xref: /openbmc/qemu/include/exec/memory.h (revision 9eb9350c0e519be97716f6b27f664bd0a3c41a36)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
31 
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39                          TYPE_MEMORY_REGION)
40 
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51 
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54                       size_t len,
55                       MemoryRegion *mr);
56 #else
fuzz_dma_read_cb(size_t addr,size_t len,MemoryRegion * mr)57 static inline void fuzz_dma_read_cb(size_t addr,
58                                     size_t len,
59                                     MemoryRegion *mr)
60 {
61     /* Do Nothing */
62 }
63 #endif
64 
65 /* Possible bits for global_dirty_log_{start|stop} */
66 
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
69 
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72 
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
75 
76 #define GLOBAL_DIRTY_MASK  (0x7)
77 
78 extern unsigned int global_dirty_tracking;
79 
80 typedef struct MemoryRegionOps MemoryRegionOps;
81 
82 struct ReservedRegion {
83     Range range;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  * @unmergeable: this section should not get merged with adjacent sections
99  */
100 struct MemoryRegionSection {
101     Int128 size;
102     MemoryRegion *mr;
103     FlatView *fv;
104     hwaddr offset_within_region;
105     hwaddr offset_within_address_space;
106     bool readonly;
107     bool nonvolatile;
108     bool unmergeable;
109 };
110 
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
112 
113 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
114 typedef enum {
115     IOMMU_NONE = 0,
116     IOMMU_RO   = 1,
117     IOMMU_WO   = 2,
118     IOMMU_RW   = 3,
119 } IOMMUAccessFlags;
120 
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
122 
123 struct IOMMUTLBEntry {
124     AddressSpace    *target_as;
125     hwaddr           iova;
126     hwaddr           translated_addr;
127     hwaddr           addr_mask;  /* 0xfff = 4k translation */
128     IOMMUAccessFlags perm;
129 };
130 
131 /*
132  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133  * register with one or multiple IOMMU Notifier capability bit(s).
134  *
135  * Normally there're two use cases for the notifiers:
136  *
137  *   (1) When the device needs accurate synchronizations of the vIOMMU page
138  *       tables, it needs to register with both MAP|UNMAP notifies (which
139  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
140  *
141  *       Regarding to accurate synchronization, it's when the notified
142  *       device maintains a shadow page table and must be notified on each
143  *       guest MAP (page table entry creation) and UNMAP (invalidation)
144  *       events (e.g. VFIO). Both notifications must be accurate so that
145  *       the shadow page table is fully in sync with the guest view.
146  *
147  *   (2) When the device doesn't need accurate synchronizations of the
148  *       vIOMMU page tables, it needs to register only with UNMAP or
149  *       DEVIOTLB_UNMAP notifies.
150  *
151  *       It's when the device maintains a cache of IOMMU translations
152  *       (IOTLB) and is able to fill that cache by requesting translations
153  *       from the vIOMMU through a protocol similar to ATS (Address
154  *       Translation Service).
155  *
156  *       Note that in this mode the vIOMMU will not maintain a shadowed
157  *       page table for the address space, and the UNMAP messages can cover
158  *       more than the pages that used to get mapped.  The IOMMU notifiee
159  *       should be able to take care of over-sized invalidations.
160  */
161 typedef enum {
162     IOMMU_NOTIFIER_NONE = 0,
163     /* Notify cache invalidations */
164     IOMMU_NOTIFIER_UNMAP = 0x1,
165     /* Notify entry changes (newly created entries) */
166     IOMMU_NOTIFIER_MAP = 0x2,
167     /* Notify changes on device IOTLB entries */
168     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
170 
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
175 
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178                             IOMMUTLBEntry *data);
179 
180 struct IOMMUNotifier {
181     IOMMUNotify notify;
182     IOMMUNotifierFlag notifier_flags;
183     /* Notify for address space range start <= addr <= end */
184     hwaddr start;
185     hwaddr end;
186     int iommu_idx;
187     QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190 
191 typedef struct IOMMUTLBEvent {
192     IOMMUNotifierFlag type;
193     IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195 
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC   (1 << 0)
198 
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED     (1 << 1)
201 
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203  * Resizing RAM while migrating can result in the migration being canceled.
204  */
205 #define RAM_RESIZEABLE (1 << 2)
206 
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208  * zero the page and wake waiting processes.
209  * (Set during postcopy)
210  */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212 
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215 
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218 
219 
220 /*
221  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222  * support 'write-tracking' migration type.
223  * Implies ram_state->ram_wt_enabled.
224  */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226 
227 /*
228  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229  * pages if applicable) is skipped: will bail out if not supported. When not
230  * set, the OS will do the reservation, if supported for the memory type.
231  */
232 #define RAM_NORESERVE (1 << 7)
233 
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236 
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239 
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242 
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245 
246 /* RAM can be private that has kvm guest memfd backend */
247 #define RAM_GUEST_MEMFD   (1 << 12)
248 
iommu_notifier_init(IOMMUNotifier * n,IOMMUNotify fn,IOMMUNotifierFlag flags,hwaddr start,hwaddr end,int iommu_idx)249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
250                                        IOMMUNotifierFlag flags,
251                                        hwaddr start, hwaddr end,
252                                        int iommu_idx)
253 {
254     n->notify = fn;
255     n->notifier_flags = flags;
256     n->start = start;
257     n->end = end;
258     n->iommu_idx = iommu_idx;
259 }
260 
261 /*
262  * Memory region callbacks
263  */
264 struct MemoryRegionOps {
265     /* Read from the memory region. @addr is relative to @mr; @size is
266      * in bytes. */
267     uint64_t (*read)(void *opaque,
268                      hwaddr addr,
269                      unsigned size);
270     /* Write to the memory region. @addr is relative to @mr; @size is
271      * in bytes. */
272     void (*write)(void *opaque,
273                   hwaddr addr,
274                   uint64_t data,
275                   unsigned size);
276 
277     MemTxResult (*read_with_attrs)(void *opaque,
278                                    hwaddr addr,
279                                    uint64_t *data,
280                                    unsigned size,
281                                    MemTxAttrs attrs);
282     MemTxResult (*write_with_attrs)(void *opaque,
283                                     hwaddr addr,
284                                     uint64_t data,
285                                     unsigned size,
286                                     MemTxAttrs attrs);
287 
288     enum device_endian endianness;
289     /* Guest-visible constraints: */
290     struct {
291         /* If nonzero, specify bounds on access sizes beyond which a machine
292          * check is thrown.
293          */
294         unsigned min_access_size;
295         unsigned max_access_size;
296         /* If true, unaligned accesses are supported.  Otherwise unaligned
297          * accesses throw machine checks.
298          */
299          bool unaligned;
300         /*
301          * If present, and returns #false, the transaction is not accepted
302          * by the device (and results in machine dependent behaviour such
303          * as a machine check exception).
304          */
305         bool (*accepts)(void *opaque, hwaddr addr,
306                         unsigned size, bool is_write,
307                         MemTxAttrs attrs);
308     } valid;
309     /* Internal implementation constraints: */
310     struct {
311         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
312          * will be rounded upwards and a partial result will be returned.
313          */
314         unsigned min_access_size;
315         /* If nonzero, specifies the maximum size implemented.  Larger sizes
316          * will be done as a series of accesses with smaller sizes.
317          */
318         unsigned max_access_size;
319         /* If true, unaligned accesses are supported.  Otherwise all accesses
320          * are converted to (possibly multiple) naturally aligned accesses.
321          */
322         bool unaligned;
323     } impl;
324 };
325 
326 typedef struct MemoryRegionClass {
327     /* private */
328     ObjectClass parent_class;
329 } MemoryRegionClass;
330 
331 
332 enum IOMMUMemoryRegionAttr {
333     IOMMU_ATTR_SPAPR_TCE_FD
334 };
335 
336 /*
337  * IOMMUMemoryRegionClass:
338  *
339  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
340  * and provide an implementation of at least the @translate method here
341  * to handle requests to the memory region. Other methods are optional.
342  *
343  * The IOMMU implementation must use the IOMMU notifier infrastructure
344  * to report whenever mappings are changed, by calling
345  * memory_region_notify_iommu() (or, if necessary, by calling
346  * memory_region_notify_iommu_one() for each registered notifier).
347  *
348  * Conceptually an IOMMU provides a mapping from input address
349  * to an output TLB entry. If the IOMMU is aware of memory transaction
350  * attributes and the output TLB entry depends on the transaction
351  * attributes, we represent this using IOMMU indexes. Each index
352  * selects a particular translation table that the IOMMU has:
353  *
354  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
355  *
356  *   @translate takes an input address and an IOMMU index
357  *
358  * and the mapping returned can only depend on the input address and the
359  * IOMMU index.
360  *
361  * Most IOMMUs don't care about the transaction attributes and support
362  * only a single IOMMU index. A more complex IOMMU might have one index
363  * for secure transactions and one for non-secure transactions.
364  */
365 struct IOMMUMemoryRegionClass {
366     /* private: */
367     MemoryRegionClass parent_class;
368 
369     /* public: */
370     /**
371      * @translate:
372      *
373      * Return a TLB entry that contains a given address.
374      *
375      * The IOMMUAccessFlags indicated via @flag are optional and may
376      * be specified as IOMMU_NONE to indicate that the caller needs
377      * the full translation information for both reads and writes. If
378      * the access flags are specified then the IOMMU implementation
379      * may use this as an optimization, to stop doing a page table
380      * walk as soon as it knows that the requested permissions are not
381      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
382      * full page table walk and report the permissions in the returned
383      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
384      * return different mappings for reads and writes.)
385      *
386      * The returned information remains valid while the caller is
387      * holding the big QEMU lock or is inside an RCU critical section;
388      * if the caller wishes to cache the mapping beyond that it must
389      * register an IOMMU notifier so it can invalidate its cached
390      * information when the IOMMU mapping changes.
391      *
392      * @iommu: the IOMMUMemoryRegion
393      *
394      * @hwaddr: address to be translated within the memory region
395      *
396      * @flag: requested access permission
397      *
398      * @iommu_idx: IOMMU index for the translation
399      */
400     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
401                                IOMMUAccessFlags flag, int iommu_idx);
402     /**
403      * @get_min_page_size:
404      *
405      * Returns minimum supported page size in bytes.
406      *
407      * If this method is not provided then the minimum is assumed to
408      * be TARGET_PAGE_SIZE.
409      *
410      * @iommu: the IOMMUMemoryRegion
411      */
412     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
413     /**
414      * @notify_flag_changed:
415      *
416      * Called when IOMMU Notifier flag changes (ie when the set of
417      * events which IOMMU users are requesting notification for changes).
418      * Optional method -- need not be provided if the IOMMU does not
419      * need to know exactly which events must be notified.
420      *
421      * @iommu: the IOMMUMemoryRegion
422      *
423      * @old_flags: events which previously needed to be notified
424      *
425      * @new_flags: events which now need to be notified
426      *
427      * Returns 0 on success, or a negative errno; in particular
428      * returns -EINVAL if the new flag bitmap is not supported by the
429      * IOMMU memory region. In case of failure, the error object
430      * must be created
431      */
432     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
433                                IOMMUNotifierFlag old_flags,
434                                IOMMUNotifierFlag new_flags,
435                                Error **errp);
436     /**
437      * @replay:
438      *
439      * Called to handle memory_region_iommu_replay().
440      *
441      * The default implementation of memory_region_iommu_replay() is to
442      * call the IOMMU translate method for every page in the address space
443      * with flag == IOMMU_NONE and then call the notifier if translate
444      * returns a valid mapping. If this method is implemented then it
445      * overrides the default behaviour, and must provide the full semantics
446      * of memory_region_iommu_replay(), by calling @notifier for every
447      * translation present in the IOMMU.
448      *
449      * Optional method -- an IOMMU only needs to provide this method
450      * if the default is inefficient or produces undesirable side effects.
451      *
452      * Note: this is not related to record-and-replay functionality.
453      */
454     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
455 
456     /**
457      * @get_attr:
458      *
459      * Get IOMMU misc attributes. This is an optional method that
460      * can be used to allow users of the IOMMU to get implementation-specific
461      * information. The IOMMU implements this method to handle calls
462      * by IOMMU users to memory_region_iommu_get_attr() by filling in
463      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
464      * the IOMMU supports. If the method is unimplemented then
465      * memory_region_iommu_get_attr() will always return -EINVAL.
466      *
467      * @iommu: the IOMMUMemoryRegion
468      *
469      * @attr: attribute being queried
470      *
471      * @data: memory to fill in with the attribute data
472      *
473      * Returns 0 on success, or a negative errno; in particular
474      * returns -EINVAL for unrecognized or unimplemented attribute types.
475      */
476     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
477                     void *data);
478 
479     /**
480      * @attrs_to_index:
481      *
482      * Return the IOMMU index to use for a given set of transaction attributes.
