1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 #include "fs.h"
25 #include "accessors.h"
26 #include "extent-tree.h"
27 #include "root-tree.h"
28 #include "dir-item.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "orphan.h"
32 #include "tree-checker.h"
33
34 #define MAX_CONFLICT_INODES 10
35
36 /* magic values for the inode_only field in btrfs_log_inode:
37 *
38 * LOG_INODE_ALL means to log everything
39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
40 * during log replay
41 */
42 enum {
43 LOG_INODE_ALL,
44 LOG_INODE_EXISTS,
45 };
46
47 /*
48 * directory trouble cases
49 *
50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51 * log, we must force a full commit before doing an fsync of the directory
52 * where the unlink was done.
53 * ---> record transid of last unlink/rename per directory
54 *
55 * mkdir foo/some_dir
56 * normal commit
57 * rename foo/some_dir foo2/some_dir
58 * mkdir foo/some_dir
59 * fsync foo/some_dir/some_file
60 *
61 * The fsync above will unlink the original some_dir without recording
62 * it in its new location (foo2). After a crash, some_dir will be gone
63 * unless the fsync of some_file forces a full commit
64 *
65 * 2) we must log any new names for any file or dir that is in the fsync
66 * log. ---> check inode while renaming/linking.
67 *
68 * 2a) we must log any new names for any file or dir during rename
69 * when the directory they are being removed from was logged.
70 * ---> check inode and old parent dir during rename
71 *
72 * 2a is actually the more important variant. With the extra logging
73 * a crash might unlink the old name without recreating the new one
74 *
75 * 3) after a crash, we must go through any directories with a link count
76 * of zero and redo the rm -rf
77 *
78 * mkdir f1/foo
79 * normal commit
80 * rm -rf f1/foo
81 * fsync(f1)
82 *
83 * The directory f1 was fully removed from the FS, but fsync was never
84 * called on f1, only its parent dir. After a crash the rm -rf must
85 * be replayed. This must be able to recurse down the entire
86 * directory tree. The inode link count fixup code takes care of the
87 * ugly details.
88 */
89
90 /*
91 * stages for the tree walking. The first
92 * stage (0) is to only pin down the blocks we find
93 * the second stage (1) is to make sure that all the inodes
94 * we find in the log are created in the subvolume.
95 *
96 * The last stage is to deal with directories and links and extents
97 * and all the other fun semantics
98 */
99 enum {
100 LOG_WALK_PIN_ONLY,
101 LOG_WALK_REPLAY_INODES,
102 LOG_WALK_REPLAY_DIR_INDEX,
103 LOG_WALK_REPLAY_ALL,
104 };
105
106 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107 struct btrfs_inode *inode,
108 int inode_only,
109 struct btrfs_log_ctx *ctx);
110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_path *path, u64 objectid);
113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 struct btrfs_root *root,
115 struct btrfs_root *log,
116 struct btrfs_path *path,
117 u64 dirid, int del_all);
118 static void wait_log_commit(struct btrfs_root *root, int transid);
119
120 /*
121 * tree logging is a special write ahead log used to make sure that
122 * fsyncs and O_SYNCs can happen without doing full tree commits.
123 *
124 * Full tree commits are expensive because they require commonly
125 * modified blocks to be recowed, creating many dirty pages in the
126 * extent tree an 4x-6x higher write load than ext3.
127 *
128 * Instead of doing a tree commit on every fsync, we use the
129 * key ranges and transaction ids to find items for a given file or directory
130 * that have changed in this transaction. Those items are copied into
131 * a special tree (one per subvolume root), that tree is written to disk
132 * and then the fsync is considered complete.
133 *
134 * After a crash, items are copied out of the log-tree back into the
135 * subvolume tree. Any file data extents found are recorded in the extent
136 * allocation tree, and the log-tree freed.
137 *
138 * The log tree is read three times, once to pin down all the extents it is
139 * using in ram and once, once to create all the inodes logged in the tree
140 * and once to do all the other items.
141 */
142
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)143 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
144 {
145 unsigned int nofs_flag;
146 struct inode *inode;
147
148 /* Only meant to be called for subvolume roots and not for log roots. */
149 ASSERT(is_fstree(btrfs_root_id(root)));
150
151 /*
152 * We're holding a transaction handle whether we are logging or
153 * replaying a log tree, so we must make sure NOFS semantics apply
154 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
155 * to allocate an inode, which can recurse back into the filesystem and
156 * attempt a transaction commit, resulting in a deadlock.
157 */
158 nofs_flag = memalloc_nofs_save();
159 inode = btrfs_iget(root->fs_info->sb, objectid, root);
160 memalloc_nofs_restore(nofs_flag);
161
162 if (IS_ERR(inode))
163 return ERR_CAST(inode);
164
165 return BTRFS_I(inode);
166 }
167
168 /*
169 * start a sub transaction and setup the log tree
170 * this increments the log tree writer count to make the people
171 * syncing the tree wait for us to finish
172 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)173 static int start_log_trans(struct btrfs_trans_handle *trans,
174 struct btrfs_root *root,
175 struct btrfs_log_ctx *ctx)
176 {
177 struct btrfs_fs_info *fs_info = root->fs_info;
178 struct btrfs_root *tree_root = fs_info->tree_root;
179 const bool zoned = btrfs_is_zoned(fs_info);
180 int ret = 0;
181 bool created = false;
182
183 /*
184 * First check if the log root tree was already created. If not, create
185 * it before locking the root's log_mutex, just to keep lockdep happy.
186 */
187 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
188 mutex_lock(&tree_root->log_mutex);
189 if (!fs_info->log_root_tree) {
190 ret = btrfs_init_log_root_tree(trans, fs_info);
191 if (!ret) {
192 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
193 created = true;
194 }
195 }
196 mutex_unlock(&tree_root->log_mutex);
197 if (ret)
198 return ret;
199 }
200
201 mutex_lock(&root->log_mutex);
202
203 again:
204 if (root->log_root) {
205 int index = (root->log_transid + 1) % 2;
206
207 if (btrfs_need_log_full_commit(trans)) {
208 ret = BTRFS_LOG_FORCE_COMMIT;
209 goto out;
210 }
211
212 if (zoned && atomic_read(&root->log_commit[index])) {
213 wait_log_commit(root, root->log_transid - 1);
214 goto again;
215 }
216
217 if (!root->log_start_pid) {
218 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
219 root->log_start_pid = current->pid;
220 } else if (root->log_start_pid != current->pid) {
221 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
222 }
223 } else {
224 /*
225 * This means fs_info->log_root_tree was already created
226 * for some other FS trees. Do the full commit not to mix
227 * nodes from multiple log transactions to do sequential
228 * writing.
229 */
230 if (zoned && !created) {
231 ret = BTRFS_LOG_FORCE_COMMIT;
232 goto out;
233 }
234
235 ret = btrfs_add_log_tree(trans, root);
236 if (ret)
237 goto out;
238
239 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
240 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
241 root->log_start_pid = current->pid;
242 }
243
244 atomic_inc(&root->log_writers);
245 if (!ctx->logging_new_name) {
246 int index = root->log_transid % 2;
247 list_add_tail(&ctx->list, &root->log_ctxs[index]);
248 ctx->log_transid = root->log_transid;
249 }
250
251 out:
252 mutex_unlock(&root->log_mutex);
253 return ret;
254 }
255
256 /*
257 * returns 0 if there was a log transaction running and we were able
258 * to join, or returns -ENOENT if there were not transactions
259 * in progress
260 */
join_running_log_trans(struct btrfs_root * root)261 static int join_running_log_trans(struct btrfs_root *root)
262 {
263 const bool zoned = btrfs_is_zoned(root->fs_info);
264 int ret = -ENOENT;
265
266 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
267 return ret;
268
269 mutex_lock(&root->log_mutex);
270 again:
271 if (root->log_root) {
272 int index = (root->log_transid + 1) % 2;
273
274 ret = 0;
275 if (zoned && atomic_read(&root->log_commit[index])) {
276 wait_log_commit(root, root->log_transid - 1);
277 goto again;
278 }
279 atomic_inc(&root->log_writers);
280 }
281 mutex_unlock(&root->log_mutex);
282 return ret;
283 }
284
285 /*
286 * This either makes the current running log transaction wait
287 * until you call btrfs_end_log_trans() or it makes any future
288 * log transactions wait until you call btrfs_end_log_trans()
289 */
btrfs_pin_log_trans(struct btrfs_root * root)290 void btrfs_pin_log_trans(struct btrfs_root *root)
291 {
292 atomic_inc(&root->log_writers);
293 }
294
295 /*
296 * indicate we're done making changes to the log tree
297 * and wake up anyone waiting to do a sync
298 */
btrfs_end_log_trans(struct btrfs_root * root)299 void btrfs_end_log_trans(struct btrfs_root *root)
300 {
301 if (atomic_dec_and_test(&root->log_writers)) {
302 /* atomic_dec_and_test implies a barrier */
303 cond_wake_up_nomb(&root->log_writer_wait);
304 }
305 }
306
307 /*
308 * the walk control struct is used to pass state down the chain when
309 * processing the log tree. The stage field tells us which part
310 * of the log tree processing we are currently doing. The others
311 * are state fields used for that specific part
312 */
313 struct walk_control {
314 /* should we free the extent on disk when done? This is used
315 * at transaction commit time while freeing a log tree
316 */
317 int free;
318
319 /* pin only walk, we record which extents on disk belong to the
320 * log trees
321 */
322 int pin;
323
324 /* what stage of the replay code we're currently in */
325 int stage;
326
327 /*
328 * Ignore any items from the inode currently being processed. Needs
329 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
330 * the LOG_WALK_REPLAY_INODES stage.
331 */
332 bool ignore_cur_inode;
333
334 /* the root we are currently replaying */
335 struct btrfs_root *replay_dest;
336
337 /* the trans handle for the current replay */
338 struct btrfs_trans_handle *trans;
339
340 /* the function that gets used to process blocks we find in the
341 * tree. Note the extent_buffer might not be up to date when it is
342 * passed in, and it must be checked or read if you need the data
343 * inside it
344 */
345 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
346 struct walk_control *wc, u64 gen, int level);
347 };
348
349 /*
350 * process_func used to pin down extents, write them or wait on them
351 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)352 static int process_one_buffer(struct btrfs_root *log,
353 struct extent_buffer *eb,
354 struct walk_control *wc, u64 gen, int level)
355 {
356 struct btrfs_fs_info *fs_info = log->fs_info;
357 int ret = 0;
358
359 /*
360 * If this fs is mixed then we need to be able to process the leaves to
361 * pin down any logged extents, so we have to read the block.
362 */
363 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
364 struct btrfs_tree_parent_check check = {
365 .level = level,
366 .transid = gen
367 };
368
369 ret = btrfs_read_extent_buffer(eb, &check);
370 if (ret)
371 return ret;
372 }
373
374 if (wc->pin) {
375 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
376 eb->len);
377 if (ret)
378 return ret;
379
380 if (btrfs_buffer_uptodate(eb, gen, 0) &&
381 btrfs_header_level(eb) == 0)
382 ret = btrfs_exclude_logged_extents(eb);
383 }
384 return ret;
385 }
386
387 /*
388 * Item overwrite used by replay and tree logging. eb, slot and key all refer
389 * to the src data we are copying out.
390 *
391 * root is the tree we are copying into, and path is a scratch
392 * path for use in this function (it should be released on entry and
393 * will be released on exit).
394 *
395 * If the key is already in the destination tree the existing item is
396 * overwritten. If the existing item isn't big enough, it is extended.
397 * If it is too large, it is truncated.
398 *
399 * If the key isn't in the destination yet, a new item is inserted.
400 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)401 static int overwrite_item(struct btrfs_trans_handle *trans,
402 struct btrfs_root *root,
403 struct btrfs_path *path,
404 struct extent_buffer *eb, int slot,
405 struct btrfs_key *key)
406 {
407 int ret;
408 u32 item_size;
409 u64 saved_i_size = 0;
410 int save_old_i_size = 0;
411 unsigned long src_ptr;
412 unsigned long dst_ptr;
413 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
414
415 /*
416 * This is only used during log replay, so the root is always from a
417 * fs/subvolume tree. In case we ever need to support a log root, then
418 * we'll have to clone the leaf in the path, release the path and use
419 * the leaf before writing into the log tree. See the comments at
420 * copy_items() for more details.
421 */
422 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
423
424 item_size = btrfs_item_size(eb, slot);
425 src_ptr = btrfs_item_ptr_offset(eb, slot);
426
427 /* Look for the key in the destination tree. */
428 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
429 if (ret < 0)
430 return ret;
431
432 if (ret == 0) {
433 char *src_copy;
434 char *dst_copy;
435 u32 dst_size = btrfs_item_size(path->nodes[0],
436 path->slots[0]);
437 if (dst_size != item_size)
438 goto insert;
439
440 if (item_size == 0) {
441 btrfs_release_path(path);
442 return 0;
443 }
444 dst_copy = kmalloc(item_size, GFP_NOFS);
445 src_copy = kmalloc(item_size, GFP_NOFS);
446 if (!dst_copy || !src_copy) {
447 btrfs_release_path(path);
448 kfree(dst_copy);
449 kfree(src_copy);
450 return -ENOMEM;
451 }
452
453 read_extent_buffer(eb, src_copy, src_ptr, item_size);
454
455 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
456 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
457 item_size);
458 ret = memcmp(dst_copy, src_copy, item_size);
459
460 kfree(dst_copy);
461 kfree(src_copy);
462 /*
463 * they have the same contents, just return, this saves
464 * us from cowing blocks in the destination tree and doing
465 * extra writes that may not have been done by a previous
466 * sync
467 */
468 if (ret == 0) {
469 btrfs_release_path(path);
470 return 0;
471 }
472
473 /*
474 * We need to load the old nbytes into the inode so when we
475 * replay the extents we've logged we get the right nbytes.
476 */
477 if (inode_item) {
478 struct btrfs_inode_item *item;
479 u64 nbytes;
480 u32 mode;
481
482 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
483 struct btrfs_inode_item);
484 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
485 item = btrfs_item_ptr(eb, slot,
486 struct btrfs_inode_item);
487 btrfs_set_inode_nbytes(eb, item, nbytes);
488
489 /*
490 * If this is a directory we need to reset the i_size to
491 * 0 so that we can set it up properly when replaying
492 * the rest of the items in this log.
493 */
494 mode = btrfs_inode_mode(eb, item);
495 if (S_ISDIR(mode))
496 btrfs_set_inode_size(eb, item, 0);
497 }
498 } else if (inode_item) {
499 struct btrfs_inode_item *item;
500 u32 mode;
501
502 /*
503 * New inode, set nbytes to 0 so that the nbytes comes out
504 * properly when we replay the extents.
505 */
506 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
507 btrfs_set_inode_nbytes(eb, item, 0);
508
509 /*
510 * If this is a directory we need to reset the i_size to 0 so
511 * that we can set it up properly when replaying the rest of
512 * the items in this log.
513 */
514 mode = btrfs_inode_mode(eb, item);
515 if (S_ISDIR(mode))
516 btrfs_set_inode_size(eb, item, 0);
517 }
518 insert:
519 btrfs_release_path(path);
520 /* try to insert the key into the destination tree */
521 path->skip_release_on_error = 1;
522 ret = btrfs_insert_empty_item(trans, root, path,
523 key, item_size);
524 path->skip_release_on_error = 0;
525
526 /* make sure any existing item is the correct size */
527 if (ret == -EEXIST || ret == -EOVERFLOW) {
528 u32 found_size;
529 found_size = btrfs_item_size(path->nodes[0],
530 path->slots[0]);
531 if (found_size > item_size)
532 btrfs_truncate_item(trans, path, item_size, 1);
533 else if (found_size < item_size)
534 btrfs_extend_item(trans, path, item_size - found_size);
535 } else if (ret) {
536 return ret;
537 }
538 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
539 path->slots[0]);
540
541 /* don't overwrite an existing inode if the generation number
542 * was logged as zero. This is done when the tree logging code
543 * is just logging an inode to make sure it exists after recovery.
544 *
545 * Also, don't overwrite i_size on directories during replay.
546 * log replay inserts and removes directory items based on the
547 * state of the tree found in the subvolume, and i_size is modified
548 * as it goes
549 */
550 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
551 struct btrfs_inode_item *src_item;
552 struct btrfs_inode_item *dst_item;
553
554 src_item = (struct btrfs_inode_item *)src_ptr;
555 dst_item = (struct btrfs_inode_item *)dst_ptr;
556
557 if (btrfs_inode_generation(eb, src_item) == 0) {
558 struct extent_buffer *dst_eb = path->nodes[0];
559 const u64 ino_size = btrfs_inode_size(eb, src_item);
560
561 /*
562 * For regular files an ino_size == 0 is used only when
563 * logging that an inode exists, as part of a directory
564 * fsync, and the inode wasn't fsynced before. In this
565 * case don't set the size of the inode in the fs/subvol
566 * tree, otherwise we would be throwing valid data away.
567 */
568 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
569 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
570 ino_size != 0)
571 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
572 goto no_copy;
573 }
574
575 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
576 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
577 save_old_i_size = 1;
578 saved_i_size = btrfs_inode_size(path->nodes[0],
579 dst_item);
580 }
581 }
582
583 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
584 src_ptr, item_size);
585
586 if (save_old_i_size) {
587 struct btrfs_inode_item *dst_item;
588 dst_item = (struct btrfs_inode_item *)dst_ptr;
589 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
590 }
591
592 /* make sure the generation is filled in */
593 if (key->type == BTRFS_INODE_ITEM_KEY) {
594 struct btrfs_inode_item *dst_item;
595 dst_item = (struct btrfs_inode_item *)dst_ptr;
596 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
597 btrfs_set_inode_generation(path->nodes[0], dst_item,
598 trans->transid);
599 }
600 }
601 no_copy:
602 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
603 btrfs_release_path(path);
604 return 0;
605 }
606
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)607 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
608 struct fscrypt_str *name)
609 {
610 char *buf;
611
612 buf = kmalloc(len, GFP_NOFS);
613 if (!buf)
614 return -ENOMEM;
615
616 read_extent_buffer(eb, buf, (unsigned long)start, len);
617 name->name = buf;
618 name->len = len;
619 return 0;
620 }
621
622
623 /* replays a single extent in 'eb' at 'slot' with 'key' into the
624 * subvolume 'root'. path is released on entry and should be released
625 * on exit.
626 *
627 * extents in the log tree have not been allocated out of the extent
628 * tree yet. So, this completes the allocation, taking a reference
629 * as required if the extent already exists or creating a new extent
630 * if it isn't in the extent allocation tree yet.
631 *
632 * The extent is inserted into the file, dropping any existing extents
633 * from the file that overlap the new one.
634 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)635 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
636 struct btrfs_root *root,
637 struct btrfs_path *path,
638 struct extent_buffer *eb, int slot,
639 struct btrfs_key *key)
640 {
641 struct btrfs_drop_extents_args drop_args = { 0 };
642 struct btrfs_fs_info *fs_info = root->fs_info;
643 int found_type;
644 u64 extent_end;
645 u64 start = key->offset;
646 u64 nbytes = 0;
647 struct btrfs_file_extent_item *item;
648 struct inode *inode = NULL;
649 unsigned long size;
650 int ret = 0;
651
652 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
653 found_type = btrfs_file_extent_type(eb, item);
654
655 if (found_type == BTRFS_FILE_EXTENT_REG ||
656 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
657 nbytes = btrfs_file_extent_num_bytes(eb, item);
658 extent_end = start + nbytes;
659
660 /*
661 * We don't add to the inodes nbytes if we are prealloc or a
662 * hole.
663 */
664 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
665 nbytes = 0;
666 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
667 size = btrfs_file_extent_ram_bytes(eb, item);
668 nbytes = btrfs_file_extent_ram_bytes(eb, item);
669 extent_end = ALIGN(start + size,
670 fs_info->sectorsize);
671 } else {
672 ret = 0;
673 goto out;
674 }
675
676 {
677 struct btrfs_inode *btrfs_inode;
678
679 btrfs_inode = btrfs_iget_logging(key->objectid, root);
680 if (IS_ERR(btrfs_inode)) {
681 ret = PTR_ERR(btrfs_inode);
682 goto out;
683 }
684 inode = &btrfs_inode->vfs_inode;
685 }
686
687 /*
688 * first check to see if we already have this extent in the
689 * file. This must be done before the btrfs_drop_extents run
690 * so we don't try to drop this extent.
691 */
692 ret = btrfs_lookup_file_extent(trans, root, path,
693 btrfs_ino(BTRFS_I(inode)), start, 0);
694
695 if (ret == 0 &&
696 (found_type == BTRFS_FILE_EXTENT_REG ||
697 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
698 struct btrfs_file_extent_item cmp1;
699 struct btrfs_file_extent_item cmp2;
700 struct btrfs_file_extent_item *existing;
701 struct extent_buffer *leaf;
702
703 leaf = path->nodes[0];
704 existing = btrfs_item_ptr(leaf, path->slots[0],
705 struct btrfs_file_extent_item);
706
707 read_extent_buffer(eb, &cmp1, (unsigned long)item,
708 sizeof(cmp1));
709 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
710 sizeof(cmp2));
711
712 /*
713 * we already have a pointer to this exact extent,
714 * we don't have to do anything
715 */
716 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
717 btrfs_release_path(path);
718 goto out;
719 }
720 }
721 btrfs_release_path(path);
722
723 /* drop any overlapping extents */
724 drop_args.start = start;
725 drop_args.end = extent_end;
726 drop_args.drop_cache = true;
727 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
728 if (ret)
729 goto out;
730
731 if (found_type == BTRFS_FILE_EXTENT_REG ||
732 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
733 u64 offset;
734 unsigned long dest_offset;
735 struct btrfs_key ins;
736
737 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
738 btrfs_fs_incompat(fs_info, NO_HOLES))
739 goto update_inode;
740
741 ret = btrfs_insert_empty_item(trans, root, path, key,
742 sizeof(*item));
743 if (ret)
744 goto out;
745 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
746 path->slots[0]);
747 copy_extent_buffer(path->nodes[0], eb, dest_offset,
748 (unsigned long)item, sizeof(*item));
749
750 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
751 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
752 ins.type = BTRFS_EXTENT_ITEM_KEY;
753 offset = key->offset - btrfs_file_extent_offset(eb, item);
754
755 /*
756 * Manually record dirty extent, as here we did a shallow
757 * file extent item copy and skip normal backref update,
758 * but modifying extent tree all by ourselves.
759 * So need to manually record dirty extent for qgroup,
760 * as the owner of the file extent changed from log tree
761 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
762 */
763 ret = btrfs_qgroup_trace_extent(trans,
764 btrfs_file_extent_disk_bytenr(eb, item),
765 btrfs_file_extent_disk_num_bytes(eb, item));
766 if (ret < 0)
767 goto out;
768
769 if (ins.objectid > 0) {
770 struct btrfs_ref ref = { 0 };
771 u64 csum_start;
772 u64 csum_end;
773 LIST_HEAD(ordered_sums);
774
775 /*
776 * is this extent already allocated in the extent
777 * allocation tree? If so, just add a reference
778 */
779 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
780 ins.offset);
781 if (ret < 0) {
782 goto out;
783 } else if (ret == 0) {
784 btrfs_init_generic_ref(&ref,
785 BTRFS_ADD_DELAYED_REF,
786 ins.objectid, ins.offset, 0);
787 btrfs_init_data_ref(&ref,
788 root->root_key.objectid,
789 key->objectid, offset, 0, false);
790 ret = btrfs_inc_extent_ref(trans, &ref);
791 if (ret)
792 goto out;
793 } else {
794 /*
795 * insert the extent pointer in the extent
796 * allocation tree
797 */
798 ret = btrfs_alloc_logged_file_extent(trans,
799 root->root_key.objectid,
800 key->objectid, offset, &ins);
801 if (ret)
802 goto out;
803 }
804 btrfs_release_path(path);
805
806 if (btrfs_file_extent_compression(eb, item)) {
807 csum_start = ins.objectid;
808 csum_end = csum_start + ins.offset;
809 } else {
810 csum_start = ins.objectid +
811 btrfs_file_extent_offset(eb, item);
812 csum_end = csum_start +
813 btrfs_file_extent_num_bytes(eb, item);
814 }
815
816 ret = btrfs_lookup_csums_list(root->log_root,
817 csum_start, csum_end - 1,
818 &ordered_sums, 0, false);
819 if (ret)
820 goto out;
821 /*
822 * Now delete all existing cums in the csum root that
823 * cover our range. We do this because we can have an
824 * extent that is completely referenced by one file
825 * extent item and partially referenced by another
826 * file extent item (like after using the clone or
827 * extent_same ioctls). In this case if we end up doing
828 * the replay of the one that partially references the
829 * extent first, and we do not do the csum deletion
830 * below, we can get 2 csum items in the csum tree that
831 * overlap each other. For example, imagine our log has
832 * the two following file extent items:
833 *
834 * key (257 EXTENT_DATA 409600)
835 * extent data disk byte 12845056 nr 102400
836 * extent data offset 20480 nr 20480 ram 102400
837 *
838 * key (257 EXTENT_DATA 819200)
839 * extent data disk byte 12845056 nr 102400
840 * extent data offset 0 nr 102400 ram 102400
841 *
842 * Where the second one fully references the 100K extent
843 * that starts at disk byte 12845056, and the log tree
844 * has a single csum item that covers the entire range
845 * of the extent:
846 *
847 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
848 *
849 * After the first file extent item is replayed, the
850 * csum tree gets the following csum item:
851 *
852 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
853 *
854 * Which covers the 20K sub-range starting at offset 20K
855 * of our extent. Now when we replay the second file
856 * extent item, if we do not delete existing csum items
857 * that cover any of its blocks, we end up getting two
858 * csum items in our csum tree that overlap each other:
859 *
860 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
861 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
862 *
863 * Which is a problem, because after this anyone trying
864 * to lookup up for the checksum of any block of our
865 * extent starting at an offset of 40K or higher, will
866 * end up looking at the second csum item only, which
867 * does not contain the checksum for any block starting
868 * at offset 40K or higher of our extent.
869 */
870 while (!list_empty(&ordered_sums)) {
871 struct btrfs_ordered_sum *sums;
872 struct btrfs_root *csum_root;
873
874 sums = list_entry(ordered_sums.next,
875 struct btrfs_ordered_sum,
876 list);
877 csum_root = btrfs_csum_root(fs_info,
878 sums->logical);
879 if (!ret)
880 ret = btrfs_del_csums(trans, csum_root,
881 sums->logical,
882 sums->len);
883 if (!ret)
884 ret = btrfs_csum_file_blocks(trans,
885 csum_root,
886 sums);
887 list_del(&sums->list);
888 kfree(sums);
889 }
890 if (ret)
891 goto out;
892 } else {
893 btrfs_release_path(path);
894 }
895 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
896 /* inline extents are easy, we just overwrite them */
897 ret = overwrite_item(trans, root, path, eb, slot, key);
898 if (ret)
899 goto out;
900 }
901
902 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
903 extent_end - start);
904 if (ret)
905 goto out;
906
907 update_inode:
908 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
909 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
910 out:
911 iput(inode);
912 return ret;
913 }
914
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)915 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
916 struct btrfs_inode *dir,
917 struct btrfs_inode *inode,
918 const struct fscrypt_str *name)
919 {
920 int ret;
921
922 ret = btrfs_unlink_inode(trans, dir, inode, name);
923 if (ret)
924 return ret;
925 /*
926 * Whenever we need to check if a name exists or not, we check the
927 * fs/subvolume tree. So after an unlink we must run delayed items, so
928 * that future checks for a name during log replay see that the name
929 * does not exists anymore.
930 */
931 return btrfs_run_delayed_items(trans);
932 }
933
934 /*
935 * when cleaning up conflicts between the directory names in the
936 * subvolume, directory names in the log and directory names in the
937 * inode back references, we may have to unlink inodes from directories.
938 *
939 * This is a helper function to do the unlink of a specific directory
940 * item
941 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)942 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
943 struct btrfs_path *path,
944 struct btrfs_inode *dir,
945 struct btrfs_dir_item *di)
946 {
947 struct btrfs_root *root = dir->root;
948 struct inode *inode;
949 struct fscrypt_str name;
950 struct extent_buffer *leaf;
951 struct btrfs_key location;
952 int ret;
953
954 leaf = path->nodes[0];
955
956 btrfs_dir_item_key_to_cpu(leaf, di, &location);
957 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
958 if (ret)
959 return -ENOMEM;
960
961 btrfs_release_path(path);
962
963 {
964 struct btrfs_inode *btrfs_inode;
965
966 btrfs_inode = btrfs_iget_logging(location.objectid, root);
967 if (IS_ERR(btrfs_inode)) {
968 ret = PTR_ERR(btrfs_inode);
969 inode = NULL;
970 goto out;
971 }
972 inode = &btrfs_inode->vfs_inode;
973 }
974
975 ret = link_to_fixup_dir(trans, root, path, location.objectid);
976 if (ret)
977 goto out;
978
979 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
980 out:
981 kfree(name.name);
982 iput(inode);
983 return ret;
984 }
985
986 /*
987 * See if a given name and sequence number found in an inode back reference are
988 * already in a directory and correctly point to this inode.
989 *
990 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
991 * exists.
