xref: /openbmc/linux/drivers/media/platform/renesas/rcar-vin/rcar-csi2.c (revision 7e24a55b2122746c2eef192296fc84624354f895)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Renesas R-Car MIPI CSI-2 Receiver
4  *
5  * Copyright (C) 2018 Renesas Electronics Corp.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_graph.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/reset.h>
17 #include <linux/sys_soc.h>
18 
19 #include <media/mipi-csi2.h>
20 #include <media/v4l2-ctrls.h>
21 #include <media/v4l2-device.h>
22 #include <media/v4l2-fwnode.h>
23 #include <media/v4l2-mc.h>
24 #include <media/v4l2-subdev.h>
25 
26 struct rcar_csi2;
27 
28 /* Register offsets and bits */
29 
30 /* Control Timing Select */
31 #define TREF_REG			0x00
32 #define TREF_TREF			BIT(0)
33 
34 /* Software Reset */
35 #define SRST_REG			0x04
36 #define SRST_SRST			BIT(0)
37 
38 /* PHY Operation Control */
39 #define PHYCNT_REG			0x08
40 #define PHYCNT_SHUTDOWNZ		BIT(17)
41 #define PHYCNT_RSTZ			BIT(16)
42 #define PHYCNT_ENABLECLK		BIT(4)
43 #define PHYCNT_ENABLE_3			BIT(3)
44 #define PHYCNT_ENABLE_2			BIT(2)
45 #define PHYCNT_ENABLE_1			BIT(1)
46 #define PHYCNT_ENABLE_0			BIT(0)
47 
48 /* Checksum Control */
49 #define CHKSUM_REG			0x0c
50 #define CHKSUM_ECC_EN			BIT(1)
51 #define CHKSUM_CRC_EN			BIT(0)
52 
53 /*
54  * Channel Data Type Select
55  * VCDT[0-15]:  Channel 0 VCDT[16-31]:  Channel 1
56  * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
57  */
58 #define VCDT_REG			0x10
59 #define VCDT2_REG			0x14
60 #define VCDT_VCDTN_EN			BIT(15)
61 #define VCDT_SEL_VC(n)			(((n) & 0x3) << 8)
62 #define VCDT_SEL_DTN_ON			BIT(6)
63 #define VCDT_SEL_DT(n)			(((n) & 0x3f) << 0)
64 
65 /* Frame Data Type Select */
66 #define FRDT_REG			0x18
67 
68 /* Field Detection Control */
69 #define FLD_REG				0x1c
70 #define FLD_FLD_NUM(n)			(((n) & 0xff) << 16)
71 #define FLD_DET_SEL(n)			(((n) & 0x3) << 4)
72 #define FLD_FLD_EN4			BIT(3)
73 #define FLD_FLD_EN3			BIT(2)
74 #define FLD_FLD_EN2			BIT(1)
75 #define FLD_FLD_EN			BIT(0)
76 
77 /* Automatic Standby Control */
78 #define ASTBY_REG			0x20
79 
80 /* Long Data Type Setting 0 */
81 #define LNGDT0_REG			0x28
82 
83 /* Long Data Type Setting 1 */
84 #define LNGDT1_REG			0x2c
85 
86 /* Interrupt Enable */
87 #define INTEN_REG			0x30
88 #define INTEN_INT_AFIFO_OF		BIT(27)
89 #define INTEN_INT_ERRSOTHS		BIT(4)
90 #define INTEN_INT_ERRSOTSYNCHS		BIT(3)
91 
92 /* Interrupt Source Mask */
93 #define INTCLOSE_REG			0x34
94 
95 /* Interrupt Status Monitor */
96 #define INTSTATE_REG			0x38
97 #define INTSTATE_INT_ULPS_START		BIT(7)
98 #define INTSTATE_INT_ULPS_END		BIT(6)
99 
100 /* Interrupt Error Status Monitor */
101 #define INTERRSTATE_REG			0x3c
102 
103 /* Short Packet Data */
104 #define SHPDAT_REG			0x40
105 
106 /* Short Packet Count */
107 #define SHPCNT_REG			0x44
108 
109 /* LINK Operation Control */
110 #define LINKCNT_REG			0x48
111 #define LINKCNT_MONITOR_EN		BIT(31)
112 #define LINKCNT_REG_MONI_PACT_EN	BIT(25)
113 #define LINKCNT_ICLK_NONSTOP		BIT(24)
114 
115 /* Lane Swap */
116 #define LSWAP_REG			0x4c
117 #define LSWAP_L3SEL(n)			(((n) & 0x3) << 6)
118 #define LSWAP_L2SEL(n)			(((n) & 0x3) << 4)
119 #define LSWAP_L1SEL(n)			(((n) & 0x3) << 2)
120 #define LSWAP_L0SEL(n)			(((n) & 0x3) << 0)
121 
122 /* PHY Test Interface Write Register */
123 #define PHTW_REG			0x50
124 #define PHTW_DWEN			BIT(24)
125 #define PHTW_TESTDIN_DATA(n)		(((n & 0xff)) << 16)
126 #define PHTW_CWEN			BIT(8)
127 #define PHTW_TESTDIN_CODE(n)		((n & 0xff))
128 
129 #define PHYFRX_REG			0x64
130 #define PHYFRX_FORCERX_MODE_3		BIT(3)
131 #define PHYFRX_FORCERX_MODE_2		BIT(2)
132 #define PHYFRX_FORCERX_MODE_1		BIT(1)
133 #define PHYFRX_FORCERX_MODE_0		BIT(0)
134 
135 /* V4H BASE registers */
136 #define V4H_N_LANES_REG					0x0004
137 #define V4H_CSI2_RESETN_REG				0x0008
138 #define V4H_PHY_MODE_REG				0x001c
139 #define V4H_PHY_SHUTDOWNZ_REG				0x0040
140 #define V4H_DPHY_RSTZ_REG				0x0044
141 #define V4H_FLDC_REG					0x0804
142 #define V4H_FLDD_REG					0x0808
143 #define V4H_IDIC_REG					0x0810
144 #define V4H_PHY_EN_REG					0x2000
145 
146 #define V4H_ST_PHYST_REG				0x2814
147 #define V4H_ST_PHYST_ST_PHY_READY			BIT(31)
148 #define V4H_ST_PHYST_ST_STOPSTATE_3			BIT(3)
149 #define V4H_ST_PHYST_ST_STOPSTATE_2			BIT(2)
150 #define V4H_ST_PHYST_ST_STOPSTATE_1			BIT(1)
151 #define V4H_ST_PHYST_ST_STOPSTATE_0			BIT(0)
152 
153 /* V4H PPI registers */
154 #define V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(n)		(0x21800 + ((n) * 2)) /* n = 0 - 9 */
155 #define V4H_PPI_STARTUP_RW_COMMON_STARTUP_1_1_REG	0x21822
156 #define V4H_PPI_CALIBCTRL_RW_COMMON_BG_0_REG		0x2184c
157 #define V4H_PPI_RW_LPDCOCAL_TIMEBASE_REG		0x21c02
158 #define V4H_PPI_RW_LPDCOCAL_NREF_REG			0x21c04
159 #define V4H_PPI_RW_LPDCOCAL_NREF_RANGE_REG		0x21c06
160 #define V4H_PPI_RW_LPDCOCAL_TWAIT_CONFIG_REG		0x21c0a
161 #define V4H_PPI_RW_LPDCOCAL_VT_CONFIG_REG		0x21c0c
162 #define V4H_PPI_RW_LPDCOCAL_COARSE_CFG_REG		0x21c10
163 #define V4H_PPI_RW_COMMON_CFG_REG			0x21c6c
164 #define V4H_PPI_RW_TERMCAL_CFG_0_REG			0x21c80
165 #define V4H_PPI_RW_OFFSETCAL_CFG_0_REG			0x21ca0
166 
167 /* V4H CORE registers */
168 #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(n)	(0x22040 + ((n) * 2)) /* n = 0 - 15 */
169 #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE1_CTRL_2_REG(n)	(0x22440 + ((n) * 2)) /* n = 0 - 15 */
