSWIDTH_16 },
175 
176     [0x78] = { 128, 8,  9, 5, 0 },
177     [0x39] = { 128, 8,  9, 5, 0 },
178     [0x79] = { 128, 8,  9, 5, 0 },
179     [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
180     [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
181     [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
182     [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
183 
184     [0x71] = { 256, 8,  9, 5, 0 },
185 
186     /*
187      * These are the new chips with large page size. The pagesize and the
188      * erasesize is determined from the extended id bytes
189      */
190 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
191 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
192 
193     /* 512 Megabit */
194     [0xa2] = { 64,   8,  0, 0, LP_OPTIONS },
195     [0xf2] = { 64,   8,  0, 0, LP_OPTIONS },
196     [0xb2] = { 64,   16, 0, 0, LP_OPTIONS16 },
197     [0xc2] = { 64,   16, 0, 0, LP_OPTIONS16 },
198 
199     /* 1 Gigabit */
200     [0xa1] = { 128,  8,  0, 0, LP_OPTIONS },
201     [0xf1] = { 128,  8,  0, 0, LP_OPTIONS },
202     [0xb1] = { 128,  16, 0, 0, LP_OPTIONS16 },
203     [0xc1] = { 128,  16, 0, 0, LP_OPTIONS16 },
204 
205     /* 2 Gigabit */
206     [0xaa] = { 256,  8,  0, 0, LP_OPTIONS },
207     [0xda] = { 256,  8,  0, 0, LP_OPTIONS },
208     [0xba] = { 256,  16, 0, 0, LP_OPTIONS16 },
209     [0xca] = { 256,  16, 0, 0, LP_OPTIONS16 },
210 
211     /* 4 Gigabit */
212     [0xac] = { 512,  8,  0, 0, LP_OPTIONS },
213     [0xdc] = { 512,  8,  0, 0, LP_OPTIONS },
214     [0xbc] = { 512,  16, 0, 0, LP_OPTIONS16 },
215     [0xcc] = { 512,  16, 0, 0, LP_OPTIONS16 },
216 
217     /* 8 Gigabit */
218     [0xa3] = { 1024, 8,  0, 0, LP_OPTIONS },
219     [0xd3] = { 1024, 8,  0, 0, LP_OPTIONS },
220     [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
221     [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
222 
223     /* 16 Gigabit */
224     [0xa5] = { 2048, 8,  0, 0, LP_OPTIONS },
225     [0xd5] = { 2048, 8,  0, 0, LP_OPTIONS },
226     [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
227     [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
228 };
229 
nand_reset(DeviceState * dev)230 static void nand_reset(DeviceState *dev)
231 {
232     NANDFlashState *s = NAND(dev);
233     s->cmd = NAND_CMD_READ0;
234     s->addr = 0;
235     s->addrlen = 0;
236     s->iolen = 0;
237     s->offset = 0;
238     s->status &= NAND_IOSTATUS_UNPROTCT;
239     s->status |= NAND_IOSTATUS_READY;
240 }
241 
nand_pushio_byte(NANDFlashState * s,uint8_t value)242 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
243 {
244     s->ioaddr[s->iolen++] = value;
245     for (value = s->buswidth; --value;) {
246         s->ioaddr[s->iolen++] = 0;
247     }
248 }
249 
250 /*
251  * nand_load_block: Load block containing (s->addr + @offset).
252  * Returns length of data available at @offset in this block.
253  */
nand_load_block(NANDFlashState * s,unsigned offset)254 static unsigned nand_load_block(NANDFlashState *s, unsigned offset)
255 {
256     unsigned iolen;
257 
258     if (!s->blk_load(s, s->addr, offset)) {
259         return 0;
260     }
261 
262     iolen = (1 << s->page_shift);
263     if (s->gnd) {
264         iolen += 1 << s->oob_shift;
265     }
266     assert(offset <= iolen);
267     iolen -= offset;
268 
269     return iolen;
270 }
271 
nand_command(NANDFlashState * s)272 static void nand_command(NANDFlashState *s)
273 {
274     switch (s->cmd) {
275     case NAND_CMD_READ0:
276         s->iolen = 0;
277         break;
278 
279     case NAND_CMD_READID:
280         s->ioaddr = s->io;
281         s->iolen = 0;
282         nand_pushio_byte(s, s->manf_id);
283         nand_pushio_byte(s, s->chip_id);
284         nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
285         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
286             /* Page Size, Block Size, Spare Size; bit 6 indicates
287              * 8 vs 16 bit width NAND.