992 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)993 static noinline int inode_in_dir(struct btrfs_root *root,
994 struct btrfs_path *path,
995 u64 dirid, u64 objectid, u64 index,
996 struct fscrypt_str *name)
997 {
998 struct btrfs_dir_item *di;
999 struct btrfs_key location;
1000 int ret = 0;
1001
1002 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1003 index, name, 0);
1004 if (IS_ERR(di)) {
1005 ret = PTR_ERR(di);
1006 goto out;
1007 } else if (di) {
1008 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1009 if (location.objectid != objectid)
1010 goto out;
1011 } else {
1012 goto out;
1013 }
1014
1015 btrfs_release_path(path);
1016 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1017 if (IS_ERR(di)) {
1018 ret = PTR_ERR(di);
1019 goto out;
1020 } else if (di) {
1021 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1022 if (location.objectid == objectid)
1023 ret = 1;
1024 }
1025 out:
1026 btrfs_release_path(path);
1027 return ret;
1028 }
1029
1030 /*
1031 * helper function to check a log tree for a named back reference in
1032 * an inode. This is used to decide if a back reference that is
1033 * found in the subvolume conflicts with what we find in the log.
1034 *
1035 * inode backreferences may have multiple refs in a single item,
1036 * during replay we process one reference at a time, and we don't
1037 * want to delete valid links to a file from the subvolume if that
1038 * link is also in the log.
1039 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1040 static noinline int backref_in_log(struct btrfs_root *log,
1041 struct btrfs_key *key,
1042 u64 ref_objectid,
1043 const struct fscrypt_str *name)
1044 {
1045 struct btrfs_path *path;
1046 int ret;
1047
1048 path = btrfs_alloc_path();
1049 if (!path)
1050 return -ENOMEM;
1051
1052 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1053 if (ret < 0) {
1054 goto out;
1055 } else if (ret == 1) {
1056 ret = 0;
1057 goto out;
1058 }
1059
1060 if (key->type == BTRFS_INODE_EXTREF_KEY)
1061 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1062 path->slots[0],
1063 ref_objectid, name);
1064 else
1065 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1066 path->slots[0], name);
1067 out:
1068 btrfs_free_path(path);
1069 return ret;
1070 }
1071
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,struct fscrypt_str * name)1072 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1073 struct btrfs_root *root,
1074 struct btrfs_path *path,
1075 struct btrfs_root *log_root,
1076 struct btrfs_inode *dir,
1077 struct btrfs_inode *inode,
1078 u64 inode_objectid, u64 parent_objectid,
1079 u64 ref_index, struct fscrypt_str *name)
1080 {
1081 int ret;
1082 struct extent_buffer *leaf;
1083 struct btrfs_dir_item *di;
1084 struct btrfs_key search_key;
1085 struct btrfs_inode_extref *extref;
1086
1087 again:
1088 /* Search old style refs */
1089 search_key.objectid = inode_objectid;
1090 search_key.type = BTRFS_INODE_REF_KEY;
1091 search_key.offset = parent_objectid;
1092 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1093 if (ret < 0) {
1094 return ret;
1095 } else if (ret == 0) {
1096 struct btrfs_inode_ref *victim_ref;
1097 unsigned long ptr;
1098 unsigned long ptr_end;
1099
1100 leaf = path->nodes[0];
1101
1102 /* are we trying to overwrite a back ref for the root directory
1103 * if so, just jump out, we're done
1104 */
1105 if (search_key.objectid == search_key.offset)
1106 return 1;
1107
1108 /* check all the names in this back reference to see
1109 * if they are in the log. if so, we allow them to stay
1110 * otherwise they must be unlinked as a conflict
1111 */
1112 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1113 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1114 while (ptr < ptr_end) {
1115 struct fscrypt_str victim_name;
1116
1117 victim_ref = (struct btrfs_inode_ref *)ptr;
1118 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1119 btrfs_inode_ref_name_len(leaf, victim_ref),
1120 &victim_name);
1121 if (ret)
1122 return ret;
1123
1124 ret = backref_in_log(log_root, &search_key,
1125 parent_objectid, &victim_name);
1126 if (ret < 0) {
1127 kfree(victim_name.name);
1128 return ret;
1129 } else if (!ret) {
1130 inc_nlink(&inode->vfs_inode);
1131 btrfs_release_path(path);
1132
1133 ret = unlink_inode_for_log_replay(trans, dir, inode,
1134 &victim_name);
1135 kfree(victim_name.name);
1136 if (ret)
1137 return ret;
1138 goto again;
1139 }
1140 kfree(victim_name.name);
1141
1142 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1143 }
1144 }
1145 btrfs_release_path(path);
1146
1147 /* Same search but for extended refs */
1148 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1149 inode_objectid, parent_objectid, 0,
1150 0);
1151 if (IS_ERR(extref)) {
1152 return PTR_ERR(extref);
1153 } else if (extref) {
1154 u32 item_size;
1155 u32 cur_offset = 0;
1156 unsigned long base;
1157 struct inode *victim_parent;
1158
1159 leaf = path->nodes[0];
1160
1161 item_size = btrfs_item_size(leaf, path->slots[0]);
1162 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1163
1164 while (cur_offset < item_size) {
1165 struct fscrypt_str victim_name;
1166
1167 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1168 victim_name.len = btrfs_inode_extref_name_len(leaf, extref);
1169
1170 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1171 goto next;
1172
1173 ret = read_alloc_one_name(leaf, &extref->name,
1174 victim_name.len, &victim_name);
1175 if (ret)
1176 return ret;
1177
1178 search_key.objectid = inode_objectid;
1179 search_key.type = BTRFS_INODE_EXTREF_KEY;
1180 search_key.offset = btrfs_extref_hash(parent_objectid,
1181 victim_name.name,
1182 victim_name.len);
1183 ret = backref_in_log(log_root, &search_key,
1184 parent_objectid, &victim_name);
1185 if (ret < 0) {
1186 kfree(victim_name.name);
1187 return ret;
1188 } else if (!ret) {
1189 struct btrfs_inode *btrfs_victim;
1190
1191 btrfs_victim = btrfs_iget_logging(parent_objectid, root);
1192 if (IS_ERR(btrfs_victim)) {
1193 ret = PTR_ERR(btrfs_victim);
1194 } else {
1195 victim_parent = &btrfs_victim->vfs_inode;
1196 inc_nlink(&inode->vfs_inode);
1197 btrfs_release_path(path);
1198
1199 ret = unlink_inode_for_log_replay(trans,
1200 BTRFS_I(victim_parent),
1201 inode, &victim_name);
1202 iput(victim_parent);
1203 }
1204 kfree(victim_name.name);
1205 if (ret)
1206 return ret;
1207 goto again;
1208 }
1209 kfree(victim_name.name);
1210 next:
1211 cur_offset += victim_name.len + sizeof(*extref);
1212 }
1213 }
1214 btrfs_release_path(path);
1215
1216 /* look for a conflicting sequence number */
1217 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1218 ref_index, name, 0);
1219 if (IS_ERR(di)) {
1220 return PTR_ERR(di);
1221 } else if (di) {
1222 ret = drop_one_dir_item(trans, path, dir, di);
1223 if (ret)
1224 return ret;
1225 }
1226 btrfs_release_path(path);
1227
1228 /* look for a conflicting name */
1229 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1230 if (IS_ERR(di)) {
1231 return PTR_ERR(di);
1232 } else if (di) {
1233 ret = drop_one_dir_item(trans, path, dir, di);
1234 if (ret)
1235 return ret;
1236 }
1237 btrfs_release_path(path);
1238
1239 return 0;
1240 }
1241
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1242 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1243 struct fscrypt_str *name, u64 *index,
1244 u64 *parent_objectid)
1245 {
1246 struct btrfs_inode_extref *extref;
1247 int ret;
1248
1249 extref = (struct btrfs_inode_extref *)ref_ptr;
1250
1251 ret = read_alloc_one_name(eb, &extref->name,
1252 btrfs_inode_extref_name_len(eb, extref), name);
1253 if (ret)
1254 return ret;
1255
1256 if (index)
1257 *index = btrfs_inode_extref_index(eb, extref);
1258 if (parent_objectid)
1259 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1260
1261 return 0;
1262 }
1263
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1264 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1265 struct fscrypt_str *name, u64 *index)
1266 {
1267 struct btrfs_inode_ref *ref;
1268 int ret;
1269
1270 ref = (struct btrfs_inode_ref *)ref_ptr;
1271
1272 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1273 name);
1274 if (ret)
1275 return ret;
1276
1277 if (index)
1278 *index = btrfs_inode_ref_index(eb, ref);
1279
1280 return 0;
1281 }
1282
1283 /*
1284 * Take an inode reference item from the log tree and iterate all names from the
1285 * inode reference item in the subvolume tree with the same key (if it exists).
1286 * For any name that is not in the inode reference item from the log tree, do a
1287 * proper unlink of that name (that is, remove its entry from the inode
1288 * reference item and both dir index keys).
1289 */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1290 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1291 struct btrfs_root *root,
1292 struct btrfs_path *path,
1293 struct btrfs_inode *inode,
1294 struct extent_buffer *log_eb,
1295 int log_slot,
1296 struct btrfs_key *key)
1297 {
1298 int ret;
1299 unsigned long ref_ptr;
1300 unsigned long ref_end;
1301 struct extent_buffer *eb;
1302
1303 again:
1304 btrfs_release_path(path);
1305 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1306 if (ret > 0) {
1307 ret = 0;
1308 goto out;
1309 }
1310 if (ret < 0)
1311 goto out;
1312
1313 eb = path->nodes[0];
1314 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1315 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1316 while (ref_ptr < ref_end) {
1317 struct fscrypt_str name;
1318 u64 parent_id;
1319
1320 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1321 ret = extref_get_fields(eb, ref_ptr, &name,
1322 NULL, &parent_id);
1323 } else {
1324 parent_id = key->offset;
1325 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1326 }
1327 if (ret)
1328 goto out;
1329
1330 if (key->type == BTRFS_INODE_EXTREF_KEY)
1331 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1332 parent_id, &name);
1333 else
1334 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1335
1336 if (!ret) {
1337 struct inode *dir;
1338
1339 btrfs_release_path(path);
1340 {
1341 struct btrfs_inode *btrfs_dir;
1342
1343 btrfs_dir = btrfs_iget_logging(parent_id, root);
1344 if (IS_ERR(btrfs_dir)) {
1345 ret = PTR_ERR(btrfs_dir);
1346 kfree(name.name);
1347 goto out;
1348 }
1349 dir = &btrfs_dir->vfs_inode;
1350 }
1351 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1352 inode, &name);
1353 kfree(name.name);
1354 iput(dir);
1355 if (ret)
1356 goto out;
1357 goto again;
1358 }
1359
1360 kfree(name.name);
1361 ref_ptr += name.len;
1362 if (key->type == BTRFS_INODE_EXTREF_KEY)
1363 ref_ptr += sizeof(struct btrfs_inode_extref);
1364 else
1365 ref_ptr += sizeof(struct btrfs_inode_ref);
1366 }
1367 ret = 0;
1368 out:
1369 btrfs_release_path(path);
1370 return ret;
1371 }
1372
1373 /*
1374 * replay one inode back reference item found in the log tree.
1375 * eb, slot and key refer to the buffer and key found in the log tree.
1376 * root is the destination we are replaying into, and path is for temp
1377 * use by this function. (it should be released on return).
1378 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1379 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1380 struct btrfs_root *root,
1381 struct btrfs_root *log,
1382 struct btrfs_path *path,
1383 struct extent_buffer *eb, int slot,
1384 struct btrfs_key *key)
1385 {
1386 struct inode *dir = NULL;
1387 struct inode *inode = NULL;
1388 unsigned long ref_ptr;
1389 unsigned long ref_end;
1390 struct fscrypt_str name = { 0 };
1391 int ret;
1392 int log_ref_ver = 0;
1393 u64 parent_objectid;
1394 u64 inode_objectid;
1395 u64 ref_index = 0;
1396 int ref_struct_size;
1397
1398 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1399 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1400
1401 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1402 struct btrfs_inode_extref *r;
1403
1404 ref_struct_size = sizeof(struct btrfs_inode_extref);
1405 log_ref_ver = 1;
1406 r = (struct btrfs_inode_extref *)ref_ptr;
1407 parent_objectid = btrfs_inode_extref_parent(eb, r);
1408 } else {
1409 ref_struct_size = sizeof(struct btrfs_inode_ref);
1410 parent_objectid = key->offset;
1411 }
1412 inode_objectid = key->objectid;
1413
1414 /*
1415 * it is possible that we didn't log all the parent directories
1416 * for a given inode. If we don't find the dir, just don't
1417 * copy the back ref in. The link count fixup code will take
1418 * care of the rest
1419 */
1420 {
1421 struct btrfs_inode *btrfs_dir;
1422
1423 btrfs_dir = btrfs_iget_logging(parent_objectid, root);
1424 if (IS_ERR(btrfs_dir)) {
1425 ret = PTR_ERR(btrfs_dir);
1426 dir = NULL;
1427 goto out;
1428 }
1429 dir = &btrfs_dir->vfs_inode;
1430 }
1431
1432 {
1433 struct btrfs_inode *btrfs_inode;
1434
1435 btrfs_inode = btrfs_iget_logging(inode_objectid, root);
1436 if (IS_ERR(btrfs_inode)) {
1437 ret = PTR_ERR(btrfs_inode);
1438 inode = NULL;
1439 goto out;
1440 }
1441 inode = &btrfs_inode->vfs_inode;
1442 }
1443
1444 while (ref_ptr < ref_end) {
1445 if (log_ref_ver) {
1446 ret = extref_get_fields(eb, ref_ptr, &name,
1447 &ref_index, &parent_objectid);
1448 /*
1449 * parent object can change from one array
1450 * item to another.
1451 */
1452 if (!dir) {
1453 struct btrfs_inode *btrfs_dir;
1454
1455 btrfs_dir = btrfs_iget_logging(parent_objectid, root);
1456 if (IS_ERR(btrfs_dir)) {
1457 ret = PTR_ERR(btrfs_dir);
1458 dir = NULL;
1459 goto out;
1460 }
1461 dir = &btrfs_dir->vfs_inode;
1462 }
1463 } else {
1464 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1465 }
1466 if (ret)
1467 goto out;
1468
1469 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1470 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1471 if (ret < 0) {
1472 goto out;
1473 } else if (ret == 0) {
1474 /*
1475 * look for a conflicting back reference in the
1476 * metadata. if we find one we have to unlink that name
1477 * of the file before we add our new link. Later on, we
1478 * overwrite any existing back reference, and we don't
1479 * want to create dangling pointers in the directory.
1480 */
1481 ret = __add_inode_ref(trans, root, path, log,
1482 BTRFS_I(dir), BTRFS_I(inode),
1483 inode_objectid, parent_objectid,
1484 ref_index, &name);
1485 if (ret) {
1486 if (ret == 1)
1487 ret = 0;
1488 goto out;
1489 }
1490
1491 /* insert our name */
1492 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1493 &name, 0, ref_index);
1494 if (ret)
1495 goto out;
1496
1497 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1498 if (ret)
1499 goto out;
1500 }
1501 /* Else, ret == 1, we already have a perfect match, we're done. */
1502
1503 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1504 kfree(name.name);
1505 name.name = NULL;
1506 if (log_ref_ver) {
1507 iput(dir);
1508 dir = NULL;
1509 }
1510 }
1511
1512 /*
1513 * Before we overwrite the inode reference item in the subvolume tree
1514 * with the item from the log tree, we must unlink all names from the
1515 * parent directory that are in the subvolume's tree inode reference
1516 * item, otherwise we end up with an inconsistent subvolume tree where
1517 * dir index entries exist for a name but there is no inode reference
1518 * item with the same name.
1519 */
1520 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1521 key);
1522 if (ret)
1523 goto out;
1524
1525 /* finally write the back reference in the inode */
1526 ret = overwrite_item(trans, root, path, eb, slot, key);
1527 out:
1528 btrfs_release_path(path);
1529 kfree(name.name);
1530 iput(dir);
1531 iput(inode);
1532 return ret;
1533 }
1534
count_inode_extrefs(struct btrfs_inode * inode,struct btrfs_path * path)1535 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1536 {
1537 int ret = 0;
1538 int name_len;
1539 unsigned int nlink = 0;
1540 u32 item_size;
1541 u32 cur_offset = 0;
1542 u64 inode_objectid = btrfs_ino(inode);
1543 u64 offset = 0;
1544 unsigned long ptr;
1545 struct btrfs_inode_extref *extref;
1546 struct extent_buffer *leaf;
1547
1548 while (1) {
1549 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1550 path, &extref, &offset);
1551 if (ret)
1552 break;
1553
1554 leaf = path->nodes[0];
1555 item_size = btrfs_item_size(leaf, path->slots[0]);
1556 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1557 cur_offset = 0;
1558
1559 while (cur_offset < item_size) {
1560 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1561 name_len = btrfs_inode_extref_name_len(leaf, extref);
1562
1563 nlink++;
1564
1565 cur_offset += name_len + sizeof(*extref);
1566 }
1567
1568 offset++;
1569 btrfs_release_path(path);
1570 }
1571 btrfs_release_path(path);
1572
1573 if (ret < 0 && ret != -ENOENT)
1574 return ret;
1575 return nlink;
1576 }
1577
count_inode_refs(struct btrfs_inode * inode,struct btrfs_path * path)1578 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1579 {
1580 int ret;
1581 struct btrfs_key key;
1582 unsigned int nlink = 0;
1583 unsigned long ptr;
1584 unsigned long ptr_end;
1585 int name_len;
1586 u64 ino = btrfs_ino(inode);
1587
1588 key.objectid = ino;
1589 key.type = BTRFS_INODE_REF_KEY;
1590 key.offset = (u64)-1;
1591
1592 while (1) {
1593 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1594 if (ret < 0)
1595 break;
1596 if (ret > 0) {
1597 if (path->slots[0] == 0)
1598 break;
1599 path->slots[0]--;
1600 }
1601 process_slot:
1602 btrfs_item_key_to_cpu(path->nodes[0], &key,
1603 path->slots[0]);
1604 if (key.objectid != ino ||
1605 key.type != BTRFS_INODE_REF_KEY)
1606 break;
1607 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1608 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1609 path->slots[0]);
1610 while (ptr < ptr_end) {
1611 struct btrfs_inode_ref *ref;
1612
1613 ref = (struct btrfs_inode_ref *)ptr;
1614 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1615 ref);
1616 ptr = (unsigned long)(ref + 1) + name_len;
1617 nlink++;
1618 }
1619
1620 if (key.offset == 0)
1621 break;
1622 if (path->slots[0] > 0) {
1623 path->slots[0]--;
1624 goto process_slot;
1625 }
1626 key.offset--;
1627 btrfs_release_path(path);
1628 }
1629 btrfs_release_path(path);
1630
1631 return nlink;
1632 }
1633
1634 /*
1635 * There are a few corners where the link count of the file can't
1636 * be properly maintained during replay. So, instead of adding
1637 * lots of complexity to the log code, we just scan the backrefs
1638 * for any file that has been through replay.
1639 *
1640 * The scan will update the link count on the inode to reflect the
1641 * number of back refs found. If it goes down to zero, the iput
1642 * will free the inode.
1643 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct inode * inode)1644 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1645 struct inode *inode)
1646 {
1647 struct btrfs_root *root = BTRFS_I(inode)->root;
1648 struct btrfs_path *path;
1649 int ret;
1650 u64 nlink = 0;
1651 u64 ino = btrfs_ino(BTRFS_I(inode));
1652
1653 path = btrfs_alloc_path();
1654 if (!path)
1655 return -ENOMEM;
1656
1657 ret = count_inode_refs(BTRFS_I(inode), path);
1658 if (ret < 0)
1659 goto out;
1660
1661 nlink = ret;
1662
1663 ret = count_inode_extrefs(BTRFS_I(inode), path);
1664 if (ret < 0)
1665 goto out;
1666
1667 nlink += ret;
1668
1669 ret = 0;
1670
1671 if (nlink != inode->i_nlink) {
1672 set_nlink(inode, nlink);
1673 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1674 if (ret)
1675 goto out;
1676 }
1677 BTRFS_I(inode)->index_cnt = (u64)-1;
1678
1679 if (inode->i_nlink == 0) {
1680 if (S_ISDIR(inode->i_mode)) {
1681 ret = replay_dir_deletes(trans, root, NULL, path,
1682 ino, 1);
1683 if (ret)
1684 goto out;
1685 }
1686 ret = btrfs_insert_orphan_item(trans, root, ino);
1687 if (ret == -EEXIST)
1688 ret = 0;
1689 }
1690
1691 out:
1692 btrfs_free_path(path);
1693 return ret;
1694 }
1695
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1696 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1697 struct btrfs_root *root,
1698 struct btrfs_path *path)
1699 {
1700 int ret;
1701 struct btrfs_key key;
1702 struct inode *inode;
1703
1704 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1705 key.type = BTRFS_ORPHAN_ITEM_KEY;
1706 key.offset = (u64)-1;
1707 while (1) {
1708 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1709 if (ret < 0)
1710 break;
1711
1712 if (ret == 1) {
1713 ret = 0;
1714 if (path->slots[0] == 0)
1715 break;
1716 path->slots[0]--;
1717 }
1718
1719 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1720 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1721 key.type != BTRFS_ORPHAN_ITEM_KEY)
1722 break;
1723
1724 ret = btrfs_del_item(trans, root, path);
1725 if (ret)
1726 break;
1727
1728 btrfs_release_path(path);
1729 {
1730 struct btrfs_inode *btrfs_inode;
1731
1732 btrfs_inode = btrfs_iget_logging(key.offset, root);
1733 if (IS_ERR(btrfs_inode)) {
1734 ret = PTR_ERR(btrfs_inode);
1735 break;
1736 }
1737 inode = &btrfs_inode->vfs_inode;
1738 }
1739
1740 ret = fixup_inode_link_count(trans, inode);
1741 iput(inode);
1742 if (ret)
1743 break;
1744
1745 /*
1746 * fixup on a directory may create new entries,
1747 * make sure we always look for the highset possible
1748 * offset
1749 */
1750 key.offset = (u64)-1;
1751 }
1752 btrfs_release_path(path);
1753 return ret;
1754 }
1755
1756
1757 /*
1758 * record a given inode in the fixup dir so we can check its link
1759 * count when replay is done. The link count is incremented here
1760 * so the inode won't go away until we check it
1761 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1762 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1763 struct btrfs_root *root,
1764 struct btrfs_path *path,
1765 u64 objectid)
1766 {
1767 struct btrfs_key key;
1768 int ret = 0;
1769 struct inode *inode;
1770
1771 {
1772 struct btrfs_inode *btrfs_inode;
1773
1774 btrfs_inode = btrfs_iget_logging(objectid, root);
1775 if (IS_ERR(btrfs_inode))
1776 return PTR_ERR(btrfs_inode);
1777 inode = &btrfs_inode->vfs_inode;
1778 }
1779
1780 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1781 key.type = BTRFS_ORPHAN_ITEM_KEY;
1782 key.offset = objectid;
1783
1784 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1785
1786 btrfs_release_path(path);
1787 if (ret == 0) {
1788 if (!inode->i_nlink)
1789 set_nlink(inode, 1);
1790 else
1791 inc_nlink(inode);
1792 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1793 } else if (ret == -EEXIST) {
1794 ret = 0;
1795 }
1796 iput(inode);
1797
1798 return ret;
1799 }
1800
1801 /*
1802 * when replaying the log for a directory, we only insert names
1803 * for inodes that actually exist. This means an fsync on a directory
1804 * does not implicitly fsync all the new files in it
1805 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)1806 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1807 struct btrfs_root *root,
1808 u64 dirid, u64 index,
1809 const struct fscrypt_str *name,
1810 struct btrfs_key *location)
1811 {
1812 struct inode *inode;
1813 struct inode *dir;
1814 int ret;
1815
1816 {
1817 struct btrfs_inode *btrfs_inode;
1818
1819 btrfs_inode = btrfs_iget_logging(location->objectid, root);
1820 if (IS_ERR(btrfs_inode))
1821 return PTR_ERR(btrfs_inode);
1822 inode = &btrfs_inode->vfs_inode;
1823 }
1824
1825 {
1826 struct btrfs_inode *btrfs_dir;
1827
1828 btrfs_dir = btrfs_iget_logging(dirid, root);
1829 if (IS_ERR(btrfs_dir)) {
1830 iput(inode);
1831 return PTR_ERR(btrfs_dir);
1832 }
1833 dir = &btrfs_dir->vfs_inode;
1834 }
1835
1836 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1837 1, index);
1838
1839 /* FIXME, put inode into FIXUP list */
1840
1841 iput(inode);
1842 iput(dir);
1843 return ret;
1844 }
1845
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)1846 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1847 struct btrfs_inode *dir,
1848 struct btrfs_path *path,
1849 struct btrfs_dir_item *dst_di,
1850 const struct btrfs_key *log_key,
1851 u8 log_flags,
1852 bool exists)
1853 {
1854 struct btrfs_key found_key;
1855
1856 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1857 /* The existing dentry points to the same inode, don't delete it. */
1858 if (found_key.objectid == log_key->objectid &&
1859 found_key.type == log_key->type &&
1860 found_key.offset == log_key->offset &&
1861 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1862 return 1;
1863
1864 /*
1865 * Don't drop the conflicting directory entry if the inode for the new
1866 * entry doesn't exist.
1867 */
1868 if (!exists)
1869 return 0;
1870
1871 return drop_one_dir_item(trans, path, dir, dst_di);
1872 }
1873
1874 /*
1875 * take a single entry in a log directory item and replay it into
1876 * the subvolume.
1877 *
1878 * if a conflicting item exists in the subdirectory already,
1879 * the inode it points to is unlinked and put into the link count
1880 * fix up tree.
1881 *
1882 * If a name from the log points to a file or directory that does
1883 * not exist in the FS, it is skipped. fsyncs on directories
1884 * do not force down inodes inside that directory, just changes to the
1885 * names or unlinks in a directory.
1886 *
1887 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1888 * non-existing inode) and 1 if the name was replayed.
1889 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1890 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1891 struct btrfs_root *root,
1892 struct btrfs_path *path,
1893 struct extent_buffer *eb,
1894 struct btrfs_dir_item *di,
1895 struct btrfs_key *key)
1896 {
1897 struct fscrypt_str name = { 0 };
1898 struct btrfs_dir_item *dir_dst_di;
1899 struct btrfs_dir_item *index_dst_di;
1900 bool dir_dst_matches = false;
1901 bool index_dst_matches = false;
1902 struct btrfs_key log_key;
1903 struct btrfs_key search_key;
1904 struct inode *dir;
1905 u8 log_flags;
1906 bool exists;
1907 int ret;
1908 bool update_size = true;
1909 bool name_added = false;
1910
1911 {
1912 struct btrfs_inode *btrfs_dir;
1913
1914 btrfs_dir = btrfs_iget_logging(key->objectid, root);
1915 if (IS_ERR(btrfs_dir))
1916 return PTR_ERR(btrfs_dir);
1917 dir = &btrfs_dir->vfs_inode;
1918 }
1919
1920 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1921 if (ret)
1922 goto out;
1923
1924 log_flags = btrfs_dir_flags(eb, di);
1925 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1926 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1927 btrfs_release_path(path);
1928 if (ret < 0)
1929 goto out;
1930 exists = (ret == 0);
1931 ret = 0;
1932
1933 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1934 &name, 1);
1935 if (IS_ERR(dir_dst_di)) {
1936 ret = PTR_ERR(dir_dst_di);
1937 goto out;
1938 } else if (dir_dst_di) {
1939 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1940 dir_dst_di, &log_key,
1941 log_flags, exists);
1942 if (ret < 0)
1943 goto out;
1944 dir_dst_matches = (ret == 1);
1945 }
1946
1947 btrfs_release_path(path);
1948
1949 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1950 key->objectid, key->offset,
1951 &name, 1);
1952 if (IS_ERR(index_dst_di)) {
1953 ret = PTR_ERR(index_dst_di);
1954 goto out;
1955 } else if (index_dst_di) {
1956 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1957 index_dst_di, &log_key,
1958 log_flags, exists);
1959 if (ret < 0)
1960 goto out;
1961 index_dst_matches = (ret == 1);
1962 }
1963
1964 btrfs_release_path(path);
1965
1966 if (dir_dst_matches && index_dst_matches) {
1967 ret = 0;
1968 update_size = false;
1969 goto out;
1970 }
1971
1972 /*
1973 * Check if the inode reference exists in the log for the given name,
1974 * inode and parent inode
1975 */
1976 search_key.objectid = log_key.objectid;
1977 search_key.type = BTRFS_INODE_REF_KEY;
1978 search_key.offset = key->objectid;
1979 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1980 if (ret < 0) {
1981 goto out;
1982 } else if (ret) {
1983 /* The dentry will be added later. */
1984 ret = 0;
1985 update_size = false;
1986 goto out;
1987 }
1988
1989 search_key.objectid = log_key.objectid;
1990 search_key.type = BTRFS_INODE_EXTREF_KEY;
1991 search_key.offset = key->objectid;
1992 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1993 if (ret < 0) {
1994 goto out;
1995 } else if (ret) {
1996 /* The dentry will be added later. */
1997 ret = 0;
1998 update_size = false;
1999 goto out;
2000 }
2001 btrfs_release_path(path);
2002 ret = insert_one_name(trans, root, key->objectid, key->offset,
2003 &name, &log_key);
2004 if (ret && ret != -ENOENT && ret != -EEXIST)
2005 goto out;
2006 if (!ret)
2007 name_added = true;
2008 update_size = false;
2009 ret = 0;
2010
2011 out:
2012 if (!ret && update_size) {
2013 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
2014 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2015 }
2016 kfree(name.name);
2017 iput(dir);
2018 if (!ret && name_added)
2019 ret = 1;
2020 return ret;
2021 }
2022
2023 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2024 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2025 struct btrfs_root *root,
2026 struct btrfs_path *path,
2027 struct extent_buffer *eb, int slot,
2028 struct btrfs_key *key)
2029 {
2030 int ret;
2031 struct btrfs_dir_item *di;
2032
2033 /* We only log dir index keys, which only contain a single dir item. */
2034 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
2035
2036 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2037 ret = replay_one_name(trans, root, path, eb, di, key);
2038 if (ret < 0)
2039 return ret;
2040
2041 /*
2042 * If this entry refers to a non-directory (directories can not have a
2043 * link count > 1) and it was added in the transaction that was not
2044 * committed, make sure we fixup the link count of the inode the entry
2045 * points to. Otherwise something like the following would result in a
2046 * directory pointing to an inode with a wrong link that does not account
2047 * for this dir entry:
2048 *
2049 * mkdir testdir
2050 * touch testdir/foo
2051 * touch testdir/bar
2052 * sync
2053 *
2054 * ln testdir/bar testdir/bar_link
2055 * ln testdir/foo testdir/foo_link
2056 * xfs_io -c "fsync" testdir/bar
2057 *
2058 * <power failure>
2059 *
2060 * mount fs, log replay happens
2061 *
2062 * File foo would remain with a link count of 1 when it has two entries
2063 * pointing to it in the directory testdir. This would make it impossible
2064 * to ever delete the parent directory has it would result in stale
2065 * dentries that can never be deleted.