170 #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE2_CTRL_2_REG(n)	(0x22840 + ((n) * 2)) /* n = 0 - 15 */
171 #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE3_CTRL_2_REG(n)	(0x22c40 + ((n) * 2)) /* n = 0 - 15 */
172 #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE4_CTRL_2_REG(n)	(0x23040 + ((n) * 2)) /* n = 0 - 15 */
173 #define V4H_CORE_DIG_IOCTRL_RW_AFE_CB_CTRL_2_REG(n)	(0x23840 + ((n) * 2)) /* n = 0 - 11 */
174 #define V4H_CORE_DIG_RW_COMMON_REG(n)			(0x23880 + ((n) * 2)) /* n = 0 - 15 */
175 #define V4H_CORE_DIG_ANACTRL_RW_COMMON_ANACTRL_REG(n)	(0x239e0 + ((n) * 2)) /* n = 0 - 3 */
176 #define V4H_CORE_DIG_CLANE_1_RW_CFG_0_REG		0x2a400
177 #define V4H_CORE_DIG_CLANE_1_RW_HS_TX_6_REG		0x2a60c
178 
179 /* V4H C-PHY */
180 #define V4H_CORE_DIG_RW_TRIO0_REG(n)			(0x22100 + ((n) * 2)) /* n = 0 - 3 */
181 #define V4H_CORE_DIG_RW_TRIO1_REG(n)			(0x22500 + ((n) * 2)) /* n = 0 - 3 */
182 #define V4H_CORE_DIG_RW_TRIO2_REG(n)			(0x22900 + ((n) * 2)) /* n = 0 - 3 */
183 #define V4H_CORE_DIG_CLANE_0_RW_LP_0_REG		0x2a080
184 #define V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(n)		(0x2a100 + ((n) * 2)) /* n = 0 - 6 */
185 #define V4H_CORE_DIG_CLANE_1_RW_LP_0_REG		0x2a480
186 #define V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(n)		(0x2a500 + ((n) * 2)) /* n = 0 - 6 */
187 #define V4H_CORE_DIG_CLANE_2_RW_LP_0_REG		0x2a880
188 #define V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(n)		(0x2a900 + ((n) * 2)) /* n = 0 - 6 */
189 
190 struct rcsi2_cphy_setting {
191 	u16 msps;
192 	u16 rx2;
193 	u16 trio0;
194 	u16 trio1;
195 	u16 trio2;
196 	u16 lane27;
197 	u16 lane29;
198 };
199 
200 static const struct rcsi2_cphy_setting cphy_setting_table_r8a779g0[] = {
201 	{ .msps =   80, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0134, .trio2 = 0x6a, .lane27 = 0x0000, .lane29 = 0x0a24 },
202 	{ .msps =  100, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x00f5, .trio2 = 0x55, .lane27 = 0x0000, .lane29 = 0x0a24 },
203 	{ .msps =  200, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0077, .trio2 = 0x2b, .lane27 = 0x0000, .lane29 = 0x0a44 },
204 	{ .msps =  300, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x004d, .trio2 = 0x1d, .lane27 = 0x0000, .lane29 = 0x0a44 },
205 	{ .msps =  400, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0038, .trio2 = 0x16, .lane27 = 0x0000, .lane29 = 0x0a64 },
206 	{ .msps =  500, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x002b, .trio2 = 0x12, .lane27 = 0x0000, .lane29 = 0x0a64 },
207 	{ .msps =  600, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0023, .trio2 = 0x0f, .lane27 = 0x0000, .lane29 = 0x0a64 },
208 	{ .msps =  700, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x001d, .trio2 = 0x0d, .lane27 = 0x0000, .lane29 = 0x0a84 },
209 	{ .msps =  800, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0018, .trio2 = 0x0c, .lane27 = 0x0000, .lane29 = 0x0a84 },
210 	{ .msps =  900, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0015, .trio2 = 0x0b, .lane27 = 0x0000, .lane29 = 0x0a84 },
211 	{ .msps = 1000, .rx2 = 0x3e, .trio0 = 0x024a, .trio1 = 0x0012, .trio2 = 0x0a, .lane27 = 0x0400, .lane29 = 0x0a84 },
212 	{ .msps = 1100, .rx2 = 0x44, .trio0 = 0x024a, .trio1 = 0x000f, .trio2 = 0x09, .lane27 = 0x0800, .lane29 = 0x0a84 },
213 	{ .msps = 1200, .rx2 = 0x4a, .trio0 = 0x024a, .trio1 = 0x000e, .trio2 = 0x08, .lane27 = 0x0c00, .lane29 = 0x0a84 },
214 	{ .msps = 1300, .rx2 = 0x51, .trio0 = 0x024a, .trio1 = 0x000c, .trio2 = 0x08, .lane27 = 0x0c00, .lane29 = 0x0aa4 },
215 	{ .msps = 1400, .rx2 = 0x57, .trio0 = 0x024a, .trio1 = 0x000b, .trio2 = 0x07, .lane27 = 0x1000, .lane29 = 0x0aa4 },
216 	{ .msps = 1500, .rx2 = 0x5d, .trio0 = 0x044a, .trio1 = 0x0009, .trio2 = 0x07, .lane27 = 0x1000, .lane29 = 0x0aa4 },
217 	{ .msps = 1600, .rx2 = 0x63, .trio0 = 0x044a, .trio1 = 0x0008, .trio2 = 0x07, .lane27 = 0x1400, .lane29 = 0x0aa4 },
218 	{ .msps = 1700, .rx2 = 0x6a, .trio0 = 0x044a, .trio1 = 0x0007, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
219 	{ .msps = 1800, .rx2 = 0x70, .trio0 = 0x044a, .trio1 = 0x0007, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
220 	{ .msps = 1900, .rx2 = 0x76, .trio0 = 0x044a, .trio1 = 0x0006, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
221 	{ .msps = 2000, .rx2 = 0x7c, .trio0 = 0x044a, .trio1 = 0x0005, .trio2 = 0x06, .lane27 = 0x1800, .lane29 = 0x0aa4 },
222 	{ .msps = 2100, .rx2 = 0x83, .trio0 = 0x044a, .trio1 = 0x0005, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
223 	{ .msps = 2200, .rx2 = 0x89, .trio0 = 0x064a, .trio1 = 0x0004, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
224 	{ .msps = 2300, .rx2 = 0x8f, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
225 	{ .msps = 2400, .rx2 = 0x95, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
226 	{ .msps = 2500, .rx2 = 0x9c, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0aa4 },
227 	{ .msps = 2600, .rx2 = 0xa2, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
228 	{ .msps = 2700, .rx2 = 0xa8, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
229 	{ .msps = 2800, .rx2 = 0xae, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
230 	{ .msps = 2900, .rx2 = 0xb5, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
231 	{ .msps = 3000, .rx2 = 0xbb, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
232 	{ .msps = 3100, .rx2 = 0xc1, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
233 	{ .msps = 3200, .rx2 = 0xc7, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