483      *
484      * Optional method: if an IOMMU only supports a single IOMMU index then
485      * the default implementation of memory_region_iommu_attrs_to_index()
486      * will return 0.
487      *
488      * The indexes supported by an IOMMU must be contiguous, starting at 0.
489      *
490      * @iommu: the IOMMUMemoryRegion
491      * @attrs: memory transaction attributes
492      */
493     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
494 
495     /**
496      * @num_indexes:
497      *
498      * Return the number of IOMMU indexes this IOMMU supports.
499      *
500      * Optional method: if this method is not provided, then
501      * memory_region_iommu_num_indexes() will return 1, indicating that
502      * only a single IOMMU index is supported.
503      *
504      * @iommu: the IOMMUMemoryRegion
505      */
506     int (*num_indexes)(IOMMUMemoryRegion *iommu);
507 };
508 
509 typedef struct RamDiscardListener RamDiscardListener;
510 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
511                                  MemoryRegionSection *section);
512 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
513                                  MemoryRegionSection *section);
514 
515 struct RamDiscardListener {
516     /*
517      * @notify_populate:
518      *
519      * Notification that previously discarded memory is about to get populated.
520      * Listeners are able to object. If any listener objects, already
521      * successfully notified listeners are notified about a discard again.
522      *
523      * @rdl: the #RamDiscardListener getting notified
524      * @section: the #MemoryRegionSection to get populated. The section
525      *           is aligned within the memory region to the minimum granularity
526      *           unless it would exceed the registered section.
527      *
528      * Returns 0 on success. If the notification is rejected by the listener,
529      * an error is returned.
530      */
531     NotifyRamPopulate notify_populate;
532 
533     /*
534      * @notify_discard:
535      *
536      * Notification that previously populated memory was discarded successfully
537      * and listeners should drop all references to such memory and prevent
538      * new population (e.g., unmap).
539      *
540      * @rdl: the #RamDiscardListener getting notified
541      * @section: the #MemoryRegionSection to get populated. The section
542      *           is aligned within the memory region to the minimum granularity
543      *           unless it would exceed the registered section.
544      */
545     NotifyRamDiscard notify_discard;
546 
547     /*
548      * @double_discard_supported:
549      *
550      * The listener suppors getting @notify_discard notifications that span
551      * already discarded parts.
552      */
553     bool double_discard_supported;
554 
555     MemoryRegionSection *section;
556     QLIST_ENTRY(RamDiscardListener) next;
557 };
558 
ram_discard_listener_init(RamDiscardListener * rdl,NotifyRamPopulate populate_fn,NotifyRamDiscard discard_fn,bool double_discard_supported)559 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
560                                              NotifyRamPopulate populate_fn,
561                                              NotifyRamDiscard discard_fn,
562                                              bool double_discard_supported)
563 {
564     rdl->notify_populate = populate_fn;
565     rdl->notify_discard = discard_fn;
566     rdl->double_discard_supported = double_discard_supported;
567 }
568 
569 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
570 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
571 
572 /*
573  * RamDiscardManagerClass:
574  *
575  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
576  * regions are currently populated to be used/accessed by the VM, notifying
577  * after parts were discarded (freeing up memory) and before parts will be
578  * populated (consuming memory), to be used/accessed by the VM.
579  *
580  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
581  * #MemoryRegion isn't mapped into an address space yet (either directly
582  * or via an alias); it cannot change while the #MemoryRegion is
583  * mapped into an address space.
584  *
585  * The #RamDiscardManager is intended to be used by technologies that are
586  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
587  * memory inside a #MemoryRegion), and require proper coordination to only
588  * map the currently populated parts, to hinder parts that are expected to
589  * remain discarded from silently getting populated and consuming memory.
590  * Technologies that support discarding of RAM don't have to bother and can
591  * simply map the whole #MemoryRegion.
592  *
593  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
594  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
595  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
596  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
597  * properly coordinate with listeners before memory is plugged (populated),
598  * and after memory is unplugged (discarded).
599  *
600  * Listeners are called in multiples of the minimum granularity (unless it
601  * would exceed the registered range) and changes are aligned to the minimum
602  * granularity within the #MemoryRegion. Listeners have to prepare for memory
603  * becoming discarded in a different granularity than it was populated and the
604  * other way around.
605  */
606 struct RamDiscardManagerClass {
607     /* private */
608     InterfaceClass parent_class;
609 
610     /* public */
611 
612     /**
613      * @get_min_granularity:
614      *
615      * Get the minimum granularity in which listeners will get notified
616      * about changes within the #MemoryRegion via the #RamDiscardManager.
617      *
618      * @rdm: the #RamDiscardManager
619      * @mr: the #MemoryRegion
620      *
621      * Returns the minimum granularity.
622      */
623     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
624                                     const MemoryRegion *mr);
625 
626     /**
627      * @is_populated:
628      *
629      * Check whether the given #MemoryRegionSection is completely populated
630      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
631      * There are no alignment requirements.
632      *
633      * @rdm: the #RamDiscardManager
634      * @section: the #MemoryRegionSection
635      *
636      * Returns whether the given range is completely populated.
637      */
638     bool (*is_populated)(const RamDiscardManager *rdm,
639                          const MemoryRegionSection *section);
640 
641     /**
642      * @replay_populated:
643      *
644      * Call the #ReplayRamPopulate callback for all populated parts within the
645      * #MemoryRegionSection via the #RamDiscardManager.
646      *
647      * In case any call fails, no further calls are made.
648      *
649      * @rdm: the #RamDiscardManager
650      * @section: the #MemoryRegionSection
651      * @replay_fn: the #ReplayRamPopulate callback
652      * @opaque: pointer to forward to the callback
653      *
654      * Returns 0 on success, or a negative error if any notification failed.
655      */
656     int (*replay_populated)(const RamDiscardManager *rdm,
657                             MemoryRegionSection *section,
658                             ReplayRamPopulate replay_fn, void *opaque);
659 
660     /**
661      * @replay_discarded:
662      *
663      * Call the #ReplayRamDiscard callback for all discarded parts within the
664      * #MemoryRegionSection via the #RamDiscardManager.
665      *
666      * @rdm: the #RamDiscardManager
667      * @section: the #MemoryRegionSection
668      * @replay_fn: the #ReplayRamDiscard callback
669      * @opaque: pointer to forward to the callback
670      */
671     void (*replay_discarded)(const RamDiscardManager *rdm,
672                              MemoryRegionSection *section,
673                              ReplayRamDiscard replay_fn, void *opaque);
674 
675     /**
676      * @register_listener:
677      *
678      * Register a #RamDiscardListener for the given #MemoryRegionSection and
679      * immediately notify the #RamDiscardListener about all populated parts
680      * within the #MemoryRegionSection via the #RamDiscardManager.
681      *
682      * In case any notification fails, no further notifications are triggered
683      * and an error is logged.
684      *
685      * @rdm: the #RamDiscardManager
686      * @rdl: the #RamDiscardListener
687      * @section: the #MemoryRegionSection
688      */
689     void (*register_listener)(RamDiscardManager *rdm,
690                               RamDiscardListener *rdl,
691                               MemoryRegionSection *section);
692 
693     /**
694      * @unregister_listener:
695      *
696      * Unregister a previously registered #RamDiscardListener via the
697      * #RamDiscardManager after notifying the #RamDiscardListener about all
698      * populated parts becoming unpopulated within the registered
699      * #MemoryRegionSection.
700      *
701      * @rdm: the #RamDiscardManager
702      * @rdl: the #RamDiscardListener
703      */
704     void (*unregister_listener)(RamDiscardManager *rdm,
705                                 RamDiscardListener *rdl);
706 };
707 
708 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
709                                                  const MemoryRegion *mr);
710 
711 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
712                                       const MemoryRegionSection *section);
713 
714 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
715                                          MemoryRegionSection *section,
716                                          ReplayRamPopulate replay_fn,
717                                          void *opaque);
718 
719 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
720                                           MemoryRegionSection *section,
721                                           ReplayRamDiscard replay_fn,
722                                           void *opaque);
723 
724 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
725                                            RamDiscardListener *rdl,
726                                            MemoryRegionSection *section);
727 
728 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
729                                              RamDiscardListener *rdl);
730 
731 /**
732  * memory_get_xlat_addr: Extract addresses from a TLB entry
733  *
734  * @iotlb: pointer to an #IOMMUTLBEntry
735  * @vaddr: virtual address
736  * @ram_addr: RAM address
737  * @read_only: indicates if writes are allowed
738  * @mr_has_discard_manager: indicates memory is controlled by a
739  *                          RamDiscardManager
740  * @errp: pointer to Error*, to store an error if it happens.
741  *
742  * Return: true on success, else false setting @errp with error.
743  */
744 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
745                           ram_addr_t *ram_addr, bool *read_only,
746                           bool *mr_has_discard_manager, Error **errp);
747 
748 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
749 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
750 
751 /** MemoryRegion:
752  *
753  * A struct representing a memory region.
754  */
755 struct MemoryRegion {
756     Object parent_obj;
757 
758     /* private: */
759 
760     /* The following fields should fit in a cache line */
761     bool romd_mode;
762     bool ram;
763     bool subpage;
764     bool readonly; /* For RAM regions */
765     bool nonvolatile;
766     bool rom_device;
767     bool flush_coalesced_mmio;
768     bool unmergeable;
769     uint8_t dirty_log_mask;
770     bool is_iommu;
771     RAMBlock *ram_block;
772     Object *owner;
773     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
774     DeviceState *dev;
775 
776     const MemoryRegionOps *ops;
777     void *opaque;
778     MemoryRegion *container;
779     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
780     Int128 size;
781     hwaddr addr;
782     void (*destructor)(MemoryRegion *mr);
783     uint64_t align;
784     bool terminates;
785     bool ram_device;
786     bool enabled;
787     bool warning_printed; /* For reservations */
788     uint8_t vga_logging_count;
789     MemoryRegion *alias;
790     hwaddr alias_offset;
791     int32_t priority;
792     QTAILQ_HEAD(, MemoryRegion) subregions;
793     QTAILQ_ENTRY(MemoryRegion) subregions_link;
794     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
795     const char *name;
796     unsigned ioeventfd_nb;
797     MemoryRegionIoeventfd *ioeventfds;
798     RamDiscardManager *rdm; /* Only for RAM */
799 
800     /* For devices designed to perform re-entrant IO into their own IO MRs */
801     bool disable_reentrancy_guard;
802 };
803 
804 struct IOMMUMemoryRegion {
805     MemoryRegion parent_obj;
806 
807     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
808     IOMMUNotifierFlag iommu_notify_flags;
809 };
810 
811 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
812     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
813 
814 #define MEMORY_LISTENER_PRIORITY_MIN            0
815 #define MEMORY_LISTENER_PRIORITY_ACCEL          10
816 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND    10
817 
818 /**
819  * struct MemoryListener: callbacks structure for updates to the physical memory map
820  *
821  * Allows a component to adjust to changes in the guest-visible memory map.
822  * Use with memory_listener_register() and memory_listener_unregister().
823  */
824 struct MemoryListener {
825     /**
826      * @begin:
827      *
828      * Called at the beginning of an address space update transaction.
829      * Followed by calls to #MemoryListener.region_add(),
830      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
831      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
832      * increasing address order.
833      *
834      * @listener: The #MemoryListener.
835      */
836     void (*begin)(MemoryListener *listener);
837 
838     /**
839      * @commit:
840      *
841      * Called at the end of an address space update transaction,
842      * after the last call to #MemoryListener.region_add(),
843      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
844      * #MemoryListener.log_start() and #MemoryListener.log_stop().
845      *
846      * @listener: The #MemoryListener.
847      */
848     void (*commit)(MemoryListener *listener);
849 
850     /**
851      * @region_add:
852      *
853      * Called during an address space update transaction,
854      * for a section of the address space that is new in this address space
855      * space since the last transaction.
856      *
857      * @listener: The #MemoryListener.
858      * @section: The new #MemoryRegionSection.
859      */
860     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
861 
862     /**
863      * @region_del:
864      *
865      * Called during an address space update transaction,
866      * for a section of the address space that has disappeared in the address
867      * space since the last transaction.
868      *
869      * @listener: The #MemoryListener.
870      * @section: The old #MemoryRegionSection.
871      */
872     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
873 
874     /**
875      * @region_nop:
876      *
877      * Called during an address space update transaction,
878      * for a section of the address space that is in the same place in the address
879      * space as in the last transaction.
880      *
881      * @listener: The #MemoryListener.
882      * @section: The #MemoryRegionSection.
883      */
884     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
885 
886     /**
887      * @log_start:
888      *
889      * Called during an address space update transaction, after
890      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
891      * #MemoryListener.region_nop(), if dirty memory logging clients have
892      * become active since the last transaction.
893      *
894      * @listener: The #MemoryListener.
895      * @section: The #MemoryRegionSection.
896      * @old: A bitmap of dirty memory logging clients that were active in
897      * the previous transaction.