2066 */
2067 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2068 struct btrfs_path *fixup_path;
2069 struct btrfs_key di_key;
2070
2071 fixup_path = btrfs_alloc_path();
2072 if (!fixup_path)
2073 return -ENOMEM;
2074
2075 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2076 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2077 btrfs_free_path(fixup_path);
2078 }
2079
2080 return ret;
2081 }
2082
2083 /*
2084 * directory replay has two parts. There are the standard directory
2085 * items in the log copied from the subvolume, and range items
2086 * created in the log while the subvolume was logged.
2087 *
2088 * The range items tell us which parts of the key space the log
2089 * is authoritative for. During replay, if a key in the subvolume
2090 * directory is in a logged range item, but not actually in the log
2091 * that means it was deleted from the directory before the fsync
2092 * and should be removed.
2093 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2094 static noinline int find_dir_range(struct btrfs_root *root,
2095 struct btrfs_path *path,
2096 u64 dirid,
2097 u64 *start_ret, u64 *end_ret)
2098 {
2099 struct btrfs_key key;
2100 u64 found_end;
2101 struct btrfs_dir_log_item *item;
2102 int ret;
2103 int nritems;
2104
2105 if (*start_ret == (u64)-1)
2106 return 1;
2107
2108 key.objectid = dirid;
2109 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2110 key.offset = *start_ret;
2111
2112 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2113 if (ret < 0)
2114 goto out;
2115 if (ret > 0) {
2116 if (path->slots[0] == 0)
2117 goto out;
2118 path->slots[0]--;
2119 }
2120 if (ret != 0)
2121 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2122
2123 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2124 ret = 1;
2125 goto next;
2126 }
2127 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2128 struct btrfs_dir_log_item);
2129 found_end = btrfs_dir_log_end(path->nodes[0], item);
2130
2131 if (*start_ret >= key.offset && *start_ret <= found_end) {
2132 ret = 0;
2133 *start_ret = key.offset;
2134 *end_ret = found_end;
2135 goto out;
2136 }
2137 ret = 1;
2138 next:
2139 /* check the next slot in the tree to see if it is a valid item */
2140 nritems = btrfs_header_nritems(path->nodes[0]);
2141 path->slots[0]++;
2142 if (path->slots[0] >= nritems) {
2143 ret = btrfs_next_leaf(root, path);
2144 if (ret)
2145 goto out;
2146 }
2147
2148 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2149
2150 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2151 ret = 1;
2152 goto out;
2153 }
2154 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2155 struct btrfs_dir_log_item);
2156 found_end = btrfs_dir_log_end(path->nodes[0], item);
2157 *start_ret = key.offset;
2158 *end_ret = found_end;
2159 ret = 0;
2160 out:
2161 btrfs_release_path(path);
2162 return ret;
2163 }
2164
2165 /*
2166 * this looks for a given directory item in the log. If the directory
2167 * item is not in the log, the item is removed and the inode it points
2168 * to is unlinked
2169 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2170 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *log,
2172 struct btrfs_path *path,
2173 struct btrfs_path *log_path,
2174 struct inode *dir,
2175 struct btrfs_key *dir_key)
2176 {
2177 struct btrfs_root *root = BTRFS_I(dir)->root;
2178 int ret;
2179 struct extent_buffer *eb;
2180 int slot;
2181 struct btrfs_dir_item *di;
2182 struct fscrypt_str name = { 0 };
2183 struct inode *inode = NULL;
2184 struct btrfs_key location;
2185
2186 /*
2187 * Currently we only log dir index keys. Even if we replay a log created
2188 * by an older kernel that logged both dir index and dir item keys, all
2189 * we need to do is process the dir index keys, we (and our caller) can
2190 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2191 */
2192 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2193
2194 eb = path->nodes[0];
2195 slot = path->slots[0];
2196 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2197 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2198 if (ret)
2199 goto out;
2200
2201 if (log) {
2202 struct btrfs_dir_item *log_di;
2203
2204 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2205 dir_key->objectid,
2206 dir_key->offset, &name, 0);
2207 if (IS_ERR(log_di)) {
2208 ret = PTR_ERR(log_di);
2209 goto out;
2210 } else if (log_di) {
2211 /* The dentry exists in the log, we have nothing to do. */
2212 ret = 0;
2213 goto out;
2214 }
2215 }
2216
2217 btrfs_dir_item_key_to_cpu(eb, di, &location);
2218 btrfs_release_path(path);
2219 btrfs_release_path(log_path);
2220 {
2221 struct btrfs_inode *btrfs_inode;
2222
2223 btrfs_inode = btrfs_iget_logging(location.objectid, root);
2224 if (IS_ERR(btrfs_inode)) {
2225 ret = PTR_ERR(btrfs_inode);
2226 inode = NULL;
2227 goto out;
2228 }
2229 inode = &btrfs_inode->vfs_inode;
2230 }
2231
2232 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2233 if (ret)
2234 goto out;
2235
2236 inc_nlink(inode);
2237 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2238 &name);
2239 /*
2240 * Unlike dir item keys, dir index keys can only have one name (entry) in
2241 * them, as there are no key collisions since each key has a unique offset
2242 * (an index number), so we're done.
2243 */
2244 out:
2245 btrfs_release_path(path);
2246 btrfs_release_path(log_path);
2247 kfree(name.name);
2248 iput(inode);
2249 return ret;
2250 }
2251
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2252 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2253 struct btrfs_root *root,
2254 struct btrfs_root *log,
2255 struct btrfs_path *path,
2256 const u64 ino)
2257 {
2258 struct btrfs_key search_key;
2259 struct btrfs_path *log_path;
2260 int i;
2261 int nritems;
2262 int ret;
2263
2264 log_path = btrfs_alloc_path();
2265 if (!log_path)
2266 return -ENOMEM;
2267
2268 search_key.objectid = ino;
2269 search_key.type = BTRFS_XATTR_ITEM_KEY;
2270 search_key.offset = 0;
2271 again:
2272 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2273 if (ret < 0)
2274 goto out;
2275 process_leaf:
2276 nritems = btrfs_header_nritems(path->nodes[0]);
2277 for (i = path->slots[0]; i < nritems; i++) {
2278 struct btrfs_key key;
2279 struct btrfs_dir_item *di;
2280 struct btrfs_dir_item *log_di;
2281 u32 total_size;
2282 u32 cur;
2283
2284 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2285 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2286 ret = 0;
2287 goto out;
2288 }
2289
2290 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2291 total_size = btrfs_item_size(path->nodes[0], i);
2292 cur = 0;
2293 while (cur < total_size) {
2294 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2295 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2296 u32 this_len = sizeof(*di) + name_len + data_len;
2297 char *name;
2298
2299 name = kmalloc(name_len, GFP_NOFS);
2300 if (!name) {
2301 ret = -ENOMEM;
2302 goto out;
2303 }
2304 read_extent_buffer(path->nodes[0], name,
2305 (unsigned long)(di + 1), name_len);
2306
2307 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2308 name, name_len, 0);
2309 btrfs_release_path(log_path);
2310 if (!log_di) {
2311 /* Doesn't exist in log tree, so delete it. */
2312 btrfs_release_path(path);
2313 di = btrfs_lookup_xattr(trans, root, path, ino,
2314 name, name_len, -1);
2315 kfree(name);
2316 if (IS_ERR(di)) {
2317 ret = PTR_ERR(di);
2318 goto out;
2319 }
2320 ASSERT(di);
2321 ret = btrfs_delete_one_dir_name(trans, root,
2322 path, di);
2323 if (ret)
2324 goto out;
2325 btrfs_release_path(path);
2326 search_key = key;
2327 goto again;
2328 }
2329 kfree(name);
2330 if (IS_ERR(log_di)) {
2331 ret = PTR_ERR(log_di);
2332 goto out;
2333 }
2334 cur += this_len;
2335 di = (struct btrfs_dir_item *)((char *)di + this_len);
2336 }
2337 }
2338 ret = btrfs_next_leaf(root, path);
2339 if (ret > 0)
2340 ret = 0;
2341 else if (ret == 0)
2342 goto process_leaf;
2343 out:
2344 btrfs_free_path(log_path);
2345 btrfs_release_path(path);
2346 return ret;
2347 }
2348
2349
2350 /*
2351 * deletion replay happens before we copy any new directory items
2352 * out of the log or out of backreferences from inodes. It
2353 * scans the log to find ranges of keys that log is authoritative for,
2354 * and then scans the directory to find items in those ranges that are
2355 * not present in the log.
2356 *
2357 * Anything we don't find in the log is unlinked and removed from the
2358 * directory.
2359 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2360 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2361 struct btrfs_root *root,
2362 struct btrfs_root *log,
2363 struct btrfs_path *path,
2364 u64 dirid, int del_all)
2365 {
2366 u64 range_start;
2367 u64 range_end;
2368 int ret = 0;
2369 struct btrfs_key dir_key;
2370 struct btrfs_key found_key;
2371 struct btrfs_path *log_path;
2372 struct inode *dir;
2373
2374 dir_key.objectid = dirid;
2375 dir_key.type = BTRFS_DIR_INDEX_KEY;
2376 log_path = btrfs_alloc_path();
2377 if (!log_path)
2378 return -ENOMEM;
2379
2380 {
2381 struct btrfs_inode *btrfs_dir;
2382
2383 btrfs_dir = btrfs_iget_logging(dirid, root);
2384 /*
2385 * It isn't an error if the inode isn't there, that can happen because
2386 * we replay the deletes before we copy in the inode item from the log.
2387 */
2388 if (IS_ERR(btrfs_dir)) {
2389 btrfs_free_path(log_path);
2390 ret = PTR_ERR(btrfs_dir);
2391 if (ret == -ENOENT)
2392 ret = 0;
2393 return ret;
2394 }
2395 dir = &btrfs_dir->vfs_inode;
2396 }
2397
2398 range_start = 0;
2399 range_end = 0;
2400 while (1) {
2401 if (del_all)
2402 range_end = (u64)-1;
2403 else {
2404 ret = find_dir_range(log, path, dirid,
2405 &range_start, &range_end);
2406 if (ret < 0)
2407 goto out;
2408 else if (ret > 0)
2409 break;
2410 }
2411
2412 dir_key.offset = range_start;
2413 while (1) {
2414 int nritems;
2415 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2416 0, 0);
2417 if (ret < 0)
2418 goto out;
2419
2420 nritems = btrfs_header_nritems(path->nodes[0]);
2421 if (path->slots[0] >= nritems) {
2422 ret = btrfs_next_leaf(root, path);
2423 if (ret == 1)
2424 break;
2425 else if (ret < 0)
2426 goto out;
2427 }
2428 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2429 path->slots[0]);
2430 if (found_key.objectid != dirid ||
2431 found_key.type != dir_key.type) {
2432 ret = 0;
2433 goto out;
2434 }
2435
2436 if (found_key.offset > range_end)
2437 break;
2438
2439 ret = check_item_in_log(trans, log, path,
2440 log_path, dir,
2441 &found_key);
2442 if (ret)
2443 goto out;
2444 if (found_key.offset == (u64)-1)
2445 break;
2446 dir_key.offset = found_key.offset + 1;
2447 }
2448 btrfs_release_path(path);
2449 if (range_end == (u64)-1)
2450 break;
2451 range_start = range_end + 1;
2452 }
2453 ret = 0;
2454 out:
2455 btrfs_release_path(path);
2456 btrfs_free_path(log_path);
2457 iput(dir);
2458 return ret;
2459 }
2460
2461 /*
2462 * the process_func used to replay items from the log tree. This
2463 * gets called in two different stages. The first stage just looks
2464 * for inodes and makes sure they are all copied into the subvolume.
2465 *
2466 * The second stage copies all the other item types from the log into
2467 * the subvolume. The two stage approach is slower, but gets rid of
2468 * lots of complexity around inodes referencing other inodes that exist
2469 * only in the log (references come from either directory items or inode
2470 * back refs).
2471 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2472 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2473 struct walk_control *wc, u64 gen, int level)
2474 {
2475 int nritems;
2476 struct btrfs_tree_parent_check check = {
2477 .transid = gen,
2478 .level = level
2479 };
2480 struct btrfs_path *path;
2481 struct btrfs_root *root = wc->replay_dest;
2482 struct btrfs_key key;
2483 int i;
2484 int ret;
2485
2486 ret = btrfs_read_extent_buffer(eb, &check);
2487 if (ret)
2488 return ret;
2489
2490 level = btrfs_header_level(eb);
2491
2492 if (level != 0)
2493 return 0;
2494
2495 path = btrfs_alloc_path();
2496 if (!path)
2497 return -ENOMEM;
2498
2499 nritems = btrfs_header_nritems(eb);
2500 for (i = 0; i < nritems; i++) {
2501 btrfs_item_key_to_cpu(eb, &key, i);
2502
2503 /* inode keys are done during the first stage */
2504 if (key.type == BTRFS_INODE_ITEM_KEY &&
2505 wc->stage == LOG_WALK_REPLAY_INODES) {
2506 struct btrfs_inode_item *inode_item;
2507 u32 mode;
2508
2509 inode_item = btrfs_item_ptr(eb, i,
2510 struct btrfs_inode_item);
2511 /*
2512 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2513 * and never got linked before the fsync, skip it, as
2514 * replaying it is pointless since it would be deleted
2515 * later. We skip logging tmpfiles, but it's always
2516 * possible we are replaying a log created with a kernel
2517 * that used to log tmpfiles.
2518 */
2519 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2520 wc->ignore_cur_inode = true;
2521 continue;
2522 } else {
2523 wc->ignore_cur_inode = false;
2524 }
2525 ret = replay_xattr_deletes(wc->trans, root, log,
2526 path, key.objectid);
2527 if (ret)
2528 break;
2529 mode = btrfs_inode_mode(eb, inode_item);
2530 if (S_ISDIR(mode)) {
2531 ret = replay_dir_deletes(wc->trans,
2532 root, log, path, key.objectid, 0);
2533 if (ret)
2534 break;
2535 }
2536 ret = overwrite_item(wc->trans, root, path,
2537 eb, i, &key);
2538 if (ret)
2539 break;
2540
2541 /*
2542 * Before replaying extents, truncate the inode to its
2543 * size. We need to do it now and not after log replay
2544 * because before an fsync we can have prealloc extents
2545 * added beyond the inode's i_size. If we did it after,
2546 * through orphan cleanup for example, we would drop
2547 * those prealloc extents just after replaying them.
2548 */
2549 if (S_ISREG(mode)) {
2550 struct btrfs_drop_extents_args drop_args = { 0 };
2551 struct inode *inode;
2552 u64 from;
2553
2554 {
2555 struct btrfs_inode *btrfs_inode;
2556
2557 btrfs_inode = btrfs_iget_logging(key.objectid, root);
2558 if (IS_ERR(btrfs_inode)) {
2559 ret = PTR_ERR(btrfs_inode);
2560 break;
2561 }
2562 inode = &btrfs_inode->vfs_inode;
2563 }
2564 from = ALIGN(i_size_read(inode),
2565 root->fs_info->sectorsize);
2566 drop_args.start = from;
2567 drop_args.end = (u64)-1;
2568 drop_args.drop_cache = true;
2569 ret = btrfs_drop_extents(wc->trans, root,
2570 BTRFS_I(inode),
2571 &drop_args);
2572 if (!ret) {
2573 inode_sub_bytes(inode,
2574 drop_args.bytes_found);
2575 /* Update the inode's nbytes. */
2576 ret = btrfs_update_inode(wc->trans,
2577 root, BTRFS_I(inode));
2578 }
2579 iput(inode);
2580 if (ret)
2581 break;
2582 }
2583
2584 ret = link_to_fixup_dir(wc->trans, root,
2585 path, key.objectid);
2586 if (ret)
2587 break;
2588 }
2589
2590 if (wc->ignore_cur_inode)
2591 continue;
2592
2593 if (key.type == BTRFS_DIR_INDEX_KEY &&
2594 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2595 ret = replay_one_dir_item(wc->trans, root, path,
2596 eb, i, &key);
2597 if (ret)
2598 break;
2599 }
2600
2601 if (wc->stage < LOG_WALK_REPLAY_ALL)
2602 continue;
2603
2604 /* these keys are simply copied */
2605 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2606 ret = overwrite_item(wc->trans, root, path,
2607 eb, i, &key);
2608 if (ret)
2609 break;
2610 } else if (key.type == BTRFS_INODE_REF_KEY ||
2611 key.type == BTRFS_INODE_EXTREF_KEY) {
2612 ret = add_inode_ref(wc->trans, root, log, path,
2613 eb, i, &key);
2614 if (ret && ret != -ENOENT)
2615 break;
2616 ret = 0;
2617 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2618 ret = replay_one_extent(wc->trans, root, path,
2619 eb, i, &key);
2620 if (ret)
2621 break;
2622 }
2623 /*
2624 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2625 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2626 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2627 * older kernel with such keys, ignore them.
2628 */
2629 }
2630 btrfs_free_path(path);
2631 return ret;
2632 }
2633
2634 /*
2635 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2636 */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2637 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2638 {
2639 struct btrfs_block_group *cache;
2640
2641 cache = btrfs_lookup_block_group(fs_info, start);
2642 if (!cache) {
2643 btrfs_err(fs_info, "unable to find block group for %llu", start);
2644 return;
2645 }
2646
2647 spin_lock(&cache->space_info->lock);
2648 spin_lock(&cache->lock);
2649 cache->reserved -= fs_info->nodesize;
2650 cache->space_info->bytes_reserved -= fs_info->nodesize;
2651 spin_unlock(&cache->lock);
2652 spin_unlock(&cache->space_info->lock);
2653
2654 btrfs_put_block_group(cache);
2655 }
2656
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2657 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2658 struct extent_buffer *eb)
2659 {
2660 int ret;
2661
2662 btrfs_tree_lock(eb);
2663 btrfs_clear_buffer_dirty(trans, eb);
2664 wait_on_extent_buffer_writeback(eb);
2665 btrfs_tree_unlock(eb);
2666
2667 if (trans) {
2668 ret = btrfs_pin_reserved_extent(trans, eb->start, eb->len);
2669 if (ret)
2670 return ret;
2671 btrfs_redirty_list_add(trans->transaction, eb);
2672 } else {
2673 unaccount_log_buffer(eb->fs_info, eb->start);
2674 }
2675
2676 return 0;
2677 }
2678
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2679 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2680 struct btrfs_root *root,
2681 struct btrfs_path *path, int *level,
2682 struct walk_control *wc)
2683 {
2684 struct btrfs_fs_info *fs_info = root->fs_info;
2685 u64 bytenr;
2686 u64 ptr_gen;
2687 struct extent_buffer *next;
2688 struct extent_buffer *cur;
2689 int ret = 0;
2690
2691 while (*level > 0) {
2692 struct btrfs_tree_parent_check check = { 0 };
2693
2694 cur = path->nodes[*level];
2695
2696 WARN_ON(btrfs_header_level(cur) != *level);
2697
2698 if (path->slots[*level] >=
2699 btrfs_header_nritems(cur))
2700 break;
2701
2702 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2703 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2704 check.transid = ptr_gen;
2705 check.level = *level - 1;
2706 check.has_first_key = true;
2707 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2708
2709 next = btrfs_find_create_tree_block(fs_info, bytenr,
2710 btrfs_header_owner(cur),
2711 *level - 1);
2712 if (IS_ERR(next))
2713 return PTR_ERR(next);
2714
2715 if (*level == 1) {
2716 ret = wc->process_func(root, next, wc, ptr_gen,
2717 *level - 1);
2718 if (ret) {
2719 free_extent_buffer(next);
2720 return ret;
2721 }
2722
2723 path->slots[*level]++;
2724 if (wc->free) {
2725 ret = btrfs_read_extent_buffer(next, &check);
2726 if (ret) {
2727 free_extent_buffer(next);
2728 return ret;
2729 }
2730
2731 ret = clean_log_buffer(trans, next);
2732 if (ret) {
2733 free_extent_buffer(next);
2734 return ret;
2735 }
2736 }
2737 free_extent_buffer(next);
2738 continue;
2739 }
2740 ret = btrfs_read_extent_buffer(next, &check);
2741 if (ret) {
2742 free_extent_buffer(next);
2743 return ret;
2744 }
2745
2746 if (path->nodes[*level-1])
2747 free_extent_buffer(path->nodes[*level-1]);
2748 path->nodes[*level-1] = next;
2749 *level = btrfs_header_level(next);
2750 path->slots[*level] = 0;
2751 cond_resched();
2752 }
2753 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2754
2755 cond_resched();
2756 return 0;
2757 }
2758
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2759 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2760 struct btrfs_root *root,
2761 struct btrfs_path *path, int *level,
2762 struct walk_control *wc)
2763 {
2764 int i;
2765 int slot;
2766 int ret;
2767
2768 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2769 slot = path->slots[i];
2770 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2771 path->slots[i]++;
2772 *level = i;
2773 WARN_ON(*level == 0);
2774 return 0;
2775 } else {
2776 ret = wc->process_func(root, path->nodes[*level], wc,
2777 btrfs_header_generation(path->nodes[*level]),
2778 *level);
2779 if (ret)
2780 return ret;
2781
2782 if (wc->free) {
2783 ret = clean_log_buffer(trans, path->nodes[*level]);
2784 if (ret)
2785 return ret;
2786 }
2787 free_extent_buffer(path->nodes[*level]);
2788 path->nodes[*level] = NULL;
2789 *level = i + 1;
2790 }
2791 }
2792 return 1;
2793 }
2794
2795 /*
2796 * drop the reference count on the tree rooted at 'snap'. This traverses
2797 * the tree freeing any blocks that have a ref count of zero after being
2798 * decremented.
2799 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2800 static int walk_log_tree(struct btrfs_trans_handle *trans,
2801 struct btrfs_root *log, struct walk_control *wc)
2802 {
2803 int ret = 0;
2804 int wret;
2805 int level;
2806 struct btrfs_path *path;
2807 int orig_level;
2808
2809 path = btrfs_alloc_path();
2810 if (!path)
2811 return -ENOMEM;
2812
2813 level = btrfs_header_level(log->node);
2814 orig_level = level;
2815 path->nodes[level] = log->node;
2816 atomic_inc(&log->node->refs);
2817 path->slots[level] = 0;
2818
2819 while (1) {
2820 wret = walk_down_log_tree(trans, log, path, &level, wc);
2821 if (wret > 0)
2822 break;
2823 if (wret < 0) {
2824 ret = wret;
2825 goto out;
2826 }
2827
2828 wret = walk_up_log_tree(trans, log, path, &level, wc);
2829 if (wret > 0)
2830 break;
2831 if (wret < 0) {
2832 ret = wret;
2833 goto out;
2834 }
2835 }
2836
2837 /* was the root node processed? if not, catch it here */
2838 if (path->nodes[orig_level]) {
2839 ret = wc->process_func(log, path->nodes[orig_level], wc,
2840 btrfs_header_generation(path->nodes[orig_level]),
2841 orig_level);
2842 if (ret)
2843 goto out;
2844 if (wc->free)
2845 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2846 }
2847
2848 out:
2849 btrfs_free_path(path);
2850 return ret;
2851 }
2852
2853 /*
2854 * helper function to update the item for a given subvolumes log root
2855 * in the tree of log roots
2856 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2857 static int update_log_root(struct btrfs_trans_handle *trans,
2858 struct btrfs_root *log,
2859 struct btrfs_root_item *root_item)
2860 {
2861 struct btrfs_fs_info *fs_info = log->fs_info;
2862 int ret;
2863
2864 if (log->log_transid == 1) {
2865 /* insert root item on the first sync */
2866 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2867 &log->root_key, root_item);
2868 } else {
2869 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2870 &log->root_key, root_item);
2871 }
2872 return ret;
2873 }
2874
wait_log_commit(struct btrfs_root * root,int transid)2875 static void wait_log_commit(struct btrfs_root *root, int transid)
2876 {
2877 DEFINE_WAIT(wait);
2878 int index = transid % 2;
2879
2880 /*
2881 * we only allow two pending log transactions at a time,
2882 * so we know that if ours is more than 2 older than the
2883 * current transaction, we're done
2884 */
2885 for (;;) {
2886 prepare_to_wait(&root->log_commit_wait[index],
2887 &wait, TASK_UNINTERRUPTIBLE);
2888
2889 if (!(root->log_transid_committed < transid &&
2890 atomic_read(&root->log_commit[index])))
2891 break;
2892
2893 mutex_unlock(&root->log_mutex);
2894 schedule();
2895 mutex_lock(&root->log_mutex);
2896 }
2897 finish_wait(&root->log_commit_wait[index], &wait);
2898 }
2899
wait_for_writer(struct btrfs_root * root)2900 static void wait_for_writer(struct btrfs_root *root)
2901 {
2902 DEFINE_WAIT(wait);
2903
2904 for (;;) {
2905 prepare_to_wait(&root->log_writer_wait, &wait,
2906 TASK_UNINTERRUPTIBLE);
2907 if (!atomic_read(&root->log_writers))
2908 break;
2909
2910 mutex_unlock(&root->log_mutex);
2911 schedule();
2912 mutex_lock(&root->log_mutex);
2913 }
2914 finish_wait(&root->log_writer_wait, &wait);
2915 }
2916
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2917 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2918 struct btrfs_log_ctx *ctx)
2919 {
2920 mutex_lock(&root->log_mutex);
2921 list_del_init(&ctx->list);
2922 mutex_unlock(&root->log_mutex);
2923 }
2924
2925 /*
2926 * Invoked in log mutex context, or be sure there is no other task which
2927 * can access the list.
2928 */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2929 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2930 int index, int error)
2931 {
2932 struct btrfs_log_ctx *ctx;
2933 struct btrfs_log_ctx *safe;
2934
2935 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2936 list_del_init(&ctx->list);
2937 ctx->log_ret = error;
2938 }
2939 }
2940
2941 /*
2942 * btrfs_sync_log does sends a given tree log down to the disk and
2943 * updates the super blocks to record it. When this call is done,
2944 * you know that any inodes previously logged are safely on disk only
2945 * if it returns 0.
2946 *
2947 * Any other return value means you need to call btrfs_commit_transaction.
2948 * Some of the edge cases for fsyncing directories that have had unlinks
2949 * or renames done in the past mean that sometimes the only safe
2950 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2951 * that has happened.
2952 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2953 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2954 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2955 {
2956 int index1;
2957 int index2;
2958 int mark;
2959 int ret;
2960 struct btrfs_fs_info *fs_info = root->fs_info;
2961 struct btrfs_root *log = root->log_root;
2962 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2963 struct btrfs_root_item new_root_item;
2964 int log_transid = 0;
2965 struct btrfs_log_ctx root_log_ctx;
2966 struct blk_plug plug;
2967 u64 log_root_start;
2968 u64 log_root_level;
2969
2970 mutex_lock(&root->log_mutex);
2971 log_transid = ctx->log_transid;
2972 if (root->log_transid_committed >= log_transid) {
2973 mutex_unlock(&root->log_mutex);
2974 return ctx->log_ret;
2975 }
2976
2977 index1 = log_transid % 2;
2978 if (atomic_read(&root->log_commit[index1])) {
2979 wait_log_commit(root, log_transid);
2980 mutex_unlock(&root->log_mutex);
2981 return ctx->log_ret;
2982 }
2983 ASSERT(log_transid == root->log_transid);
2984 atomic_set(&root->log_commit[index1], 1);
2985
2986 /* wait for previous tree log sync to complete */
2987 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2988 wait_log_commit(root, log_transid - 1);
2989
2990 while (1) {
2991 int batch = atomic_read(&root->log_batch);
2992 /* when we're on an ssd, just kick the log commit out */
2993 if (!btrfs_test_opt(fs_info, SSD) &&
2994 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2995 mutex_unlock(&root->log_mutex);
2996 schedule_timeout_uninterruptible(1);
2997 mutex_lock(&root->log_mutex);
2998 }
2999 wait_for_writer(root);
3000 if (batch == atomic_read(&root->log_batch))
3001 break;
3002 }
3003
3004 /* bail out if we need to do a full commit */
3005 if (btrfs_need_log_full_commit(trans)) {
3006 ret = BTRFS_LOG_FORCE_COMMIT;
3007 mutex_unlock(&root->log_mutex);
3008 goto out;
3009 }
3010
3011 if (log_transid % 2 == 0)
3012 mark = EXTENT_DIRTY;
3013 else
3014 mark = EXTENT_NEW;
3015
3016 /* we start IO on all the marked extents here, but we don't actually
3017 * wait for them until later.