234 	{ .msps = 3300, .rx2 = 0xce, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
235 	{ .msps = 3400, .rx2 = 0xd4, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
236 	{ .msps = 3500, .rx2 = 0xda, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
237 	{ /* sentinel */ },
238 };
239 
240 struct phtw_value {
241 	u16 data;
242 	u16 code;
243 };
244 
245 struct rcsi2_mbps_reg {
246 	u16 mbps;
247 	u16 reg;
248 };
249 
250 static const struct rcsi2_mbps_reg phtw_mbps_v3u[] = {
251 	{ .mbps = 1500, .reg = 0xcc },
252 	{ .mbps = 1550, .reg = 0x1d },
253 	{ .mbps = 1600, .reg = 0x27 },
254 	{ .mbps = 1650, .reg = 0x30 },
255 	{ .mbps = 1700, .reg = 0x39 },
256 	{ .mbps = 1750, .reg = 0x42 },
257 	{ .mbps = 1800, .reg = 0x4b },
258 	{ .mbps = 1850, .reg = 0x55 },
259 	{ .mbps = 1900, .reg = 0x5e },
260 	{ .mbps = 1950, .reg = 0x67 },
261 	{ .mbps = 2000, .reg = 0x71 },
262 	{ .mbps = 2050, .reg = 0x79 },
263 	{ .mbps = 2100, .reg = 0x83 },
264 	{ .mbps = 2150, .reg = 0x8c },
265 	{ .mbps = 2200, .reg = 0x95 },
266 	{ .mbps = 2250, .reg = 0x9e },
267 	{ .mbps = 2300, .reg = 0xa7 },
268 	{ .mbps = 2350, .reg = 0xb0 },
269 	{ .mbps = 2400, .reg = 0xba },
270 	{ .mbps = 2450, .reg = 0xc3 },
271 	{ .mbps = 2500, .reg = 0xcc },
272 	{ /* sentinel */ },
273 };
274 
275 static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
276 	{ .mbps =   80, .reg = 0x86 },
277 	{ .mbps =   90, .reg = 0x86 },
278 	{ .mbps =  100, .reg = 0x87 },
279 	{ .mbps =  110, .reg = 0x87 },
280 	{ .mbps =  120, .reg = 0x88 },
281 	{ .mbps =  130, .reg = 0x88 },
282 	{ .mbps =  140, .reg = 0x89 },
283 	{ .mbps =  150, .reg = 0x89 },
284 	{ .mbps =  160, .reg = 0x8a },
285 	{ .mbps =  170, .reg = 0x8a },
286 	{ .mbps =  180, .reg = 0x8b },
287 	{ .mbps =  190, .reg = 0x8b },
288 	{ .mbps =  205, .reg = 0x8c },
289 	{ .mbps =  220, .reg = 0x8d },
290 	{ .mbps =  235, .reg = 0x8e },
291 	{ .mbps =  250, .reg = 0x8e },
292 	{ /* sentinel */ },
293 };
294 
295 static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
296 	{ .mbps =   80, .reg = 0x00 },
297 	{ .mbps =   90, .reg = 0x20 },
298 	{ .mbps =  100, .reg = 0x40 },
299 	{ .mbps =  110, .reg = 0x02 },
300 	{ .mbps =  130, .reg = 0x22 },
301 	{ .mbps =  140, .reg = 0x42 },
302 	{ .mbps =  150, .reg = 0x04 },
303 	{ .mbps =  170, .reg = 0x24 },
304 	{ .mbps =  180, .reg = 0x44 },
305 	{ .mbps =  200, .reg = 0x06 },
306 	{ .mbps =  220, .reg = 0x26 },
307 	{ .mbps =  240, .reg = 0x46 },
308 	{ .mbps =  250, .reg = 0x08 },
309 	{ .mbps =  270, .reg = 0x28 },
310 	{ .mbps =  300, .reg = 0x0a },
311 	{ .mbps =  330, .reg = 0x2a },
312 	{ .mbps =  360, .reg = 0x4a },
313 	{ .mbps =  400, .reg = 0x0c },
314 	{ .mbps =  450, .reg = 0x2c },
315 	{ .mbps =  500, .reg = 0x0e },
316 	{ .mbps =  550, .reg = 0x2e },
317 	{ .mbps =  600, .reg = 0x10 },
318 	{ .mbps =  650, .reg = 0x30 },
319 	{ .mbps =  700, .reg = 0x12 },
320 	{ .mbps =  750, .reg = 0x32 },
321 	{ .mbps =  800, .reg = 0x52 },
322 	{ .mbps =  850, .reg = 0x72 },
323 	{ .mbps =  900, .reg = 0x14 },
324 	{ .mbps =  950, .reg = 0x34 },
325 	{ .mbps = 1000, .reg = 0x54 },
326 	{ .mbps = 1050, .reg = 0x74 },
327 	{ .mbps = 1125, .reg = 0x16 },
328 	{ /* sentinel */ },
329 };
330 
331 /* PHY Test Interface Clear */
332 #define PHTC_REG			0x58
333 #define PHTC_TESTCLR			BIT(0)
334 
335 /* PHY Frequency Control */
336 #define PHYPLL_REG			0x68
337 #define PHYPLL_HSFREQRANGE(n)		((n) << 16)
338 
339 static const struct rcsi2_mbps_reg hsfreqrange_v3u[] = {
340 	{ .mbps =   80, .reg = 0x00 },
341 	{ .mbps =   90, .reg = 0x10 },
342 	{ .mbps =  100, .reg = 0x20 },
343 	{ .mbps =  110, .reg = 0x30 },
344 	{ .mbps =  120, .reg = 0x01 },
345 	{ .mbps =  130, .reg = 0x11 },
346 	{ .mbps =  140, .reg = 0x21 },
347 	{ .mbps =  150, .reg = 0x31 },
348 	{ .mbps =  160, .reg = 0x02 },
349 	{ .mbps =  170, .reg = 0x12 },
350 	{ .mbps =  180, .reg = 0x22 },
351 	{ .mbps =  190, .reg = 0x32 },
352 	{ .mbps =  205, .reg = 0x03 },
353 	{ .mbps =  220, .reg = 0x13 },
354 	{ .mbps =  235, .reg = 0x23 },
355 	{ .mbps =  250, .reg = 0x33 },
356 	{ .mbps =  275, .reg = 0x04 },
357 	{ .mbps =  300, .reg = 0x14 },
358 	{ .mbps =  325, .reg = 0x25 },
359 	{ .mbps =  350, .reg = 0x35 },
360 	{ .mbps =  400, .reg = 0x05 },
361 	{ .mbps =  450, .reg = 0x16 },
362 	{ .mbps =  500, .reg = 0x26 },
363 	{ .mbps =  550, .reg = 0x37 },
364 	{ .mbps =  600, .reg = 0x07 },
365 	{ .mbps =  650, .reg = 0x18 },
366 	{ .mbps =  700, .reg = 0x28 },
367 	{ .mbps =  750, .reg = 0x39 },
368 	{ .mbps =  800, .reg = 0x09 },
369 	{ .mbps =  850, .reg = 0x19 },
370 	{ .mbps =  900, .reg = 0x29 },
371 	{ .mbps =  950, .reg = 0x3a },
372 	{ .mbps = 1000, .reg = 0x0a },
373 	{ .mbps = 1050, .reg = 0x1a },
374 	{ .mbps = 1100, .reg = 0x2a },
375 	{ .mbps = 1150, .reg = 0x3b },
376 	{ .mbps = 1200, .reg = 0x0b },
377 	{ .mbps = 1250, .reg = 0x1b },
378 	{ .mbps = 1300, .reg = 0x2b },
379 	{ .mbps = 1350, .reg = 0x3c },
380 	{ .mbps = 1400, .reg = 0x0c },
381 	{ .mbps = 1450, .reg = 0x1c },
382 	{ .mbps = 1500, .reg = 0x2c },
383 	{ .mbps = 1550, .reg = 0x3d },
384 	{ .mbps = 1600, .reg = 0x0d },
385 	{ .mbps = 1650, .reg = 0x1d },
386 	{ .mbps = 1700, .reg = 0x2e },
387 	{ .mbps = 1750, .reg = 0x3e },
388 	{ .mbps = 1800, .reg = 0x0e },
389 	{ .mbps = 1850, .reg = 0x1e },
390 	{ .mbps = 1900, .reg = 0x2f },
391 	{ .mbps = 1950, .reg = 0x3f },
392 	{ .mbps = 2000, .reg = 0x0f },