898      * @new: A bitmap of dirty memory logging clients that are active in
899      * the current transaction.
900      */
901     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
902                       int old_val, int new_val);
903 
904     /**
905      * @log_stop:
906      *
907      * Called during an address space update transaction, after
908      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
909      * #MemoryListener.region_nop() and possibly after
910      * #MemoryListener.log_start(), if dirty memory logging clients have
911      * become inactive since the last transaction.
912      *
913      * @listener: The #MemoryListener.
914      * @section: The #MemoryRegionSection.
915      * @old: A bitmap of dirty memory logging clients that were active in
916      * the previous transaction.
917      * @new: A bitmap of dirty memory logging clients that are active in
918      * the current transaction.
919      */
920     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
921                      int old_val, int new_val);
922 
923     /**
924      * @log_sync:
925      *
926      * Called by memory_region_snapshot_and_clear_dirty() and
927      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
928      * copy of the dirty memory bitmap for a #MemoryRegionSection.
929      *
930      * @listener: The #MemoryListener.
931      * @section: The #MemoryRegionSection.
932      */
933     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
934 
935     /**
936      * @log_sync_global:
937      *
938      * This is the global version of @log_sync when the listener does
939      * not have a way to synchronize the log with finer granularity.
940      * When the listener registers with @log_sync_global defined, then
941      * its @log_sync must be NULL.  Vice versa.
942      *
943      * @listener: The #MemoryListener.
944      * @last_stage: The last stage to synchronize the log during migration.
945      * The caller should guarantee that the synchronization with true for
946      * @last_stage is triggered for once after all VCPUs have been stopped.
947      */
948     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
949 
950     /**
951      * @log_clear:
952      *
953      * Called before reading the dirty memory bitmap for a
954      * #MemoryRegionSection.
955      *
956      * @listener: The #MemoryListener.
957      * @section: The #MemoryRegionSection.
958      */
959     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
960 
961     /**
962      * @log_global_start:
963      *
964      * Called by memory_global_dirty_log_start(), which
965      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
966      * the address space.  #MemoryListener.log_global_start() is also
967      * called when a #MemoryListener is added, if global dirty logging is
968      * active at that time.
969      *
970      * @listener: The #MemoryListener.
971      * @errp: pointer to Error*, to store an error if it happens.
972      *
973      * Return: true on success, else false setting @errp with error.
974      */
975     bool (*log_global_start)(MemoryListener *listener, Error **errp);
976 
977     /**
978      * @log_global_stop:
979      *
980      * Called by memory_global_dirty_log_stop(), which
981      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
982      * the address space.
983      *
984      * @listener: The #MemoryListener.
985      */
986     void (*log_global_stop)(MemoryListener *listener);
987 
988     /**
989      * @log_global_after_sync:
990      *
991      * Called after reading the dirty memory bitmap
992      * for any #MemoryRegionSection.
993      *
994      * @listener: The #MemoryListener.
995      */
996     void (*log_global_after_sync)(MemoryListener *listener);
997 
998     /**
999      * @eventfd_add:
1000      *
1001      * Called during an address space update transaction,
1002      * for a section of the address space that has had a new ioeventfd
1003      * registration since the last transaction.
1004      *
1005      * @listener: The #MemoryListener.
1006      * @section: The new #MemoryRegionSection.
1007      * @match_data: The @match_data parameter for the new ioeventfd.
1008      * @data: The @data parameter for the new ioeventfd.
1009      * @e: The #EventNotifier parameter for the new ioeventfd.
1010      */
1011     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1012                         bool match_data, uint64_t data, EventNotifier *e);
1013 
1014     /**
1015      * @eventfd_del:
1016      *
1017      * Called during an address space update transaction,
1018      * for a section of the address space that has dropped an ioeventfd
1019      * registration since the last transaction.
1020      *
1021      * @listener: The #MemoryListener.
1022      * @section: The new #MemoryRegionSection.
1023      * @match_data: The @match_data parameter for the dropped ioeventfd.
1024      * @data: The @data parameter for the dropped ioeventfd.
1025      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1026      */
1027     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1028                         bool match_data, uint64_t data, EventNotifier *e);
1029 
1030     /**
1031      * @coalesced_io_add:
1032      *
1033      * Called during an address space update transaction,
1034      * for a section of the address space that has had a new coalesced
1035      * MMIO range registration since the last transaction.
1036      *
1037      * @listener: The #MemoryListener.
1038      * @section: The new #MemoryRegionSection.
1039      * @addr: The starting address for the coalesced MMIO range.
1040      * @len: The length of the coalesced MMIO range.
1041      */
1042     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1043                                hwaddr addr, hwaddr len);
1044 
1045     /**
1046      * @coalesced_io_del:
1047      *
1048      * Called during an address space update transaction,
1049      * for a section of the address space that has dropped a coalesced
1050      * MMIO range since the last transaction.
1051      *
1052      * @listener: The #MemoryListener.
1053      * @section: The new #MemoryRegionSection.
1054      * @addr: The starting address for the coalesced MMIO range.
1055      * @len: The length of the coalesced MMIO range.
1056      */
1057     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1058                                hwaddr addr, hwaddr len);
1059     /**
1060      * @priority:
1061      *
1062      * Govern the order in which memory listeners are invoked. Lower priorities
1063      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1064      * or "stop" callbacks.
1065      */
1066     unsigned priority;
1067 
1068     /**
1069      * @name:
1070      *
1071      * Name of the listener.  It can be used in contexts where we'd like to
1072      * identify one memory listener with the rest.
1073      */
1074     const char *name;
1075 
1076     /* private: */
1077     AddressSpace *address_space;
1078     QTAILQ_ENTRY(MemoryListener) link;
1079     QTAILQ_ENTRY(MemoryListener) link_as;
1080 };
1081 
1082 typedef struct AddressSpaceMapClient {
1083     QEMUBH *bh;
1084     QLIST_ENTRY(AddressSpaceMapClient) link;
1085 } AddressSpaceMapClient;
1086 
1087 #define DEFAULT_MAX_BOUNCE_BUFFER_SIZE (4096)
1088 
1089 /**
1090  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1091  */
1092 struct AddressSpace {
1093     /* private: */
1094     struct rcu_head rcu;
1095     char *name;
1096     MemoryRegion *root;
1097 
1098     /* Accessed via RCU.  */
1099     struct FlatView *current_map;
1100 
1101     int ioeventfd_nb;
1102     int ioeventfd_notifiers;
1103     struct MemoryRegionIoeventfd *ioeventfds;
1104     QTAILQ_HEAD(, MemoryListener) listeners;
1105     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1106 
1107     /*
1108      * Maximum DMA bounce buffer size used for indirect memory map requests.
1109      * This limits the total size of bounce buffer allocations made for
1110      * DMA requests to indirect memory regions within this AddressSpace. DMA
1111      * requests that exceed the limit (e.g. due to overly large requested size
1112      * or concurrent DMA requests having claimed too much buffer space) will be
1113      * rejected and left to the caller to handle.
1114      */
1115     size_t max_bounce_buffer_size;
1116     /* Total size of bounce buffers currently allocated, atomically accessed */
1117     size_t bounce_buffer_size;
1118     /* List of callbacks to invoke when buffers free up */
1119     QemuMutex map_client_list_lock;
1120     QLIST_HEAD(, AddressSpaceMapClient) map_client_list;
1121 };
1122 
1123 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1124 typedef struct FlatRange FlatRange;
1125 
1126 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1127  * order.
1128  */
1129 struct FlatView {
1130     struct rcu_head rcu;
1131     unsigned ref;
1132     FlatRange *ranges;
1133     unsigned nr;
1134     unsigned nr_allocated;
1135     struct AddressSpaceDispatch *dispatch;
1136     MemoryRegion *root;
1137 };
1138 
address_space_to_flatview(AddressSpace * as)1139 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1140 {
1141     return qatomic_rcu_read(&as->current_map);
1142 }
1143 
1144 /**
1145  * typedef flatview_cb: callback for flatview_for_each_range()
1146  *
1147  * @start: start address of the range within the FlatView
1148  * @len: length of the range in bytes
1149  * @mr: MemoryRegion covering this range
1150  * @offset_in_region: offset of the first byte of the range within @mr
1151  * @opaque: data pointer passed to flatview_for_each_range()
1152  *
1153  * Returns: true to stop the iteration, false to keep going.
1154  */
1155 typedef bool (*flatview_cb)(Int128 start,
1156                             Int128 len,
1157                             const MemoryRegion *mr,
1158                             hwaddr offset_in_region,
1159                             void *opaque);
1160 
1161 /**
1162  * flatview_for_each_range: Iterate through a FlatView
1163  * @fv: the FlatView to iterate through
1164  * @cb: function to call for each range
1165  * @opaque: opaque data pointer to pass to @cb
1166  *
1167  * A FlatView is made up of a list of non-overlapping ranges, each of
1168  * which is a slice of a MemoryRegion. This function iterates through
1169  * each range in @fv, calling @cb. The callback function can terminate
1170  * iteration early by returning 'true'.
1171  */
1172 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1173 
MemoryRegionSection_eq(MemoryRegionSection * a,MemoryRegionSection * b)1174 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1175                                           MemoryRegionSection *b)
1176 {
1177     return a->mr == b->mr &&
1178            a->fv == b->fv &&
1179            a->offset_within_region == b->offset_within_region &&
1180            a->offset_within_address_space == b->offset_within_address_space &&
1181            int128_eq(a->size, b->size) &&
1182            a->readonly == b->readonly &&
1183            a->nonvolatile == b->nonvolatile;
1184 }
1185 
1186 /**
1187  * memory_region_section_new_copy: Copy a memory region section
1188  *
1189  * Allocate memory for a new copy, copy the memory region section, and
1190  * properly take a reference on all relevant members.
1191  *
1192  * @s: the #MemoryRegionSection to copy
1193  */
1194 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1195 
1196 /**
1197  * memory_region_section_new_copy: Free a copied memory region section
1198  *
1199  * Free a copy of a memory section created via memory_region_section_new_copy().
1200  * properly dropping references on all relevant members.
1201  *
1202  * @s: the #MemoryRegionSection to copy
1203  */
1204 void memory_region_section_free_copy(MemoryRegionSection *s);
1205 
1206 /**
1207  * memory_region_init: Initialize a memory region
1208  *
1209  * The region typically acts as a container for other memory regions.  Use
1210  * memory_region_add_subregion() to add subregions.
1211  *
1212  * @mr: the #MemoryRegion to be initialized
1213  * @owner: the object that tracks the region's reference count
1214  * @name: used for debugging; not visible to the user or ABI
1215  * @size: size of the region; any subregions beyond this size will be clipped
1216  */
1217 void memory_region_init(MemoryRegion *mr,
1218                         Object *owner,
1219                         const char *name,
1220                         uint64_t size);
1221 
1222 /**
1223  * memory_region_ref: Add 1 to a memory region's reference count
1224  *
1225  * Whenever memory regions are accessed outside the BQL, they need to be
1226  * preserved against hot-unplug.  MemoryRegions actually do not have their
1227  * own reference count; they piggyback on a QOM object, their "owner".
1228  * This function adds a reference to the owner.
1229  *
1230  * All MemoryRegions must have an owner if they can disappear, even if the
1231  * device they belong to operates exclusively under the BQL.  This is because
1232  * the region could be returned at any time by memory_region_find, and this
1233  * is usually under guest control.
1234  *
1235  * @mr: the #MemoryRegion
1236  */
1237 void memory_region_ref(MemoryRegion *mr);
1238 
1239 /**
1240  * memory_region_unref: Remove 1 to a memory region's reference count
1241  *
1242  * Whenever memory regions are accessed outside the BQL, they need to be
1243  * preserved against hot-unplug.  MemoryRegions actually do not have their
1244  * own reference count; they piggyback on a QOM object, their "owner".
1245  * This function removes a reference to the owner and possibly destroys it.
1246  *
1247  * @mr: the #MemoryRegion
1248  */
1249 void memory_region_unref(MemoryRegion *mr);
1250 
1251 /**
1252  * memory_region_init_io: Initialize an I/O memory region.
1253  *
1254  * Accesses into the region will cause the callbacks in @ops to be called.
1255  * if @size is nonzero, subregions will be clipped to @size.
1256  *
1257  * @mr: the #MemoryRegion to be initialized.
1258  * @owner: the object that tracks the region's reference count
1259  * @ops: a structure containing read and write callbacks to be used when
1260  *       I/O is performed on the region.
1261  * @opaque: passed to the read and write callbacks of the @ops structure.
1262  * @name: used for debugging; not visible to the user or ABI
1263  * @size: size of the region.
1264  */
1265 void memory_region_init_io(MemoryRegion *mr,
1266                            Object *owner,
1267                            const MemoryRegionOps *ops,
1268                            void *opaque,
1269                            const char *name,
1270                            uint64_t size);
1271 
1272 /**
1273  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1274  *                                    into the region will modify memory
1275  *                                    directly.