3018 */
3019 blk_start_plug(&plug);
3020 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3021 /*
3022 * -EAGAIN happens when someone, e.g., a concurrent transaction
3023 * commit, writes a dirty extent in this tree-log commit. This
3024 * concurrent write will create a hole writing out the extents,
3025 * and we cannot proceed on a zoned filesystem, requiring
3026 * sequential writing. While we can bail out to a full commit
3027 * here, but we can continue hoping the concurrent writing fills
3028 * the hole.
3029 */
3030 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3031 ret = 0;
3032 if (ret) {
3033 blk_finish_plug(&plug);
3034 btrfs_set_log_full_commit(trans);
3035 mutex_unlock(&root->log_mutex);
3036 goto out;
3037 }
3038
3039 /*
3040 * We _must_ update under the root->log_mutex in order to make sure we
3041 * have a consistent view of the log root we are trying to commit at
3042 * this moment.
3043 *
3044 * We _must_ copy this into a local copy, because we are not holding the
3045 * log_root_tree->log_mutex yet. This is important because when we
3046 * commit the log_root_tree we must have a consistent view of the
3047 * log_root_tree when we update the super block to point at the
3048 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3049 * with the commit and possibly point at the new block which we may not
3050 * have written out.
3051 */
3052 btrfs_set_root_node(&log->root_item, log->node);
3053 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3054
3055 root->log_transid++;
3056 log->log_transid = root->log_transid;
3057 root->log_start_pid = 0;
3058 /*
3059 * IO has been started, blocks of the log tree have WRITTEN flag set
3060 * in their headers. new modifications of the log will be written to
3061 * new positions. so it's safe to allow log writers to go in.
3062 */
3063 mutex_unlock(&root->log_mutex);
3064
3065 if (btrfs_is_zoned(fs_info)) {
3066 mutex_lock(&fs_info->tree_root->log_mutex);
3067 if (!log_root_tree->node) {
3068 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3069 if (ret) {
3070 mutex_unlock(&fs_info->tree_root->log_mutex);
3071 blk_finish_plug(&plug);
3072 goto out;
3073 }
3074 }
3075 mutex_unlock(&fs_info->tree_root->log_mutex);
3076 }
3077
3078 btrfs_init_log_ctx(&root_log_ctx, NULL);
3079
3080 mutex_lock(&log_root_tree->log_mutex);
3081
3082 index2 = log_root_tree->log_transid % 2;
3083 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3084 root_log_ctx.log_transid = log_root_tree->log_transid;
3085
3086 /*
3087 * Now we are safe to update the log_root_tree because we're under the
3088 * log_mutex, and we're a current writer so we're holding the commit
3089 * open until we drop the log_mutex.
3090 */
3091 ret = update_log_root(trans, log, &new_root_item);
3092 if (ret) {
3093 if (!list_empty(&root_log_ctx.list))
3094 list_del_init(&root_log_ctx.list);
3095
3096 blk_finish_plug(&plug);
3097 btrfs_set_log_full_commit(trans);
3098 if (ret != -ENOSPC)
3099 btrfs_err(fs_info,
3100 "failed to update log for root %llu ret %d",
3101 root->root_key.objectid, ret);
3102 btrfs_wait_tree_log_extents(log, mark);
3103 mutex_unlock(&log_root_tree->log_mutex);
3104 goto out;
3105 }
3106
3107 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3108 blk_finish_plug(&plug);
3109 list_del_init(&root_log_ctx.list);
3110 mutex_unlock(&log_root_tree->log_mutex);
3111 ret = root_log_ctx.log_ret;
3112 goto out;
3113 }
3114
3115 index2 = root_log_ctx.log_transid % 2;
3116 if (atomic_read(&log_root_tree->log_commit[index2])) {
3117 blk_finish_plug(&plug);
3118 ret = btrfs_wait_tree_log_extents(log, mark);
3119 wait_log_commit(log_root_tree,
3120 root_log_ctx.log_transid);
3121 mutex_unlock(&log_root_tree->log_mutex);
3122 if (!ret)
3123 ret = root_log_ctx.log_ret;
3124 goto out;
3125 }
3126 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3127 atomic_set(&log_root_tree->log_commit[index2], 1);
3128
3129 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3130 wait_log_commit(log_root_tree,
3131 root_log_ctx.log_transid - 1);
3132 }
3133
3134 /*
3135 * now that we've moved on to the tree of log tree roots,
3136 * check the full commit flag again
3137 */
3138 if (btrfs_need_log_full_commit(trans)) {
3139 blk_finish_plug(&plug);
3140 btrfs_wait_tree_log_extents(log, mark);
3141 mutex_unlock(&log_root_tree->log_mutex);
3142 ret = BTRFS_LOG_FORCE_COMMIT;
3143 goto out_wake_log_root;
3144 }
3145
3146 ret = btrfs_write_marked_extents(fs_info,
3147 &log_root_tree->dirty_log_pages,
3148 EXTENT_DIRTY | EXTENT_NEW);
3149 blk_finish_plug(&plug);
3150 /*
3151 * As described above, -EAGAIN indicates a hole in the extents. We
3152 * cannot wait for these write outs since the waiting cause a
3153 * deadlock. Bail out to the full commit instead.
3154 */
3155 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3156 btrfs_set_log_full_commit(trans);
3157 btrfs_wait_tree_log_extents(log, mark);
3158 mutex_unlock(&log_root_tree->log_mutex);
3159 goto out_wake_log_root;
3160 } else if (ret) {
3161 btrfs_set_log_full_commit(trans);
3162 mutex_unlock(&log_root_tree->log_mutex);
3163 goto out_wake_log_root;
3164 }
3165 ret = btrfs_wait_tree_log_extents(log, mark);
3166 if (!ret)
3167 ret = btrfs_wait_tree_log_extents(log_root_tree,
3168 EXTENT_NEW | EXTENT_DIRTY);
3169 if (ret) {
3170 btrfs_set_log_full_commit(trans);
3171 mutex_unlock(&log_root_tree->log_mutex);
3172 goto out_wake_log_root;
3173 }
3174
3175 log_root_start = log_root_tree->node->start;
3176 log_root_level = btrfs_header_level(log_root_tree->node);
3177 log_root_tree->log_transid++;
3178 mutex_unlock(&log_root_tree->log_mutex);
3179
3180 /*
3181 * Here we are guaranteed that nobody is going to write the superblock
3182 * for the current transaction before us and that neither we do write
3183 * our superblock before the previous transaction finishes its commit
3184 * and writes its superblock, because:
3185 *
3186 * 1) We are holding a handle on the current transaction, so no body
3187 * can commit it until we release the handle;
3188 *
3189 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3190 * if the previous transaction is still committing, and hasn't yet
3191 * written its superblock, we wait for it to do it, because a
3192 * transaction commit acquires the tree_log_mutex when the commit
3193 * begins and releases it only after writing its superblock.
3194 */
3195 mutex_lock(&fs_info->tree_log_mutex);
3196
3197 /*
3198 * The previous transaction writeout phase could have failed, and thus
3199 * marked the fs in an error state. We must not commit here, as we
3200 * could have updated our generation in the super_for_commit and
3201 * writing the super here would result in transid mismatches. If there
3202 * is an error here just bail.
3203 */
3204 if (BTRFS_FS_ERROR(fs_info)) {
3205 ret = -EIO;
3206 btrfs_set_log_full_commit(trans);
3207 btrfs_abort_transaction(trans, ret);
3208 mutex_unlock(&fs_info->tree_log_mutex);
3209 goto out_wake_log_root;
3210 }
3211
3212 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3213 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3214 ret = write_all_supers(fs_info, 1);
3215 mutex_unlock(&fs_info->tree_log_mutex);
3216 if (ret) {
3217 btrfs_set_log_full_commit(trans);
3218 btrfs_abort_transaction(trans, ret);
3219 goto out_wake_log_root;
3220 }
3221
3222 /*
3223 * We know there can only be one task here, since we have not yet set
3224 * root->log_commit[index1] to 0 and any task attempting to sync the
3225 * log must wait for the previous log transaction to commit if it's
3226 * still in progress or wait for the current log transaction commit if
3227 * someone else already started it. We use <= and not < because the
3228 * first log transaction has an ID of 0.
3229 */
3230 ASSERT(root->last_log_commit <= log_transid);
3231 root->last_log_commit = log_transid;
3232
3233 out_wake_log_root:
3234 mutex_lock(&log_root_tree->log_mutex);
3235 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3236
3237 log_root_tree->log_transid_committed++;
3238 atomic_set(&log_root_tree->log_commit[index2], 0);
3239 mutex_unlock(&log_root_tree->log_mutex);
3240
3241 /*
3242 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3243 * all the updates above are seen by the woken threads. It might not be
3244 * necessary, but proving that seems to be hard.
3245 */
3246 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3247 out:
3248 mutex_lock(&root->log_mutex);
3249 btrfs_remove_all_log_ctxs(root, index1, ret);
3250 root->log_transid_committed++;
3251 atomic_set(&root->log_commit[index1], 0);
3252 mutex_unlock(&root->log_mutex);
3253
3254 /*
3255 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3256 * all the updates above are seen by the woken threads. It might not be
3257 * necessary, but proving that seems to be hard.
3258 */
3259 cond_wake_up(&root->log_commit_wait[index1]);
3260 return ret;
3261 }
3262
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3263 static void free_log_tree(struct btrfs_trans_handle *trans,
3264 struct btrfs_root *log)
3265 {
3266 int ret;
3267 struct walk_control wc = {
3268 .free = 1,
3269 .process_func = process_one_buffer
3270 };
3271
3272 if (log->node) {
3273 ret = walk_log_tree(trans, log, &wc);
3274 if (ret) {
3275 /*
3276 * We weren't able to traverse the entire log tree, the
3277 * typical scenario is getting an -EIO when reading an
3278 * extent buffer of the tree, due to a previous writeback
3279 * failure of it.
3280 */
3281 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3282 &log->fs_info->fs_state);
3283
3284 /*
3285 * Some extent buffers of the log tree may still be dirty
3286 * and not yet written back to storage, because we may
3287 * have updates to a log tree without syncing a log tree,
3288 * such as during rename and link operations. So flush
3289 * them out and wait for their writeback to complete, so
3290 * that we properly cleanup their state and pages.
3291 */
3292 btrfs_write_marked_extents(log->fs_info,
3293 &log->dirty_log_pages,
3294 EXTENT_DIRTY | EXTENT_NEW);
3295 btrfs_wait_tree_log_extents(log,
3296 EXTENT_DIRTY | EXTENT_NEW);
3297
3298 if (trans)
3299 btrfs_abort_transaction(trans, ret);
3300 else
3301 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3302 }
3303 }
3304
3305 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3306 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3307 extent_io_tree_release(&log->log_csum_range);
3308
3309 btrfs_put_root(log);
3310 }
3311
3312 /*
3313 * free all the extents used by the tree log. This should be called
3314 * at commit time of the full transaction
3315 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3316 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3317 {
3318 if (root->log_root) {
3319 free_log_tree(trans, root->log_root);
3320 root->log_root = NULL;
3321 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3322 }
3323 return 0;
3324 }
3325
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3326 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3327 struct btrfs_fs_info *fs_info)
3328 {
3329 if (fs_info->log_root_tree) {
3330 free_log_tree(trans, fs_info->log_root_tree);
3331 fs_info->log_root_tree = NULL;
3332 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3333 }
3334 return 0;
3335 }
3336
3337 /*
3338 * Check if an inode was logged in the current transaction. This correctly deals
3339 * with the case where the inode was logged but has a logged_trans of 0, which
3340 * happens if the inode is evicted and loaded again, as logged_trans is an in
3341 * memory only field (not persisted).
3342 *
3343 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3344 * and < 0 on error.
3345 */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3346 static int inode_logged(const struct btrfs_trans_handle *trans,
3347 struct btrfs_inode *inode,
3348 struct btrfs_path *path_in)
3349 {
3350 struct btrfs_path *path = path_in;
3351 struct btrfs_key key;
3352 int ret;
3353
3354 if (inode->logged_trans == trans->transid)
3355 return 1;
3356
3357 /*
3358 * If logged_trans is not 0, then we know the inode logged was not logged
3359 * in this transaction, so we can return false right away.
3360 */
3361 if (inode->logged_trans > 0)
3362 return 0;
3363
3364 /*
3365 * If no log tree was created for this root in this transaction, then
3366 * the inode can not have been logged in this transaction. In that case
3367 * set logged_trans to anything greater than 0 and less than the current
3368 * transaction's ID, to avoid the search below in a future call in case
3369 * a log tree gets created after this.
3370 */
3371 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3372 inode->logged_trans = trans->transid - 1;
3373 return 0;
3374 }
3375
3376 /*
3377 * We have a log tree and the inode's logged_trans is 0. We can't tell
3378 * for sure if the inode was logged before in this transaction by looking
3379 * only at logged_trans. We could be pessimistic and assume it was, but
3380 * that can lead to unnecessarily logging an inode during rename and link
3381 * operations, and then further updating the log in followup rename and
3382 * link operations, specially if it's a directory, which adds latency
3383 * visible to applications doing a series of rename or link operations.
3384 *
3385 * A logged_trans of 0 here can mean several things:
3386 *
3387 * 1) The inode was never logged since the filesystem was mounted, and may
3388 * or may have not been evicted and loaded again;
3389 *
3390 * 2) The inode was logged in a previous transaction, then evicted and
3391 * then loaded again;
3392 *
3393 * 3) The inode was logged in the current transaction, then evicted and
3394 * then loaded again.
3395 *
3396 * For cases 1) and 2) we don't want to return true, but we need to detect
3397 * case 3) and return true. So we do a search in the log root for the inode
3398 * item.
3399 */
3400 key.objectid = btrfs_ino(inode);
3401 key.type = BTRFS_INODE_ITEM_KEY;
3402 key.offset = 0;
3403
3404 if (!path) {
3405 path = btrfs_alloc_path();
3406 if (!path)
3407 return -ENOMEM;
3408 }
3409
3410 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3411
3412 if (path_in)
3413 btrfs_release_path(path);
3414 else
3415 btrfs_free_path(path);
3416
3417 /*
3418 * Logging an inode always results in logging its inode item. So if we
3419 * did not find the item we know the inode was not logged for sure.
3420 */
3421 if (ret < 0) {
3422 return ret;
3423 } else if (ret > 0) {
3424 /*
3425 * Set logged_trans to a value greater than 0 and less then the
3426 * current transaction to avoid doing the search in future calls.
3427 */
3428 inode->logged_trans = trans->transid - 1;
3429 return 0;
3430 }
3431
3432 /*
3433 * The inode was previously logged and then evicted, set logged_trans to
3434 * the current transacion's ID, to avoid future tree searches as long as
3435 * the inode is not evicted again.
3436 */
3437 inode->logged_trans = trans->transid;
3438
3439 /*
3440 * If it's a directory, then we must set last_dir_index_offset to the
3441 * maximum possible value, so that the next attempt to log the inode does
3442 * not skip checking if dir index keys found in modified subvolume tree
3443 * leaves have been logged before, otherwise it would result in attempts
3444 * to insert duplicate dir index keys in the log tree. This must be done
3445 * because last_dir_index_offset is an in-memory only field, not persisted
3446 * in the inode item or any other on-disk structure, so its value is lost
3447 * once the inode is evicted.
3448 */
3449 if (S_ISDIR(inode->vfs_inode.i_mode))
3450 inode->last_dir_index_offset = (u64)-1;
3451
3452 return 1;
3453 }
3454
3455 /*
3456 * Delete a directory entry from the log if it exists.
3457 *
3458 * Returns < 0 on error
3459 * 1 if the entry does not exists
3460 * 0 if the entry existed and was successfully deleted
3461 */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3462 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3463 struct btrfs_root *log,
3464 struct btrfs_path *path,
3465 u64 dir_ino,
3466 const struct fscrypt_str *name,
3467 u64 index)
3468 {
3469 struct btrfs_dir_item *di;
3470
3471 /*
3472 * We only log dir index items of a directory, so we don't need to look
3473 * for dir item keys.
3474 */
3475 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3476 index, name, -1);
3477 if (IS_ERR(di))
3478 return PTR_ERR(di);
3479 else if (!di)
3480 return 1;
3481
3482 /*
3483 * We do not need to update the size field of the directory's
3484 * inode item because on log replay we update the field to reflect
3485 * all existing entries in the directory (see overwrite_item()).
3486 */
3487 return btrfs_delete_one_dir_name(trans, log, path, di);
3488 }
3489
3490 /*
3491 * If both a file and directory are logged, and unlinks or renames are
3492 * mixed in, we have a few interesting corners:
3493 *
3494 * create file X in dir Y
3495 * link file X to X.link in dir Y
3496 * fsync file X
3497 * unlink file X but leave X.link
3498 * fsync dir Y
3499 *
3500 * After a crash we would expect only X.link to exist. But file X
3501 * didn't get fsync'd again so the log has back refs for X and X.link.
3502 *
3503 * We solve this by removing directory entries and inode backrefs from the
3504 * log when a file that was logged in the current transaction is
3505 * unlinked. Any later fsync will include the updated log entries, and
3506 * we'll be able to reconstruct the proper directory items from backrefs.
3507 *
3508 * This optimizations allows us to avoid relogging the entire inode
3509 * or the entire directory.
3510 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3511 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3512 struct btrfs_root *root,
3513 const struct fscrypt_str *name,
3514 struct btrfs_inode *dir, u64 index)
3515 {
3516 struct btrfs_path *path;
3517 int ret;
3518
3519 ret = inode_logged(trans, dir, NULL);
3520 if (ret == 0)
3521 return;
3522 else if (ret < 0) {
3523 btrfs_set_log_full_commit(trans);
3524 return;
3525 }
3526
3527 ret = join_running_log_trans(root);
3528 if (ret)
3529 return;
3530
3531 mutex_lock(&dir->log_mutex);
3532
3533 path = btrfs_alloc_path();
3534 if (!path) {
3535 ret = -ENOMEM;
3536 goto out_unlock;
3537 }
3538
3539 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3540 name, index);
3541 btrfs_free_path(path);
3542 out_unlock:
3543 mutex_unlock(&dir->log_mutex);
3544 if (ret < 0)
3545 btrfs_set_log_full_commit(trans);
3546 btrfs_end_log_trans(root);
3547 }
3548
3549 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3550 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3551 struct btrfs_root *root,
3552 const struct fscrypt_str *name,
3553 struct btrfs_inode *inode, u64 dirid)
3554 {
3555 struct btrfs_root *log;
3556 u64 index;
3557 int ret;
3558
3559 ret = inode_logged(trans, inode, NULL);
3560 if (ret == 0)
3561 return;
3562 else if (ret < 0) {
3563 btrfs_set_log_full_commit(trans);
3564 return;
3565 }
3566
3567 ret = join_running_log_trans(root);
3568 if (ret)
3569 return;
3570 log = root->log_root;
3571 mutex_lock(&inode->log_mutex);
3572
3573 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3574 dirid, &index);
3575 mutex_unlock(&inode->log_mutex);
3576 if (ret < 0 && ret != -ENOENT)
3577 btrfs_set_log_full_commit(trans);
3578 btrfs_end_log_trans(root);
3579 }
3580
3581 /*
3582 * creates a range item in the log for 'dirid'. first_offset and
3583 * last_offset tell us which parts of the key space the log should
3584 * be considered authoritative for.
3585 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3586 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3587 struct btrfs_root *log,
3588 struct btrfs_path *path,
3589 u64 dirid,
3590 u64 first_offset, u64 last_offset)
3591 {
3592 int ret;
3593 struct btrfs_key key;
3594 struct btrfs_dir_log_item *item;
3595
3596 key.objectid = dirid;
3597 key.offset = first_offset;
3598 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3599 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3600 /*
3601 * -EEXIST is fine and can happen sporadically when we are logging a
3602 * directory and have concurrent insertions in the subvolume's tree for
3603 * items from other inodes and that result in pushing off some dir items
3604 * from one leaf to another in order to accommodate for the new items.
3605 * This results in logging the same dir index range key.
3606 */
3607 if (ret && ret != -EEXIST)
3608 return ret;
3609
3610 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3611 struct btrfs_dir_log_item);
3612 if (ret == -EEXIST) {
3613 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3614
3615 /*
3616 * btrfs_del_dir_entries_in_log() might have been called during
3617 * an unlink between the initial insertion of this key and the
3618 * current update, or we might be logging a single entry deletion
3619 * during a rename, so set the new last_offset to the max value.
3620 */
3621 last_offset = max(last_offset, curr_end);
3622 }
3623 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3624 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3625 btrfs_release_path(path);
3626 return 0;
3627 }
3628
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3629 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3630 struct btrfs_inode *inode,
3631 struct extent_buffer *src,
3632 struct btrfs_path *dst_path,
3633 int start_slot,
3634 int count)
3635 {
3636 struct btrfs_root *log = inode->root->log_root;
3637 char *ins_data = NULL;
3638 struct btrfs_item_batch batch;
3639 struct extent_buffer *dst;
3640 unsigned long src_offset;
3641 unsigned long dst_offset;
3642 u64 last_index;
3643 struct btrfs_key key;
3644 u32 item_size;
3645 int ret;
3646 int i;
3647
3648 ASSERT(count > 0);
3649 batch.nr = count;
3650
3651 if (count == 1) {
3652 btrfs_item_key_to_cpu(src, &key, start_slot);
3653 item_size = btrfs_item_size(src, start_slot);
3654 batch.keys = &key;
3655 batch.data_sizes = &item_size;
3656 batch.total_data_size = item_size;
3657 } else {
3658 struct btrfs_key *ins_keys;
3659 u32 *ins_sizes;
3660
3661 ins_data = kmalloc(count * sizeof(u32) +
3662 count * sizeof(struct btrfs_key), GFP_NOFS);
3663 if (!ins_data)
3664 return -ENOMEM;
3665
3666 ins_sizes = (u32 *)ins_data;
3667 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3668 batch.keys = ins_keys;
3669 batch.data_sizes = ins_sizes;
3670 batch.total_data_size = 0;
3671
3672 for (i = 0; i < count; i++) {
3673 const int slot = start_slot + i;
3674
3675 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3676 ins_sizes[i] = btrfs_item_size(src, slot);
3677 batch.total_data_size += ins_sizes[i];
3678 }
3679 }
3680
3681 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3682 if (ret)
3683 goto out;
3684
3685 dst = dst_path->nodes[0];
3686 /*
3687 * Copy all the items in bulk, in a single copy operation. Item data is
3688 * organized such that it's placed at the end of a leaf and from right
3689 * to left. For example, the data for the second item ends at an offset
3690 * that matches the offset where the data for the first item starts, the
3691 * data for the third item ends at an offset that matches the offset
3692 * where the data of the second items starts, and so on.
3693 * Therefore our source and destination start offsets for copy match the
3694 * offsets of the last items (highest slots).
3695 */
3696 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3697 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3698 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3699 btrfs_release_path(dst_path);
3700
3701 last_index = batch.keys[count - 1].offset;
3702 ASSERT(last_index > inode->last_dir_index_offset);
3703
3704 /*
3705 * If for some unexpected reason the last item's index is not greater
3706 * than the last index we logged, warn and force a transaction commit.
3707 */
3708 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3709 ret = BTRFS_LOG_FORCE_COMMIT;
3710 else
3711 inode->last_dir_index_offset = last_index;
3712
3713 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3714 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3715 out:
3716 kfree(ins_data);
3717
3718 return ret;
3719 }
3720
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3721 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3722 struct btrfs_inode *inode,
3723 struct btrfs_path *path,
3724 struct btrfs_path *dst_path,
3725 struct btrfs_log_ctx *ctx,
3726 u64 *last_old_dentry_offset)
3727 {
3728 struct btrfs_root *log = inode->root->log_root;
3729 struct extent_buffer *src;
3730 const int nritems = btrfs_header_nritems(path->nodes[0]);
3731 const u64 ino = btrfs_ino(inode);
3732 bool last_found = false;
3733 int batch_start = 0;
3734 int batch_size = 0;
3735 int i;
3736
3737 /*
3738 * We need to clone the leaf, release the read lock on it, and use the
3739 * clone before modifying the log tree. See the comment at copy_items()
3740 * about why we need to do this.
3741 */
3742 src = btrfs_clone_extent_buffer(path->nodes[0]);
3743 if (!src)
3744 return -ENOMEM;
3745
3746 i = path->slots[0];
3747 btrfs_release_path(path);
3748 path->nodes[0] = src;
3749 path->slots[0] = i;
3750
3751 for (; i < nritems; i++) {
3752 struct btrfs_dir_item *di;
3753 struct btrfs_key key;
3754 int ret;
3755
3756 btrfs_item_key_to_cpu(src, &key, i);
3757
3758 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3759 last_found = true;
3760 break;
3761 }
3762
3763 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3764
3765 /*
3766 * Skip ranges of items that consist only of dir item keys created
3767 * in past transactions. However if we find a gap, we must log a
3768 * dir index range item for that gap, so that index keys in that
3769 * gap are deleted during log replay.
3770 */
3771 if (btrfs_dir_transid(src, di) < trans->transid) {
3772 if (key.offset > *last_old_dentry_offset + 1) {
3773 ret = insert_dir_log_key(trans, log, dst_path,
3774 ino, *last_old_dentry_offset + 1,
3775 key.offset - 1);
3776 if (ret < 0)
3777 return ret;
3778 }
3779
3780 *last_old_dentry_offset = key.offset;
3781 continue;
3782 }
3783
3784 /* If we logged this dir index item before, we can skip it. */
3785 if (key.offset <= inode->last_dir_index_offset)
3786 continue;
3787
3788 /*
3789 * We must make sure that when we log a directory entry, the
3790 * corresponding inode, after log replay, has a matching link
3791 * count. For example:
3792 *
3793 * touch foo
3794 * mkdir mydir
3795 * sync
3796 * ln foo mydir/bar
3797 * xfs_io -c "fsync" mydir
3798 * <crash>
3799 * <mount fs and log replay>
3800 *
3801 * Would result in a fsync log that when replayed, our file inode
3802 * would have a link count of 1, but we get two directory entries
3803 * pointing to the same inode. After removing one of the names,
3804 * it would not be possible to remove the other name, which
3805 * resulted always in stale file handle errors, and would not be
3806 * possible to rmdir the parent directory, since its i_size could
3807 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3808 * resulting in -ENOTEMPTY errors.
3809 */
3810 if (!ctx->log_new_dentries) {
3811 struct btrfs_key di_key;
3812
3813 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3814 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3815 ctx->log_new_dentries = true;
3816 }
3817
3818 if (batch_size == 0)
3819 batch_start = i;
3820 batch_size++;
3821 }
3822
3823 if (batch_size > 0) {
3824 int ret;
3825
3826 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3827 batch_start, batch_size);
3828 if (ret < 0)
3829 return ret;
3830 }
3831
3832 return last_found ? 1 : 0;
3833 }
3834
3835 /*
3836 * log all the items included in the current transaction for a given
3837 * directory. This also creates the range items in the log tree required
3838 * to replay anything deleted before the fsync
3839 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3840 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3841 struct btrfs_inode *inode,
3842 struct btrfs_path *path,
3843 struct btrfs_path *dst_path,
3844 struct btrfs_log_ctx *ctx,
3845 u64 min_offset, u64 *last_offset_ret)
3846 {
3847 struct btrfs_key min_key;
3848 struct btrfs_root *root = inode->root;
3849 struct btrfs_root *log = root->log_root;
3850 int ret;
3851 u64 last_old_dentry_offset = min_offset - 1;
3852 u64 last_offset = (u64)-1;
3853 u64 ino = btrfs_ino(inode);
3854
3855 min_key.objectid = ino;
3856 min_key.type = BTRFS_DIR_INDEX_KEY;
3857 min_key.offset = min_offset;
3858
3859 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3860
3861 /*
3862 * we didn't find anything from this transaction, see if there
3863 * is anything at all
3864 */
3865 if (ret != 0 || min_key.objectid != ino ||
3866 min_key.type != BTRFS_DIR_INDEX_KEY) {
3867 min_key.objectid = ino;
3868 min_key.type = BTRFS_DIR_INDEX_KEY;
3869 min_key.offset = (u64)-1;
3870 btrfs_release_path(path);
3871 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3872 if (ret < 0) {
3873 btrfs_release_path(path);
3874 return ret;
3875 }
3876 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3877
3878 /* if ret == 0 there are items for this type,
3879 * create a range to tell us the last key of this type.