393 	{ .mbps = 2050, .reg = 0x40 },
394 	{ .mbps = 2100, .reg = 0x41 },
395 	{ .mbps = 2150, .reg = 0x42 },
396 	{ .mbps = 2200, .reg = 0x43 },
397 	{ .mbps = 2300, .reg = 0x45 },
398 	{ .mbps = 2350, .reg = 0x46 },
399 	{ .mbps = 2400, .reg = 0x47 },
400 	{ .mbps = 2450, .reg = 0x48 },
401 	{ .mbps = 2500, .reg = 0x49 },
402 	{ /* sentinel */ },
403 };
404 
405 static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
406 	{ .mbps =   80, .reg = 0x00 },
407 	{ .mbps =   90, .reg = 0x10 },
408 	{ .mbps =  100, .reg = 0x20 },
409 	{ .mbps =  110, .reg = 0x30 },
410 	{ .mbps =  120, .reg = 0x01 },
411 	{ .mbps =  130, .reg = 0x11 },
412 	{ .mbps =  140, .reg = 0x21 },
413 	{ .mbps =  150, .reg = 0x31 },
414 	{ .mbps =  160, .reg = 0x02 },
415 	{ .mbps =  170, .reg = 0x12 },
416 	{ .mbps =  180, .reg = 0x22 },
417 	{ .mbps =  190, .reg = 0x32 },
418 	{ .mbps =  205, .reg = 0x03 },
419 	{ .mbps =  220, .reg = 0x13 },
420 	{ .mbps =  235, .reg = 0x23 },
421 	{ .mbps =  250, .reg = 0x33 },
422 	{ .mbps =  275, .reg = 0x04 },
423 	{ .mbps =  300, .reg = 0x14 },
424 	{ .mbps =  325, .reg = 0x25 },
425 	{ .mbps =  350, .reg = 0x35 },
426 	{ .mbps =  400, .reg = 0x05 },
427 	{ .mbps =  450, .reg = 0x16 },
428 	{ .mbps =  500, .reg = 0x26 },
429 	{ .mbps =  550, .reg = 0x37 },
430 	{ .mbps =  600, .reg = 0x07 },
431 	{ .mbps =  650, .reg = 0x18 },
432 	{ .mbps =  700, .reg = 0x28 },
433 	{ .mbps =  750, .reg = 0x39 },
434 	{ .mbps =  800, .reg = 0x09 },
435 	{ .mbps =  850, .reg = 0x19 },
436 	{ .mbps =  900, .reg = 0x29 },
437 	{ .mbps =  950, .reg = 0x3a },
438 	{ .mbps = 1000, .reg = 0x0a },
439 	{ .mbps = 1050, .reg = 0x1a },
440 	{ .mbps = 1100, .reg = 0x2a },
441 	{ .mbps = 1150, .reg = 0x3b },
442 	{ .mbps = 1200, .reg = 0x0b },
443 	{ .mbps = 1250, .reg = 0x1b },
444 	{ .mbps = 1300, .reg = 0x2b },
445 	{ .mbps = 1350, .reg = 0x3c },
446 	{ .mbps = 1400, .reg = 0x0c },
447 	{ .mbps = 1450, .reg = 0x1c },
448 	{ .mbps = 1500, .reg = 0x2c },
449 	{ /* sentinel */ },
450 };
451 
452 static const struct rcsi2_mbps_reg hsfreqrange_m3w[] = {
453 	{ .mbps =   80,	.reg = 0x00 },
454 	{ .mbps =   90,	.reg = 0x10 },
455 	{ .mbps =  100,	.reg = 0x20 },
456 	{ .mbps =  110,	.reg = 0x30 },
457 	{ .mbps =  120,	.reg = 0x01 },
458 	{ .mbps =  130,	.reg = 0x11 },
459 	{ .mbps =  140,	.reg = 0x21 },
460 	{ .mbps =  150,	.reg = 0x31 },
461 	{ .mbps =  160,	.reg = 0x02 },
462 	{ .mbps =  170,	.reg = 0x12 },
463 	{ .mbps =  180,	.reg = 0x22 },
464 	{ .mbps =  190,	.reg = 0x32 },
465 	{ .mbps =  205,	.reg = 0x03 },
466 	{ .mbps =  220,	.reg = 0x13 },
467 	{ .mbps =  235,	.reg = 0x23 },
468 	{ .mbps =  250,	.reg = 0x33 },
469 	{ .mbps =  275,	.reg = 0x04 },
470 	{ .mbps =  300,	.reg = 0x14 },
471 	{ .mbps =  325,	.reg = 0x05 },
472 	{ .mbps =  350,	.reg = 0x15 },
473 	{ .mbps =  400,	.reg = 0x25 },
474 	{ .mbps =  450,	.reg = 0x06 },
475 	{ .mbps =  500,	.reg = 0x16 },
476 	{ .mbps =  550,	.reg = 0x07 },
477 	{ .mbps =  600,	.reg = 0x17 },
478 	{ .mbps =  650,	.reg = 0x08 },
479 	{ .mbps =  700,	.reg = 0x18 },
480 	{ .mbps =  750,	.reg = 0x09 },
481 	{ .mbps =  800,	.reg = 0x19 },
482 	{ .mbps =  850,	.reg = 0x29 },
483 	{ .mbps =  900,	.reg = 0x39 },
484 	{ .mbps =  950,	.reg = 0x0a },
485 	{ .mbps = 1000,	.reg = 0x1a },
486 	{ .mbps = 1050,	.reg = 0x2a },
487 	{ .mbps = 1100,	.reg = 0x3a },
488 	{ .mbps = 1150,	.reg = 0x0b },
489 	{ .mbps = 1200,	.reg = 0x1b },
490 	{ .mbps = 1250,	.reg = 0x2b },
491 	{ .mbps = 1300,	.reg = 0x3b },
492 	{ .mbps = 1350,	.reg = 0x0c },
493 	{ .mbps = 1400,	.reg = 0x1c },
494 	{ .mbps = 1450,	.reg = 0x2c },
495 	{ .mbps = 1500,	.reg = 0x3c },
496 	{ /* sentinel */ },
497 };
498 
499 /* PHY ESC Error Monitor */
500 #define PHEERM_REG			0x74
501 
502 /* PHY Clock Lane Monitor */
503 #define PHCLM_REG			0x78
504 #define PHCLM_STOPSTATECKL		BIT(0)
505 
506 /* PHY Data Lane Monitor */
507 #define PHDLM_REG			0x7c
508 
509 /* CSI0CLK Frequency Configuration Preset Register */
510 #define CSI0CLKFCPR_REG			0x260
511 #define CSI0CLKFREQRANGE(n)		((n & 0x3f) << 16)
512 
513 struct rcar_csi2_format {
514 	u32 code;
515 	unsigned int datatype;
516 	unsigned int bpp;
517 };
518 
519 static const struct rcar_csi2_format rcar_csi2_formats[] = {
520 	{
521 		.code = MEDIA_BUS_FMT_RGB888_1X24,
522 		.datatype = MIPI_CSI2_DT_RGB888,
523 		.bpp = 24,
524 	}, {
525 		.code = MEDIA_BUS_FMT_UYVY8_1X16,
526 		.datatype = MIPI_CSI2_DT_YUV422_8B,
527 		.bpp = 16,
528 	}, {
529 		.code = MEDIA_BUS_FMT_YUYV8_1X16,
530 		.datatype = MIPI_CSI2_DT_YUV422_8B,
531 		.bpp = 16,
532 	}, {
533 		.code = MEDIA_BUS_FMT_UYVY8_2X8,
534 		.datatype = MIPI_CSI2_DT_YUV422_8B,
535 		.bpp = 16,
536 	}, {
537 		.code = MEDIA_BUS_FMT_YUYV10_2X10,
538 		.datatype = MIPI_CSI2_DT_YUV422_8B,
539 		.bpp = 20,
540 	}, {
541 		.code = MEDIA_BUS_FMT_Y10_1X10,
542 		.datatype = MIPI_CSI2_DT_RAW10,
543 		.bpp = 10,
544 	}, {
545 		.code = MEDIA_BUS_FMT_SBGGR8_1X8,
546 		.datatype = MIPI_CSI2_DT_RAW8,
547 		.bpp = 8,
548 	}, {
549 		.code = MEDIA_BUS_FMT_SGBRG8_1X8,
550 		.datatype = MIPI_CSI2_DT_RAW8,
551 		.bpp = 8,
552 	}, {
553 		.code = MEDIA_BUS_FMT_SGRBG8_1X8,
554 		.datatype = MIPI_CSI2_DT_RAW8,
555 		.bpp = 8,
556 	}, {
557 		.code = MEDIA_BUS_FMT_SRGGB8_1X8,
558 		.datatype = MIPI_CSI2_DT_RAW8,
559 		.bpp = 8,
560 	}, {
561 		.code = MEDIA_BUS_FMT_Y8_1X8,
562 		.datatype = MIPI_CSI2_DT_RAW8,
563 		.bpp = 8,
564 	},
565 };
566 