1276  *
1277  * @mr: the #MemoryRegion to be initialized.
1278  * @owner: the object that tracks the region's reference count
1279  * @name: Region name, becomes part of RAMBlock name used in migration stream
1280  *        must be unique within any device
1281  * @size: size of the region.
1282  * @errp: pointer to Error*, to store an error if it happens.
1283  *
1284  * Note that this function does not do anything to cause the data in the
1285  * RAM memory region to be migrated; that is the responsibility of the caller.
1286  *
1287  * Return: true on success, else false setting @errp with error.
1288  */
1289 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1290                                       Object *owner,
1291                                       const char *name,
1292                                       uint64_t size,
1293                                       Error **errp);
1294 
1295 /**
1296  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1297  *                                          Accesses into the region will
1298  *                                          modify memory directly.
1299  *
1300  * @mr: the #MemoryRegion to be initialized.
1301  * @owner: the object that tracks the region's reference count
1302  * @name: Region name, becomes part of RAMBlock name used in migration stream
1303  *        must be unique within any device
1304  * @size: size of the region.
1305  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1306  *             RAM_GUEST_MEMFD.
1307  * @errp: pointer to Error*, to store an error if it happens.
1308  *
1309  * Note that this function does not do anything to cause the data in the
1310  * RAM memory region to be migrated; that is the responsibility of the caller.
1311  *
1312  * Return: true on success, else false setting @errp with error.
1313  */
1314 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1315                                             Object *owner,
1316                                             const char *name,
1317                                             uint64_t size,
1318                                             uint32_t ram_flags,
1319                                             Error **errp);
1320 
1321 /**
1322  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1323  *                                     RAM.  Accesses into the region will
1324  *                                     modify memory directly.  Only an initial
1325  *                                     portion of this RAM is actually used.
1326  *                                     Changing the size while migrating
1327  *                                     can result in the migration being
1328  *                                     canceled.
1329  *
1330  * @mr: the #MemoryRegion to be initialized.
1331  * @owner: the object that tracks the region's reference count
1332  * @name: Region name, becomes part of RAMBlock name used in migration stream
1333  *        must be unique within any device
1334  * @size: used size of the region.
1335  * @max_size: max size of the region.
1336  * @resized: callback to notify owner about used size change.
1337  * @errp: pointer to Error*, to store an error if it happens.
1338  *
1339  * Note that this function does not do anything to cause the data in the
1340  * RAM memory region to be migrated; that is the responsibility of the caller.
1341  *
1342  * Return: true on success, else false setting @errp with error.
1343  */
1344 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1345                                        Object *owner,
1346                                        const char *name,
1347                                        uint64_t size,
1348                                        uint64_t max_size,
1349                                        void (*resized)(const char*,
1350                                                        uint64_t length,
1351                                                        void *host),
1352                                        Error **errp);
1353 #ifdef CONFIG_POSIX
1354 
1355 /**
1356  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1357  *                                    mmap-ed backend.
1358  *
1359  * @mr: the #MemoryRegion to be initialized.
1360  * @owner: the object that tracks the region's reference count
1361  * @name: Region name, becomes part of RAMBlock name used in migration stream
1362  *        must be unique within any device
1363  * @size: size of the region.
1364  * @align: alignment of the region base address; if 0, the default alignment
1365  *         (getpagesize()) will be used.
1366  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1367  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1368  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1369  * @path: the path in which to allocate the RAM.
1370  * @offset: offset within the file referenced by path
1371  * @errp: pointer to Error*, to store an error if it happens.
1372  *
1373  * Note that this function does not do anything to cause the data in the
1374  * RAM memory region to be migrated; that is the responsibility of the caller.
1375  *
1376  * Return: true on success, else false setting @errp with error.
1377  */
1378 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1379                                       Object *owner,
1380                                       const char *name,
1381                                       uint64_t size,
1382                                       uint64_t align,
1383                                       uint32_t ram_flags,
1384                                       const char *path,
1385                                       ram_addr_t offset,
1386                                       Error **errp);
1387 
1388 /**
1389  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1390  *                                  mmap-ed backend.
1391  *
1392  * @mr: the #MemoryRegion to be initialized.
1393  * @owner: the object that tracks the region's reference count
1394  * @name: the name of the region.
1395  * @size: size of the region.
1396  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1397  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1398  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1399  * @fd: the fd to mmap.
1400  * @offset: offset within the file referenced by fd
1401  * @errp: pointer to Error*, to store an error if it happens.
1402  *
1403  * Note that this function does not do anything to cause the data in the
1404  * RAM memory region to be migrated; that is the responsibility of the caller.
1405  *
1406  * Return: true on success, else false setting @errp with error.
1407  */
1408 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1409                                     Object *owner,
1410                                     const char *name,
1411                                     uint64_t size,
1412                                     uint32_t ram_flags,
1413                                     int fd,
1414                                     ram_addr_t offset,
1415                                     Error **errp);
1416 #endif
1417 
1418 /**
1419  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1420  *                              user-provided pointer.  Accesses into the
1421  *                              region will modify memory directly.
1422  *
1423  * @mr: the #MemoryRegion to be initialized.
1424  * @owner: the object that tracks the region's reference count
1425  * @name: Region name, becomes part of RAMBlock name used in migration stream
1426  *        must be unique within any device
1427  * @size: size of the region.
1428  * @ptr: memory to be mapped; must contain at least @size bytes.
1429  *
1430  * Note that this function does not do anything to cause the data in the
1431  * RAM memory region to be migrated; that is the responsibility of the caller.
1432  */
1433 void memory_region_init_ram_ptr(MemoryRegion *mr,
1434                                 Object *owner,
1435                                 const char *name,
1436                                 uint64_t size,
1437                                 void *ptr);
1438 
1439 /**
1440  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1441  *                                     a user-provided pointer.
1442  *
1443  * A RAM device represents a mapping to a physical device, such as to a PCI
1444  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1445  * into the VM address space and access to the region will modify memory
1446  * directly.  However, the memory region should not be included in a memory
1447  * dump (device may not be enabled/mapped at the time of the dump), and
1448  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1449  * skip_dump flag.
1450  *
1451  * @mr: the #MemoryRegion to be initialized.
1452  * @owner: the object that tracks the region's reference count
1453  * @name: the name of the region.
1454  * @size: size of the region.
1455  * @ptr: memory to be mapped; must contain at least @size bytes.
1456  *
1457  * Note that this function does not do anything to cause the data in the
1458  * RAM memory region to be migrated; that is the responsibility of the caller.
1459  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1460  */
1461 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1462                                        Object *owner,
1463                                        const char *name,
1464                                        uint64_t size,
1465                                        void *ptr);
1466 
1467 /**
1468  * memory_region_init_alias: Initialize a memory region that aliases all or a
1469  *                           part of another memory region.
1470  *
1471  * @mr: the #MemoryRegion to be initialized.
1472  * @owner: the object that tracks the region's reference count
1473  * @name: used for debugging; not visible to the user or ABI
1474  * @orig: the region to be referenced; @mr will be equivalent to
1475  *        @orig between @offset and @offset + @size - 1.
1476  * @offset: start of the section in @orig to be referenced.
1477  * @size: size of the region.
1478  */
1479 void memory_region_init_alias(MemoryRegion *mr,
1480                               Object *owner,
1481                               const char *name,
1482                               MemoryRegion *orig,
1483                               hwaddr offset,
1484                               uint64_t size);
1485 
1486 /**
1487  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1488  *
1489  * This has the same effect as calling memory_region_init_ram_nomigrate()
1490  * and then marking the resulting region read-only with
1491  * memory_region_set_readonly().
1492  *
1493  * Note that this function does not do anything to cause the data in the
1494  * RAM side of the memory region to be migrated; that is the responsibility
1495  * of the caller.
1496  *
1497  * @mr: the #MemoryRegion to be initialized.
1498  * @owner: the object that tracks the region's reference count
1499  * @name: Region name, becomes part of RAMBlock name used in migration stream
1500  *        must be unique within any device
1501  * @size: size of the region.
1502  * @errp: pointer to Error*, to store an error if it happens.
1503  *
1504  * Return: true on success, else false setting @errp with error.
1505  */
1506 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1507                                       Object *owner,
1508                                       const char *name,
1509                                       uint64_t size,
1510                                       Error **errp);
1511 
1512 /**
1513  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1514  *                                 Writes are handled via callbacks.
1515  *
1516  * Note that this function does not do anything to cause the data in the
1517  * RAM side of the memory region to be migrated; that is the responsibility
1518  * of the caller.
1519  *
1520  * @mr: the #MemoryRegion to be initialized.
1521  * @owner: the object that tracks the region's reference count
1522  * @ops: callbacks for write access handling (must not be NULL).
1523  * @opaque: passed to the read and write callbacks of the @ops structure.
1524  * @name: Region name, becomes part of RAMBlock name used in migration stream
1525  *        must be unique within any device
1526  * @size: size of the region.
1527  * @errp: pointer to Error*, to store an error if it happens.
1528  *
1529  * Return: true on success, else false setting @errp with error.
1530  */
1531 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1532                                              Object *owner,
1533                                              const MemoryRegionOps *ops,
1534                                              void *opaque,
1535                                              const char *name,
1536                                              uint64_t size,
1537                                              Error **errp);
1538 
1539 /**
1540  * memory_region_init_iommu: Initialize a memory region of a custom type
1541  * that translates addresses
1542  *
1543  * An IOMMU region translates addresses and forwards accesses to a target
1544  * memory region.
1545  *
1546  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1547  * @_iommu_mr should be a pointer to enough memory for an instance of
1548  * that subclass, @instance_size is the size of that subclass, and
1549  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1550  * instance of the subclass, and its methods will then be called to handle
1551  * accesses to the memory region. See the documentation of
1552  * #IOMMUMemoryRegionClass for further details.
1553  *
1554  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1555  * @instance_size: the IOMMUMemoryRegion subclass instance size
1556  * @mrtypename: the type name of the #IOMMUMemoryRegion
1557  * @owner: the object that tracks the region's reference count
1558  * @name: used for debugging; not visible to the user or ABI
1559  * @size: size of the region.
1560  */
1561 void memory_region_init_iommu(void *_iommu_mr,
1562                               size_t instance_size,
1563                               const char *mrtypename,
1564                               Object *owner,
1565                               const char *name,
1566                               uint64_t size);
1567 
1568 /**
1569  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1570  *                          region will modify memory directly.
1571  *
1572  * @mr: the #MemoryRegion to be initialized
1573  * @owner: the object that tracks the region's reference count (must be
1574  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1575  * @name: name of the memory region
1576  * @size: size of the region in bytes
1577  * @errp: pointer to Error*, to store an error if it happens.
1578  *
1579  * This function allocates RAM for a board model or device, and
1580  * arranges for it to be migrated (by calling vmstate_register_ram()
1581  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1582  * @owner is NULL).
1583  *
1584  * TODO: Currently we restrict @owner to being either NULL (for
1585  * global RAM regions with no owner) or devices, so that we can
1586  * give the RAM block a unique name for migration purposes.
1587  * We should lift this restriction and allow arbitrary Objects.
1588  * If you pass a non-NULL non-device @owner then we will assert.
1589  *
1590  * Return: true on success, else false setting @errp with error.
1591  */
1592 bool memory_region_init_ram(MemoryRegion *mr,
1593                             Object *owner,
1594                             const char *name,
1595                             uint64_t size,
1596                             Error **errp);
1597 
1598 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
1599                                         Object *owner,
1600                                         const char *name,
1601                                         uint64_t size,
1602                                         Error **errp);
1603 
1604 /**
1605  * memory_region_init_rom: Initialize a ROM memory region.
1606  *
1607  * This has the same effect as calling memory_region_init_ram()
1608  * and then marking the resulting region read-only with
1609  * memory_region_set_readonly(). This includes arranging for the
1610  * contents to be migrated.
1611  *
1612  * TODO: Currently we restrict @owner to being either NULL (for
1613  * global RAM regions with no owner) or devices, so that we can
1614  * give the RAM block a unique name for migration purposes.
1615  * We should lift this restriction and allow arbitrary Objects.
1616  * If you pass a non-NULL non-device @owner then we will assert.
1617  *
1618  * @mr: the #MemoryRegion to be initialized.
1619  * @owner: the object that tracks the region's reference count
1620  * @name: Region name, becomes part of RAMBlock name used in migration stream
1621  *        must be unique within any device
1622  * @size: size of the region.
1623  * @errp: pointer to Error*, to store an error if it happens.
1624  *
1625  * Return: true on success, else false setting @errp with error.
1626  */
1627 bool memory_region_init_rom(MemoryRegion *mr,
1628                             Object *owner,
1629                             const char *name,
1630                             uint64_t size,
1631                             Error **errp);
1632 
1633 /**
1634  * memory_region_init_rom_device:  Initialize a ROM memory region.