288              */
289             nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
290         } else {
291             nand_pushio_byte(s, 0xc0); /* Multi-plane */
292         }
293         break;
294 
295     case NAND_CMD_RANDOMREAD2:
296     case NAND_CMD_NOSERIALREAD2:
297         if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
298             break;
299         s->iolen = nand_load_block(s, s->addr & ((1 << s->addr_shift) - 1));
300         break;
301 
302     case NAND_CMD_RESET:
303         nand_reset(DEVICE(s));
304         break;
305 
306     case NAND_CMD_PAGEPROGRAM1:
307         s->ioaddr = s->io;
308         s->iolen = 0;
309         break;
310 
311     case NAND_CMD_PAGEPROGRAM2:
312         if (s->wp) {
313             s->blk_write(s);
314         }
315         break;
316 
317     case NAND_CMD_BLOCKERASE1:
318         break;
319 
320     case NAND_CMD_BLOCKERASE2:
321         s->addr &= (1ull << s->addrlen * 8) - 1;
322         s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
323                                                                     16 : 8;
324 
325         if (s->wp) {
326             s->blk_erase(s);
327         }
328         break;
329 
330     case NAND_CMD_READSTATUS:
331         s->ioaddr = s->io;
332         s->iolen = 0;
333         nand_pushio_byte(s, s->status);
334         break;
335 
336     default:
337         printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
338     }
339 }
340 
nand_pre_save(void * opaque)341 static int nand_pre_save(void *opaque)
342 {
343     NANDFlashState *s = NAND(opaque);
344 
345     s->ioaddr_vmstate = s->ioaddr - s->io;
346 
347     return 0;
348 }
349 
nand_post_load(void * opaque,int version_id)350 static int nand_post_load(void *opaque, int version_id)
351 {
352     NANDFlashState *s = NAND(opaque);
353 
354     if (s->ioaddr_vmstate > sizeof(s->io)) {
355         return -EINVAL;
356     }
357     s->ioaddr = s->io + s->ioaddr_vmstate;
358 
359     return 0;
360 }
361 
362 static const VMStateDescription vmstate_nand = {
363     .name = "nand",
364     .version_id = 1,
365     .minimum_version_id = 1,
366     .pre_save = nand_pre_save,
367     .post_load = nand_post_load,
368     .fields = (const VMStateField[]) {
369         VMSTATE_UINT8(cle, NANDFlashState),
370         VMSTATE_UINT8(ale, NANDFlashState),
371         VMSTATE_UINT8(ce, NANDFlashState),
372         VMSTATE_UINT8(wp, NANDFlashState),
373         VMSTATE_UINT8(gnd, NANDFlashState),
374         VMSTATE_BUFFER(io, NANDFlashState),
375         VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
376         VMSTATE_INT32(iolen, NANDFlashState),
377         VMSTATE_UINT32(cmd, NANDFlashState),
378         VMSTATE_UINT64(addr, NANDFlashState),
379         VMSTATE_INT32(addrlen, NANDFlashState),
380         VMSTATE_INT32(status, NANDFlashState),
381         VMSTATE_INT32(offset, NANDFlashState),
382         /* XXX: do we want to save s->storage too? */
383         VMSTATE_END_OF_LIST()
384     }
385 };
386 
nand_realize(DeviceState * dev,Error ** errp)387 static void nand_realize(DeviceState *dev, Error **errp)
388 {
389     int pagesize;
390     NANDFlashState *s = NAND(dev);
391     int ret;
392 
393 
394     s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
395     s->size = nand_flash_ids[s->chip_id].size << 20;
396     if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
397         s->page_shift = 11;
398         s->erase_shift = 6;
399     } else {
400         s->page_shift = nand_flash_ids[s->chip_id].page_shift;
401         s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
402     }
403 
404     switch (1 << s->page_shift) {
405     case 256:
406         nand_init_256(s);
407         break;
408     case 512:
409         nand_init_512(s);
410         break;
411     case 2048:
412         nand_init_2048(s);
413         break;
414     default:
415         error_setg(errp, "Unsupported NAND block size %#x",
416                    1 << s->page_shift);
417         return;
418     }
419 
420     pagesize = 1 << s->oob_shift;
421     s->mem_oob = 1;
422     if (s->blk) {
423         if (!blk_supports_write_perm(s->blk)) {
424             error_setg(errp, "Can't use a read-only drive");
425             return;
426         }
427         ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
428                            BLK_PERM_ALL, errp);
429         if (ret < 0) {
430             return;
431         }
432         if (blk_getlength(s->blk) >=
433                 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
434             pagesize = 0;
435             s->mem_oob = 0;
436         }
437     } else {
438         pagesize += 1 << s->page_shift;
439     }
440     if (pagesize) {
441         s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
442                         0xff, s->pages * pagesize);
443     }