rcsi2_code_to_fmt(unsigned int code)567 static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
568 {
569 	unsigned int i;
570 
571 	for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
572 		if (rcar_csi2_formats[i].code == code)
573 			return &rcar_csi2_formats[i];
574 
575 	return NULL;
576 }
577 
578 enum rcar_csi2_pads {
579 	RCAR_CSI2_SINK,
580 	RCAR_CSI2_SOURCE_VC0,
581 	RCAR_CSI2_SOURCE_VC1,
582 	RCAR_CSI2_SOURCE_VC2,
583 	RCAR_CSI2_SOURCE_VC3,
584 	NR_OF_RCAR_CSI2_PAD,
585 };
586 
587 struct rcar_csi2_info {
588 	int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
589 	int (*phy_post_init)(struct rcar_csi2 *priv);
590 	int (*start_receiver)(struct rcar_csi2 *priv);
591 	void (*enter_standby)(struct rcar_csi2 *priv);
592 	const struct rcsi2_mbps_reg *hsfreqrange;
593 	unsigned int csi0clkfreqrange;
594 	unsigned int num_channels;
595 	bool clear_ulps;
596 	bool use_isp;
597 	bool support_dphy;
598 	bool support_cphy;
599 };
600 
601 struct rcar_csi2 {
602 	struct device *dev;
603 	void __iomem *base;
604 	const struct rcar_csi2_info *info;
605 	struct reset_control *rstc;
606 
607 	struct v4l2_subdev subdev;
608 	struct media_pad pads[NR_OF_RCAR_CSI2_PAD];
609 
610 	struct v4l2_async_notifier notifier;
611 	struct v4l2_subdev *remote;
612 	unsigned int remote_pad;
613 
614 	int channel_vc[4];
615 
616 	struct mutex lock; /* Protects mf and stream_count. */
617 	struct v4l2_mbus_framefmt mf;
618 	int stream_count;
619 
620 	bool cphy;
621 	unsigned short lanes;
622 	unsigned char lane_swap[4];
623 };
624 
sd_to_csi2(struct v4l2_subdev * sd)625 static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
626 {
627 	return container_of(sd, struct rcar_csi2, subdev);
628 }
629 
notifier_to_csi2(struct v4l2_async_notifier * n)630 static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
631 {
632 	return container_of(n, struct rcar_csi2, notifier);
633 }
634 
rcsi2_read(struct rcar_csi2 * priv,unsigned int reg)635 static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
636 {
637 	return ioread32(priv->base + reg);
638 }
639 
rcsi2_write(struct rcar_csi2 * priv,unsigned int reg,u32 data)640 static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
641 {
642 	iowrite32(data, priv->base + reg);
643 }
644 
rcsi2_write16(struct rcar_csi2 * priv,unsigned int reg,u16 data)645 static void rcsi2_write16(struct rcar_csi2 *priv, unsigned int reg, u16 data)
646 {
647 	iowrite16(data, priv->base + reg);
648 }
649 
rcsi2_enter_standby_gen3(struct rcar_csi2 * priv)650 static void rcsi2_enter_standby_gen3(struct rcar_csi2 *priv)
651 {
652 	rcsi2_write(priv, PHYCNT_REG, 0);
653 	rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
654 }
655 
rcsi2_enter_standby(struct rcar_csi2 * priv)656 static void rcsi2_enter_standby(struct rcar_csi2 *priv)
657 {
658 	if (priv->info->enter_standby)
659 		priv->info->enter_standby(priv);
660 
661 	reset_control_assert(priv->rstc);
662 	usleep_range(100, 150);
663 	pm_runtime_put(priv->dev);
664 }
665 
rcsi2_exit_standby(struct rcar_csi2 * priv)666 static int rcsi2_exit_standby(struct rcar_csi2 *priv)
667 {
668 	int ret;
669 
670 	ret = pm_runtime_resume_and_get(priv->dev);
671 	if (ret < 0)
672 		return ret;
673 
674 	reset_control_deassert(priv->rstc);
675 
676 	return 0;
677 }
678 
rcsi2_wait_phy_start(struct rcar_csi2 * priv,unsigned int lanes)679 static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
680 				unsigned int lanes)
681 {
682 	unsigned int timeout;
683 
684 	/* Wait for the clock and data lanes to enter LP-11 state. */
685 	for (timeout = 0; timeout <= 20; timeout++) {
686 		const u32 lane_mask = (1 << lanes) - 1;
687 
688 		if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL)  &&
689 		    (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
690 			return 0;
691 
692 		usleep_range(1000, 2000);
693 	}
694 
695 	dev_err(priv->dev, "Timeout waiting for LP-11 state\n");
696 
697 	return -ETIMEDOUT;
698 }
699 
rcsi2_set_phypll(struct rcar_csi2 * priv,unsigned int mbps)700 static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
701 {
702 	const struct rcsi2_mbps_reg *hsfreq;
703 	const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
704 
705 	if (mbps < priv->info->hsfreqrange->mbps)
706 		dev_warn(priv->dev, "%u Mbps less than min PHY speed %u Mbps",
707 			 mbps, priv->info->hsfreqrange->mbps);
708 
709 	for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
710 		if (hsfreq->mbps >= mbps)
711 			break;
712 		hsfreq_prev = hsfreq;
713 	}
714 
715 	if (!hsfreq->mbps) {
716 		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
717 		return -ERANGE;
718 	}
719 
720 	if (hsfreq_prev &&
721 	    ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
722 		hsfreq = hsfreq_prev;
723 
724 	rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));
725 
726 	return 0;
727 }
728 
rcsi2_calc_mbps(struct rcar_csi2 * priv,unsigned int bpp,unsigned int lanes)729 static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
730 			   unsigned int lanes)
731 {
732 	struct v4l2_subdev *source;
733 	struct v4l2_ctrl *ctrl;
734 	u64 mbps;
735 
736 	if (!priv->remote)
737 		return -ENODEV;
738 
739 	source = priv->remote;
740 
741 	/* Read the pixel rate control from remote. */
742 	ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
743 	if (!ctrl) {
744 		dev_err(priv->dev, "no pixel rate control in subdev %s\n",
745 			source->name);
746 		return -EINVAL;
747 	}
748 
749 	/*
750 	 * Calculate the phypll in mbps.