1635  *                                 Writes are handled via callbacks.
1636  *
1637  * This function initializes a memory region backed by RAM for reads
1638  * and callbacks for writes, and arranges for the RAM backing to
1639  * be migrated (by calling vmstate_register_ram()
1640  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1641  * @owner is NULL).
1642  *
1643  * TODO: Currently we restrict @owner to being either NULL (for
1644  * global RAM regions with no owner) or devices, so that we can
1645  * give the RAM block a unique name for migration purposes.
1646  * We should lift this restriction and allow arbitrary Objects.
1647  * If you pass a non-NULL non-device @owner then we will assert.
1648  *
1649  * @mr: the #MemoryRegion to be initialized.
1650  * @owner: the object that tracks the region's reference count
1651  * @ops: callbacks for write access handling (must not be NULL).
1652  * @opaque: passed to the read and write callbacks of the @ops structure.
1653  * @name: Region name, becomes part of RAMBlock name used in migration stream
1654  *        must be unique within any device
1655  * @size: size of the region.
1656  * @errp: pointer to Error*, to store an error if it happens.
1657  *
1658  * Return: true on success, else false setting @errp with error.
1659  */
1660 bool memory_region_init_rom_device(MemoryRegion *mr,
1661                                    Object *owner,
1662                                    const MemoryRegionOps *ops,
1663                                    void *opaque,
1664                                    const char *name,
1665                                    uint64_t size,
1666                                    Error **errp);
1667 
1668 
1669 /**
1670  * memory_region_owner: get a memory region's owner.
1671  *
1672  * @mr: the memory region being queried.
1673  */
1674 Object *memory_region_owner(MemoryRegion *mr);
1675 
1676 /**
1677  * memory_region_size: get a memory region's size.
1678  *
1679  * @mr: the memory region being queried.
1680  */
1681 uint64_t memory_region_size(MemoryRegion *mr);
1682 
1683 /**
1684  * memory_region_is_ram: check whether a memory region is random access
1685  *
1686  * Returns %true if a memory region is random access.
1687  *
1688  * @mr: the memory region being queried
1689  */
memory_region_is_ram(MemoryRegion * mr)1690 static inline bool memory_region_is_ram(MemoryRegion *mr)
1691 {
1692     return mr->ram;
1693 }
1694 
1695 /**
1696  * memory_region_is_ram_device: check whether a memory region is a ram device
1697  *
1698  * Returns %true if a memory region is a device backed ram region
1699  *
1700  * @mr: the memory region being queried
1701  */
1702 bool memory_region_is_ram_device(MemoryRegion *mr);
1703 
1704 /**
1705  * memory_region_is_romd: check whether a memory region is in ROMD mode
1706  *
1707  * Returns %true if a memory region is a ROM device and currently set to allow
1708  * direct reads.
1709  *
1710  * @mr: the memory region being queried
1711  */
memory_region_is_romd(MemoryRegion * mr)1712 static inline bool memory_region_is_romd(MemoryRegion *mr)
1713 {
1714     return mr->rom_device && mr->romd_mode;
1715 }
1716 
1717 /**
1718  * memory_region_is_protected: check whether a memory region is protected
1719  *
1720  * Returns %true if a memory region is protected RAM and cannot be accessed
1721  * via standard mechanisms, e.g. DMA.
1722  *
1723  * @mr: the memory region being queried
1724  */
1725 bool memory_region_is_protected(MemoryRegion *mr);
1726 
1727 /**
1728  * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1729  *     associated
1730  *
1731  * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1732  *
1733  * @mr: the memory region being queried
1734  */
1735 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1736 
1737 /**
1738  * memory_region_get_iommu: check whether a memory region is an iommu
1739  *
1740  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1741  * otherwise NULL.
1742  *
1743  * @mr: the memory region being queried
1744  */
memory_region_get_iommu(MemoryRegion * mr)1745 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1746 {
1747     if (mr->alias) {
1748         return memory_region_get_iommu(mr->alias);
1749     }
1750     if (mr->is_iommu) {
1751         return (IOMMUMemoryRegion *) mr;
1752     }
1753     return NULL;
1754 }
1755 
1756 /**
1757  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1758  *   if an iommu or NULL if not
1759  *
1760  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1761  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1762  *
1763  * @iommu_mr: the memory region being queried
1764  */
memory_region_get_iommu_class_nocheck(IOMMUMemoryRegion * iommu_mr)1765 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1766         IOMMUMemoryRegion *iommu_mr)
1767 {
1768     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1769 }
1770 
1771 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1772 
1773 /**
1774  * memory_region_iommu_get_min_page_size: get minimum supported page size
1775  * for an iommu
1776  *
1777  * Returns minimum supported page size for an iommu.
1778  *
1779  * @iommu_mr: the memory region being queried
1780  */
1781 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1782 
1783 /**
1784  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1785  *
1786  * Note: for any IOMMU implementation, an in-place mapping change
1787  * should be notified with an UNMAP followed by a MAP.
1788  *
1789  * @iommu_mr: the memory region that was changed
1790  * @iommu_idx: the IOMMU index for the translation table which has changed
1791  * @event: TLB event with the new entry in the IOMMU translation table.
1792  *         The entry replaces all old entries for the same virtual I/O address
1793  *         range.
1794  */
1795 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1796                                 int iommu_idx,
1797                                 const IOMMUTLBEvent event);
1798 
1799 /**
1800  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1801  *                           entry to a single notifier
1802  *
1803  * This works just like memory_region_notify_iommu(), but it only
1804  * notifies a specific notifier, not all of them.
1805  *
1806  * @notifier: the notifier to be notified
1807  * @event: TLB event with the new entry in the IOMMU translation table.
1808  *         The entry replaces all old entries for the same virtual I/O address
1809  *         range.
1810  */
1811 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1812                                     const IOMMUTLBEvent *event);
1813 
1814 /**
1815  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1816  *                                           translation that covers the
1817  *                                           range of a notifier
1818  *
1819  * @notifier: the notifier to be notified
1820  */
1821 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1822 
1823 
1824 /**
1825  * memory_region_register_iommu_notifier: register a notifier for changes to
1826  * IOMMU translation entries.
1827  *
1828  * Returns 0 on success, or a negative errno otherwise. In particular,
1829  * -EINVAL indicates that at least one of the attributes of the notifier
1830  * is not supported (flag/range) by the IOMMU memory region. In case of error
1831  * the error object must be created.
1832  *
1833  * @mr: the memory region to observe
1834  * @n: the IOMMUNotifier to be added; the notify callback receives a
1835  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1836  *     ceases to be valid on exit from the notifier.
1837  * @errp: pointer to Error*, to store an error if it happens.
1838  */
1839 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1840                                           IOMMUNotifier *n, Error **errp);
1841 
1842 /**
1843  * memory_region_iommu_replay: replay existing IOMMU translations to
1844  * a notifier with the minimum page granularity returned by
1845  * mr->iommu_ops->get_page_size().
1846  *
1847  * Note: this is not related to record-and-replay functionality.
1848  *
1849  * @iommu_mr: the memory region to observe
1850  * @n: the notifier to which to replay iommu mappings
1851  */
1852 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1853 
1854 /**
1855  * memory_region_unregister_iommu_notifier: unregister a notifier for
1856  * changes to IOMMU translation entries.
1857  *
1858  * @mr: the memory region which was observed and for which notify_stopped()
1859  *      needs to be called
1860  * @n: the notifier to be removed.
1861  */
1862 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1863                                              IOMMUNotifier *n);
1864 
1865 /**
1866  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1867  * defined on the IOMMU.
1868  *
1869  * Returns 0 on success, or a negative errno otherwise. In particular,
1870  * -EINVAL indicates that the IOMMU does not support the requested
1871  * attribute.
1872  *
1873  * @iommu_mr: the memory region
1874  * @attr: the requested attribute
1875  * @data: a pointer to the requested attribute data
1876  */
1877 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1878                                  enum IOMMUMemoryRegionAttr attr,
1879                                  void *data);
1880 
1881 /**
1882  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1883  * use for translations with the given memory transaction attributes.
1884  *
1885  * @iommu_mr: the memory region
1886  * @attrs: the memory transaction attributes
1887  */
1888 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1889                                        MemTxAttrs attrs);
1890 
1891 /**
1892  * memory_region_iommu_num_indexes: return the total number of IOMMU
1893  * indexes that this IOMMU supports.
1894  *
1895  * @iommu_mr: the memory region
1896  */
1897 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1898 
1899 /**
1900  * memory_region_name: get a memory region's name
1901  *
1902  * Returns the string that was used to initialize the memory region.
1903  *
1904  * @mr: the memory region being queried
1905  */
1906 const char *memory_region_name(const MemoryRegion *mr);
1907 
1908 /**
1909  * memory_region_is_logging: return whether a memory region is logging writes
1910  *
1911  * Returns %true if the memory region is logging writes for the given client
1912  *
1913  * @mr: the memory region being queried
1914  * @client: the client being queried
1915  */
1916 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1917 
1918 /**
1919  * memory_region_get_dirty_log_mask: return the clients for which a
1920  * memory region is logging writes.
1921  *
1922  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1923  * are the bit indices.
1924  *
1925  * @mr: the memory region being queried
1926  */
1927 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1928 
1929 /**
1930  * memory_region_is_rom: check whether a memory region is ROM
1931  *
1932  * Returns %true if a memory region is read-only memory.
1933  *
1934  * @mr: the memory region being queried
1935  */
memory_region_is_rom(MemoryRegion * mr)1936 static inline bool memory_region_is_rom(MemoryRegion *mr)
1937 {
1938     return mr->ram && mr->readonly;
1939 }
1940 
1941 /**
1942  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1943  *
1944  * Returns %true is a memory region is non-volatile memory.
1945  *
1946  * @mr: the memory region being queried
1947  */
memory_region_is_nonvolatile(MemoryRegion * mr)1948 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1949 {
1950     return mr->nonvolatile;
1951 }
1952 
1953 /**
1954  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1955  *
1956  * Returns a file descriptor backing a file-based RAM memory region,
1957  * or -1 if the region is not a file-based RAM memory region.
1958  *
1959  * @mr: the RAM or alias memory region being queried.
1960  */
1961 int memory_region_get_fd(MemoryRegion *mr);
1962 
1963 /**
1964  * memory_region_from_host: Convert a pointer into a RAM memory region
1965  * and an offset within it.
1966  *
1967  * Given a host pointer inside a RAM memory region (created with
1968  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1969  * the MemoryRegion and the offset within it.
1970  *
1971  * Use with care; by the time this function returns, the returned pointer is
1972  * not protected by RCU anymore.  If the caller is not within an RCU critical
1973  * section and does not hold the BQL, it must have other means of
1974  * protecting the pointer, such as a reference to the region that includes
1975  * the incoming ram_addr_t.
1976  *
1977  * @ptr: the host pointer to be converted
1978  * @offset: the offset within memory region
1979  */
1980 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1981 
1982 /**
1983  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1984  *
1985  * Returns a host pointer to a RAM memory region (created with
1986  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1987  *
1988  * Use with care; by the time this function returns, the returned pointer is
1989  * not protected by RCU anymore.  If the caller is not within an RCU critical
1990  * section and does not hold the BQL, it must have other means of
1991  * protecting the pointer, such as a reference to the region that includes
1992  * the incoming ram_addr_t.
1993  *
1994  * @mr: the memory region being queried.
1995  */
1996 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1997 
1998 /* memory_region_ram_resize: Resize a RAM region.
1999  *
2000  * Resizing RAM while migrating can result in the migration being canceled.
2001  * Care has to be taken if the guest might have already detected the memory.
2002  *
2003  * @mr: a memory region created with @memory_region_init_resizeable_ram.
2004  * @newsize: the new size the region
2005  * @errp: pointer to Error*, to store an error if it happens.
2006  */
2007 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2008                               Error **errp);
2009 
2010 /**
2011  * memory_region_msync: Synchronize selected address range of
2012  * a memory mapped region
2013  *
2014  * @mr: the memory region to be msync
2015  * @addr: the initial address of the range to be sync
2016  * @size: the size of the range to be sync
2017  */
2018 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2019 
2020 /**
2021  * memory_region_writeback: Trigger cache writeback for
2022  * selected address range
2023  *
2024  * @mr: the memory region to be updated
2025  * @addr: the initial address of the range to be written back
2026  * @size: the size of the range to be written back
2027  */
2028 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2029 
2030 /**
2031  * memory_region_set_log: Turn dirty logging on or off for a region.
2032  *
2033  * Turns dirty logging on or off for a specified client (display, migration).
2034  * Only meaningful for RAM regions.
2035  *
2036  * @mr: the memory region being updated.
2037  * @log: whether dirty logging is to be enabled or disabled.
2038  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2039  */
2040 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2041 
2042 /**
2043  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2044  *
2045  * Marks a range of bytes as dirty, after it has been dirtied outside
2046  * guest code.