444     /* Give s->ioaddr a sane value in case we save state before it is used. */
445     s->ioaddr = s->io;
446 }
447 
448 static const Property nand_properties[] = {
449     DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
450     DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
451     DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
452 };
453 
nand_class_init(ObjectClass * klass,void * data)454 static void nand_class_init(ObjectClass *klass, void *data)
455 {
456     DeviceClass *dc = DEVICE_CLASS(klass);
457 
458     dc->realize = nand_realize;
459     device_class_set_legacy_reset(dc, nand_reset);
460     dc->vmsd = &vmstate_nand;
461     device_class_set_props(dc, nand_properties);
462     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
463 }
464 
465 static const TypeInfo nand_info = {
466     .name          = TYPE_NAND,
467     .parent        = TYPE_DEVICE,
468     .instance_size = sizeof(NANDFlashState),
469     .class_init    = nand_class_init,
470 };
471 
nand_register_types(void)472 static void nand_register_types(void)
473 {
474     type_register_static(&nand_info);
475 }
476 
477 /*
478  * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
479  * outputs are R/B and eight I/O pins.
480  *
481  * CE, WP and R/B are active low.
482  */
nand_setpins(DeviceState * dev,uint8_t cle,uint8_t ale,uint8_t ce,uint8_t wp,uint8_t gnd)483 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
484                   uint8_t ce, uint8_t wp, uint8_t gnd)
485 {
486     NANDFlashState *s = NAND(dev);
487 
488     s->cle = cle;
489     s->ale = ale;
490     s->ce = ce;
491     s->wp = wp;
492     s->gnd = gnd;
493     if (wp) {
494         s->status |= NAND_IOSTATUS_UNPROTCT;
495     } else {
496         s->status &= ~NAND_IOSTATUS_UNPROTCT;
497     }
498 }
499 
nand_getpins(DeviceState * dev,int * rb)500 void nand_getpins(DeviceState *dev, int *rb)
501 {
502     *rb = 1;
503 }
504 
nand_setio(DeviceState * dev,uint32_t value)505 void nand_setio(DeviceState *dev, uint32_t value)
506 {
507     int i;
508     NANDFlashState *s = NAND(dev);
509 
510     if (!s->ce && s->cle) {
511         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
512             if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
513                 return;
514             if (value == NAND_CMD_RANDOMREAD1) {
515                 s->addr &= ~((1 << s->addr_shift) - 1);
516                 s->addrlen = 0;
517                 return;
518             }
519         }
520         if (value == NAND_CMD_READ0) {
521             s->offset = 0;
522         } else if (value == NAND_CMD_READ1) {
523             s->offset = 0x100;
524             value = NAND_CMD_READ0;
525         } else if (value == NAND_CMD_READ2) {
526             s->offset = 1 << s->page_shift;
527             value = NAND_CMD_READ0;
528         }
529 
530         s->cmd = value;
531 
532         if (s->cmd == NAND_CMD_READSTATUS ||
533                 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
534                 s->cmd == NAND_CMD_BLOCKERASE1 ||
535                 s->cmd == NAND_CMD_BLOCKERASE2 ||
536                 s->cmd == NAND_CMD_NOSERIALREAD2 ||
537                 s->cmd == NAND_CMD_RANDOMREAD2 ||
538                 s->cmd == NAND_CMD_RESET) {
539             nand_command(s);
540         }
541 
542         if (s->cmd != NAND_CMD_RANDOMREAD2) {
543             s->addrlen = 0;
544         }
545     }
546 
547     if (s->ale) {
548         unsigned int shift = s->addrlen * 8;
549         uint64_t mask = ~(0xffull << shift);
550         uint64_t v = (uint64_t)value << shift;
551 
552         s->addr = (s->addr & mask) | v;
553         s->addrlen ++;
554 
555         switch (s->addrlen) {
556         case 1:
557             if (s->cmd == NAND_CMD_READID) {
558                 nand_command(s);
559             }
560             break;
561         case 2: /* fix cache address as a byte address */
562             s->addr <<= (s->buswidth - 1);
563             break;
564         case 3:
565             if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
566                     (s->cmd == NAND_CMD_READ0 ||
567                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
568                 nand_command(s);
569             }
570             break;
571         case 4:
572             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
573                     nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
574                     (s->cmd == NAND_CMD_READ0 ||
575                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
576                 nand_command(s);
577             }
578             break;
579         case 5:
580             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
581                     nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
582                     (s->cmd == NAND_CMD_READ0 ||