751 	 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
752 	 * bps = link_freq * 2
753 	 */
754 	mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
755 	do_div(mbps, lanes * 1000000);
756 
757 	/* Adjust for C-PHY, divide by 2.8. */
758 	if (priv->cphy)
759 		mbps = div_u64(mbps * 5, 14);
760 
761 	return mbps;
762 }
763 
rcsi2_get_active_lanes(struct rcar_csi2 * priv,unsigned int * lanes)764 static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
765 				  unsigned int *lanes)
766 {
767 	struct v4l2_mbus_config mbus_config = { 0 };
768 	int ret;
769 
770 	*lanes = priv->lanes;
771 
772 	ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
773 			       priv->remote_pad, &mbus_config);
774 	if (ret == -ENOIOCTLCMD) {
775 		dev_dbg(priv->dev, "No remote mbus configuration available\n");
776 		return 0;
777 	}
778 
779 	if (ret) {
780 		dev_err(priv->dev, "Failed to get remote mbus configuration\n");
781 		return ret;
782 	}
783 
784 	switch (mbus_config.type) {
785 	case V4L2_MBUS_CSI2_CPHY:
786 		if (!priv->cphy)
787 			return -EINVAL;
788 		break;
789 	case V4L2_MBUS_CSI2_DPHY:
790 		if (priv->cphy)
791 			return -EINVAL;
792 		break;
793 	default:
794 		dev_err(priv->dev, "Unsupported media bus type %u\n",
795 			mbus_config.type);
796 		return -EINVAL;
797 	}
798 
799 	if (mbus_config.bus.mipi_csi2.num_data_lanes > priv->lanes) {
800 		dev_err(priv->dev,
801 			"Unsupported mbus config: too many data lanes %u\n",
802 			mbus_config.bus.mipi_csi2.num_data_lanes);
803 		return -EINVAL;
804 	}
805 
806 	*lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
807 
808 	return 0;
809 }
810 
rcsi2_start_receiver_gen3(struct rcar_csi2 * priv)811 static int rcsi2_start_receiver_gen3(struct rcar_csi2 *priv)
812 {
813 	const struct rcar_csi2_format *format;
814 	u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
815 	unsigned int lanes;
816 	unsigned int i;
817 	int mbps, ret;
818 
819 	dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
820 		priv->mf.width, priv->mf.height,
821 		priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');
822 
823 	/* Code is validated in set_fmt. */
824 	format = rcsi2_code_to_fmt(priv->mf.code);
825 	if (!format)
826 		return -EINVAL;
827 
828 	/*
829 	 * Enable all supported CSI-2 channels with virtual channel and
830 	 * data type matching.
831 	 *
832 	 * NOTE: It's not possible to get individual datatype for each
833 	 *       source virtual channel. Once this is possible in V4L2
834 	 *       it should be used here.
835 	 */
836 	for (i = 0; i < priv->info->num_channels; i++) {
837 		u32 vcdt_part;
838 
839 		if (priv->channel_vc[i] < 0)
840 			continue;
841 
842 		vcdt_part = VCDT_SEL_VC(priv->channel_vc[i]) | VCDT_VCDTN_EN |
843 			VCDT_SEL_DTN_ON | VCDT_SEL_DT(format->datatype);
844 
845 		/* Store in correct reg and offset. */
846 		if (i < 2)
847 			vcdt |= vcdt_part << ((i % 2) * 16);
848 		else
849 			vcdt2 |= vcdt_part << ((i % 2) * 16);
850 	}
851 
852 	if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
853 		fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
854 			| FLD_FLD_EN;
855 
856 		if (priv->mf.height == 240)
857 			fld |= FLD_FLD_NUM(0);
858 		else
859 			fld |= FLD_FLD_NUM(1);
860 	}
861 
862 	/*
863 	 * Get the number of active data lanes inspecting the remote mbus
864 	 * configuration.
865 	 */
866 	ret = rcsi2_get_active_lanes(priv, &lanes);
867 	if (ret)
868 		return ret;
869 
870 	phycnt = PHYCNT_ENABLECLK;
871 	phycnt |= (1 << lanes) - 1;
872 
873 	mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
874 	if (mbps < 0)
875 		return mbps;
876 
877 	/* Enable interrupts. */
878 	rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
879 		    | INTEN_INT_ERRSOTSYNCHS);
880 
881 	/* Init */
882 	rcsi2_write(priv, TREF_REG, TREF_TREF);
883 	rcsi2_write(priv, PHTC_REG, 0);
884 
885 	/* Configure */
886 	if (!priv->info->use_isp) {
887 		rcsi2_write(priv, VCDT_REG, vcdt);
888 		if (vcdt2)
889 			rcsi2_write(priv, VCDT2_REG, vcdt2);
890 	}
891 
892 	/* Lanes are zero indexed. */
893 	rcsi2_write(priv, LSWAP_REG,
894 		    LSWAP_L0SEL(priv->lane_swap[0] - 1) |
895 		    LSWAP_L1SEL(priv->lane_swap[1] - 1) |
896 		    LSWAP_L2SEL(priv->lane_swap[2] - 1) |
897 		    LSWAP_L3SEL(priv->lane_swap[3] - 1));
898 
899 	/* Start */
900 	if (priv->info->init_phtw) {
901 		ret = priv->info->init_phtw(priv, mbps);
902 		if (ret)
903 			return ret;
904 	}
905 
906 	if (priv->info->hsfreqrange) {
907 		ret = rcsi2_set_phypll(priv, mbps);
908 		if (ret)
909 			return ret;
910 	}
911 
912 	if (priv->info->csi0clkfreqrange)
913 		rcsi2_write(priv, CSI0CLKFCPR_REG,
914 			    CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));
915 
916 	if (priv->info->use_isp)
917 		rcsi2_write(priv, PHYFRX_REG,
918 			    PHYFRX_FORCERX_MODE_3 | PHYFRX_FORCERX_MODE_2 |
919 			    PHYFRX_FORCERX_MODE_1 | PHYFRX_FORCERX_MODE_0);
920 
921 	rcsi2_write(priv, PHYCNT_REG, phycnt);
922 	rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
923 		    LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
924 	rcsi2_write(priv, FLD_REG, fld);
925 	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
926 	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);
927 
928 	ret = rcsi2_wait_phy_start(priv, lanes);
929 	if (ret)
930 		return ret;
931 
932 	if (priv->info->use_isp)
933 		rcsi2_write(priv, PHYFRX_REG, 0);
934 
935 	/* Run post PHY start initialization, if needed. */
936 	if (priv->info->phy_post_init) {
937 		ret = priv->info->phy_post_init(priv);
938 		if (ret)
939 			return ret;
940 	}
941 
942 	/* Clear Ultra Low Power interrupt. */
943 	if (priv->info->clear_ulps)
944 		rcsi2_write(priv, INTSTATE_REG,
945 			    INTSTATE_INT_ULPS_START |
946 			    INTSTATE_INT_ULPS_END);
947 	return 0;
948 }
949 
rcsi2_wait_phy_start_v4h(struct rcar_csi2 * priv,u32 match)950 static int rcsi2_wait_phy_start_v4h(struct rcar_csi2 *priv, u32 match)
951 {
952 	unsigned int timeout;
953 	u32 status;
954 
955 	for (timeout = 0; timeout <= 10; timeout++) {
956 		status = rcsi2_read(priv, V4H_ST_PHYST_REG);
957 		if ((status & match) == match)
958 			return 0;
959 
960 		usleep_range(1000, 2000);
961 	}
962 
963 	return -ETIMEDOUT;
964 }
965 
rcsi2_c_phy_setting_v4h(struct rcar_csi2 * priv,int msps)966 static int rcsi2_c_phy_setting_v4h(struct rcar_csi2 *priv, int msps)
967 {
968 	const struct rcsi2_cphy_setting *conf;
969 
970 	for (conf = cphy_setting_table_r8a779g0; conf->msps != 0; conf++) {
971 		if (conf->msps > msps)
972 			break;
973 	}
974 
975 	if (!conf->msps) {
976 		dev_err(priv->dev, "Unsupported PHY speed for msps setting (%u Msps)", msps);
977 		return -ERANGE;
978 	}
979 
980 	/* C-PHY specific */