3880 * otherwise, there are no items in this directory after
3881 * *min_offset, and we create a range to indicate that.
3882 */
3883 if (ret == 0) {
3884 struct btrfs_key tmp;
3885
3886 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3887 path->slots[0]);
3888 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3889 last_old_dentry_offset = tmp.offset;
3890 } else if (ret > 0) {
3891 ret = 0;
3892 }
3893
3894 goto done;
3895 }
3896
3897 /* go backward to find any previous key */
3898 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3899 if (ret == 0) {
3900 struct btrfs_key tmp;
3901
3902 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3903 /*
3904 * The dir index key before the first one we found that needs to
3905 * be logged might be in a previous leaf, and there might be a
3906 * gap between these keys, meaning that we had deletions that
3907 * happened. So the key range item we log (key type
3908 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3909 * previous key's offset plus 1, so that those deletes are replayed.
3910 */
3911 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3912 last_old_dentry_offset = tmp.offset;
3913 } else if (ret < 0) {
3914 goto done;
3915 }
3916
3917 btrfs_release_path(path);
3918
3919 /*
3920 * Find the first key from this transaction again or the one we were at
3921 * in the loop below in case we had to reschedule. We may be logging the
3922 * directory without holding its VFS lock, which happen when logging new
3923 * dentries (through log_new_dir_dentries()) or in some cases when we
3924 * need to log the parent directory of an inode. This means a dir index
3925 * key might be deleted from the inode's root, and therefore we may not
3926 * find it anymore. If we can't find it, just move to the next key. We
3927 * can not bail out and ignore, because if we do that we will simply
3928 * not log dir index keys that come after the one that was just deleted
3929 * and we can end up logging a dir index range that ends at (u64)-1
3930 * (@last_offset is initialized to that), resulting in removing dir
3931 * entries we should not remove at log replay time.
3932 */
3933 search:
3934 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3935 if (ret > 0) {
3936 ret = btrfs_next_item(root, path);
3937 if (ret > 0) {
3938 /* There are no more keys in the inode's root. */
3939 ret = 0;
3940 goto done;
3941 }
3942 }
3943 if (ret < 0)
3944 goto done;
3945
3946 /*
3947 * we have a block from this transaction, log every item in it
3948 * from our directory
3949 */
3950 while (1) {
3951 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3952 &last_old_dentry_offset);
3953 if (ret != 0) {
3954 if (ret > 0)
3955 ret = 0;
3956 goto done;
3957 }
3958 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3959
3960 /*
3961 * look ahead to the next item and see if it is also
3962 * from this directory and from this transaction
3963 */
3964 ret = btrfs_next_leaf(root, path);
3965 if (ret) {
3966 if (ret == 1) {
3967 last_offset = (u64)-1;
3968 ret = 0;
3969 }
3970 goto done;
3971 }
3972 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3973 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3974 last_offset = (u64)-1;
3975 goto done;
3976 }
3977 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3978 /*
3979 * The next leaf was not changed in the current transaction
3980 * and has at least one dir index key.
3981 * We check for the next key because there might have been
3982 * one or more deletions between the last key we logged and
3983 * that next key. So the key range item we log (key type
3984 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3985 * offset minus 1, so that those deletes are replayed.
3986 */
3987 last_offset = min_key.offset - 1;
3988 goto done;
3989 }
3990 if (need_resched()) {
3991 btrfs_release_path(path);
3992 cond_resched();
3993 goto search;
3994 }
3995 }
3996 done:
3997 btrfs_release_path(path);
3998 btrfs_release_path(dst_path);
3999
4000 if (ret == 0) {
4001 *last_offset_ret = last_offset;
4002 /*
4003 * In case the leaf was changed in the current transaction but
4004 * all its dir items are from a past transaction, the last item
4005 * in the leaf is a dir item and there's no gap between that last
4006 * dir item and the first one on the next leaf (which did not
4007 * change in the current transaction), then we don't need to log
4008 * a range, last_old_dentry_offset is == to last_offset.
4009 */
4010 ASSERT(last_old_dentry_offset <= last_offset);
4011 if (last_old_dentry_offset < last_offset)
4012 ret = insert_dir_log_key(trans, log, path, ino,
4013 last_old_dentry_offset + 1,
4014 last_offset);
4015 }
4016
4017 return ret;
4018 }
4019
4020 /*
4021 * If the inode was logged before and it was evicted, then its
4022 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
4023 * key offset. If that's the case, search for it and update the inode. This
4024 * is to avoid lookups in the log tree every time we try to insert a dir index
4025 * key from a leaf changed in the current transaction, and to allow us to always
4026 * do batch insertions of dir index keys.
4027 */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)4028 static int update_last_dir_index_offset(struct btrfs_inode *inode,
4029 struct btrfs_path *path,
4030 const struct btrfs_log_ctx *ctx)
4031 {
4032 const u64 ino = btrfs_ino(inode);
4033 struct btrfs_key key;
4034 int ret;
4035
4036 lockdep_assert_held(&inode->log_mutex);
4037
4038 if (inode->last_dir_index_offset != (u64)-1)
4039 return 0;
4040
4041 if (!ctx->logged_before) {
4042 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4043 return 0;
4044 }
4045
4046 key.objectid = ino;
4047 key.type = BTRFS_DIR_INDEX_KEY;
4048 key.offset = (u64)-1;
4049
4050 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4051 /*
4052 * An error happened or we actually have an index key with an offset
4053 * value of (u64)-1. Bail out, we're done.
4054 */
4055 if (ret <= 0)
4056 goto out;
4057
4058 ret = 0;
4059 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4060
4061 /*
4062 * No dir index items, bail out and leave last_dir_index_offset with
4063 * the value right before the first valid index value.
4064 */
4065 if (path->slots[0] == 0)
4066 goto out;
4067
4068 /*
4069 * btrfs_search_slot() left us at one slot beyond the slot with the last
4070 * index key, or beyond the last key of the directory that is not an
4071 * index key. If we have an index key before, set last_dir_index_offset
4072 * to its offset value, otherwise leave it with a value right before the
4073 * first valid index value, as it means we have an empty directory.
4074 */
4075 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4076 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4077 inode->last_dir_index_offset = key.offset;
4078
4079 out:
4080 btrfs_release_path(path);
4081
4082 return ret;
4083 }
4084
4085 /*
4086 * logging directories is very similar to logging inodes, We find all the items
4087 * from the current transaction and write them to the log.
4088 *
4089 * The recovery code scans the directory in the subvolume, and if it finds a
4090 * key in the range logged that is not present in the log tree, then it means
4091 * that dir entry was unlinked during the transaction.
4092 *
4093 * In order for that scan to work, we must include one key smaller than
4094 * the smallest logged by this transaction and one key larger than the largest
4095 * key logged by this transaction.
4096 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4097 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4098 struct btrfs_inode *inode,
4099 struct btrfs_path *path,
4100 struct btrfs_path *dst_path,
4101 struct btrfs_log_ctx *ctx)
4102 {
4103 u64 min_key;
4104 u64 max_key;
4105 int ret;
4106
4107 ret = update_last_dir_index_offset(inode, path, ctx);
4108 if (ret)
4109 return ret;
4110
4111 min_key = BTRFS_DIR_START_INDEX;
4112 max_key = 0;
4113
4114 while (1) {
4115 ret = log_dir_items(trans, inode, path, dst_path,
4116 ctx, min_key, &max_key);
4117 if (ret)
4118 return ret;
4119 if (max_key == (u64)-1)
4120 break;
4121 min_key = max_key + 1;
4122 }
4123
4124 return 0;
4125 }
4126
4127 /*
4128 * a helper function to drop items from the log before we relog an
4129 * inode. max_key_type indicates the highest item type to remove.
4130 * This cannot be run for file data extents because it does not
4131 * free the extents they point to.
4132 */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4133 static int drop_inode_items(struct btrfs_trans_handle *trans,
4134 struct btrfs_root *log,
4135 struct btrfs_path *path,
4136 struct btrfs_inode *inode,
4137 int max_key_type)
4138 {
4139 int ret;
4140 struct btrfs_key key;
4141 struct btrfs_key found_key;
4142 int start_slot;
4143
4144 key.objectid = btrfs_ino(inode);
4145 key.type = max_key_type;
4146 key.offset = (u64)-1;
4147
4148 while (1) {
4149 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4150 if (ret < 0) {
4151 break;
4152 } else if (ret > 0) {
4153 if (path->slots[0] == 0)
4154 break;
4155 path->slots[0]--;
4156 }
4157
4158 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4159 path->slots[0]);
4160
4161 if (found_key.objectid != key.objectid)
4162 break;
4163
4164 found_key.offset = 0;
4165 found_key.type = 0;
4166 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4167 if (ret < 0)
4168 break;
4169
4170 ret = btrfs_del_items(trans, log, path, start_slot,
4171 path->slots[0] - start_slot + 1);
4172 /*
4173 * If start slot isn't 0 then we don't need to re-search, we've
4174 * found the last guy with the objectid in this tree.
4175 */
4176 if (ret || start_slot != 0)
4177 break;
4178 btrfs_release_path(path);
4179 }
4180 btrfs_release_path(path);
4181 if (ret > 0)
4182 ret = 0;
4183 return ret;
4184 }
4185
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4186 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4187 struct btrfs_root *log_root,
4188 struct btrfs_inode *inode,
4189 u64 new_size, u32 min_type)
4190 {
4191 struct btrfs_truncate_control control = {
4192 .new_size = new_size,
4193 .ino = btrfs_ino(inode),
4194 .min_type = min_type,
4195 .skip_ref_updates = true,
4196 };
4197
4198 return btrfs_truncate_inode_items(trans, log_root, &control);
4199 }
4200
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4201 static void fill_inode_item(struct btrfs_trans_handle *trans,
4202 struct extent_buffer *leaf,
4203 struct btrfs_inode_item *item,
4204 struct inode *inode, int log_inode_only,
4205 u64 logged_isize)
4206 {
4207 struct btrfs_map_token token;
4208 u64 flags;
4209
4210 btrfs_init_map_token(&token, leaf);
4211
4212 if (log_inode_only) {
4213 /* set the generation to zero so the recover code
4214 * can tell the difference between an logging
4215 * just to say 'this inode exists' and a logging
4216 * to say 'update this inode with these values'
4217 */
4218 btrfs_set_token_inode_generation(&token, item, 0);
4219 btrfs_set_token_inode_size(&token, item, logged_isize);
4220 } else {
4221 btrfs_set_token_inode_generation(&token, item,
4222 BTRFS_I(inode)->generation);
4223 btrfs_set_token_inode_size(&token, item, inode->i_size);
4224 }
4225
4226 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4227 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4228 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4229 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4230
4231 btrfs_set_token_timespec_sec(&token, &item->atime,
4232 inode->i_atime.tv_sec);
4233 btrfs_set_token_timespec_nsec(&token, &item->atime,
4234 inode->i_atime.tv_nsec);
4235
4236 btrfs_set_token_timespec_sec(&token, &item->mtime,
4237 inode->i_mtime.tv_sec);
4238 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4239 inode->i_mtime.tv_nsec);
4240
4241 btrfs_set_token_timespec_sec(&token, &item->ctime,
4242 inode_get_ctime(inode).tv_sec);
4243 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4244 inode_get_ctime(inode).tv_nsec);
4245
4246 /*
4247 * We do not need to set the nbytes field, in fact during a fast fsync
4248 * its value may not even be correct, since a fast fsync does not wait
4249 * for ordered extent completion, which is where we update nbytes, it
4250 * only waits for writeback to complete. During log replay as we find
4251 * file extent items and replay them, we adjust the nbytes field of the
4252 * inode item in subvolume tree as needed (see overwrite_item()).
4253 */
4254
4255 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4256 btrfs_set_token_inode_transid(&token, item, trans->transid);
4257 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4258 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4259 BTRFS_I(inode)->ro_flags);
4260 btrfs_set_token_inode_flags(&token, item, flags);
4261 btrfs_set_token_inode_block_group(&token, item, 0);
4262 }
4263
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4264 static int log_inode_item(struct btrfs_trans_handle *trans,
4265 struct btrfs_root *log, struct btrfs_path *path,
4266 struct btrfs_inode *inode, bool inode_item_dropped)
4267 {
4268 struct btrfs_inode_item *inode_item;
4269 int ret;
4270
4271 /*
4272 * If we are doing a fast fsync and the inode was logged before in the
4273 * current transaction, then we know the inode was previously logged and
4274 * it exists in the log tree. For performance reasons, in this case use
4275 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4276 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4277 * contention in case there are concurrent fsyncs for other inodes of the
4278 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4279 * already exists can also result in unnecessarily splitting a leaf.
4280 */
4281 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4282 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4283 ASSERT(ret <= 0);
4284 if (ret > 0)
4285 ret = -ENOENT;
4286 } else {
4287 /*
4288 * This means it is the first fsync in the current transaction,
4289 * so the inode item is not in the log and we need to insert it.
4290 * We can never get -EEXIST because we are only called for a fast
4291 * fsync and in case an inode eviction happens after the inode was
4292 * logged before in the current transaction, when we load again
4293 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4294 * flags and set ->logged_trans to 0.
4295 */
4296 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4297 sizeof(*inode_item));
4298 ASSERT(ret != -EEXIST);
4299 }
4300 if (ret)
4301 return ret;
4302 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4303 struct btrfs_inode_item);
4304 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4305 0, 0);
4306 btrfs_release_path(path);
4307 return 0;
4308 }
4309
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4310 static int log_csums(struct btrfs_trans_handle *trans,
4311 struct btrfs_inode *inode,
4312 struct btrfs_root *log_root,
4313 struct btrfs_ordered_sum *sums)
4314 {
4315 const u64 lock_end = sums->logical + sums->len - 1;
4316 struct extent_state *cached_state = NULL;
4317 int ret;
4318
4319 /*
4320 * If this inode was not used for reflink operations in the current
4321 * transaction with new extents, then do the fast path, no need to
4322 * worry about logging checksum items with overlapping ranges.
4323 */
4324 if (inode->last_reflink_trans < trans->transid)
4325 return btrfs_csum_file_blocks(trans, log_root, sums);
4326
4327 /*
4328 * Serialize logging for checksums. This is to avoid racing with the
4329 * same checksum being logged by another task that is logging another
4330 * file which happens to refer to the same extent as well. Such races
4331 * can leave checksum items in the log with overlapping ranges.
4332 */
4333 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4334 &cached_state);
4335 if (ret)
4336 return ret;
4337 /*
4338 * Due to extent cloning, we might have logged a csum item that covers a
4339 * subrange of a cloned extent, and later we can end up logging a csum
4340 * item for a larger subrange of the same extent or the entire range.
4341 * This would leave csum items in the log tree that cover the same range
4342 * and break the searches for checksums in the log tree, resulting in
4343 * some checksums missing in the fs/subvolume tree. So just delete (or
4344 * trim and adjust) any existing csum items in the log for this range.
4345 */
4346 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4347 if (!ret)
4348 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4349
4350 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4351 &cached_state);
4352
4353 return ret;
4354 }
4355
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)4356 static noinline int copy_items(struct btrfs_trans_handle *trans,
4357 struct btrfs_inode *inode,
4358 struct btrfs_path *dst_path,
4359 struct btrfs_path *src_path,
4360 int start_slot, int nr, int inode_only,
4361 u64 logged_isize)
4362 {
4363 struct btrfs_root *log = inode->root->log_root;
4364 struct btrfs_file_extent_item *extent;
4365 struct extent_buffer *src;
4366 int ret = 0;
4367 struct btrfs_key *ins_keys;
4368 u32 *ins_sizes;
4369 struct btrfs_item_batch batch;
4370 char *ins_data;
4371 int i;
4372 int dst_index;
4373 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4374 const u64 i_size = i_size_read(&inode->vfs_inode);
4375
4376 /*
4377 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4378 * use the clone. This is because otherwise we would be changing the log
4379 * tree, to insert items from the subvolume tree or insert csum items,
4380 * while holding a read lock on a leaf from the subvolume tree, which
4381 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4382 *
4383 * 1) Modifying the log tree triggers an extent buffer allocation while
4384 * holding a write lock on a parent extent buffer from the log tree.
4385 * Allocating the pages for an extent buffer, or the extent buffer
4386 * struct, can trigger inode eviction and finally the inode eviction
4387 * will trigger a release/remove of a delayed node, which requires
4388 * taking the delayed node's mutex;
4389 *
4390 * 2) Allocating a metadata extent for a log tree can trigger the async
4391 * reclaim thread and make us wait for it to release enough space and
4392 * unblock our reservation ticket. The reclaim thread can start
4393 * flushing delayed items, and that in turn results in the need to
4394 * lock delayed node mutexes and in the need to write lock extent
4395 * buffers of a subvolume tree - all this while holding a write lock
4396 * on the parent extent buffer in the log tree.
4397 *
4398 * So one task in scenario 1) running in parallel with another task in
4399 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4400 * node mutex while having a read lock on a leaf from the subvolume,
4401 * while the other is holding the delayed node's mutex and wants to
4402 * write lock the same subvolume leaf for flushing delayed items.
4403 */
4404 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4405 if (!src)
4406 return -ENOMEM;
4407
4408 i = src_path->slots[0];
4409 btrfs_release_path(src_path);
4410 src_path->nodes[0] = src;
4411 src_path->slots[0] = i;
4412
4413 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4414 nr * sizeof(u32), GFP_NOFS);
4415 if (!ins_data)
4416 return -ENOMEM;
4417
4418 ins_sizes = (u32 *)ins_data;
4419 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4420 batch.keys = ins_keys;
4421 batch.data_sizes = ins_sizes;
4422 batch.total_data_size = 0;
4423 batch.nr = 0;
4424
4425 dst_index = 0;
4426 for (i = 0; i < nr; i++) {
4427 const int src_slot = start_slot + i;
4428 struct btrfs_root *csum_root;
4429 struct btrfs_ordered_sum *sums;
4430 struct btrfs_ordered_sum *sums_next;
4431 LIST_HEAD(ordered_sums);
4432 u64 disk_bytenr;
4433 u64 disk_num_bytes;
4434 u64 extent_offset;
4435 u64 extent_num_bytes;
4436 bool is_old_extent;
4437
4438 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4439
4440 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4441 goto add_to_batch;
4442
4443 extent = btrfs_item_ptr(src, src_slot,
4444 struct btrfs_file_extent_item);
4445
4446 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4447 trans->transid);
4448
4449 /*
4450 * Don't copy extents from past generations. That would make us
4451 * log a lot more metadata for common cases like doing only a
4452 * few random writes into a file and then fsync it for the first
4453 * time or after the full sync flag is set on the inode. We can
4454 * get leaves full of extent items, most of which are from past
4455 * generations, so we can skip them - as long as the inode has
4456 * not been the target of a reflink operation in this transaction,
4457 * as in that case it might have had file extent items with old
4458 * generations copied into it. We also must always log prealloc
4459 * extents that start at or beyond eof, otherwise we would lose
4460 * them on log replay.
4461 */
4462 if (is_old_extent &&
4463 ins_keys[dst_index].offset < i_size &&
4464 inode->last_reflink_trans < trans->transid)
4465 continue;
4466
4467 if (skip_csum)
4468 goto add_to_batch;
4469
4470 /* Only regular extents have checksums. */
4471 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4472 goto add_to_batch;
4473
4474 /*
4475 * If it's an extent created in a past transaction, then its
4476 * checksums are already accessible from the committed csum tree,
4477 * no need to log them.
4478 */
4479 if (is_old_extent)
4480 goto add_to_batch;
4481
4482 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4483 /* If it's an explicit hole, there are no checksums. */
4484 if (disk_bytenr == 0)
4485 goto add_to_batch;
4486
4487 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4488
4489 if (btrfs_file_extent_compression(src, extent)) {
4490 extent_offset = 0;
4491 extent_num_bytes = disk_num_bytes;
4492 } else {
4493 extent_offset = btrfs_file_extent_offset(src, extent);
4494 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4495 }
4496
4497 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4498 disk_bytenr += extent_offset;
4499 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4500 disk_bytenr + extent_num_bytes - 1,
4501 &ordered_sums, 0, false);
4502 if (ret)
4503 goto out;
4504
4505 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4506 if (!ret)
4507 ret = log_csums(trans, inode, log, sums);
4508 list_del(&sums->list);
4509 kfree(sums);
4510 }
4511 if (ret)
4512 goto out;
4513
4514 add_to_batch:
4515 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4516 batch.total_data_size += ins_sizes[dst_index];
4517 batch.nr++;
4518 dst_index++;
4519 }
4520
4521 /*
4522 * We have a leaf full of old extent items that don't need to be logged,
4523 * so we don't need to do anything.
4524 */
4525 if (batch.nr == 0)
4526 goto out;
4527
4528 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4529 if (ret)
4530 goto out;
4531
4532 dst_index = 0;
4533 for (i = 0; i < nr; i++) {
4534 const int src_slot = start_slot + i;
4535 const int dst_slot = dst_path->slots[0] + dst_index;
4536 struct btrfs_key key;
4537 unsigned long src_offset;
4538 unsigned long dst_offset;
4539
4540 /*
4541 * We're done, all the remaining items in the source leaf
4542 * correspond to old file extent items.
4543 */
4544 if (dst_index >= batch.nr)
4545 break;
4546
4547 btrfs_item_key_to_cpu(src, &key, src_slot);
4548
4549 if (key.type != BTRFS_EXTENT_DATA_KEY)
4550 goto copy_item;
4551
4552 extent = btrfs_item_ptr(src, src_slot,
4553 struct btrfs_file_extent_item);
4554
4555 /* See the comment in the previous loop, same logic. */
4556 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4557 key.offset < i_size &&
4558 inode->last_reflink_trans < trans->transid)
4559 continue;
4560
4561 copy_item:
4562 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4563 src_offset = btrfs_item_ptr_offset(src, src_slot);
4564
4565 if (key.type == BTRFS_INODE_ITEM_KEY) {
4566 struct btrfs_inode_item *inode_item;
4567
4568 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4569 struct btrfs_inode_item);
4570 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4571 &inode->vfs_inode,
4572 inode_only == LOG_INODE_EXISTS,
4573 logged_isize);
4574 } else {
4575 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4576 src_offset, ins_sizes[dst_index]);
4577 }
4578
4579 dst_index++;
4580 }
4581
4582 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4583 btrfs_release_path(dst_path);
4584 out:
4585 kfree(ins_data);
4586
4587 return ret;
4588 }
4589
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4590 static int extent_cmp(void *priv, const struct list_head *a,
4591 const struct list_head *b)
4592 {
4593 const struct extent_map *em1, *em2;
4594
4595 em1 = list_entry(a, struct extent_map, list);
4596 em2 = list_entry(b, struct extent_map, list);
4597
4598 if (em1->start < em2->start)
4599 return -1;
4600 else if (em1->start > em2->start)
4601 return 1;
4602 return 0;
4603 }
4604
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4605 static int log_extent_csums(struct btrfs_trans_handle *trans,
4606 struct btrfs_inode *inode,
4607 struct btrfs_root *log_root,
4608 const struct extent_map *em,
4609 struct btrfs_log_ctx *ctx)
4610 {
4611 struct btrfs_ordered_extent *ordered;
4612 struct btrfs_root *csum_root;
4613 u64 csum_offset;
4614 u64 csum_len;
4615 u64 mod_start = em->mod_start;
4616 u64 mod_len = em->mod_len;
4617 LIST_HEAD(ordered_sums);
4618 int ret = 0;
4619
4620 if (inode->flags & BTRFS_INODE_NODATASUM ||
4621 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4622 em->block_start == EXTENT_MAP_HOLE)
4623 return 0;
4624
4625 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4626 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4627 const u64 mod_end = mod_start + mod_len;
4628 struct btrfs_ordered_sum *sums;
4629
4630 if (mod_len == 0)
4631 break;
4632
4633 if (ordered_end <= mod_start)
4634 continue;
4635 if (mod_end <= ordered->file_offset)
4636 break;
4637
4638 /*
4639 * We are going to copy all the csums on this ordered extent, so
4640 * go ahead and adjust mod_start and mod_len in case this ordered
4641 * extent has already been logged.
4642 */
4643 if (ordered->file_offset > mod_start) {
4644 if (ordered_end >= mod_end)
4645 mod_len = ordered->file_offset - mod_start;
4646 /*
4647 * If we have this case
4648 *
4649 * |--------- logged extent ---------|
4650 * |----- ordered extent ----|
4651 *
4652 * Just don't mess with mod_start and mod_len, we'll
4653 * just end up logging more csums than we need and it
4654 * will be ok.
4655 */
4656 } else {
4657 if (ordered_end < mod_end) {
4658 mod_len = mod_end - ordered_end;
4659 mod_start = ordered_end;
4660 } else {
4661 mod_len = 0;
4662 }
4663 }
4664
4665 /*
4666 * To keep us from looping for the above case of an ordered
4667 * extent that falls inside of the logged extent.
4668 */
4669 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4670 continue;
4671
4672 list_for_each_entry(sums, &ordered->list, list) {
4673 ret = log_csums(trans, inode, log_root, sums);
4674 if (ret)
4675 return ret;
4676 }
4677 }
4678
4679 /* We're done, found all csums in the ordered extents. */
4680 if (mod_len == 0)
4681 return 0;
4682
4683 /* If we're compressed we have to save the entire range of csums. */
4684 if (em->compress_type) {
4685 csum_offset = 0;
4686 csum_len = max(em->block_len, em->orig_block_len);
4687 } else {
4688 csum_offset = mod_start - em->start;
4689 csum_len = mod_len;
4690 }
4691
4692 /* block start is already adjusted for the file extent offset. */
4693 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4694 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4695 em->block_start + csum_offset +
4696 csum_len - 1, &ordered_sums, 0, false);
4697 if (ret)
4698 return ret;
4699
4700 while (!list_empty(&ordered_sums)) {
4701 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4702 struct btrfs_ordered_sum,
4703 list);
4704 if (!ret)
4705 ret = log_csums(trans, inode, log_root, sums);
4706 list_del(&sums->list);
4707 kfree(sums);
4708 }
4709
4710 return ret;
4711 }
4712
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4713 static int log_one_extent(struct btrfs_trans_handle *trans,
4714 struct btrfs_inode *inode,
4715 const struct extent_map *em,
4716 struct btrfs_path *path,
4717 struct btrfs_log_ctx *ctx)
4718 {
4719 struct btrfs_drop_extents_args drop_args = { 0 };
4720 struct btrfs_root *log = inode->root->log_root;
4721 struct btrfs_file_extent_item fi = { 0 };
4722 struct extent_buffer *leaf;
4723 struct btrfs_key key;
4724 u64 extent_offset = em->start - em->orig_start;
4725 u64 block_len;
4726 int ret;
4727
4728 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4729 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4730 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4731 else
4732 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4733
4734 block_len = max(em->block_len, em->orig_block_len);
4735 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4736 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4737 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4738 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4739 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4740 extent_offset);
4741 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4742 }
4743
4744 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4745 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4746 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4747 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4748
4749 ret = log_extent_csums(trans, inode, log, em, ctx);
4750 if (ret)
4751 return ret;
4752
4753 /*
4754 * If this is the first time we are logging the inode in the current
4755 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4756 * because it does a deletion search, which always acquires write locks
4757 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4758 * but also adds significant contention in a log tree, since log trees
4759 * are small, with a root at level 2 or 3 at most, due to their short
4760 * life span.
4761 */
4762 if (ctx->logged_before) {
4763 drop_args.path = path;
4764 drop_args.start = em->start;
4765 drop_args.end = em->start + em->len;
4766 drop_args.replace_extent = true;
4767 drop_args.extent_item_size = sizeof(fi);
4768 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4769 if (ret)
4770 return ret;
4771 }
4772
4773 if (!drop_args.extent_inserted) {
4774 key.objectid = btrfs_ino(inode);
4775 key.type = BTRFS_EXTENT_DATA_KEY;
4776 key.offset = em->start;
4777
4778 ret = btrfs_insert_empty_item(trans, log, path, &key,
4779 sizeof(fi));
4780 if (ret)
4781 return ret;
4782 }
4783 leaf = path->nodes[0];
4784 write_extent_buffer(leaf, &fi,
4785 btrfs_item_ptr_offset(leaf, path->slots[0]),
4786 sizeof(fi));
4787 btrfs_mark_buffer_dirty(trans, leaf);
4788
4789 btrfs_release_path(path);
4790
4791 return ret;
4792 }
4793
4794 /*
4795 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4796 * lose them after doing a full/fast fsync and replaying the log. We scan the
4797 * subvolume's root instead of iterating the inode's extent map tree because
4798 * otherwise we can log incorrect extent items based on extent map conversion.
4799 * That can happen due to the fact that extent maps are merged when they
4800 * are not in the extent map tree's list of modified extents.