583                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
584                 nand_command(s);
585             }
586             break;
587         default:
588             break;
589         }
590     }
591 
592     if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
593         if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
594             for (i = s->buswidth; i--; value >>= 8) {
595                 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
596             }
597         }
598     } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
599         if ((s->addr & ((1 << s->addr_shift) - 1)) <
600                 (1 << s->page_shift) + (1 << s->oob_shift)) {
601             for (i = s->buswidth; i--; s->addr++, value >>= 8) {
602                 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
603                     (uint8_t) (value & 0xff);
604             }
605         }
606     }
607 }
608 
nand_getio(DeviceState * dev)609 uint32_t nand_getio(DeviceState *dev)
610 {
611     int offset;
612     uint32_t x = 0;
613     NANDFlashState *s = NAND(dev);
614 
615     /* Allow sequential reading */
616     if (!s->iolen && s->cmd == NAND_CMD_READ0) {
617         offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
618         s->offset = 0;
619         s->iolen = nand_load_block(s, offset);
620     }
621 
622     if (s->ce || s->iolen <= 0) {
623         return 0;
624     }
625 
626     for (offset = s->buswidth; offset--;) {
627         x |= s->ioaddr[offset] << (offset << 3);
628     }
629     /* after receiving READ STATUS command all subsequent reads will
630      * return the status register value until another command is issued
631      */
632     if (s->cmd != NAND_CMD_READSTATUS) {
633         s->addr   += s->buswidth;
634         s->ioaddr += s->buswidth;
635         s->iolen  -= s->buswidth;
636     }
637     return x;
638 }
639 
nand_getbuswidth(DeviceState * dev)640 uint32_t nand_getbuswidth(DeviceState *dev)
641 {
642     NANDFlashState *s = (NANDFlashState *) dev;
643     return s->buswidth << 3;
644 }
645 
nand_init(BlockBackend * blk,int manf_id,int chip_id)646 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
647 {
648     DeviceState *dev;
649 
650     if (nand_flash_ids[chip_id].size == 0) {
651         hw_error("%s: Unsupported NAND chip ID.\n", __func__);
652     }
653     dev = qdev_new(TYPE_NAND);
654     qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
655     qdev_prop_set_uint8(dev, "chip_id", chip_id);
656     if (blk) {
657         qdev_prop_set_drive_err(dev, "drive", blk, &error_fatal);
658     }
659 
660     qdev_realize(dev, NULL, &error_fatal);
661     return dev;
662 }
663 
664 type_init(nand_register_types)
665 
666 #else
667 
668 /* Program a single page */
669 static void glue(nand_blk_write_, NAND_PAGE_SIZE)(NANDFlashState *s)
670 {
671     uint64_t off, page, sector, soff;
672     uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
673     if (PAGE(s->addr) >= s->pages)
674         return;
675 
676     if (!s->blk) {
677         mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
678                         s->offset, s->io, s->iolen);
679     } else if (s->mem_oob) {
680         sector = SECTOR(s->addr);
681         off = (s->addr & PAGE_MASK) + s->offset;
682         soff = SECTOR_OFFSET(s->addr);
683         if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS,
684                       PAGE_SECTORS << BDRV_SECTOR_BITS, iobuf, 0) < 0) {
685             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
686             return;
687         }
688 
689         mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, NAND_PAGE_SIZE - off));
690         if (off + s->iolen > NAND_PAGE_SIZE) {
691             page = PAGE(s->addr);
692             mem_and(s->storage + (page << OOB_SHIFT), s->io + NAND_PAGE_SIZE - off,
693                             MIN(OOB_SIZE, off + s->iolen - NAND_PAGE_SIZE));
694         }
695 
696         if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS,
697                        PAGE_SECTORS << BDRV_SECTOR_BITS, iobuf, 0) < 0) {
698             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
699         }
700     } else {
701         off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
702         sector = off >> 9;
703         soff = off & 0x1ff;
704         if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS,
705                       (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, iobuf, 0) < 0) {
706             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
707             return;
708         }
709 
710         mem_and(iobuf + soff, s->io, s->iolen);
711 
712         if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS,
713                        (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, iobuf, 0) < 0) {
714             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