981 	rcsi2_write16(priv, V4H_CORE_DIG_RW_COMMON_REG(7), 0x0155);
982 	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(7), 0x0068);
983 	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(8), 0x0010);
984 
985 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_LP_0_REG, 0x463c);
986 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_LP_0_REG, 0x463c);
987 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_LP_0_REG, 0x463c);
988 
989 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(0), 0x00d5);
990 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(0), 0x00d5);
991 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(0), 0x00d5);
992 
993 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(1), 0x0013);
994 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(1), 0x0013);
995 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(1), 0x0013);
996 
997 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(5), 0x0013);
998 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(5), 0x0013);
999 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(5), 0x0013);
1000 
1001 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(6), 0x000a);
1002 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(6), 0x000a);
1003 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(6), 0x000a);
1004 
1005 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(2), conf->rx2);
1006 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(2), conf->rx2);
1007 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(2), conf->rx2);
1008 
1009 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(2), 0x0001);
1010 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE1_CTRL_2_REG(2), 0);
1011 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE2_CTRL_2_REG(2), 0x0001);
1012 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE3_CTRL_2_REG(2), 0x0001);
1013 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE4_CTRL_2_REG(2), 0);
1014 
1015 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(0), conf->trio0);
1016 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(0), conf->trio0);
1017 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(0), conf->trio0);
1018 
1019 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(2), conf->trio2);
1020 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(2), conf->trio2);
1021 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(2), conf->trio2);
1022 
1023 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(1), conf->trio1);
1024 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(1), conf->trio1);
1025 	rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(1), conf->trio1);
1026 
1027 	/*
1028 	 * Configure pin-swap.
1029 	 * TODO: This registers is not documented yet, the values should depend
1030 	 * on the 'clock-lanes' and 'data-lanes' devicetree properties.
1031 	 */
1032 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_CFG_0_REG, 0xf5);
1033 	rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_TX_6_REG, 0x5000);
1034 
1035 	/* Leave Shutdown mode */
1036 	rcsi2_write(priv, V4H_DPHY_RSTZ_REG, BIT(0));
1037 	rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, BIT(0));
1038 
1039 	/* Wait for calibration */
1040 	if (rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_PHY_READY)) {
1041 		dev_err(priv->dev, "PHY calibration failed\n");
1042 		return -ETIMEDOUT;
1043 	}
1044 
1045 	/* C-PHY setting - analog programing*/
1046 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(9), conf->lane29);
1047 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(7), conf->lane27);
1048 
1049 	return 0;
1050 }
1051 
rcsi2_start_receiver_v4h(struct rcar_csi2 * priv)1052 static int rcsi2_start_receiver_v4h(struct rcar_csi2 *priv)
1053 {
1054 	const struct rcar_csi2_format *format;
1055 	unsigned int lanes;
1056 	int msps;
1057 	int ret;
1058 
1059 	/* Calculate parameters */
1060 	format = rcsi2_code_to_fmt(priv->mf.code);
1061 	if (!format)
1062 		return -EINVAL;
1063 
1064 	ret = rcsi2_get_active_lanes(priv, &lanes);
1065 	if (ret)
1066 		return ret;
1067 
1068 	msps = rcsi2_calc_mbps(priv, format->bpp, lanes);
1069 	if (msps < 0)
1070 		return msps;
1071 
1072 	/* Reset LINK and PHY*/
1073 	rcsi2_write(priv, V4H_CSI2_RESETN_REG, 0);
1074 	rcsi2_write(priv, V4H_DPHY_RSTZ_REG, 0);
1075 	rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, 0);
1076 
1077 	/* PHY static setting */
1078 	rcsi2_write(priv, V4H_PHY_EN_REG, BIT(0));
1079 	rcsi2_write(priv, V4H_FLDC_REG, 0);
1080 	rcsi2_write(priv, V4H_FLDD_REG, 0);
1081 	rcsi2_write(priv, V4H_IDIC_REG, 0);
1082 	rcsi2_write(priv, V4H_PHY_MODE_REG, BIT(0));
1083 	rcsi2_write(priv, V4H_N_LANES_REG, lanes - 1);
1084 
1085 	/* Reset CSI2 */
1086 	rcsi2_write(priv, V4H_CSI2_RESETN_REG, BIT(0));
1087 
1088 	/* Registers static setting through APB */
1089 	/* Common setting */
1090 	rcsi2_write16(priv, V4H_CORE_DIG_ANACTRL_RW_COMMON_ANACTRL_REG(0), 0x1bfd);
1091 	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_STARTUP_1_1_REG, 0x0233);
1092 	rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(6), 0x0027);
1093 	rcsi2_write16(priv, V4H_PPI_CALIBCTRL_RW_COMMON_BG_0_REG, 0x01f4);
1094 	rcsi2_write16(priv, V4H_PPI_RW_TERMCAL_CFG_0_REG, 0x0013);
1095 	rcsi2_write16(priv, V4H_PPI_RW_OFFSETCAL_CFG_0_REG, 0x0003);
1096 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_TIMEBASE_REG, 0x004f);
1097 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_NREF_REG, 0x0320);
1098 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_NREF_RANGE_REG, 0x000f);
1099 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_TWAIT_CONFIG_REG, 0xfe18);
1100 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_VT_CONFIG_REG, 0x0c3c);
1101 	rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_COARSE_CFG_REG, 0x0105);
1102 	rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_CB_CTRL_2_REG(6), 0x1000);
1103 	rcsi2_write16(priv, V4H_PPI_RW_COMMON_CFG_REG, 0x0003);
1104 
1105 	/* C-PHY settings */
1106 	ret = rcsi2_c_phy_setting_v4h(priv, msps);
1107 	if (ret)
1108 		return ret;
1109 
1110 	rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_STOPSTATE_0 |
1111 				 V4H_ST_PHYST_ST_STOPSTATE_1 |
1112 				 V4H_ST_PHYST_ST_STOPSTATE_2);
1113 
1114 	return 0;
1115 }
1116 
rcsi2_start(struct rcar_csi2 * priv)1117 static int rcsi2_start(struct rcar_csi2 *priv)
1118 {
1119 	int ret;
1120 
1121 	ret = rcsi2_exit_standby(priv);
1122 	if (ret < 0)
1123 		return ret;
1124 
1125 	ret = priv->info->start_receiver(priv);
1126 	if (ret) {
1127 		rcsi2_enter_standby(priv);
1128 		return ret;
1129 	}
1130 
1131 	ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
1132 	if (ret) {