2047  *
2048  * @mr: the memory region being dirtied.
2049  * @addr: the address (relative to the start of the region) being dirtied.
2050  * @size: size of the range being dirtied.
2051  */
2052 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2053                              hwaddr size);
2054 
2055 /**
2056  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2057  *
2058  * This function is called when the caller wants to clear the remote
2059  * dirty bitmap of a memory range within the memory region.  This can
2060  * be used by e.g. KVM to manually clear dirty log when
2061  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2062  * kernel.
2063  *
2064  * @mr:     the memory region to clear the dirty log upon
2065  * @start:  start address offset within the memory region
2066  * @len:    length of the memory region to clear dirty bitmap
2067  */
2068 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2069                                       hwaddr len);
2070 
2071 /**
2072  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2073  *                                         bitmap and clear it.
2074  *
2075  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2076  * returns the snapshot.  The snapshot can then be used to query dirty
2077  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2078  * querying the same page multiple times, which is especially useful for
2079  * display updates where the scanlines often are not page aligned.
2080  *
2081  * The dirty bitmap region which gets copied into the snapshot (and
2082  * cleared afterwards) can be larger than requested.  The boundaries
2083  * are rounded up/down so complete bitmap longs (covering 64 pages on
2084  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2085  * isn't a problem for display updates as the extra pages are outside
2086  * the visible area, and in case the visible area changes a full
2087  * display redraw is due anyway.  Should other use cases for this
2088  * function emerge we might have to revisit this implementation
2089  * detail.
2090  *
2091  * Use g_free to release DirtyBitmapSnapshot.
2092  *
2093  * @mr: the memory region being queried.
2094  * @addr: the address (relative to the start of the region) being queried.
2095  * @size: the size of the range being queried.
2096  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2097  */
2098 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2099                                                             hwaddr addr,
2100                                                             hwaddr size,
2101                                                             unsigned client);
2102 
2103 /**
2104  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2105  *                                   in the specified dirty bitmap snapshot.
2106  *
2107  * @mr: the memory region being queried.
2108  * @snap: the dirty bitmap snapshot
2109  * @addr: the address (relative to the start of the region) being queried.
2110  * @size: the size of the range being queried.
2111  */
2112 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2113                                       DirtyBitmapSnapshot *snap,
2114                                       hwaddr addr, hwaddr size);
2115 
2116 /**
2117  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2118  *                            client.
2119  *
2120  * Marks a range of pages as no longer dirty.
2121  *
2122  * @mr: the region being updated.
2123  * @addr: the start of the subrange being cleaned.
2124  * @size: the size of the subrange being cleaned.
2125  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2126  *          %DIRTY_MEMORY_VGA.
2127  */
2128 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2129                                hwaddr size, unsigned client);
2130 
2131 /**
2132  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2133  *                                 TBs (for self-modifying code).
2134  *
2135  * The MemoryRegionOps->write() callback of a ROM device must use this function
2136  * to mark byte ranges that have been modified internally, such as by directly
2137  * accessing the memory returned by memory_region_get_ram_ptr().
2138  *
2139  * This function marks the range dirty and invalidates TBs so that TCG can
2140  * detect self-modifying code.
2141  *
2142  * @mr: the region being flushed.
2143  * @addr: the start, relative to the start of the region, of the range being
2144  *        flushed.
2145  * @size: the size, in bytes, of the range being flushed.
2146  */
2147 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2148 
2149 /**
2150  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2151  *
2152  * Allows a memory region to be marked as read-only (turning it into a ROM).
2153  * only useful on RAM regions.
2154  *
2155  * @mr: the region being updated.
2156  * @readonly: whether rhe region is to be ROM or RAM.
2157  */
2158 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2159 
2160 /**
2161  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2162  *
2163  * Allows a memory region to be marked as non-volatile.
2164  * only useful on RAM regions.
2165  *
2166  * @mr: the region being updated.
2167  * @nonvolatile: whether rhe region is to be non-volatile.
2168  */
2169 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2170 
2171 /**
2172  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2173  *
2174  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2175  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2176  * device is mapped to guest memory and satisfies read access directly.
2177  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2178  * Writes are always handled by the #MemoryRegion.write function.
2179  *
2180  * @mr: the memory region to be updated
2181  * @romd_mode: %true to put the region into ROMD mode
2182  */
2183 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2184 
2185 /**
2186  * memory_region_set_coalescing: Enable memory coalescing for the region.
2187  *
2188  * Enabled writes to a region to be queued for later processing. MMIO ->write
2189  * callbacks may be delayed until a non-coalesced MMIO is issued.
2190  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2191  *
2192  * @mr: the memory region to be write coalesced
2193  */
2194 void memory_region_set_coalescing(MemoryRegion *mr);
2195 
2196 /**
2197  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2198  *                               a region.
2199  *
2200  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2201  * Multiple calls can be issued coalesced disjoint ranges.
2202  *
2203  * @mr: the memory region to be updated.
2204  * @offset: the start of the range within the region to be coalesced.
2205  * @size: the size of the subrange to be coalesced.
2206  */
2207 void memory_region_add_coalescing(MemoryRegion *mr,
2208                                   hwaddr offset,
2209                                   uint64_t size);
2210 
2211 /**
2212  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2213  *
2214  * Disables any coalescing caused by memory_region_set_coalescing() or
2215  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2216  * hardware.
2217  *
2218  * @mr: the memory region to be updated.
2219  */
2220 void memory_region_clear_coalescing(MemoryRegion *mr);
2221 
2222 /**
2223  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2224  *                                    accesses.
2225  *
2226  * Ensure that pending coalesced MMIO request are flushed before the memory
2227  * region is accessed. This property is automatically enabled for all regions
2228  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2229  *
2230  * @mr: the memory region to be updated.
2231  */
2232 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2233 
2234 /**
2235  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2236  *                                      accesses.
2237  *
2238  * Clear the automatic coalesced MMIO flushing enabled via
2239  * memory_region_set_flush_coalesced. Note that this service has no effect on
2240  * memory regions that have MMIO coalescing enabled for themselves. For them,
2241  * automatic flushing will stop once coalescing is disabled.
2242  *
2243  * @mr: the memory region to be updated.
2244  */
2245 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2246 
2247 /**
2248  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2249  *                            is written to a location.
2250  *
2251  * Marks a word in an IO region (initialized with memory_region_init_io())
2252  * as a trigger for an eventfd event.  The I/O callback will not be called.
2253  * The caller must be prepared to handle failure (that is, take the required
2254  * action if the callback _is_ called).
2255  *
2256  * @mr: the memory region being updated.
2257  * @addr: the address within @mr that is to be monitored
2258  * @size: the size of the access to trigger the eventfd
2259  * @match_data: whether to match against @data, instead of just @addr
2260  * @data: the data to match against the guest write
2261  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2262  **/
2263 void memory_region_add_eventfd(MemoryRegion *mr,
2264                                hwaddr addr,
2265                                unsigned size,
2266                                bool match_data,
2267                                uint64_t data,
2268                                EventNotifier *e);
2269 
2270 /**
2271  * memory_region_del_eventfd: Cancel an eventfd.
2272  *
2273  * Cancels an eventfd trigger requested by a previous
2274  * memory_region_add_eventfd() call.
2275  *
2276  * @mr: the memory region being updated.
2277  * @addr: the address within @mr that is to be monitored
2278  * @size: the size of the access to trigger the eventfd
2279  * @match_data: whether to match against @data, instead of just @addr
2280  * @data: the data to match against the guest write
2281  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2282  */
2283 void memory_region_del_eventfd(MemoryRegion *mr,
2284                                hwaddr addr,
2285                                unsigned size,
2286                                bool match_data,
2287                                uint64_t data,
2288                                EventNotifier *e);
2289 
2290 /**
2291  * memory_region_add_subregion: Add a subregion to a container.
2292  *
2293  * Adds a subregion at @offset.  The subregion may not overlap with other
2294  * subregions (except for those explicitly marked as overlapping).  A region
2295  * may only be added once as a subregion (unless removed with
2296  * memory_region_del_subregion()); use memory_region_init_alias() if you
2297  * want a region to be a subregion in multiple locations.
2298  *
2299  * @mr: the region to contain the new subregion; must be a container
2300  *      initialized with memory_region_init().
2301  * @offset: the offset relative to @mr where @subregion is added.
2302  * @subregion: the subregion to be added.
2303  */
2304 void memory_region_add_subregion(MemoryRegion *mr,
2305                                  hwaddr offset,
2306                                  MemoryRegion *subregion);
2307 /**
2308  * memory_region_add_subregion_overlap: Add a subregion to a container
2309  *                                      with overlap.
2310  *
2311  * Adds a subregion at @offset.  The subregion may overlap with other
2312  * subregions.  Conflicts are resolved by having a higher @priority hide a
2313  * lower @priority. Subregions without priority are taken as @priority 0.
2314  * A region may only be added once as a subregion (unless removed with
2315  * memory_region_del_subregion()); use memory_region_init_alias() if you
2316  * want a region to be a subregion in multiple locations.
2317  *
2318  * @mr: the region to contain the new subregion; must be a container
2319  *      initialized with memory_region_init().
2320  * @offset: the offset relative to @mr where @subregion is added.
2321  * @subregion: the subregion to be added.
2322  * @priority: used for resolving overlaps; highest priority wins.
2323  */
2324 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2325                                          hwaddr offset,
2326                                          MemoryRegion *subregion,
2327                                          int priority);
2328 
2329 /**
2330  * memory_region_get_ram_addr: Get the ram address associated with a memory
2331  *                             region
2332  *
2333  * @mr: the region to be queried
2334  */
2335 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2336 
2337 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2338 /**
2339  * memory_region_del_subregion: Remove a subregion.
2340  *
2341  * Removes a subregion from its container.
2342  *
2343  * @mr: the container to be updated.
2344  * @subregion: the region being removed; must be a current subregion of @mr.
2345  */
2346 void memory_region_del_subregion(MemoryRegion *mr,
2347                                  MemoryRegion *subregion);
2348 
2349 /*
2350  * memory_region_set_enabled: dynamically enable or disable a region
2351  *
2352  * Enables or disables a memory region.  A disabled memory region
2353  * ignores all accesses to itself and its subregions.  It does not
2354  * obscure sibling subregions with lower priority - it simply behaves as
2355  * if it was removed from the hierarchy.
2356  *
2357  * Regions default to being enabled.
2358  *
2359  * @mr: the region to be updated
2360  * @enabled: whether to enable or disable the region
2361  */
2362 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2363 
2364 /*
2365  * memory_region_set_address: dynamically update the address of a region
2366  *
2367  * Dynamically updates the address of a region, relative to its container.
2368  * May be used on regions are currently part of a memory hierarchy.
2369  *
2370  * @mr: the region to be updated
2371  * @addr: new address, relative to container region
2372  */
2373 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2374 
2375 /*
2376  * memory_region_set_size: dynamically update the size of a region.
2377  *
2378  * Dynamically updates the size of a region.
2379  *
2380  * @mr: the region to be updated
2381  * @size: used size of the region.
2382  */
2383 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2384 
2385 /*
2386  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2387  *
2388  * Dynamically updates the offset into the target region that an alias points
2389  * to, as if the fourth argument to memory_region_init_alias() has changed.
2390  *
2391  * @mr: the #MemoryRegion to be updated; should be an alias.
2392  * @offset: the new offset into the target memory region
2393  */
2394 void memory_region_set_alias_offset(MemoryRegion *mr,
2395                                     hwaddr offset);
2396 
2397 /*
2398  * memory_region_set_unmergeable: Set a memory region unmergeable
2399  *
2400  * Mark a memory region unmergeable, resulting in the memory region (or
2401  * everything contained in a memory region container) not getting merged when
2402  * simplifying the address space and notifying memory listeners. Consequently,
2403  * memory listeners will never get notified about ranges that are larger than
2404  * the original memory regions.
2405  *
2406  * This is primarily useful when multiple aliases to a RAM memory region are
2407  * mapped into a memory region container, and updates (e.g., enable/disable or
2408  * map/unmap) of individual memory region aliases are not supposed to affect
2409  * other memory regions in the same container.
2410  *
2411  * @mr: the #MemoryRegion to be updated
2412  * @unmergeable: whether to mark the #MemoryRegion unmergeable
2413  */
2414 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2415 
2416 /**
2417  * memory_region_present: checks if an address relative to a @container
2418  * translates into #MemoryRegion within @container
2419  *
2420  * Answer whether a #MemoryRegion within @container covers the address
2421  * @addr.
2422  *
2423  * @container: a #MemoryRegion within which @addr is a relative address
2424  * @addr: the area within @container to be searched
2425  */
2426 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2427 
2428 /**
2429  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2430  * into another memory region, which does not necessarily imply that it is
2431  * mapped into an address space.