715         }
716     }
717     s->offset = 0;
718 }
719 
720 /* Erase a single block */
721 static void glue(nand_blk_erase_, NAND_PAGE_SIZE)(NANDFlashState *s)
722 {
723     uint64_t i, page, addr;
724     uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
725     addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
726 
727     if (PAGE(addr) >= s->pages) {
728         return;
729     }
730 
731     if (!s->blk) {
732         memset(s->storage + PAGE_START(addr),
733                         0xff, (NAND_PAGE_SIZE + OOB_SIZE) << s->erase_shift);
734     } else if (s->mem_oob) {
735         memset(s->storage + (PAGE(addr) << OOB_SHIFT),
736                         0xff, OOB_SIZE << s->erase_shift);
737         i = SECTOR(addr);
738         page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
739         for (; i < page; i ++)
740             if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS,
741                            BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
742                 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
743             }
744     } else {
745         addr = PAGE_START(addr);
746         page = addr >> 9;
747         if (blk_pread(s->blk, page << BDRV_SECTOR_BITS,
748                       BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
749             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
750         }
751         memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
752         if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS,
753                        BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
754             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
755         }
756 
757         memset(iobuf, 0xff, 0x200);
758         i = (addr & ~0x1ff) + 0x200;
759         for (addr += ((NAND_PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
760                         i < addr; i += 0x200) {
761             if (blk_pwrite(s->blk, i, BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
762                 printf("%s: write error in sector %" PRIu64 "\n",
763                        __func__, i >> 9);
764             }
765         }
766 
767         page = i >> 9;
768         if (blk_pread(s->blk, page << BDRV_SECTOR_BITS,
769                       BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
770             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
771         }
772         memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
773         if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS,
774                        BDRV_SECTOR_SIZE, iobuf, 0) < 0) {
775             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
776         }
777     }
778 }
779 
780 static bool glue(nand_blk_load_, NAND_PAGE_SIZE)(NANDFlashState *s,
781                                                  uint64_t addr, unsigned offset)
782 {
783     if (PAGE(addr) >= s->pages) {
784         return false;
785     }
786 
787     if (offset > NAND_PAGE_SIZE + OOB_SIZE) {
788         return false;
789     }
790 
791     if (s->blk) {
792         if (s->mem_oob) {
793             if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS,
794                           PAGE_SECTORS << BDRV_SECTOR_BITS, s->io, 0) < 0) {
795                 printf("%s: read error in sector %" PRIu64 "\n",
796                                 __func__, SECTOR(addr));
797             }
798             memcpy(s->io + SECTOR_OFFSET(s->addr) + NAND_PAGE_SIZE,
799                             s->storage + (PAGE(s->addr) << OOB_SHIFT),
800                             OOB_SIZE);
801             s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
802         } else {
803             if (blk_pread(s->blk, PAGE_START(addr),
804                           (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, s->io, 0)
805                 < 0) {
806                 printf("%s: read error in sector %" PRIu64 "\n",
807                                 __func__, PAGE_START(addr) >> 9);
808             }
809             s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
810         }
811     } else {
812         memcpy(s->io, s->storage + PAGE_START(s->addr) +
813                         offset, NAND_PAGE_SIZE + OOB_SIZE - offset);
814         s->ioaddr = s->io;
815     }
816 
817     return true;
818 }
819 
820 static void glue(nand_init_, NAND_PAGE_SIZE)(NANDFlashState *s)
821 {
822     s->oob_shift = PAGE_SHIFT - 5;
823     s->pages = s->size >> PAGE_SHIFT;
824     s->addr_shift = ADDR_SHIFT;
825 
826     s->blk_erase = glue(nand_blk_erase_, NAND_PAGE_SIZE);
827     s->blk_write = glue(nand_blk_write_, NAND_PAGE_SIZE);
828     s->blk_load = glue(nand_blk_load_, NAND_PAGE_SIZE);
829 }
830 
831 # undef NAND_PAGE_SIZE
832 # undef PAGE_SHIFT
833 # undef PAGE_SECTORS
834 # undef ADDR_SHIFT
835 #endif /* NAND_IO */
836