4801 */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4802 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4803 struct btrfs_inode *inode,
4804 struct btrfs_path *path)
4805 {
4806 struct btrfs_root *root = inode->root;
4807 struct btrfs_key key;
4808 const u64 i_size = i_size_read(&inode->vfs_inode);
4809 const u64 ino = btrfs_ino(inode);
4810 struct btrfs_path *dst_path = NULL;
4811 bool dropped_extents = false;
4812 u64 truncate_offset = i_size;
4813 struct extent_buffer *leaf;
4814 int slot;
4815 int ins_nr = 0;
4816 int start_slot = 0;
4817 int ret;
4818
4819 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4820 return 0;
4821
4822 key.objectid = ino;
4823 key.type = BTRFS_EXTENT_DATA_KEY;
4824 key.offset = i_size;
4825 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4826 if (ret < 0)
4827 goto out;
4828
4829 /*
4830 * We must check if there is a prealloc extent that starts before the
4831 * i_size and crosses the i_size boundary. This is to ensure later we
4832 * truncate down to the end of that extent and not to the i_size, as
4833 * otherwise we end up losing part of the prealloc extent after a log
4834 * replay and with an implicit hole if there is another prealloc extent
4835 * that starts at an offset beyond i_size.
4836 */
4837 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4838 if (ret < 0)
4839 goto out;
4840
4841 if (ret == 0) {
4842 struct btrfs_file_extent_item *ei;
4843
4844 leaf = path->nodes[0];
4845 slot = path->slots[0];
4846 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4847
4848 if (btrfs_file_extent_type(leaf, ei) ==
4849 BTRFS_FILE_EXTENT_PREALLOC) {
4850 u64 extent_end;
4851
4852 btrfs_item_key_to_cpu(leaf, &key, slot);
4853 extent_end = key.offset +
4854 btrfs_file_extent_num_bytes(leaf, ei);
4855
4856 if (extent_end > i_size)
4857 truncate_offset = extent_end;
4858 }
4859 } else {
4860 ret = 0;
4861 }
4862
4863 while (true) {
4864 leaf = path->nodes[0];
4865 slot = path->slots[0];
4866
4867 if (slot >= btrfs_header_nritems(leaf)) {
4868 if (ins_nr > 0) {
4869 ret = copy_items(trans, inode, dst_path, path,
4870 start_slot, ins_nr, 1, 0);
4871 if (ret < 0)
4872 goto out;
4873 ins_nr = 0;
4874 }
4875 ret = btrfs_next_leaf(root, path);
4876 if (ret < 0)
4877 goto out;
4878 if (ret > 0) {
4879 ret = 0;
4880 break;
4881 }
4882 continue;
4883 }
4884
4885 btrfs_item_key_to_cpu(leaf, &key, slot);
4886 if (key.objectid > ino)
4887 break;
4888 if (WARN_ON_ONCE(key.objectid < ino) ||
4889 key.type < BTRFS_EXTENT_DATA_KEY ||
4890 key.offset < i_size) {
4891 path->slots[0]++;
4892 continue;
4893 }
4894 /*
4895 * Avoid overlapping items in the log tree. The first time we
4896 * get here, get rid of everything from a past fsync. After
4897 * that, if the current extent starts before the end of the last
4898 * extent we copied, truncate the last one. This can happen if
4899 * an ordered extent completion modifies the subvolume tree
4900 * while btrfs_next_leaf() has the tree unlocked.
4901 */
4902 if (!dropped_extents || key.offset < truncate_offset) {
4903 ret = truncate_inode_items(trans, root->log_root, inode,
4904 min(key.offset, truncate_offset),
4905 BTRFS_EXTENT_DATA_KEY);
4906 if (ret)
4907 goto out;
4908 dropped_extents = true;
4909 }
4910 truncate_offset = btrfs_file_extent_end(path);
4911 if (ins_nr == 0)
4912 start_slot = slot;
4913 ins_nr++;
4914 path->slots[0]++;
4915 if (!dst_path) {
4916 dst_path = btrfs_alloc_path();
4917 if (!dst_path) {
4918 ret = -ENOMEM;
4919 goto out;
4920 }
4921 }
4922 }
4923 if (ins_nr > 0)
4924 ret = copy_items(trans, inode, dst_path, path,
4925 start_slot, ins_nr, 1, 0);
4926 out:
4927 btrfs_release_path(path);
4928 btrfs_free_path(dst_path);
4929 return ret;
4930 }
4931
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4932 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4933 struct btrfs_inode *inode,
4934 struct btrfs_path *path,
4935 struct btrfs_log_ctx *ctx)
4936 {
4937 struct btrfs_ordered_extent *ordered;
4938 struct btrfs_ordered_extent *tmp;
4939 struct extent_map *em, *n;
4940 LIST_HEAD(extents);
4941 struct extent_map_tree *tree = &inode->extent_tree;
4942 int ret = 0;
4943 int num = 0;
4944
4945 write_lock(&tree->lock);
4946
4947 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4948 list_del_init(&em->list);
4949 /*
4950 * Just an arbitrary number, this can be really CPU intensive
4951 * once we start getting a lot of extents, and really once we
4952 * have a bunch of extents we just want to commit since it will
4953 * be faster.
4954 */
4955 if (++num > 32768) {
4956 list_del_init(&tree->modified_extents);
4957 ret = -EFBIG;
4958 goto process;
4959 }
4960
4961 if (em->generation < trans->transid)
4962 continue;
4963
4964 /* We log prealloc extents beyond eof later. */
4965 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4966 em->start >= i_size_read(&inode->vfs_inode))
4967 continue;
4968
4969 /* Need a ref to keep it from getting evicted from cache */
4970 refcount_inc(&em->refs);
4971 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4972 list_add_tail(&em->list, &extents);
4973 num++;
4974 }
4975
4976 list_sort(NULL, &extents, extent_cmp);
4977 process:
4978 while (!list_empty(&extents)) {
4979 em = list_entry(extents.next, struct extent_map, list);
4980
4981 list_del_init(&em->list);
4982
4983 /*
4984 * If we had an error we just need to delete everybody from our
4985 * private list.
4986 */
4987 if (ret) {
4988 clear_em_logging(tree, em);
4989 free_extent_map(em);
4990 continue;
4991 }
4992
4993 write_unlock(&tree->lock);
4994
4995 ret = log_one_extent(trans, inode, em, path, ctx);
4996 write_lock(&tree->lock);
4997 clear_em_logging(tree, em);
4998 free_extent_map(em);
4999 }
5000 WARN_ON(!list_empty(&extents));
5001 write_unlock(&tree->lock);
5002
5003 if (!ret)
5004 ret = btrfs_log_prealloc_extents(trans, inode, path);
5005 if (ret)
5006 return ret;
5007
5008 /*
5009 * We have logged all extents successfully, now make sure the commit of
5010 * the current transaction waits for the ordered extents to complete
5011 * before it commits and wipes out the log trees, otherwise we would
5012 * lose data if an ordered extents completes after the transaction
5013 * commits and a power failure happens after the transaction commit.
5014 */
5015 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5016 list_del_init(&ordered->log_list);
5017 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5018
5019 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5020 spin_lock_irq(&inode->ordered_tree.lock);
5021 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5022 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5023 atomic_inc(&trans->transaction->pending_ordered);
5024 }
5025 spin_unlock_irq(&inode->ordered_tree.lock);
5026 }
5027 btrfs_put_ordered_extent(ordered);
5028 }
5029
5030 return 0;
5031 }
5032
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)5033 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5034 struct btrfs_path *path, u64 *size_ret)
5035 {
5036 struct btrfs_key key;
5037 int ret;
5038
5039 key.objectid = btrfs_ino(inode);
5040 key.type = BTRFS_INODE_ITEM_KEY;
5041 key.offset = 0;
5042
5043 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5044 if (ret < 0) {
5045 return ret;
5046 } else if (ret > 0) {
5047 *size_ret = 0;
5048 } else {
5049 struct btrfs_inode_item *item;
5050
5051 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5052 struct btrfs_inode_item);
5053 *size_ret = btrfs_inode_size(path->nodes[0], item);
5054 /*
5055 * If the in-memory inode's i_size is smaller then the inode
5056 * size stored in the btree, return the inode's i_size, so
5057 * that we get a correct inode size after replaying the log
5058 * when before a power failure we had a shrinking truncate
5059 * followed by addition of a new name (rename / new hard link).
5060 * Otherwise return the inode size from the btree, to avoid
5061 * data loss when replaying a log due to previously doing a
5062 * write that expands the inode's size and logging a new name
5063 * immediately after.
5064 */
5065 if (*size_ret > inode->vfs_inode.i_size)
5066 *size_ret = inode->vfs_inode.i_size;
5067 }
5068
5069 btrfs_release_path(path);
5070 return 0;
5071 }
5072
5073 /*
5074 * At the moment we always log all xattrs. This is to figure out at log replay
5075 * time which xattrs must have their deletion replayed. If a xattr is missing
5076 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5077 * because if a xattr is deleted, the inode is fsynced and a power failure
5078 * happens, causing the log to be replayed the next time the fs is mounted,
5079 * we want the xattr to not exist anymore (same behaviour as other filesystems
5080 * with a journal, ext3/4, xfs, f2fs, etc).
5081 */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)5082 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5083 struct btrfs_inode *inode,
5084 struct btrfs_path *path,
5085 struct btrfs_path *dst_path)
5086 {
5087 struct btrfs_root *root = inode->root;
5088 int ret;
5089 struct btrfs_key key;
5090 const u64 ino = btrfs_ino(inode);
5091 int ins_nr = 0;
5092 int start_slot = 0;
5093 bool found_xattrs = false;
5094
5095 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5096 return 0;
5097
5098 key.objectid = ino;
5099 key.type = BTRFS_XATTR_ITEM_KEY;
5100 key.offset = 0;
5101
5102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5103 if (ret < 0)
5104 return ret;
5105
5106 while (true) {
5107 int slot = path->slots[0];
5108 struct extent_buffer *leaf = path->nodes[0];
5109 int nritems = btrfs_header_nritems(leaf);
5110
5111 if (slot >= nritems) {
5112 if (ins_nr > 0) {
5113 ret = copy_items(trans, inode, dst_path, path,
5114 start_slot, ins_nr, 1, 0);
5115 if (ret < 0)
5116 return ret;
5117 ins_nr = 0;
5118 }
5119 ret = btrfs_next_leaf(root, path);
5120 if (ret < 0)
5121 return ret;
5122 else if (ret > 0)
5123 break;
5124 continue;
5125 }
5126
5127 btrfs_item_key_to_cpu(leaf, &key, slot);
5128 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5129 break;
5130
5131 if (ins_nr == 0)
5132 start_slot = slot;
5133 ins_nr++;
5134 path->slots[0]++;
5135 found_xattrs = true;
5136 cond_resched();
5137 }
5138 if (ins_nr > 0) {
5139 ret = copy_items(trans, inode, dst_path, path,
5140 start_slot, ins_nr, 1, 0);
5141 if (ret < 0)
5142 return ret;
5143 }
5144
5145 if (!found_xattrs)
5146 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5147
5148 return 0;
5149 }
5150
5151 /*
5152 * When using the NO_HOLES feature if we punched a hole that causes the
5153 * deletion of entire leafs or all the extent items of the first leaf (the one
5154 * that contains the inode item and references) we may end up not processing
5155 * any extents, because there are no leafs with a generation matching the
5156 * current transaction that have extent items for our inode. So we need to find
5157 * if any holes exist and then log them. We also need to log holes after any
5158 * truncate operation that changes the inode's size.
5159 */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5160 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5161 struct btrfs_inode *inode,
5162 struct btrfs_path *path)
5163 {
5164 struct btrfs_root *root = inode->root;
5165 struct btrfs_fs_info *fs_info = root->fs_info;
5166 struct btrfs_key key;
5167 const u64 ino = btrfs_ino(inode);
5168 const u64 i_size = i_size_read(&inode->vfs_inode);
5169 u64 prev_extent_end = 0;
5170 int ret;
5171
5172 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5173 return 0;
5174
5175 key.objectid = ino;
5176 key.type = BTRFS_EXTENT_DATA_KEY;
5177 key.offset = 0;
5178
5179 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5180 if (ret < 0)
5181 return ret;
5182
5183 while (true) {
5184 struct extent_buffer *leaf = path->nodes[0];
5185
5186 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5187 ret = btrfs_next_leaf(root, path);
5188 if (ret < 0)
5189 return ret;
5190 if (ret > 0) {
5191 ret = 0;
5192 break;
5193 }
5194 leaf = path->nodes[0];
5195 }
5196
5197 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5198 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5199 break;
5200
5201 /* We have a hole, log it. */
5202 if (prev_extent_end < key.offset) {
5203 const u64 hole_len = key.offset - prev_extent_end;
5204
5205 /*
5206 * Release the path to avoid deadlocks with other code
5207 * paths that search the root while holding locks on
5208 * leafs from the log root.
5209 */
5210 btrfs_release_path(path);
5211 ret = btrfs_insert_hole_extent(trans, root->log_root,
5212 ino, prev_extent_end,
5213 hole_len);
5214 if (ret < 0)
5215 return ret;
5216
5217 /*
5218 * Search for the same key again in the root. Since it's
5219 * an extent item and we are holding the inode lock, the
5220 * key must still exist. If it doesn't just emit warning
5221 * and return an error to fall back to a transaction
5222 * commit.
5223 */
5224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5225 if (ret < 0)
5226 return ret;
5227 if (WARN_ON(ret > 0))
5228 return -ENOENT;
5229 leaf = path->nodes[0];
5230 }
5231
5232 prev_extent_end = btrfs_file_extent_end(path);
5233 path->slots[0]++;
5234 cond_resched();
5235 }
5236
5237 if (prev_extent_end < i_size) {
5238 u64 hole_len;
5239
5240 btrfs_release_path(path);
5241 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5242 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5243 prev_extent_end, hole_len);
5244 if (ret < 0)
5245 return ret;
5246 }
5247
5248 return 0;
5249 }
5250
5251 /*
5252 * When we are logging a new inode X, check if it doesn't have a reference that
5253 * matches the reference from some other inode Y created in a past transaction
5254 * and that was renamed in the current transaction. If we don't do this, then at
5255 * log replay time we can lose inode Y (and all its files if it's a directory):
5256 *
5257 * mkdir /mnt/x
5258 * echo "hello world" > /mnt/x/foobar
5259 * sync
5260 * mv /mnt/x /mnt/y
5261 * mkdir /mnt/x # or touch /mnt/x
5262 * xfs_io -c fsync /mnt/x
5263 * <power fail>
5264 * mount fs, trigger log replay
5265 *
5266 * After the log replay procedure, we would lose the first directory and all its
5267 * files (file foobar).
5268 * For the case where inode Y is not a directory we simply end up losing it:
5269 *
5270 * echo "123" > /mnt/foo
5271 * sync
5272 * mv /mnt/foo /mnt/bar
5273 * echo "abc" > /mnt/foo
5274 * xfs_io -c fsync /mnt/foo
5275 * <power fail>
5276 *
5277 * We also need this for cases where a snapshot entry is replaced by some other
5278 * entry (file or directory) otherwise we end up with an unreplayable log due to
5279 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5280 * if it were a regular entry:
5281 *
5282 * mkdir /mnt/x
5283 * btrfs subvolume snapshot /mnt /mnt/x/snap
5284 * btrfs subvolume delete /mnt/x/snap
5285 * rmdir /mnt/x
5286 * mkdir /mnt/x
5287 * fsync /mnt/x or fsync some new file inside it
5288 * <power fail>
5289 *
5290 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5291 * the same transaction.
5292 */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5293 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5294 const int slot,
5295 const struct btrfs_key *key,
5296 struct btrfs_inode *inode,
5297 u64 *other_ino, u64 *other_parent)
5298 {
5299 int ret;
5300 struct btrfs_path *search_path;
5301 char *name = NULL;
5302 u32 name_len = 0;
5303 u32 item_size = btrfs_item_size(eb, slot);
5304 u32 cur_offset = 0;
5305 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5306
5307 search_path = btrfs_alloc_path();
5308 if (!search_path)
5309 return -ENOMEM;
5310 search_path->search_commit_root = 1;
5311 search_path->skip_locking = 1;
5312
5313 while (cur_offset < item_size) {
5314 u64 parent;
5315 u32 this_name_len;
5316 u32 this_len;
5317 unsigned long name_ptr;
5318 struct btrfs_dir_item *di;
5319 struct fscrypt_str name_str;
5320
5321 if (key->type == BTRFS_INODE_REF_KEY) {
5322 struct btrfs_inode_ref *iref;
5323
5324 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5325 parent = key->offset;
5326 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5327 name_ptr = (unsigned long)(iref + 1);
5328 this_len = sizeof(*iref) + this_name_len;
5329 } else {
5330 struct btrfs_inode_extref *extref;
5331
5332 extref = (struct btrfs_inode_extref *)(ptr +
5333 cur_offset);
5334 parent = btrfs_inode_extref_parent(eb, extref);
5335 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5336 name_ptr = (unsigned long)&extref->name;
5337 this_len = sizeof(*extref) + this_name_len;
5338 }
5339
5340 if (this_name_len > name_len) {
5341 char *new_name;
5342
5343 new_name = krealloc(name, this_name_len, GFP_NOFS);
5344 if (!new_name) {
5345 ret = -ENOMEM;
5346 goto out;
5347 }
5348 name_len = this_name_len;
5349 name = new_name;
5350 }
5351
5352 read_extent_buffer(eb, name, name_ptr, this_name_len);
5353
5354 name_str.name = name;
5355 name_str.len = this_name_len;
5356 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5357 parent, &name_str, 0);
5358 if (di && !IS_ERR(di)) {
5359 struct btrfs_key di_key;
5360
5361 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5362 di, &di_key);
5363 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5364 if (di_key.objectid != key->objectid) {
5365 ret = 1;
5366 *other_ino = di_key.objectid;
5367 *other_parent = parent;
5368 } else {
5369 ret = 0;
5370 }
5371 } else {
5372 ret = -EAGAIN;
5373 }
5374 goto out;
5375 } else if (IS_ERR(di)) {
5376 ret = PTR_ERR(di);
5377 goto out;
5378 }
5379 btrfs_release_path(search_path);
5380
5381 cur_offset += this_len;
5382 }
5383 ret = 0;
5384 out:
5385 btrfs_free_path(search_path);
5386 kfree(name);
5387 return ret;
5388 }
5389
5390 /*
5391 * Check if we need to log an inode. This is used in contexts where while
5392 * logging an inode we need to log another inode (either that it exists or in
5393 * full mode). This is used instead of btrfs_inode_in_log() because the later
5394 * requires the inode to be in the log and have the log transaction committed,
5395 * while here we do not care if the log transaction was already committed - our
5396 * caller will commit the log later - and we want to avoid logging an inode
5397 * multiple times when multiple tasks have joined the same log transaction.
5398 */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5399 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5400 struct btrfs_inode *inode)
5401 {
5402 /*
5403 * If a directory was not modified, no dentries added or removed, we can
5404 * and should avoid logging it.
5405 */
5406 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5407 return false;
5408
5409 /*
5410 * If this inode does not have new/updated/deleted xattrs since the last
5411 * time it was logged and is flagged as logged in the current transaction,
5412 * we can skip logging it. As for new/deleted names, those are updated in
5413 * the log by link/unlink/rename operations.
5414 * In case the inode was logged and then evicted and reloaded, its
5415 * logged_trans will be 0, in which case we have to fully log it since
5416 * logged_trans is a transient field, not persisted.
5417 */
5418 if (inode_logged(trans, inode, NULL) == 1 &&
5419 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5420 return false;
5421
5422 return true;
5423 }
5424
5425 struct btrfs_dir_list {
5426 u64 ino;
5427 struct list_head list;
5428 };
5429
5430 /*
5431 * Log the inodes of the new dentries of a directory.
5432 * See process_dir_items_leaf() for details about why it is needed.
5433 * This is a recursive operation - if an existing dentry corresponds to a
5434 * directory, that directory's new entries are logged too (same behaviour as
5435 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5436 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5437 * complains about the following circular lock dependency / possible deadlock:
5438 *
5439 * CPU0 CPU1
5440 * ---- ----
5441 * lock(&type->i_mutex_dir_key#3/2);
5442 * lock(sb_internal#2);
5443 * lock(&type->i_mutex_dir_key#3/2);
5444 * lock(&sb->s_type->i_mutex_key#14);
5445 *
5446 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5447 * sb_start_intwrite() in btrfs_start_transaction().
5448 * Not acquiring the VFS lock of the inodes is still safe because:
5449 *
5450 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5451 * that while logging the inode new references (names) are added or removed
5452 * from the inode, leaving the logged inode item with a link count that does
5453 * not match the number of logged inode reference items. This is fine because
5454 * at log replay time we compute the real number of links and correct the
5455 * link count in the inode item (see replay_one_buffer() and
5456 * link_to_fixup_dir());
5457 *
5458 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5459 * while logging the inode's items new index items (key type
5460 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5461 * has a size that doesn't match the sum of the lengths of all the logged
5462 * names - this is ok, not a problem, because at log replay time we set the
5463 * directory's i_size to the correct value (see replay_one_name() and
5464 * overwrite_item()).
5465 */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5466 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5467 struct btrfs_inode *start_inode,
5468 struct btrfs_log_ctx *ctx)
5469 {
5470 struct btrfs_root *root = start_inode->root;
5471 struct btrfs_path *path;
5472 LIST_HEAD(dir_list);
5473 struct btrfs_dir_list *dir_elem;
5474 u64 ino = btrfs_ino(start_inode);
5475 struct btrfs_inode *curr_inode = start_inode;
5476 int ret = 0;
5477
5478 /*
5479 * If we are logging a new name, as part of a link or rename operation,
5480 * don't bother logging new dentries, as we just want to log the names
5481 * of an inode and that any new parents exist.
5482 */
5483 if (ctx->logging_new_name)
5484 return 0;
5485
5486 path = btrfs_alloc_path();
5487 if (!path)
5488 return -ENOMEM;
5489
5490 /* Pairs with btrfs_add_delayed_iput below. */
5491 ihold(&curr_inode->vfs_inode);
5492
5493 while (true) {
5494 struct btrfs_key key;
5495 struct btrfs_key found_key;
5496 u64 next_index;
5497 bool continue_curr_inode = true;
5498 int iter_ret;
5499
5500 key.objectid = ino;
5501 key.type = BTRFS_DIR_INDEX_KEY;
5502 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5503 next_index = key.offset;
5504 again:
5505 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5506 struct extent_buffer *leaf = path->nodes[0];
5507 struct btrfs_dir_item *di;
5508 struct btrfs_key di_key;
5509 struct btrfs_inode *di_inode;
5510 int log_mode = LOG_INODE_EXISTS;
5511 int type;
5512
5513 if (found_key.objectid != ino ||
5514 found_key.type != BTRFS_DIR_INDEX_KEY) {
5515 continue_curr_inode = false;
5516 break;
5517 }
5518
5519 next_index = found_key.offset + 1;
5520
5521 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5522 type = btrfs_dir_ftype(leaf, di);
5523 if (btrfs_dir_transid(leaf, di) < trans->transid)
5524 continue;
5525 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5526 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5527 continue;
5528
5529 btrfs_release_path(path);
5530 di_inode = btrfs_iget_logging(di_key.objectid, root);
5531 if (IS_ERR(di_inode)) {
5532 ret = PTR_ERR(di_inode);
5533 goto out;
5534 }
5535
5536 if (!need_log_inode(trans, di_inode)) {
5537 btrfs_add_delayed_iput(di_inode);
5538 break;
5539 }
5540
5541 ctx->log_new_dentries = false;
5542 if (type == BTRFS_FT_DIR)
5543 log_mode = LOG_INODE_ALL;
5544 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
5545 btrfs_add_delayed_iput(di_inode);
5546 if (ret)
5547 goto out;
5548 if (ctx->log_new_dentries) {
5549 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5550 if (!dir_elem) {
5551 ret = -ENOMEM;
5552 goto out;
5553 }
5554 dir_elem->ino = di_key.objectid;
5555 list_add_tail(&dir_elem->list, &dir_list);
5556 }
5557 break;
5558 }
5559
5560 btrfs_release_path(path);
5561
5562 if (iter_ret < 0) {
5563 ret = iter_ret;
5564 goto out;
5565 } else if (iter_ret > 0) {
5566 continue_curr_inode = false;
5567 } else {
5568 key = found_key;
5569 }
5570
5571 if (continue_curr_inode && key.offset < (u64)-1) {
5572 key.offset++;
5573 goto again;
5574 }
5575
5576 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5577
5578 if (list_empty(&dir_list))
5579 break;
5580
5581 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5582 ino = dir_elem->ino;
5583 list_del(&dir_elem->list);
5584 kfree(dir_elem);
5585
5586 btrfs_add_delayed_iput(curr_inode);
5587
5588 curr_inode = btrfs_iget_logging(ino, root);
5589 if (IS_ERR(curr_inode)) {
5590 ret = PTR_ERR(curr_inode);
5591 curr_inode = NULL;
5592 break;
5593 }
5594 }
5595 out:
5596 btrfs_free_path(path);
5597 if (curr_inode)
5598 btrfs_add_delayed_iput(curr_inode);
5599
5600 if (ret) {
5601 struct btrfs_dir_list *next;
5602
5603 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5604 kfree(dir_elem);
5605 }
5606
5607 return ret;
5608 }
5609
5610 struct btrfs_ino_list {
5611 u64 ino;
5612 u64 parent;
5613 struct list_head list;
5614 };
5615
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5616 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5617 {
5618 struct btrfs_ino_list *curr;
5619 struct btrfs_ino_list *next;
5620
5621 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5622 list_del(&curr->list);
5623 kfree(curr);
5624 }
5625 }
5626
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5627 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5628 struct btrfs_path *path)
5629 {
5630 struct btrfs_key key;
5631 int ret;
5632
5633 key.objectid = ino;
5634 key.type = BTRFS_INODE_ITEM_KEY;
5635 key.offset = 0;
5636
5637 path->search_commit_root = 1;
5638 path->skip_locking = 1;
5639
5640 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5641 if (WARN_ON_ONCE(ret > 0)) {
5642 /*
5643 * We have previously found the inode through the commit root
5644 * so this should not happen. If it does, just error out and
5645 * fallback to a transaction commit.
5646 */
5647 ret = -ENOENT;
5648 } else if (ret == 0) {
5649 struct btrfs_inode_item *item;
5650
5651 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5652 struct btrfs_inode_item);
5653 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5654 ret = 1;
5655 }
5656
5657 btrfs_release_path(path);
5658 path->search_commit_root = 0;
5659 path->skip_locking = 0;
5660
5661 return ret;
5662 }
5663
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5664 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5665 struct btrfs_root *root,
5666 struct btrfs_path *path,
5667 u64 ino, u64 parent,
5668 struct btrfs_log_ctx *ctx)
5669 {
5670 struct btrfs_ino_list *ino_elem;
5671 struct btrfs_inode *inode;
5672
5673 /*
5674 * It's rare to have a lot of conflicting inodes, in practice it is not
5675 * common to have more than 1 or 2. We don't want to collect too many,
5676 * as we could end up logging too many inodes (even if only in
5677 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5678 * commits.
5679 */
5680 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5681 return BTRFS_LOG_FORCE_COMMIT;
5682
5683 inode = btrfs_iget_logging(ino, root);
5684 /*
5685 * If the other inode that had a conflicting dir entry was deleted in
5686 * the current transaction then we either:
5687 *
5688 * 1) Log the parent directory (later after adding it to the list) if
5689 * the inode is a directory. This is because it may be a deleted
5690 * subvolume/snapshot or it may be a regular directory that had
5691 * deleted subvolumes/snapshots (or subdirectories that had them),
5692 * and at the moment we can't deal with dropping subvolumes/snapshots
5693 * during log replay. So we just log the parent, which will result in
5694 * a fallback to a transaction commit if we are dealing with those
5695 * cases (last_unlink_trans will match the current transaction);
5696 *
5697 * 2) Do nothing if it's not a directory. During log replay we simply
5698 * unlink the conflicting dentry from the parent directory and then
5699 * add the dentry for our inode. Like this we can avoid logging the
5700 * parent directory (and maybe fallback to a transaction commit in
5701 * case it has a last_unlink_trans == trans->transid, due to moving
5702 * some inode from it to some other directory).
5703 */
5704 if (IS_ERR(inode)) {
5705 int ret = PTR_ERR(inode);
5706
5707 if (ret != -ENOENT)
5708 return ret;
5709
5710 ret = conflicting_inode_is_dir(root, ino, path);
5711 /* Not a directory or we got an error. */
5712 if (ret <= 0)
5713 return ret;
5714
5715 /* Conflicting inode is a directory, so we'll log its parent. */
5716 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5717 if (!ino_elem)
5718 return -ENOMEM;
5719 ino_elem->ino = ino;
5720 ino_elem->parent = parent;
5721 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5722 ctx->num_conflict_inodes++;
5723
5724 return 0;
5725 }
5726
5727 /*
5728 * If the inode was already logged skip it - otherwise we can hit an
5729 * infinite loop. Example:
5730 *
5731 * From the commit root (previous transaction) we have the following
5732 * inodes:
5733 *
5734 * inode 257 a directory
5735 * inode 258 with references "zz" and "zz_link" on inode 257
5736 * inode 259 with reference "a" on inode 257
5737 *
5738 * And in the current (uncommitted) transaction we have:
5739 *
5740 * inode 257 a directory, unchanged
5741 * inode 258 with references "a" and "a2" on inode 257
5742 * inode 259 with reference "zz_link" on inode 257
5743 * inode 261 with reference "zz" on inode 257
5744 *
5745 * When logging inode 261 the following infinite loop could
5746 * happen if we don't skip already logged inodes:
5747 *
5748 * - we detect inode 258 as a conflicting inode, with inode 261
5749 * on reference "zz", and log it;
5750 *
5751 * - we detect inode 259 as a conflicting inode, with inode 258
5752 * on reference "a", and log it;
5753 *
5754 * - we detect inode 258 as a conflicting inode, with inode 259
5755 * on reference "zz_link", and log it - again! After this we
5756 * repeat the above steps forever.