2432  *
2433  * @mr: a #MemoryRegion which should be checked if it's mapped
2434  */
2435 bool memory_region_is_mapped(MemoryRegion *mr);
2436 
2437 /**
2438  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2439  * #MemoryRegion
2440  *
2441  * The #RamDiscardManager cannot change while a memory region is mapped.
2442  *
2443  * @mr: the #MemoryRegion
2444  */
2445 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2446 
2447 /**
2448  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2449  * #RamDiscardManager assigned
2450  *
2451  * @mr: the #MemoryRegion
2452  */
memory_region_has_ram_discard_manager(MemoryRegion * mr)2453 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2454 {
2455     return !!memory_region_get_ram_discard_manager(mr);
2456 }
2457 
2458 /**
2459  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2460  * #MemoryRegion
2461  *
2462  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2463  * that does not cover RAM, or a #MemoryRegion that already has a
2464  * #RamDiscardManager assigned.
2465  *
2466  * @mr: the #MemoryRegion
2467  * @rdm: #RamDiscardManager to set
2468  */
2469 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2470                                            RamDiscardManager *rdm);
2471 
2472 /**
2473  * memory_region_find: translate an address/size relative to a
2474  * MemoryRegion into a #MemoryRegionSection.
2475  *
2476  * Locates the first #MemoryRegion within @mr that overlaps the range
2477  * given by @addr and @size.
2478  *
2479  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2480  * It will have the following characteristics:
2481  * - @size = 0 iff no overlap was found
2482  * - @mr is non-%NULL iff an overlap was found
2483  *
2484  * Remember that in the return value the @offset_within_region is
2485  * relative to the returned region (in the .@mr field), not to the
2486  * @mr argument.
2487  *
2488  * Similarly, the .@offset_within_address_space is relative to the
2489  * address space that contains both regions, the passed and the
2490  * returned one.  However, in the special case where the @mr argument
2491  * has no container (and thus is the root of the address space), the
2492  * following will hold:
2493  * - @offset_within_address_space >= @addr
2494  * - @offset_within_address_space + .@size <= @addr + @size
2495  *
2496  * @mr: a MemoryRegion within which @addr is a relative address
2497  * @addr: start of the area within @as to be searched
2498  * @size: size of the area to be searched
2499  */
2500 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2501                                        hwaddr addr, uint64_t size);
2502 
2503 /**
2504  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2505  *
2506  * Synchronizes the dirty page log for all address spaces.
2507  *
2508  * @last_stage: whether this is the last stage of live migration
2509  */
2510 void memory_global_dirty_log_sync(bool last_stage);
2511 
2512 /**
2513  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2514  *
2515  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2516  * This function must be called after the dirty log bitmap is cleared, and
2517  * before dirty guest memory pages are read.  If you are using
2518  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2519  * care of doing this.
2520  */
2521 void memory_global_after_dirty_log_sync(void);
2522 
2523 /**
2524  * memory_region_transaction_begin: Start a transaction.
2525  *
2526  * During a transaction, changes will be accumulated and made visible
2527  * only when the transaction ends (is committed).
2528  */
2529 void memory_region_transaction_begin(void);
2530 
2531 /**
2532  * memory_region_transaction_commit: Commit a transaction and make changes
2533  *                                   visible to the guest.
2534  */
2535 void memory_region_transaction_commit(void);
2536 
2537 /**
2538  * memory_listener_register: register callbacks to be called when memory
2539  *                           sections are mapped or unmapped into an address
2540  *                           space
2541  *
2542  * @listener: an object containing the callbacks to be called
2543  * @filter: if non-%NULL, only regions in this address space will be observed
2544  */
2545 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2546 
2547 /**
2548  * memory_listener_unregister: undo the effect of memory_listener_register()
2549  *
2550  * @listener: an object containing the callbacks to be removed
2551  */
2552 void memory_listener_unregister(MemoryListener *listener);
2553 
2554 /**
2555  * memory_global_dirty_log_start: begin dirty logging for all regions
2556  *
2557  * @flags: purpose of starting dirty log, migration or dirty rate
2558  * @errp: pointer to Error*, to store an error if it happens.
2559  *
2560  * Return: true on success, else false setting @errp with error.
2561  */
2562 bool memory_global_dirty_log_start(unsigned int flags, Error **errp);
2563 
2564 /**
2565  * memory_global_dirty_log_stop: end dirty logging for all regions
2566  *
2567  * @flags: purpose of stopping dirty log, migration or dirty rate
2568  */
2569 void memory_global_dirty_log_stop(unsigned int flags);
2570 
2571 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2572 
2573 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2574                                 unsigned size, bool is_write,
2575                                 MemTxAttrs attrs);
2576 
2577 /**
2578  * memory_region_dispatch_read: perform a read directly to the specified
2579  * MemoryRegion.
2580  *
2581  * @mr: #MemoryRegion to access
2582  * @addr: address within that region
2583  * @pval: pointer to uint64_t which the data is written to
2584  * @op: size, sign, and endianness of the memory operation
2585  * @attrs: memory transaction attributes to use for the access
2586  */
2587 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2588                                         hwaddr addr,
2589                                         uint64_t *pval,
2590                                         MemOp op,
2591                                         MemTxAttrs attrs);
2592 /**
2593  * memory_region_dispatch_write: perform a write directly to the specified
2594  * MemoryRegion.
2595  *
2596  * @mr: #MemoryRegion to access
2597  * @addr: address within that region
2598  * @data: data to write
2599  * @op: size, sign, and endianness of the memory operation
2600  * @attrs: memory transaction attributes to use for the access
2601  */
2602 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2603                                          hwaddr addr,
2604                                          uint64_t data,
2605                                          MemOp op,
2606                                          MemTxAttrs attrs);
2607 
2608 /**
2609  * address_space_init: initializes an address space
2610  *
2611  * @as: an uninitialized #AddressSpace
2612  * @root: a #MemoryRegion that routes addresses for the address space
2613  * @name: an address space name.  The name is only used for debugging
2614  *        output.
2615  */
2616 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2617 
2618 /**
2619  * address_space_destroy: destroy an address space
2620  *
2621  * Releases all resources associated with an address space.  After an address space
2622  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2623  * as well.
2624  *
2625  * @as: address space to be destroyed
2626  */
2627 void address_space_destroy(AddressSpace *as);
2628 
2629 /**
2630  * address_space_remove_listeners: unregister all listeners of an address space
2631  *
2632  * Removes all callbacks previously registered with memory_listener_register()
2633  * for @as.
2634  *
2635  * @as: an initialized #AddressSpace
2636  */
2637 void address_space_remove_listeners(AddressSpace *as);
2638 
2639 /**
2640  * address_space_rw: read from or write to an address space.
2641  *
2642  * Return a MemTxResult indicating whether the operation succeeded
2643  * or failed (eg unassigned memory, device rejected the transaction,
2644  * IOMMU fault).
2645  *
2646  * @as: #AddressSpace to be accessed
2647  * @addr: address within that address space
2648  * @attrs: memory transaction attributes
2649  * @buf: buffer with the data transferred
2650  * @len: the number of bytes to read or write
2651  * @is_write: indicates the transfer direction
2652  */
2653 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2654                              MemTxAttrs attrs, void *buf,
2655                              hwaddr len, bool is_write);
2656 
2657 /**
2658  * address_space_write: write to address space.
2659  *
2660  * Return a MemTxResult indicating whether the operation succeeded
2661  * or failed (eg unassigned memory, device rejected the transaction,
2662  * IOMMU fault).
2663  *
2664  * @as: #AddressSpace to be accessed
2665  * @addr: address within that address space
2666  * @attrs: memory transaction attributes
2667  * @buf: buffer with the data transferred
2668  * @len: the number of bytes to write
2669  */
2670 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2671                                 MemTxAttrs attrs,
2672                                 const void *buf, hwaddr len);
2673 
2674 /**
2675  * address_space_write_rom: write to address space, including ROM.
2676  *
2677  * This function writes to the specified address space, but will
2678  * write data to both ROM and RAM. This is used for non-guest
2679  * writes like writes from the gdb debug stub or initial loading
2680  * of ROM contents.
2681  *
2682  * Note that portions of the write which attempt to write data to
2683  * a device will be silently ignored -- only real RAM and ROM will
2684  * be written to.
2685  *
2686  * Return a MemTxResult indicating whether the operation succeeded
2687  * or failed (eg unassigned memory, device rejected the transaction,
2688  * IOMMU fault).
2689  *
2690  * @as: #AddressSpace to be accessed
2691  * @addr: address within that address space
2692  * @attrs: memory transaction attributes
2693  * @buf: buffer with the data transferred
2694  * @len: the number of bytes to write
2695  */
2696 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2697                                     MemTxAttrs attrs,
2698                                     const void *buf, hwaddr len);
2699 
2700 /* address_space_ld*: load from an address space
2701  * address_space_st*: store to an address space
2702  *
2703  * These functions perform a load or store of the byte, word,
2704  * longword or quad to the specified address within the AddressSpace.
2705  * The _le suffixed functions treat the data as little endian;
2706  * _be indicates big endian; no suffix indicates "same endianness
2707  * as guest CPU".
2708  *
2709  * The "guest CPU endianness" accessors are deprecated for use outside
2710  * target-* code; devices should be CPU-agnostic and use either the LE
2711  * or the BE accessors.
2712  *
2713  * @as #AddressSpace to be accessed
2714  * @addr: address within that address space
2715  * @val: data value, for stores
2716  * @attrs: memory transaction attributes
2717  * @result: location to write the success/failure of the transaction;
2718  *   if NULL, this information is discarded
2719  */
2720 
2721 #define SUFFIX
2722 #define ARG1         as
2723 #define ARG1_DECL    AddressSpace *as
2724 #include "exec/memory_ldst.h.inc"
2725 
2726 #define SUFFIX
2727 #define ARG1         as
2728 #define ARG1_DECL    AddressSpace *as
2729 #include "exec/memory_ldst_phys.h.inc"
2730 
2731 struct MemoryRegionCache {
2732     uint8_t *ptr;
2733     hwaddr xlat;
2734     hwaddr len;
2735     FlatView *fv;
2736     MemoryRegionSection mrs;
2737     bool is_write;
2738 };
2739 
2740 /* address_space_ld*_cached: load from a cached #MemoryRegion
2741  * address_space_st*_cached: store into a cached #MemoryRegion
2742  *
2743  * These functions perform a load or store of the byte, word,
2744  * longword or quad to the specified address.  The address is
2745  * a physical address in the AddressSpace, but it must lie within
2746  * a #MemoryRegion that was mapped with address_space_cache_init.
2747  *
2748  * The _le suffixed functions treat the data as little endian;
2749  * _be indicates big endian; no suffix indicates "same endianness
2750  * as guest CPU".
2751  *
2752  * The "guest CPU endianness" accessors are deprecated for use outside
2753  * target-* code; devices should be CPU-agnostic and use either the LE
2754  * or the BE accessors.
2755  *
2756  * @cache: previously initialized #MemoryRegionCache to be accessed
2757  * @addr: address within the address space
2758  * @val: data value, for stores
2759  * @attrs: memory transaction attributes
2760  * @result: location to write the success/failure of the transaction;
2761  *   if NULL, this information is discarded
2762  */
2763 
2764 #define SUFFIX       _cached_slow
2765 #define ARG1         cache
2766 #define ARG1_DECL    MemoryRegionCache *cache
2767 #include "exec/memory_ldst.h.inc"
2768 
2769 /* Inline fast path for direct RAM access.  */
address_space_ldub_cached(MemoryRegionCache * cache,hwaddr addr,MemTxAttrs attrs,MemTxResult * result)2770 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2771     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2772 {
2773     assert(addr < cache->len);
2774     if (likely(cache->ptr)) {
2775         return ldub_p(cache->ptr + addr);
2776     } else {
2777         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2778     }
2779 }
2780 
address_space_stb_cached(MemoryRegionCache * cache,hwaddr addr,uint8_t val,MemTxAttrs attrs,MemTxResult * result)2781 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2782     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2783 {
2784     assert(addr < cache->len);
2785     if (likely(cache->ptr)) {
2786         stb_p(cache->ptr + addr, val);
2787     } else {
2788         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2789     }
2790 }
2791 
2792 #define ENDIANNESS   _le
2793 #include "exec/memory_ldst_cached.h.inc"
2794 
2795 #define ENDIANNESS   _be
2796 #include "exec/memory_ldst_cached.h.inc"
2797 
2798 #define SUFFIX       _cached
2799 #define ARG1         cache
2800 #define ARG1_DECL    MemoryRegionCache *cache
2801 #include "exec/memory_ldst_phys.h.inc"
2802 
2803 /* address_space_cache_init: prepare for repeated access to a physical
2804  * memory region
2805  *
2806  * @cache: #MemoryRegionCache to be filled
2807  * @as: #AddressSpace to be accessed
2808  * @addr: address within that address space
2809  * @len: length of buffer
2810  * @is_write: indicates the transfer direction
2811  *
2812  * Will only work with RAM, and may map a subset of the requested range by
2813  * returning a value that is less than @len.  On failure, return a negative
2814  * errno value.