5757 *
5758 * Here we can use need_log_inode() because we only need to log the
5759 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5760 * so that the log ends up with the new name and without the old name.
5761 */
5762 if (!need_log_inode(trans, inode)) {
5763 btrfs_add_delayed_iput(inode);
5764 return 0;
5765 }
5766
5767 btrfs_add_delayed_iput(inode);
5768
5769 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5770 if (!ino_elem)
5771 return -ENOMEM;
5772 ino_elem->ino = ino;
5773 ino_elem->parent = parent;
5774 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5775 ctx->num_conflict_inodes++;
5776
5777 return 0;
5778 }
5779
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5780 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5781 struct btrfs_root *root,
5782 struct btrfs_log_ctx *ctx)
5783 {
5784 int ret = 0;
5785
5786 /*
5787 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5788 * otherwise we could have unbounded recursion of btrfs_log_inode()
5789 * calls. This check guarantees we can have only 1 level of recursion.
5790 */
5791 if (ctx->logging_conflict_inodes)
5792 return 0;
5793
5794 ctx->logging_conflict_inodes = true;
5795
5796 /*
5797 * New conflicting inodes may be found and added to the list while we
5798 * are logging a conflicting inode, so keep iterating while the list is
5799 * not empty.
5800 */
5801 while (!list_empty(&ctx->conflict_inodes)) {
5802 struct btrfs_ino_list *curr;
5803 struct btrfs_inode *inode;
5804 u64 ino;
5805 u64 parent;
5806
5807 curr = list_first_entry(&ctx->conflict_inodes,
5808 struct btrfs_ino_list, list);
5809 ino = curr->ino;
5810 parent = curr->parent;
5811 list_del(&curr->list);
5812 kfree(curr);
5813
5814 inode = btrfs_iget_logging(ino, root);
5815 /*
5816 * If the other inode that had a conflicting dir entry was
5817 * deleted in the current transaction, we need to log its parent
5818 * directory. See the comment at add_conflicting_inode().
5819 */
5820 if (IS_ERR(inode)) {
5821 ret = PTR_ERR(inode);
5822 if (ret != -ENOENT)
5823 break;
5824
5825 inode = btrfs_iget_logging(parent, root);
5826 if (IS_ERR(inode)) {
5827 ret = PTR_ERR(inode);
5828 break;
5829 }
5830
5831 /*
5832 * Always log the directory, we cannot make this
5833 * conditional on need_log_inode() because the directory
5834 * might have been logged in LOG_INODE_EXISTS mode or
5835 * the dir index of the conflicting inode is not in a
5836 * dir index key range logged for the directory. So we
5837 * must make sure the deletion is recorded.
5838 */
5839 ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx);
5840 btrfs_add_delayed_iput(inode);
5841 if (ret)
5842 break;
5843 continue;
5844 }
5845
5846 /*
5847 * Here we can use need_log_inode() because we only need to log
5848 * the inode in LOG_INODE_EXISTS mode and rename operations
5849 * update the log, so that the log ends up with the new name and
5850 * without the old name.
5851 *
5852 * We did this check at add_conflicting_inode(), but here we do
5853 * it again because if some other task logged the inode after
5854 * that, we can avoid doing it again.
5855 */
5856 if (!need_log_inode(trans, inode)) {
5857 btrfs_add_delayed_iput(inode);
5858 continue;
5859 }
5860
5861 /*
5862 * We are safe logging the other inode without acquiring its
5863 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5864 * are safe against concurrent renames of the other inode as
5865 * well because during a rename we pin the log and update the
5866 * log with the new name before we unpin it.
5867 */
5868 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
5869 btrfs_add_delayed_iput(inode);
5870 if (ret)
5871 break;
5872 }
5873
5874 ctx->logging_conflict_inodes = false;
5875 if (ret)
5876 free_conflicting_inodes(ctx);
5877
5878 return ret;
5879 }
5880
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5881 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5882 struct btrfs_inode *inode,
5883 struct btrfs_key *min_key,
5884 const struct btrfs_key *max_key,
5885 struct btrfs_path *path,
5886 struct btrfs_path *dst_path,
5887 const u64 logged_isize,
5888 const int inode_only,
5889 struct btrfs_log_ctx *ctx,
5890 bool *need_log_inode_item)
5891 {
5892 const u64 i_size = i_size_read(&inode->vfs_inode);
5893 struct btrfs_root *root = inode->root;
5894 int ins_start_slot = 0;
5895 int ins_nr = 0;
5896 int ret;
5897
5898 while (1) {
5899 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5900 if (ret < 0)
5901 return ret;
5902 if (ret > 0) {
5903 ret = 0;
5904 break;
5905 }
5906 again:
5907 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5908 if (min_key->objectid != max_key->objectid)
5909 break;
5910 if (min_key->type > max_key->type)
5911 break;
5912
5913 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5914 *need_log_inode_item = false;
5915 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5916 min_key->offset >= i_size) {
5917 /*
5918 * Extents at and beyond eof are logged with
5919 * btrfs_log_prealloc_extents().
5920 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5921 * and no keys greater than that, so bail out.
5922 */
5923 break;
5924 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5925 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5926 (inode->generation == trans->transid ||
5927 ctx->logging_conflict_inodes)) {
5928 u64 other_ino = 0;
5929 u64 other_parent = 0;
5930
5931 ret = btrfs_check_ref_name_override(path->nodes[0],
5932 path->slots[0], min_key, inode,
5933 &other_ino, &other_parent);
5934 if (ret < 0) {
5935 return ret;
5936 } else if (ret > 0 &&
5937 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5938 if (ins_nr > 0) {
5939 ins_nr++;
5940 } else {
5941 ins_nr = 1;
5942 ins_start_slot = path->slots[0];
5943 }
5944 ret = copy_items(trans, inode, dst_path, path,
5945 ins_start_slot, ins_nr,
5946 inode_only, logged_isize);
5947 if (ret < 0)
5948 return ret;
5949 ins_nr = 0;
5950
5951 btrfs_release_path(path);
5952 ret = add_conflicting_inode(trans, root, path,
5953 other_ino,
5954 other_parent, ctx);
5955 if (ret)
5956 return ret;
5957 goto next_key;
5958 }
5959 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5960 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5961 if (ins_nr == 0)
5962 goto next_slot;
5963 ret = copy_items(trans, inode, dst_path, path,
5964 ins_start_slot,
5965 ins_nr, inode_only, logged_isize);
5966 if (ret < 0)
5967 return ret;
5968 ins_nr = 0;
5969 goto next_slot;
5970 }
5971
5972 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5973 ins_nr++;
5974 goto next_slot;
5975 } else if (!ins_nr) {
5976 ins_start_slot = path->slots[0];
5977 ins_nr = 1;
5978 goto next_slot;
5979 }
5980
5981 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5982 ins_nr, inode_only, logged_isize);
5983 if (ret < 0)
5984 return ret;
5985 ins_nr = 1;
5986 ins_start_slot = path->slots[0];
5987 next_slot:
5988 path->slots[0]++;
5989 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5990 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5991 path->slots[0]);
5992 goto again;
5993 }
5994 if (ins_nr) {
5995 ret = copy_items(trans, inode, dst_path, path,
5996 ins_start_slot, ins_nr, inode_only,
5997 logged_isize);
5998 if (ret < 0)
5999 return ret;
6000 ins_nr = 0;
6001 }
6002 btrfs_release_path(path);
6003 next_key:
6004 if (min_key->offset < (u64)-1) {
6005 min_key->offset++;
6006 } else if (min_key->type < max_key->type) {
6007 min_key->type++;
6008 min_key->offset = 0;
6009 } else {
6010 break;
6011 }
6012
6013 /*
6014 * We may process many leaves full of items for our inode, so
6015 * avoid monopolizing a cpu for too long by rescheduling while
6016 * not holding locks on any tree.
6017 */
6018 cond_resched();
6019 }
6020 if (ins_nr) {
6021 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6022 ins_nr, inode_only, logged_isize);
6023 if (ret)
6024 return ret;
6025 }
6026
6027 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6028 /*
6029 * Release the path because otherwise we might attempt to double
6030 * lock the same leaf with btrfs_log_prealloc_extents() below.
6031 */
6032 btrfs_release_path(path);
6033 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
6034 }
6035
6036 return ret;
6037 }
6038
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)6039 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6040 struct btrfs_root *log,
6041 struct btrfs_path *path,
6042 const struct btrfs_item_batch *batch,
6043 const struct btrfs_delayed_item *first_item)
6044 {
6045 const struct btrfs_delayed_item *curr = first_item;
6046 int ret;
6047
6048 ret = btrfs_insert_empty_items(trans, log, path, batch);
6049 if (ret)
6050 return ret;
6051
6052 for (int i = 0; i < batch->nr; i++) {
6053 char *data_ptr;
6054
6055 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6056 write_extent_buffer(path->nodes[0], &curr->data,
6057 (unsigned long)data_ptr, curr->data_len);
6058 curr = list_next_entry(curr, log_list);
6059 path->slots[0]++;
6060 }
6061
6062 btrfs_release_path(path);
6063
6064 return 0;
6065 }
6066
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6067 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6068 struct btrfs_inode *inode,
6069 struct btrfs_path *path,
6070 const struct list_head *delayed_ins_list,
6071 struct btrfs_log_ctx *ctx)
6072 {
6073 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6074 const int max_batch_size = 195;
6075 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6076 const u64 ino = btrfs_ino(inode);
6077 struct btrfs_root *log = inode->root->log_root;
6078 struct btrfs_item_batch batch = {
6079 .nr = 0,
6080 .total_data_size = 0,
6081 };
6082 const struct btrfs_delayed_item *first = NULL;
6083 const struct btrfs_delayed_item *curr;
6084 char *ins_data;
6085 struct btrfs_key *ins_keys;
6086 u32 *ins_sizes;
6087 u64 curr_batch_size = 0;
6088 int batch_idx = 0;
6089 int ret;
6090
6091 /* We are adding dir index items to the log tree. */
6092 lockdep_assert_held(&inode->log_mutex);
6093
6094 /*
6095 * We collect delayed items before copying index keys from the subvolume
6096 * to the log tree. However just after we collected them, they may have
6097 * been flushed (all of them or just some of them), and therefore we
6098 * could have copied them from the subvolume tree to the log tree.
6099 * So find the first delayed item that was not yet logged (they are
6100 * sorted by index number).
6101 */
6102 list_for_each_entry(curr, delayed_ins_list, log_list) {
6103 if (curr->index > inode->last_dir_index_offset) {
6104 first = curr;
6105 break;
6106 }
6107 }
6108
6109 /* Empty list or all delayed items were already logged. */
6110 if (!first)
6111 return 0;
6112
6113 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6114 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6115 if (!ins_data)
6116 return -ENOMEM;
6117 ins_sizes = (u32 *)ins_data;
6118 batch.data_sizes = ins_sizes;
6119 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6120 batch.keys = ins_keys;
6121
6122 curr = first;
6123 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6124 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6125
6126 if (curr_batch_size + curr_size > leaf_data_size ||
6127 batch.nr == max_batch_size) {
6128 ret = insert_delayed_items_batch(trans, log, path,
6129 &batch, first);
6130 if (ret)
6131 goto out;
6132 batch_idx = 0;
6133 batch.nr = 0;
6134 batch.total_data_size = 0;
6135 curr_batch_size = 0;
6136 first = curr;
6137 }
6138
6139 ins_sizes[batch_idx] = curr->data_len;
6140 ins_keys[batch_idx].objectid = ino;
6141 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6142 ins_keys[batch_idx].offset = curr->index;
6143 curr_batch_size += curr_size;
6144 batch.total_data_size += curr->data_len;
6145 batch.nr++;
6146 batch_idx++;
6147 curr = list_next_entry(curr, log_list);
6148 }
6149
6150 ASSERT(batch.nr >= 1);
6151 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6152
6153 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6154 log_list);
6155 inode->last_dir_index_offset = curr->index;
6156 out:
6157 kfree(ins_data);
6158
6159 return ret;
6160 }
6161
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6162 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6163 struct btrfs_inode *inode,
6164 struct btrfs_path *path,
6165 const struct list_head *delayed_del_list,
6166 struct btrfs_log_ctx *ctx)
6167 {
6168 const u64 ino = btrfs_ino(inode);
6169 const struct btrfs_delayed_item *curr;
6170
6171 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6172 log_list);
6173
6174 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6175 u64 first_dir_index = curr->index;
6176 u64 last_dir_index;
6177 const struct btrfs_delayed_item *next;
6178 int ret;
6179
6180 /*
6181 * Find a range of consecutive dir index items to delete. Like
6182 * this we log a single dir range item spanning several contiguous
6183 * dir items instead of logging one range item per dir index item.
6184 */
6185 next = list_next_entry(curr, log_list);
6186 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6187 if (next->index != curr->index + 1)
6188 break;
6189 curr = next;
6190 next = list_next_entry(next, log_list);
6191 }
6192
6193 last_dir_index = curr->index;
6194 ASSERT(last_dir_index >= first_dir_index);
6195
6196 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6197 ino, first_dir_index, last_dir_index);
6198 if (ret)
6199 return ret;
6200 curr = list_next_entry(curr, log_list);
6201 }
6202
6203 return 0;
6204 }
6205
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6206 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6207 struct btrfs_inode *inode,
6208 struct btrfs_path *path,
6209 struct btrfs_log_ctx *ctx,
6210 const struct list_head *delayed_del_list,
6211 const struct btrfs_delayed_item *first,
6212 const struct btrfs_delayed_item **last_ret)
6213 {
6214 const struct btrfs_delayed_item *next;
6215 struct extent_buffer *leaf = path->nodes[0];
6216 const int last_slot = btrfs_header_nritems(leaf) - 1;
6217 int slot = path->slots[0] + 1;
6218 const u64 ino = btrfs_ino(inode);
6219
6220 next = list_next_entry(first, log_list);
6221
6222 while (slot < last_slot &&
6223 !list_entry_is_head(next, delayed_del_list, log_list)) {
6224 struct btrfs_key key;
6225
6226 btrfs_item_key_to_cpu(leaf, &key, slot);
6227 if (key.objectid != ino ||
6228 key.type != BTRFS_DIR_INDEX_KEY ||
6229 key.offset != next->index)
6230 break;
6231
6232 slot++;
6233 *last_ret = next;
6234 next = list_next_entry(next, log_list);
6235 }
6236
6237 return btrfs_del_items(trans, inode->root->log_root, path,
6238 path->slots[0], slot - path->slots[0]);
6239 }
6240
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6241 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6242 struct btrfs_inode *inode,
6243 struct btrfs_path *path,
6244 const struct list_head *delayed_del_list,
6245 struct btrfs_log_ctx *ctx)
6246 {
6247 struct btrfs_root *log = inode->root->log_root;
6248 const struct btrfs_delayed_item *curr;
6249 u64 last_range_start = 0;
6250 u64 last_range_end = 0;
6251 struct btrfs_key key;
6252
6253 key.objectid = btrfs_ino(inode);
6254 key.type = BTRFS_DIR_INDEX_KEY;
6255 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6256 log_list);
6257
6258 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6259 const struct btrfs_delayed_item *last = curr;
6260 u64 first_dir_index = curr->index;
6261 u64 last_dir_index;
6262 bool deleted_items = false;
6263 int ret;
6264
6265 key.offset = curr->index;
6266 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6267 if (ret < 0) {
6268 return ret;
6269 } else if (ret == 0) {
6270 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6271 delayed_del_list, curr,
6272 &last);
6273 if (ret)
6274 return ret;
6275 deleted_items = true;
6276 }
6277
6278 btrfs_release_path(path);
6279
6280 /*
6281 * If we deleted items from the leaf, it means we have a range
6282 * item logging their range, so no need to add one or update an
6283 * existing one. Otherwise we have to log a dir range item.
6284 */
6285 if (deleted_items)
6286 goto next_batch;
6287
6288 last_dir_index = last->index;
6289 ASSERT(last_dir_index >= first_dir_index);
6290 /*
6291 * If this range starts right after where the previous one ends,
6292 * then we want to reuse the previous range item and change its
6293 * end offset to the end of this range. This is just to minimize
6294 * leaf space usage, by avoiding adding a new range item.
6295 */
6296 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6297 first_dir_index = last_range_start;
6298
6299 ret = insert_dir_log_key(trans, log, path, key.objectid,
6300 first_dir_index, last_dir_index);
6301 if (ret)
6302 return ret;
6303
6304 last_range_start = first_dir_index;
6305 last_range_end = last_dir_index;
6306 next_batch:
6307 curr = list_next_entry(last, log_list);
6308 }
6309
6310 return 0;
6311 }
6312
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6313 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6314 struct btrfs_inode *inode,
6315 struct btrfs_path *path,
6316 const struct list_head *delayed_del_list,
6317 struct btrfs_log_ctx *ctx)
6318 {
6319 /*
6320 * We are deleting dir index items from the log tree or adding range
6321 * items to it.
6322 */
6323 lockdep_assert_held(&inode->log_mutex);
6324
6325 if (list_empty(delayed_del_list))
6326 return 0;
6327
6328 if (ctx->logged_before)
6329 return log_delayed_deletions_incremental(trans, inode, path,
6330 delayed_del_list, ctx);
6331
6332 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6333 ctx);
6334 }
6335
6336 /*
6337 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6338 * items instead of the subvolume tree.
6339 */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6340 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6341 struct btrfs_inode *inode,
6342 const struct list_head *delayed_ins_list,
6343 struct btrfs_log_ctx *ctx)
6344 {
6345 const bool orig_log_new_dentries = ctx->log_new_dentries;
6346 struct btrfs_delayed_item *item;
6347 int ret = 0;
6348
6349 /*
6350 * No need for the log mutex, plus to avoid potential deadlocks or
6351 * lockdep annotations due to nesting of delayed inode mutexes and log
6352 * mutexes.
6353 */
6354 lockdep_assert_not_held(&inode->log_mutex);
6355
6356 ASSERT(!ctx->logging_new_delayed_dentries);
6357 ctx->logging_new_delayed_dentries = true;
6358
6359 list_for_each_entry(item, delayed_ins_list, log_list) {
6360 struct btrfs_dir_item *dir_item;
6361 struct btrfs_inode *di_inode;
6362 struct btrfs_key key;
6363 int log_mode = LOG_INODE_EXISTS;
6364
6365 dir_item = (struct btrfs_dir_item *)item->data;
6366 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6367
6368 if (key.type == BTRFS_ROOT_ITEM_KEY)
6369 continue;
6370
6371 di_inode = btrfs_iget_logging(key.objectid, inode->root);
6372 if (IS_ERR(di_inode)) {
6373 ret = PTR_ERR(di_inode);
6374 break;
6375 }
6376
6377 if (!need_log_inode(trans, di_inode)) {
6378 btrfs_add_delayed_iput(di_inode);
6379 continue;
6380 }
6381
6382 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6383 log_mode = LOG_INODE_ALL;
6384
6385 ctx->log_new_dentries = false;
6386 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
6387
6388 if (!ret && ctx->log_new_dentries)
6389 ret = log_new_dir_dentries(trans, di_inode, ctx);
6390
6391 btrfs_add_delayed_iput(di_inode);
6392
6393 if (ret)
6394 break;
6395 }
6396
6397 ctx->log_new_dentries = orig_log_new_dentries;
6398 ctx->logging_new_delayed_dentries = false;
6399
6400 return ret;
6401 }
6402
6403 /* log a single inode in the tree log.
6404 * At least one parent directory for this inode must exist in the tree
6405 * or be logged already.
6406 *
6407 * Any items from this inode changed by the current transaction are copied
6408 * to the log tree. An extra reference is taken on any extents in this
6409 * file, allowing us to avoid a whole pile of corner cases around logging
6410 * blocks that have been removed from the tree.
6411 *
6412 * See LOG_INODE_ALL and related defines for a description of what inode_only
6413 * does.
6414 *
6415 * This handles both files and directories.
6416 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6417 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6418 struct btrfs_inode *inode,
6419 int inode_only,
6420 struct btrfs_log_ctx *ctx)
6421 {
6422 struct btrfs_path *path;
6423 struct btrfs_path *dst_path;
6424 struct btrfs_key min_key;
6425 struct btrfs_key max_key;
6426 struct btrfs_root *log = inode->root->log_root;
6427 int ret;
6428 bool fast_search = false;
6429 u64 ino = btrfs_ino(inode);
6430 struct extent_map_tree *em_tree = &inode->extent_tree;
6431 u64 logged_isize = 0;
6432 bool need_log_inode_item = true;
6433 bool xattrs_logged = false;
6434 bool inode_item_dropped = true;
6435 bool full_dir_logging = false;
6436 LIST_HEAD(delayed_ins_list);
6437 LIST_HEAD(delayed_del_list);
6438
6439 path = btrfs_alloc_path();
6440 if (!path)
6441 return -ENOMEM;
6442 dst_path = btrfs_alloc_path();
6443 if (!dst_path) {
6444 btrfs_free_path(path);
6445 return -ENOMEM;
6446 }
6447
6448 min_key.objectid = ino;
6449 min_key.type = BTRFS_INODE_ITEM_KEY;
6450 min_key.offset = 0;
6451
6452 max_key.objectid = ino;
6453
6454
6455 /* today the code can only do partial logging of directories */
6456 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6457 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6458 &inode->runtime_flags) &&
6459 inode_only >= LOG_INODE_EXISTS))
6460 max_key.type = BTRFS_XATTR_ITEM_KEY;
6461 else
6462 max_key.type = (u8)-1;
6463 max_key.offset = (u64)-1;
6464
6465 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6466 full_dir_logging = true;
6467
6468 /*
6469 * If we are logging a directory while we are logging dentries of the
6470 * delayed items of some other inode, then we need to flush the delayed
6471 * items of this directory and not log the delayed items directly. This
6472 * is to prevent more than one level of recursion into btrfs_log_inode()
6473 * by having something like this:
6474 *
6475 * $ mkdir -p a/b/c/d/e/f/g/h/...
6476 * $ xfs_io -c "fsync" a
6477 *
6478 * Where all directories in the path did not exist before and are
6479 * created in the current transaction.
6480 * So in such a case we directly log the delayed items of the main
6481 * directory ("a") without flushing them first, while for each of its
6482 * subdirectories we flush their delayed items before logging them.
6483 * This prevents a potential unbounded recursion like this:
6484 *
6485 * btrfs_log_inode()
6486 * log_new_delayed_dentries()
6487 * btrfs_log_inode()
6488 * log_new_delayed_dentries()
6489 * btrfs_log_inode()
6490 * log_new_delayed_dentries()
6491 * (...)
6492 *
6493 * We have thresholds for the maximum number of delayed items to have in
6494 * memory, and once they are hit, the items are flushed asynchronously.
6495 * However the limit is quite high, so lets prevent deep levels of
6496 * recursion to happen by limiting the maximum depth to be 1.
6497 */
6498 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6499 ret = btrfs_commit_inode_delayed_items(trans, inode);
6500 if (ret)
6501 goto out;
6502 }
6503
6504 mutex_lock(&inode->log_mutex);
6505
6506 /*
6507 * For symlinks, we must always log their content, which is stored in an
6508 * inline extent, otherwise we could end up with an empty symlink after
6509 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6510 * one attempts to create an empty symlink).
6511 * We don't need to worry about flushing delalloc, because when we create
6512 * the inline extent when the symlink is created (we never have delalloc
6513 * for symlinks).
6514 */
6515 if (S_ISLNK(inode->vfs_inode.i_mode))
6516 inode_only = LOG_INODE_ALL;
6517
6518 /*
6519 * Before logging the inode item, cache the value returned by
6520 * inode_logged(), because after that we have the need to figure out if
6521 * the inode was previously logged in this transaction.
6522 */
6523 ret = inode_logged(trans, inode, path);
6524 if (ret < 0)
6525 goto out_unlock;
6526 ctx->logged_before = (ret == 1);
6527 ret = 0;
6528
6529 /*
6530 * This is for cases where logging a directory could result in losing a
6531 * a file after replaying the log. For example, if we move a file from a
6532 * directory A to a directory B, then fsync directory A, we have no way
6533 * to known the file was moved from A to B, so logging just A would
6534 * result in losing the file after a log replay.
6535 */
6536 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6537 ret = BTRFS_LOG_FORCE_COMMIT;
6538 goto out_unlock;
6539 }
6540
6541 /*
6542 * a brute force approach to making sure we get the most uptodate
6543 * copies of everything.
6544 */
6545 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6546 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6547 if (ctx->logged_before)
6548 ret = drop_inode_items(trans, log, path, inode,
6549 BTRFS_XATTR_ITEM_KEY);
6550 } else {
6551 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6552 /*
6553 * Make sure the new inode item we write to the log has
6554 * the same isize as the current one (if it exists).
6555 * This is necessary to prevent data loss after log
6556 * replay, and also to prevent doing a wrong expanding
6557 * truncate - for e.g. create file, write 4K into offset
6558 * 0, fsync, write 4K into offset 4096, add hard link,
6559 * fsync some other file (to sync log), power fail - if
6560 * we use the inode's current i_size, after log replay
6561 * we get a 8Kb file, with the last 4Kb extent as a hole
6562 * (zeroes), as if an expanding truncate happened,
6563 * instead of getting a file of 4Kb only.
6564 */
6565 ret = logged_inode_size(log, inode, path, &logged_isize);
6566 if (ret)
6567 goto out_unlock;
6568 }
6569 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6570 &inode->runtime_flags)) {
6571 if (inode_only == LOG_INODE_EXISTS) {
6572 max_key.type = BTRFS_XATTR_ITEM_KEY;
6573 if (ctx->logged_before)
6574 ret = drop_inode_items(trans, log, path,
6575 inode, max_key.type);
6576 } else {
6577 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6578 &inode->runtime_flags);
6579 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6580 &inode->runtime_flags);
6581 if (ctx->logged_before)
6582 ret = truncate_inode_items(trans, log,
6583 inode, 0, 0);
6584 }
6585 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6586 &inode->runtime_flags) ||
6587 inode_only == LOG_INODE_EXISTS) {
6588 if (inode_only == LOG_INODE_ALL)
6589 fast_search = true;
6590 max_key.type = BTRFS_XATTR_ITEM_KEY;
6591 if (ctx->logged_before)
6592 ret = drop_inode_items(trans, log, path, inode,
6593 max_key.type);
6594 } else {
6595 if (inode_only == LOG_INODE_ALL)
6596 fast_search = true;
6597 inode_item_dropped = false;
6598 goto log_extents;
6599 }
6600
6601 }
6602 if (ret)
6603 goto out_unlock;
6604
6605 /*
6606 * If we are logging a directory in full mode, collect the delayed items
6607 * before iterating the subvolume tree, so that we don't miss any new
6608 * dir index items in case they get flushed while or right after we are
6609 * iterating the subvolume tree.
6610 */
6611 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6612 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6613 &delayed_del_list);
6614
6615 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6616 path, dst_path, logged_isize,
6617 inode_only, ctx,
6618 &need_log_inode_item);
6619 if (ret)
6620 goto out_unlock;
6621
6622 btrfs_release_path(path);
6623 btrfs_release_path(dst_path);
6624 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6625 if (ret)
6626 goto out_unlock;
6627 xattrs_logged = true;
6628 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6629 btrfs_release_path(path);
6630 btrfs_release_path(dst_path);
6631 ret = btrfs_log_holes(trans, inode, path);
6632 if (ret)
6633 goto out_unlock;
6634 }
6635 log_extents:
6636 btrfs_release_path(path);
6637 btrfs_release_path(dst_path);
6638 if (need_log_inode_item) {
6639 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6640 if (ret)
6641 goto out_unlock;
6642 /*
6643 * If we are doing a fast fsync and the inode was logged before
6644 * in this transaction, we don't need to log the xattrs because
6645 * they were logged before. If xattrs were added, changed or
6646 * deleted since the last time we logged the inode, then we have
6647 * already logged them because the inode had the runtime flag
6648 * BTRFS_INODE_COPY_EVERYTHING set.
6649 */
6650 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6651 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6652 if (ret)
6653 goto out_unlock;
6654 btrfs_release_path(path);
6655 }
6656 }
6657 if (fast_search) {
6658 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6659 if (ret)
6660 goto out_unlock;
6661 } else if (inode_only == LOG_INODE_ALL) {
6662 struct extent_map *em, *n;
6663
6664 write_lock(&em_tree->lock);
6665 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6666 list_del_init(&em->list);
6667 write_unlock(&em_tree->lock);
6668 }
6669
6670 if (full_dir_logging) {
6671 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6672 if (ret)
6673 goto out_unlock;
6674 ret = log_delayed_insertion_items(trans, inode, path,
6675 &delayed_ins_list, ctx);
6676 if (ret)
6677 goto out_unlock;
6678 ret = log_delayed_deletion_items(trans, inode, path,
6679 &delayed_del_list, ctx);
6680 if (ret)
6681 goto out_unlock;
6682 }
6683
6684 spin_lock(&inode->lock);
6685 inode->logged_trans = trans->transid;
6686 /*
6687 * Don't update last_log_commit if we logged that an inode exists.
6688 * We do this for three reasons:
6689 *
6690 * 1) We might have had buffered writes to this inode that were
6691 * flushed and had their ordered extents completed in this
6692 * transaction, but we did not previously log the inode with
6693 * LOG_INODE_ALL. Later the inode was evicted and after that
6694 * it was loaded again and this LOG_INODE_EXISTS log operation
6695 * happened. We must make sure that if an explicit fsync against
6696 * the inode is performed later, it logs the new extents, an
6697 * updated inode item, etc, and syncs the log. The same logic
6698 * applies to direct IO writes instead of buffered writes.
6699 *
6700 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6701 * is logged with an i_size of 0 or whatever value was logged
6702 * before. If later the i_size of the inode is increased by a
6703 * truncate operation, the log is synced through an fsync of
6704 * some other inode and then finally an explicit fsync against
6705 * this inode is made, we must make sure this fsync logs the
6706 * inode with the new i_size, the hole between old i_size and
6707 * the new i_size, and syncs the log.
6708 *
6709 * 3) If we are logging that an ancestor inode exists as part of
6710 * logging a new name from a link or rename operation, don't update
6711 * its last_log_commit - otherwise if an explicit fsync is made
6712 * against an ancestor, the fsync considers the inode in the log
6713 * and doesn't sync the log, resulting in the ancestor missing after
6714 * a power failure unless the log was synced as part of an fsync
6715 * against any other unrelated inode.
6716 */
6717 if (inode_only != LOG_INODE_EXISTS)
6718 inode->last_log_commit = inode->last_sub_trans;
6719 spin_unlock(&inode->lock);
6720
6721 /*
6722 * Reset the last_reflink_trans so that the next fsync does not need to
6723 * go through the slower path when logging extents and their checksums.
6724 */
6725 if (inode_only == LOG_INODE_ALL)
6726 inode->last_reflink_trans = 0;
6727
6728 out_unlock:
6729 mutex_unlock(&inode->log_mutex);
6730 out:
6731 btrfs_free_path(path);
6732 btrfs_free_path(dst_path);
6733
6734 if (ret)
6735 free_conflicting_inodes(ctx);
6736 else
6737 ret = log_conflicting_inodes(trans, inode->root, ctx);
6738
6739 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6740 if (!ret)
6741 ret = log_new_delayed_dentries(trans, inode,
6742 &delayed_ins_list, ctx);
6743
6744 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6745 &delayed_del_list);
6746 }
6747
6748 return ret;
6749 }
6750
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6751 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6752 struct btrfs_inode *inode,
6753 struct btrfs_log_ctx *ctx)
6754 {
6755 int ret;
6756 struct btrfs_path *path;
6757 struct btrfs_key key;
6758 struct btrfs_root *root = inode->root;
6759 const u64 ino = btrfs_ino(inode);
6760
6761 path = btrfs_alloc_path();
6762 if (!path)
6763 return -ENOMEM;
6764 path->skip_locking = 1;
6765 path->search_commit_root = 1;
6766
6767 key.objectid = ino;
6768 key.type = BTRFS_INODE_REF_KEY;
6769 key.offset = 0;
6770 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6771 if (ret < 0)
6772 goto out;
6773
6774 while (true) {
6775 struct extent_buffer *leaf = path->nodes[0];
6776 int slot = path->slots[0];
6777 u32 cur_offset = 0;
6778 u32 item_size;
6779 unsigned long ptr;
6780
6781 if (slot >= btrfs_header_nritems(leaf)) {
6782 ret = btrfs_next_leaf(root, path);
6783 if (ret < 0)
6784 goto out;
6785 else if (ret > 0)
6786 break;
6787 continue;
6788 }
6789
6790 btrfs_item_key_to_cpu(leaf, &key, slot);
6791 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6792 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6793 break;
6794
6795 item_size = btrfs_item_size(leaf, slot);
6796 ptr = btrfs_item_ptr_offset(leaf, slot);
6797 while (cur_offset < item_size) {
6798 struct btrfs_key inode_key;
6799 struct btrfs_inode *dir_inode;
6800
6801 inode_key.type = BTRFS_INODE_ITEM_KEY;
6802 inode_key.offset = 0;
6803
6804 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6805 struct btrfs_inode_extref *extref;
6806
6807 extref = (struct btrfs_inode_extref *)
6808 (ptr + cur_offset);
6809 inode_key.objectid = btrfs_inode_extref_parent(
6810 leaf, extref);
6811 cur_offset += sizeof(*extref);
6812 cur_offset += btrfs_inode_extref_name_len(leaf,
6813 extref);
6814 } else {
6815 inode_key.objectid = key.offset;
6816 cur_offset = item_size;
6817 }
6818
6819 dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6820 /*
6821 * If the parent inode was deleted, return an error to
6822 * fallback to a transaction commit. This is to prevent
6823 * getting an inode that was moved from one parent A to
6824 * a parent B, got its former parent A deleted and then
6825 * it got fsync'ed, from existing at both parents after
6826 * a log replay (and the old parent still existing).
6827 * Example:
6828 *
6829 * mkdir /mnt/A
6830 * mkdir /mnt/B
6831 * touch /mnt/B/bar
6832 * sync
6833 * mv /mnt/B/bar /mnt/A/bar
6834 * mv -T /mnt/A /mnt/B
6835 * fsync /mnt/B/bar
6836 * <power fail>
6837 *
6838 * If we ignore the old parent B which got deleted,
6839 * after a log replay we would have file bar linked
6840 * at both parents and the old parent B would still
6841 * exist.
6842 */
6843 if (IS_ERR(dir_inode)) {
6844 ret = PTR_ERR(dir_inode);
6845 goto out;
6846 }
6847
6848 if (!need_log_inode(trans, dir_inode)) {
6849 btrfs_add_delayed_iput(dir_inode);
6850 continue;
6851 }
6852
6853 ctx->log_new_dentries = false;
6854 ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx);
6855 if (!ret && ctx->log_new_dentries)
6856 ret = log_new_dir_dentries(trans, dir_inode, ctx);
6857 btrfs_add_delayed_iput(dir_inode);
6858 if (ret)
6859 goto out;
6860 }
6861 path->slots[0]++;
6862 }
6863 ret = 0;
6864 out:
6865 btrfs_free_path(path);
6866 return ret;
6867 }
6868
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6869 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6870 struct btrfs_root *root,
6871 struct btrfs_path *path,
6872 struct btrfs_log_ctx *ctx)
6873 {
6874 struct btrfs_key found_key;
6875
6876 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6877
6878 while (true) {
6879 struct extent_buffer *leaf;
6880 int slot;
6881 struct btrfs_key search_key;
6882 struct btrfs_inode *inode;
6883 u64 ino;
6884 int ret = 0;
6885
6886 btrfs_release_path(path);
6887
6888 ino = found_key.offset;
6889
6890 search_key.objectid = found_key.offset;
6891 search_key.type = BTRFS_INODE_ITEM_KEY;
6892 search_key.offset = 0;
6893 inode = btrfs_iget_logging(ino, root);
6894 if (IS_ERR(inode))
6895 return PTR_ERR(inode);
6896
6897 if (inode->generation >= trans->transid &&
6898 need_log_inode(trans, inode))
6899 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
6900 btrfs_add_delayed_iput(inode);
6901 if (ret)
6902 return ret;
6903
6904 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6905 break;
6906
6907 search_key.type = BTRFS_INODE_REF_KEY;
6908 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6909 if (ret < 0)
6910 return ret;
6911
6912 leaf = path->nodes[0];
6913 slot = path->slots[0];
6914 if (slot >= btrfs_header_nritems(leaf)) {
6915 ret = btrfs_next_leaf(root, path);
6916 if (ret < 0)
6917 return ret;
6918 else if (ret > 0)
6919 return -ENOENT;
6920 leaf = path->nodes[0];
6921 slot = path->slots[0];
6922 }
6923
6924 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6925 if (found_key.objectid != search_key.objectid ||
6926 found_key.type != BTRFS_INODE_REF_KEY)
6927 return -ENOENT;
6928 }
6929 return 0;
6930 }
6931
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6932 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6933 struct btrfs_inode *inode,
6934 struct dentry *parent,
6935 struct btrfs_log_ctx *ctx)
6936 {
6937 struct btrfs_root *root = inode->root;
6938 struct dentry *old_parent = NULL;
6939 struct super_block *sb = inode->vfs_inode.i_sb;
6940 int ret = 0;
6941
6942 while (true) {
6943 if (!parent || d_really_is_negative(parent) ||
6944 sb != parent->d_sb)
6945 break;
6946
6947 inode = BTRFS_I(d_inode(parent));
6948 if (root != inode->root)
6949 break;
6950
6951 if (inode->generation >= trans->transid &&
6952 need_log_inode(trans, inode)) {
6953 ret = btrfs_log_inode(trans, inode,
6954 LOG_INODE_EXISTS, ctx);
6955 if (ret)
6956 break;
6957 }
6958 if (IS_ROOT(parent))
6959 break;
6960
6961 parent = dget_parent(parent);
6962 dput(old_parent);
6963 old_parent = parent;
6964 }
6965 dput(old_parent);
6966
6967 return ret;
6968 }
6969
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6970 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6971 struct btrfs_inode *inode,
6972 struct dentry *parent,
6973 struct btrfs_log_ctx *ctx)
6974 {
6975 struct btrfs_root *root = inode->root;
6976 const u64 ino = btrfs_ino(inode);
6977 struct btrfs_path *path;
6978 struct btrfs_key search_key;
6979 int ret;
6980
6981 /*
6982 * For a single hard link case, go through a fast path that does not
6983 * need to iterate the fs/subvolume tree.
6984 */
6985 if (inode->vfs_inode.i_nlink < 2)
6986 return log_new_ancestors_fast(trans, inode, parent, ctx);
6987
6988 path = btrfs_alloc_path();
6989 if (!path)
6990 return -ENOMEM;
6991
6992 search_key.objectid = ino;
6993 search_key.type = BTRFS_INODE_REF_KEY;
6994 search_key.offset = 0;
6995 again:
6996 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6997 if (ret < 0)
6998 goto out;
6999 if (ret == 0)
7000 path->slots[0]++;
7001
7002 while (true) {
7003 struct extent_buffer *leaf = path->nodes[0];
7004 int slot = path->slots[0];
7005 struct btrfs_key found_key;
7006
7007 if (slot >= btrfs_header_nritems(leaf)) {
7008 ret = btrfs_next_leaf(root, path);
7009 if (ret < 0)
7010 goto out;
7011 else if (ret > 0)
7012 break;
7013 continue;
7014 }
7015
7016 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7017 if (found_key.objectid != ino ||
7018 found_key.type > BTRFS_INODE_EXTREF_KEY)
7019 break;
7020
7021 /*
7022 * Don't deal with extended references because they are rare
7023 * cases and too complex to deal with (we would need to keep
7024 * track of which subitem we are processing for each item in
7025 * this loop, etc). So just return some error to fallback to
7026 * a transaction commit.
7027 */
7028 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7029 ret = -EMLINK;
7030 goto out;
7031 }
7032
7033 /*
7034 * Logging ancestors needs to do more searches on the fs/subvol
7035 * tree, so it releases the path as needed to avoid deadlocks.
7036 * Keep track of the last inode ref key and resume from that key
7037 * after logging all new ancestors for the current hard link.
7038 */
7039 memcpy(&search_key, &found_key, sizeof(search_key));
7040
7041 ret = log_new_ancestors(trans, root, path, ctx);
7042 if (ret)
7043 goto out;
7044 btrfs_release_path(path);
7045 goto again;
7046 }
7047 ret = 0;
7048 out:
7049 btrfs_free_path(path);
7050 return ret;
7051 }
7052
7053 /*
7054 * helper function around btrfs_log_inode to make sure newly created
7055 * parent directories also end up in the log. A minimal inode and backref
7056 * only logging is done of any parent directories that are older than
7057 * the last committed transaction
7058 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7059 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7060 struct btrfs_inode *inode,
7061 struct dentry *parent,
7062 int inode_only,
7063 struct btrfs_log_ctx *ctx)
7064 {
7065 struct btrfs_root *root = inode->root;
7066 struct btrfs_fs_info *fs_info = root->fs_info;
7067 int ret = 0;
7068 bool log_dentries = false;
7069
7070 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7071 ret = BTRFS_LOG_FORCE_COMMIT;
7072 goto end_no_trans;
7073 }
7074
7075 if (btrfs_root_refs(&root->root_item) == 0) {
7076 ret = BTRFS_LOG_FORCE_COMMIT;
7077 goto end_no_trans;
7078 }
7079
7080 /*
7081 * Skip already logged inodes or inodes corresponding to tmpfiles
7082 * (since logging them is pointless, a link count of 0 means they
7083 * will never be accessible).
7084 */
7085 if ((btrfs_inode_in_log(inode, trans->transid) &&
7086 list_empty(&ctx->ordered_extents)) ||
7087 inode->vfs_inode.i_nlink == 0) {
7088 ret = BTRFS_NO_LOG_SYNC;
7089 goto end_no_trans;
7090 }
7091
7092 ret = start_log_trans(trans, root, ctx);
7093 if (ret)
7094 goto end_no_trans;
7095
7096 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7097 if (ret)
7098 goto end_trans;
7099
7100 /*
7101 * for regular files, if its inode is already on disk, we don't
7102 * have to worry about the parents at all. This is because
7103 * we can use the last_unlink_trans field to record renames
7104 * and other fun in this file.
7105 */
7106 if (S_ISREG(inode->vfs_inode.i_mode) &&
7107 inode->generation < trans->transid &&
7108 inode->last_unlink_trans < trans->transid) {
7109 ret = 0;
7110 goto end_trans;
7111 }
7112
7113 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7114 log_dentries = true;
7115
7116 /*
7117 * On unlink we must make sure all our current and old parent directory
7118 * inodes are fully logged. This is to prevent leaving dangling
7119 * directory index entries in directories that were our parents but are
7120 * not anymore. Not doing this results in old parent directory being
7121 * impossible to delete after log replay (rmdir will always fail with
7122 * error -ENOTEMPTY).
7123 *
7124 * Example 1:
7125 *
7126 * mkdir testdir
7127 * touch testdir/foo
7128 * ln testdir/foo testdir/bar
7129 * sync
7130 * unlink testdir/bar
7131 * xfs_io -c fsync testdir/foo
7132 * <power failure>
7133 * mount fs, triggers log replay
7134 *
7135 * If we don't log the parent directory (testdir), after log replay the
7136 * directory still has an entry pointing to the file inode using the bar
7137 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7138 * the file inode has a link count of 1.
7139 *
7140 * Example 2:
7141 *
7142 * mkdir testdir
7143 * touch foo
7144 * ln foo testdir/foo2
7145 * ln foo testdir/foo3
7146 * sync
7147 * unlink testdir/foo3
7148 * xfs_io -c fsync foo
7149 * <power failure>
7150 * mount fs, triggers log replay
7151 *
7152 * Similar as the first example, after log replay the parent directory
7153 * testdir still has an entry pointing to the inode file with name foo3
7154 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7155 * and has a link count of 2.
7156 */
7157 if (inode->last_unlink_trans >= trans->transid) {
7158 ret = btrfs_log_all_parents(trans, inode, ctx);
7159 if (ret)
7160 goto end_trans;
7161 }
7162
7163 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7164 if (ret)
7165 goto end_trans;
7166
7167 if (log_dentries)
7168 ret = log_new_dir_dentries(trans, inode, ctx);
7169 else
7170 ret = 0;
7171 end_trans:
7172 if (ret < 0) {
7173 btrfs_set_log_full_commit(trans);
7174 ret = BTRFS_LOG_FORCE_COMMIT;
7175 }
7176
7177 if (ret)
7178 btrfs_remove_log_ctx(root, ctx);
7179 btrfs_end_log_trans(root);
7180 end_no_trans:
7181 return ret;
7182 }
7183
7184 /*
7185 * it is not safe to log dentry if the chunk root has added new
7186 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7187 * If this returns 1, you must commit the transaction to safely get your
7188 * data on disk.
7189 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7190 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7191 struct dentry *dentry,
7192 struct btrfs_log_ctx *ctx)
7193 {
7194 struct dentry *parent = dget_parent(dentry);
7195 int ret;
7196
7197 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7198 LOG_INODE_ALL, ctx);
7199 dput(parent);
7200
7201 return ret;
7202 }
7203
7204 /*
7205 * should be called during mount to recover any replay any log trees
7206 * from the FS
7207 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7208 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7209 {
7210 int ret;
7211 struct btrfs_path *path;
7212 struct btrfs_trans_handle *trans;
7213 struct btrfs_key key;
7214 struct btrfs_key found_key;
7215 struct btrfs_root *log;
7216 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7217 struct walk_control wc = {
7218 .process_func = process_one_buffer,
7219 .stage = LOG_WALK_PIN_ONLY,
7220 };
7221
7222 path = btrfs_alloc_path();
7223 if (!path)
7224 return -ENOMEM;
7225
7226 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7227
7228 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7229 if (IS_ERR(trans)) {
7230 ret = PTR_ERR(trans);
7231 goto error;
7232 }
7233
7234 wc.trans = trans;
7235 wc.pin = 1;
7236
7237 ret = walk_log_tree(trans, log_root_tree, &wc);
7238 if (ret) {
7239 btrfs_abort_transaction(trans, ret);
7240 goto error;
7241 }
7242
7243 again:
7244 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7245 key.offset = (u64)-1;
7246 key.type = BTRFS_ROOT_ITEM_KEY;
7247
7248 while (1) {
7249 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7250
7251 if (ret < 0) {
7252 btrfs_abort_transaction(trans, ret);
7253 goto error;
7254 }
7255 if (ret > 0) {
7256 if (path->slots[0] == 0)
7257 break;
7258 path->slots[0]--;
7259 }
7260 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7261 path->slots[0]);
7262 btrfs_release_path(path);
7263 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7264 break;
7265
7266 log = btrfs_read_tree_root(log_root_tree, &found_key);
7267 if (IS_ERR(log)) {
7268 ret = PTR_ERR(log);
7269 btrfs_abort_transaction(trans, ret);
7270 goto error;
7271 }
7272
7273 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7274 true);
7275 if (IS_ERR(wc.replay_dest)) {
7276 ret = PTR_ERR(wc.replay_dest);
7277
7278 /*
7279 * We didn't find the subvol, likely because it was
7280 * deleted. This is ok, simply skip this log and go to
7281 * the next one.
7282 *
7283 * We need to exclude the root because we can't have
7284 * other log replays overwriting this log as we'll read
7285 * it back in a few more times. This will keep our
7286 * block from being modified, and we'll just bail for
7287 * each subsequent pass.
7288 */
7289 if (ret == -ENOENT)
7290 ret = btrfs_pin_extent_for_log_replay(trans,
7291 log->node->start,
7292 log->node->len);
7293 btrfs_put_root(log);
7294
7295 if (!ret)
7296 goto next;
7297 btrfs_abort_transaction(trans, ret);
7298 goto error;
7299 }
7300
7301 wc.replay_dest->log_root = log;
7302 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7303 if (ret)
7304 /* The loop needs to continue due to the root refs */
7305 btrfs_abort_transaction(trans, ret);
7306 else
7307 ret = walk_log_tree(trans, log, &wc);
7308
7309 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7310 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7311 path);
7312 if (ret)
7313 btrfs_abort_transaction(trans, ret);
7314 }
7315
7316 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7317 struct btrfs_root *root = wc.replay_dest;
7318
7319 btrfs_release_path(path);
7320
7321 /*
7322 * We have just replayed everything, and the highest
7323 * objectid of fs roots probably has changed in case
7324 * some inode_item's got replayed.
7325 *
7326 * root->objectid_mutex is not acquired as log replay
7327 * could only happen during mount.
7328 */
7329 ret = btrfs_init_root_free_objectid(root);
7330 if (ret)
7331 btrfs_abort_transaction(trans, ret);
7332 }
7333
7334 wc.replay_dest->log_root = NULL;
7335 btrfs_put_root(wc.replay_dest);
7336 btrfs_put_root(log);
7337
7338 if (ret)
7339 goto error;
7340 next:
7341 if (found_key.offset == 0)
7342 break;
7343 key.offset = found_key.offset - 1;
7344 }
7345 btrfs_release_path(path);
7346
7347 /* step one is to pin it all, step two is to replay just inodes */
7348 if (wc.pin) {
7349 wc.pin = 0;
7350 wc.process_func = replay_one_buffer;
7351 wc.stage = LOG_WALK_REPLAY_INODES;
7352 goto again;
7353 }
7354 /* step three is to replay everything */
7355 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7356 wc.stage++;
7357 goto again;
7358 }
7359
7360 btrfs_free_path(path);
7361
7362 /* step 4: commit the transaction, which also unpins the blocks */
7363 ret = btrfs_commit_transaction(trans);
7364 if (ret)
7365 return ret;
7366
7367 log_root_tree->log_root = NULL;
7368 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7369 btrfs_put_root(log_root_tree);
7370
7371 return 0;
7372 error:
7373 if (wc.trans)
7374 btrfs_end_transaction(wc.trans);
7375 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7376 btrfs_free_path(path);
7377 return ret;
7378 }
7379
7380 /*
7381 * there are some corner cases where we want to force a full
7382 * commit instead of allowing a directory to be logged.
7383 *
7384 * They revolve around files there were unlinked from the directory, and
7385 * this function updates the parent directory so that a full commit is
7386 * properly done if it is fsync'd later after the unlinks are done.
7387 *
7388 * Must be called before the unlink operations (updates to the subvolume tree,
7389 * inodes, etc) are done.
7390 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7391 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7392 struct btrfs_inode *dir, struct btrfs_inode *inode,
7393 bool for_rename)
7394 {
7395 /*
7396 * when we're logging a file, if it hasn't been renamed
7397 * or unlinked, and its inode is fully committed on disk,
7398 * we don't have to worry about walking up the directory chain
7399 * to log its parents.
7400 *
7401 * So, we use the last_unlink_trans field to put this transid
7402 * into the file. When the file is logged we check it and
7403 * don't log the parents if the file is fully on disk.
7404 */
7405 mutex_lock(&inode->log_mutex);
7406 inode->last_unlink_trans = trans->transid;
7407 mutex_unlock(&inode->log_mutex);
7408
7409 if (!for_rename)
7410 return;
7411
7412 /*
7413 * If this directory was already logged, any new names will be logged
7414 * with btrfs_log_new_name() and old names will be deleted from the log
7415 * tree with btrfs_del_dir_entries_in_log() or with
7416 * btrfs_del_inode_ref_in_log().
7417 */
7418 if (inode_logged(trans, dir, NULL) == 1)
7419 return;
7420
7421 /*
7422 * If the inode we're about to unlink was logged before, the log will be
7423 * properly updated with the new name with btrfs_log_new_name() and the
7424 * old name removed with btrfs_del_dir_entries_in_log() or with
7425 * btrfs_del_inode_ref_in_log().
7426 */
7427 if (inode_logged(trans, inode, NULL) == 1)
7428 return;
7429
7430 /*
7431 * when renaming files across directories, if the directory
7432 * there we're unlinking from gets fsync'd later on, there's
7433 * no way to find the destination directory later and fsync it
7434 * properly. So, we have to be conservative and force commits
7435 * so the new name gets discovered.
7436 */
7437 mutex_lock(&dir->log_mutex);
7438 dir->last_unlink_trans = trans->transid;
7439 mutex_unlock(&dir->log_mutex);
7440 }
7441
7442 /*
7443 * Make sure that if someone attempts to fsync the parent directory of a deleted
7444 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7445 * that after replaying the log tree of the parent directory's root we will not
7446 * see the snapshot anymore and at log replay time we will not see any log tree
7447 * corresponding to the deleted snapshot's root, which could lead to replaying
7448 * it after replaying the log tree of the parent directory (which would replay
7449 * the snapshot delete operation).
7450 *
7451 * Must be called before the actual snapshot destroy operation (updates to the
7452 * parent root and tree of tree roots trees, etc) are done.
7453 */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7454 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7455 struct btrfs_inode *dir)
7456 {
7457 mutex_lock(&dir->log_mutex);
7458 dir->last_unlink_trans = trans->transid;
7459 mutex_unlock(&dir->log_mutex);
7460 }
7461
7462 /*
7463 * Update the log after adding a new name for an inode.
7464 *
7465 * @trans: Transaction handle.
7466 * @old_dentry: The dentry associated with the old name and the old
7467 * parent directory.
7468 * @old_dir: The inode of the previous parent directory for the case
7469 * of a rename. For a link operation, it must be NULL.
7470 * @old_dir_index: The index number associated with the old name, meaningful
7471 * only for rename operations (when @old_dir is not NULL).
7472 * Ignored for link operations.
7473 * @parent: The dentry associated with the directory under which the
7474 * new name is located.
7475 *
7476 * Call this after adding a new name for an inode, as a result of a link or
7477 * rename operation, and it will properly update the log to reflect the new name.
7478 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7479 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7480 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7481 u64 old_dir_index, struct dentry *parent)
7482 {
7483 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7484 struct btrfs_root *root = inode->root;
7485 struct btrfs_log_ctx ctx;
7486 bool log_pinned = false;
7487 int ret;
7488
7489 /*
7490 * this will force the logging code to walk the dentry chain
7491 * up for the file
7492 */
7493 if (!S_ISDIR(inode->vfs_inode.i_mode))
7494 inode->last_unlink_trans = trans->transid;
7495
7496 /*
7497 * if this inode hasn't been logged and directory we're renaming it
7498 * from hasn't been logged, we don't need to log it
7499 */
7500 ret = inode_logged(trans, inode, NULL);
7501 if (ret < 0) {
7502 goto out;
7503 } else if (ret == 0) {
7504 if (!old_dir)
7505 return;
7506 /*
7507 * If the inode was not logged and we are doing a rename (old_dir is not
7508 * NULL), check if old_dir was logged - if it was not we can return and
7509 * do nothing.
7510 */
7511 ret = inode_logged(trans, old_dir, NULL);
7512 if (ret < 0)
7513 goto out;
7514 else if (ret == 0)
7515 return;
7516 }
7517 ret = 0;
7518
7519 /*
7520 * If we are doing a rename (old_dir is not NULL) from a directory that
7521 * was previously logged, make sure that on log replay we get the old
7522 * dir entry deleted. This is needed because we will also log the new
7523 * name of the renamed inode, so we need to make sure that after log
7524 * replay we don't end up with both the new and old dir entries existing.
7525 */
7526 if (old_dir && old_dir->logged_trans == trans->transid) {
7527 struct btrfs_root *log = old_dir->root->log_root;
7528 struct btrfs_path *path;
7529 struct fscrypt_name fname;
7530
7531 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7532
7533 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7534 &old_dentry->d_name, 0, &fname);
7535 if (ret)
7536 goto out;
7537 /*
7538 * We have two inodes to update in the log, the old directory and
7539 * the inode that got renamed, so we must pin the log to prevent
7540 * anyone from syncing the log until we have updated both inodes
7541 * in the log.
7542 */
7543 ret = join_running_log_trans(root);
7544 /*
7545 * At least one of the inodes was logged before, so this should
7546 * not fail, but if it does, it's not serious, just bail out and
7547 * mark the log for a full commit.
7548 */
7549 if (WARN_ON_ONCE(ret < 0)) {
7550 fscrypt_free_filename(&fname);
7551 goto out;
7552 }
7553
7554 log_pinned = true;
7555
7556 path = btrfs_alloc_path();
7557 if (!path) {
7558 ret = -ENOMEM;
7559 fscrypt_free_filename(&fname);
7560 goto out;
7561 }
7562
7563 /*
7564 * Other concurrent task might be logging the old directory,
7565 * as it can be triggered when logging other inode that had or
7566 * still has a dentry in the old directory. We lock the old
7567 * directory's log_mutex to ensure the deletion of the old
7568 * name is persisted, because during directory logging we
7569 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7570 * the old name's dir index item is in the delayed items, so
7571 * it could be missed by an in progress directory logging.
7572 */
7573 mutex_lock(&old_dir->log_mutex);
7574 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7575 &fname.disk_name, old_dir_index);
7576 if (ret > 0) {
7577 /*
7578 * The dentry does not exist in the log, so record its
7579 * deletion.
7580 */
7581 btrfs_release_path(path);
7582 ret = insert_dir_log_key(trans, log, path,
7583 btrfs_ino(old_dir),
7584 old_dir_index, old_dir_index);
7585 }
7586 mutex_unlock(&old_dir->log_mutex);
7587
7588 btrfs_free_path(path);
7589 fscrypt_free_filename(&fname);
7590 if (ret < 0)
7591 goto out;
7592 }
7593
7594 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7595 ctx.logging_new_name = true;
7596 /*
7597 * We don't care about the return value. If we fail to log the new name
7598 * then we know the next attempt to sync the log will fallback to a full
7599 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7600 * we don't need to worry about getting a log committed that has an
7601 * inconsistent state after a rename operation.
7602 */
7603 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7604 ASSERT(list_empty(&ctx.conflict_inodes));
7605 out:
7606 /*
7607 * If an error happened mark the log for a full commit because it's not
7608 * consistent and up to date or we couldn't find out if one of the
7609 * inodes was logged before in this transaction. Do it before unpinning
7610 * the log, to avoid any races with someone else trying to commit it.
7611 */
7612 if (ret < 0)
7613 btrfs_set_log_full_commit(trans);
7614 if (log_pinned)
7615 btrfs_end_log_trans(root);
7616 }
7617
7618