2815  *
2816  * Because it only works with RAM, this function can be used for
2817  * read-modify-write operations.  In this case, is_write should be %true.
2818  *
2819  * Note that addresses passed to the address_space_*_cached functions
2820  * are relative to @addr.
2821  */
2822 int64_t address_space_cache_init(MemoryRegionCache *cache,
2823                                  AddressSpace *as,
2824                                  hwaddr addr,
2825                                  hwaddr len,
2826                                  bool is_write);
2827 
2828 /**
2829  * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2830  *
2831  * @cache: The #MemoryRegionCache to operate on.
2832  *
2833  * Initializes #MemoryRegionCache structure without memory region attached.
2834  * Cache initialized this way can only be safely destroyed, but not used.
2835  */
address_space_cache_init_empty(MemoryRegionCache * cache)2836 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2837 {
2838     cache->mrs.mr = NULL;
2839     /* There is no real need to initialize fv, but it makes Coverity happy. */
2840     cache->fv = NULL;
2841 }
2842 
2843 /**
2844  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2845  *
2846  * @cache: The #MemoryRegionCache to operate on.
2847  * @addr: The first physical address that was written, relative to the
2848  * address that was passed to @address_space_cache_init.
2849  * @access_len: The number of bytes that were written starting at @addr.
2850  */
2851 void address_space_cache_invalidate(MemoryRegionCache *cache,
2852                                     hwaddr addr,
2853                                     hwaddr access_len);
2854 
2855 /**
2856  * address_space_cache_destroy: free a #MemoryRegionCache
2857  *
2858  * @cache: The #MemoryRegionCache whose memory should be released.
2859  */
2860 void address_space_cache_destroy(MemoryRegionCache *cache);
2861 
2862 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2863  * entry. Should be called from an RCU critical section.
2864  */
2865 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2866                                             bool is_write, MemTxAttrs attrs);
2867 
2868 /* address_space_translate: translate an address range into an address space
2869  * into a MemoryRegion and an address range into that section.  Should be
2870  * called from an RCU critical section, to avoid that the last reference
2871  * to the returned region disappears after address_space_translate returns.
2872  *
2873  * @fv: #FlatView to be accessed
2874  * @addr: address within that address space
2875  * @xlat: pointer to address within the returned memory region section's
2876  * #MemoryRegion.
2877  * @len: pointer to length
2878  * @is_write: indicates the transfer direction
2879  * @attrs: memory attributes
2880  */
2881 MemoryRegion *flatview_translate(FlatView *fv,
2882                                  hwaddr addr, hwaddr *xlat,
2883                                  hwaddr *len, bool is_write,
2884                                  MemTxAttrs attrs);
2885 
address_space_translate(AddressSpace * as,hwaddr addr,hwaddr * xlat,hwaddr * len,bool is_write,MemTxAttrs attrs)2886 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2887                                                     hwaddr addr, hwaddr *xlat,
2888                                                     hwaddr *len, bool is_write,
2889                                                     MemTxAttrs attrs)
2890 {
2891     return flatview_translate(address_space_to_flatview(as),
2892                               addr, xlat, len, is_write, attrs);
2893 }
2894 
2895 /* address_space_access_valid: check for validity of accessing an address
2896  * space range
2897  *
2898  * Check whether memory is assigned to the given address space range, and
2899  * access is permitted by any IOMMU regions that are active for the address
2900  * space.
2901  *
2902  * For now, addr and len should be aligned to a page size.  This limitation
2903  * will be lifted in the future.
2904  *
2905  * @as: #AddressSpace to be accessed
2906  * @addr: address within that address space
2907  * @len: length of the area to be checked
2908  * @is_write: indicates the transfer direction
2909  * @attrs: memory attributes
2910  */
2911 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2912                                 bool is_write, MemTxAttrs attrs);
2913 
2914 /* address_space_map: map a physical memory region into a host virtual address
2915  *
2916  * May map a subset of the requested range, given by and returned in @plen.
2917  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2918  * the mapping are exhausted.
2919  * Use only for reads OR writes - not for read-modify-write operations.
2920  * Use address_space_register_map_client() to know when retrying the map
2921  * operation is likely to succeed.
2922  *
2923  * @as: #AddressSpace to be accessed
2924  * @addr: address within that address space
2925  * @plen: pointer to length of buffer; updated on return
2926  * @is_write: indicates the transfer direction
2927  * @attrs: memory attributes
2928  */
2929 void *address_space_map(AddressSpace *as, hwaddr addr,
2930                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2931 
2932 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2933  *
2934  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2935  * the amount of memory that was actually read or written by the caller.
2936  *
2937  * @as: #AddressSpace used
2938  * @buffer: host pointer as returned by address_space_map()
2939  * @len: buffer length as returned by address_space_map()
2940  * @access_len: amount of data actually transferred
2941  * @is_write: indicates the transfer direction
2942  */
2943 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2944                          bool is_write, hwaddr access_len);
2945 
2946 /*
2947  * address_space_register_map_client: Register a callback to invoke when
2948  * resources for address_space_map() are available again.
2949  *
2950  * address_space_map may fail when there are not enough resources available,
2951  * such as when bounce buffer memory would exceed the limit. The callback can
2952  * be used to retry the address_space_map operation. Note that the callback
2953  * gets automatically removed after firing.
2954  *
2955  * @as: #AddressSpace to be accessed
2956  * @bh: callback to invoke when address_space_map() retry is appropriate
2957  */
2958 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh);
2959 
2960 /*
2961  * address_space_unregister_map_client: Unregister a callback that has
2962  * previously been registered and not fired yet.
2963  *
2964  * @as: #AddressSpace to be accessed
2965  * @bh: callback to unregister
2966  */
2967 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh);
2968 
2969 /* Internal functions, part of the implementation of address_space_read.  */
2970 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2971                                     MemTxAttrs attrs, void *buf, hwaddr len);
2972 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2973                                    MemTxAttrs attrs, void *buf,
2974                                    hwaddr len, hwaddr addr1, hwaddr l,
2975                                    MemoryRegion *mr);
2976 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2977 
2978 /* Internal functions, part of the implementation of address_space_read_cached
2979  * and address_space_write_cached.  */
2980 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2981                                            hwaddr addr, void *buf, hwaddr len);
2982 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2983                                             hwaddr addr, const void *buf,
2984                                             hwaddr len);
2985 
2986 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2987 bool prepare_mmio_access(MemoryRegion *mr);
2988 
memory_access_is_direct(MemoryRegion * mr,bool is_write)2989 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2990 {
2991     if (is_write) {
2992         return memory_region_is_ram(mr) && !mr->readonly &&
2993                !mr->rom_device && !memory_region_is_ram_device(mr);
2994     } else {
2995         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2996                memory_region_is_romd(mr);
2997     }
2998 }
2999 
3000 /**
3001  * address_space_read: read from an address space.
3002  *
3003  * Return a MemTxResult indicating whether the operation succeeded
3004  * or failed (eg unassigned memory, device rejected the transaction,
3005  * IOMMU fault).  Called within RCU critical section.
3006  *
3007  * @as: #AddressSpace to be accessed
3008  * @addr: address within that address space
3009  * @attrs: memory transaction attributes
3010  * @buf: buffer with the data transferred
3011  * @len: length of the data transferred
3012  */
3013 static inline __attribute__((__always_inline__))
address_space_read(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3014 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3015                                MemTxAttrs attrs, void *buf,
3016                                hwaddr len)
3017 {
3018     MemTxResult result = MEMTX_OK;
3019     hwaddr l, addr1;
3020     void *ptr;
3021     MemoryRegion *mr;
3022     FlatView *fv;
3023 
3024     if (__builtin_constant_p(len)) {
3025         if (len) {
3026             RCU_READ_LOCK_GUARD();
3027             fv = address_space_to_flatview(as);
3028             l = len;
3029             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3030             if (len == l && memory_access_is_direct(mr, false)) {
3031                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3032                 memcpy(buf, ptr, len);
3033             } else {
3034                 result = flatview_read_continue(fv, addr, attrs, buf, len,
3035                                                 addr1, l, mr);
3036             }
3037         }
3038     } else {
3039         result = address_space_read_full(as, addr, attrs, buf, len);
3040     }
3041     return result;
3042 }
3043 
3044 /**
3045  * address_space_read_cached: read from a cached RAM region
3046  *
3047  * @cache: Cached region to be addressed
3048  * @addr: address relative to the base of the RAM region
3049  * @buf: buffer with the data transferred
3050  * @len: length of the data transferred
3051  */
3052 static inline MemTxResult
address_space_read_cached(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3053 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3054                           void *buf, hwaddr len)
3055 {
3056     assert(addr < cache->len && len <= cache->len - addr);
3057     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3058     if (likely(cache->ptr)) {
3059         memcpy(buf, cache->ptr + addr, len);
3060         return MEMTX_OK;
3061     } else {
3062         return address_space_read_cached_slow(cache, addr, buf, len);
3063     }
3064 }
3065 
3066 /**
3067  * address_space_write_cached: write to a cached RAM region
3068  *
3069  * @cache: Cached region to be addressed
3070  * @addr: address relative to the base of the RAM region
3071  * @buf: buffer with the data transferred
3072  * @len: length of the data transferred
3073  */
3074 static inline MemTxResult
address_space_write_cached(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3075 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3076                            const void *buf, hwaddr len)
3077 {
3078     assert(addr < cache->len && len <= cache->len - addr);
3079     if (likely(cache->ptr)) {
3080         memcpy(cache->ptr + addr, buf, len);
3081         return MEMTX_OK;
3082     } else {
3083         return address_space_write_cached_slow(cache, addr, buf, len);
3084     }
3085 }
3086 
3087 /**
3088  * address_space_set: Fill address space with a constant byte.
3089  *
3090  * Return a MemTxResult indicating whether the operation succeeded
3091  * or failed (eg unassigned memory, device rejected the transaction,
3092  * IOMMU fault).
3093  *
3094  * @as: #AddressSpace to be accessed
3095  * @addr: address within that address space
3096  * @c: constant byte to fill the memory
3097  * @len: the number of bytes to fill with the constant byte
3098  * @attrs: memory transaction attributes
3099  */
3100 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3101                               uint8_t c, hwaddr len, MemTxAttrs attrs);
3102 
3103 #ifdef COMPILING_PER_TARGET
3104 /* enum device_endian to MemOp.  */
devend_memop(enum device_endian end)3105 static inline MemOp devend_memop(enum device_endian end)
3106 {
3107     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3108                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3109 
3110 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3111     /* Swap if non-host endianness or native (target) endianness */
3112     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3113 #else
3114     const int non_host_endianness =
3115         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3116 
3117     /* In this case, native (target) endianness needs no swap.  */
3118     return (end == non_host_endianness) ? MO_BSWAP : 0;
3119 #endif
3120 }
3121 #endif /* COMPILING_PER_TARGET */
3122 
3123 /*
3124  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3125  * to manage the actual amount of memory consumed by the VM (then, the memory
3126  * provided by RAM blocks might be bigger than the desired memory consumption).
3127  * This *must* be set if:
3128  * - Discarding parts of a RAM blocks does not result in the change being
3129  *   reflected in the VM and the pages getting freed.
3130  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3131  *   discards blindly.
3132  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3133  *   encrypted VMs).
3134  * Technologies that only temporarily pin the current working set of a
3135  * driver are fine, because we don't expect such pages to be discarded
3136  * (esp. based on guest action like balloon inflation).
3137  *
3138  * This is *not* to be used to protect from concurrent discards (esp.,
3139  * postcopy).
3140  *
3141  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3142  * discards to work reliably is active.
3143  */
3144 int ram_block_discard_disable(bool state);
3145 
3146 /*
3147  * See ram_block_discard_disable(): only disable uncoordinated discards,
3148  * keeping coordinated discards (via the RamDiscardManager) enabled.
3149  */
3150 int ram_block_uncoordinated_discard_disable(bool state);
3151 
3152 /*
3153  * Inhibit technologies that disable discarding of pages in RAM blocks.
3154  *
3155  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3156  * broken.
3157  */
3158 int ram_block_discard_require(bool state);
3159 
3160 /*
3161  * See ram_block_discard_require(): only inhibit technologies that disable
3162  * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3163  * technologies that only inhibit uncoordinated discards (via the
3164  * RamDiscardManager).
3165  */
3166 int ram_block_coordinated_discard_require(bool state);
3167 
3168 /*
3169  * Test if any discarding of memory in ram blocks is disabled.
3170  */
3171 bool ram_block_discard_is_disabled(void);
3172 
3173 /*
3174  * Test if any discarding of memory in ram blocks is required to work reliably.
3175  */
3176 bool ram_block_discard_is_required(void);
3177 
3178 #endif
3179 
3180 #endif
3181