1133 		rcsi2_enter_standby(priv);
1134 		return ret;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
rcsi2_stop(struct rcar_csi2 * priv)1140 static void rcsi2_stop(struct rcar_csi2 *priv)
1141 {
1142 	rcsi2_enter_standby(priv);
1143 	v4l2_subdev_call(priv->remote, video, s_stream, 0);
1144 }
1145 
rcsi2_s_stream(struct v4l2_subdev * sd,int enable)1146 static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
1147 {
1148 	struct rcar_csi2 *priv = sd_to_csi2(sd);
1149 	int ret = 0;
1150 
1151 	mutex_lock(&priv->lock);
1152 
1153 	if (!priv->remote) {
1154 		ret = -ENODEV;
1155 		goto out;
1156 	}
1157 
1158 	if (enable && priv->stream_count == 0) {
1159 		ret = rcsi2_start(priv);
1160 		if (ret)
1161 			goto out;
1162 	} else if (!enable && priv->stream_count == 1) {
1163 		rcsi2_stop(priv);
1164 	}
1165 
1166 	priv->stream_count += enable ? 1 : -1;
1167 out:
1168 	mutex_unlock(&priv->lock);
1169 
1170 	return ret;
1171 }
1172 
rcsi2_set_pad_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1173 static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
1174 				struct v4l2_subdev_state *sd_state,
1175 				struct v4l2_subdev_format *format)
1176 {
1177 	struct rcar_csi2 *priv = sd_to_csi2(sd);
1178 	struct v4l2_mbus_framefmt *framefmt;
1179 
1180 	mutex_lock(&priv->lock);
1181 
1182 	if (!rcsi2_code_to_fmt(format->format.code))
1183 		format->format.code = rcar_csi2_formats[0].code;
1184 
1185 	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1186 		priv->mf = format->format;
1187 	} else {
1188 		framefmt = v4l2_subdev_get_try_format(sd, sd_state, 0);
1189 		*framefmt = format->format;
1190 	}
1191 
1192 	mutex_unlock(&priv->lock);
1193 
1194 	return 0;
1195 }
1196 
rcsi2_get_pad_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1197 static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
1198 				struct v4l2_subdev_state *sd_state,
1199 				struct v4l2_subdev_format *format)
1200 {
1201 	struct rcar_csi2 *priv = sd_to_csi2(sd);
1202 
1203 	mutex_lock(&priv->lock);
1204 
1205 	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1206 		format->format = priv->mf;
1207 	else
1208 		format->format = *v4l2_subdev_get_try_format(sd, sd_state, 0);
1209 
1210 	mutex_unlock(&priv->lock);
1211 
1212 	return 0;
1213 }
1214 
1215 static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
1216 	.s_stream = rcsi2_s_stream,
1217 };
1218 
1219 static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
1220 	.set_fmt = rcsi2_set_pad_format,
1221 	.get_fmt = rcsi2_get_pad_format,
1222 };
1223 
1224 static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
1225 	.video	= &rcar_csi2_video_ops,
1226 	.pad	= &rcar_csi2_pad_ops,
1227 };
1228 
rcsi2_irq(int irq,void * data)1229 static irqreturn_t rcsi2_irq(int irq, void *data)
1230 {
1231 	struct rcar_csi2 *priv = data;
1232 	u32 status, err_status;
1233 
1234 	status = rcsi2_read(priv, INTSTATE_REG);
1235 	err_status = rcsi2_read(priv, INTERRSTATE_REG);
1236 
1237 	if (!status)
1238 		return IRQ_HANDLED;
1239 
1240 	rcsi2_write(priv, INTSTATE_REG, status);
1241 
1242 	if (!err_status)
1243 		return IRQ_HANDLED;
1244 
1245 	rcsi2_write(priv, INTERRSTATE_REG, err_status);
1246 
1247 	dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");
1248 
1249 	return IRQ_WAKE_THREAD;
1250 }
1251 
rcsi2_irq_thread(int irq,void * data)1252 static irqreturn_t rcsi2_irq_thread(int irq, void *data)
1253 {
1254 	struct rcar_csi2 *priv = data;
1255 
1256 	mutex_lock(&priv->lock);
1257 	rcsi2_stop(priv);
1258 	usleep_range(1000, 2000);
1259 	if (rcsi2_start(priv))
1260 		dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
1261 	mutex_unlock(&priv->lock);
1262 
1263 	return IRQ_HANDLED;
1264 }
1265 
1266 /* -----------------------------------------------------------------------------
1267  * Async handling and registration of subdevices and links.
1268  */
1269 
rcsi2_notify_bound(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_connection * asc)1270 static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
1271 			      struct v4l2_subdev *subdev,
1272 			      struct v4l2_async_connection *asc)
1273 {
1274 	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
1275 	int pad;
1276 
1277 	pad = media_entity_get_fwnode_pad(&subdev->entity, asc->match.fwnode,
1278 					  MEDIA_PAD_FL_SOURCE);
1279 	if (pad < 0) {
1280 		dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
1281 		return pad;
1282 	}
1283 
1284 	priv->remote = subdev;
1285 	priv->remote_pad = pad;
1286 
1287 	dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);
1288 
1289 	return media_create_pad_link(&subdev->entity, pad,
1290 				     &priv->subdev.entity, 0,
1291 				     MEDIA_LNK_FL_ENABLED |
1292 				     MEDIA_LNK_FL_IMMUTABLE);
1293 }
1294 
rcsi2_notify_unbind(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_connection * asc)1295 static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
1296 				struct v4l2_subdev *subdev,
1297 				struct v4l2_async_connection *asc)
1298 {
1299 	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
1300 
1301 	priv->remote = NULL;
1302 
1303 	dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
1304 }
1305 
1306 static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
1307 	.bound = rcsi2_notify_bound,
1308 	.unbind = rcsi2_notify_unbind,
1309 };
1310 
rcsi2_parse_v4l2(struct rcar_csi2 * priv,struct v4l2_fwnode_endpoint * vep)1311 static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
1312 			    struct v4l2_fwnode_endpoint *vep)
1313 {
1314 	unsigned int i;
1315 
1316 	/* Only port 0 endpoint 0 is valid. */
1317 	if (vep->base.port || vep->base.id)
1318 		return -ENOTCONN;
1319 
1320 	priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
1321 
1322 	switch (vep->bus_type) {
1323 	case V4L2_MBUS_CSI2_DPHY:
1324 		if (!priv->info->support_dphy) {
1325 			dev_err(priv->dev, "D-PHY not supported\n");
1326 			return -EINVAL;
1327 		}
1328 
1329 		if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
1330 			dev_err(priv->dev,
1331 				"Unsupported number of data-lanes for D-PHY: %u\n",
1332 				priv->lanes);
1333 			return -EINVAL;
1334 		}
1335 
1336 		priv->cphy = false;
1337 		break;
1338 	case V4L2_MBUS_CSI2_CPHY:
1339 		if (!priv->info->support_cphy) {
1340 			dev_err(priv->dev, "C-PHY not supported\n");
1341 			return -EINVAL;
1342 		}
1343 
1344 		if (priv->lanes != 3) {
1345 			dev_err(priv->dev,
1346 				"Unsupported number of data-lanes for C-PHY: %u\n",
1347 				priv->lanes);
1348 			return -EINVAL;
1349 		}
1350 
1351 		priv->cphy = true;
1352 		break;
1353 	default:
1354 		dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
1355 		return -EINVAL;
1356 	}
1357 
1358 	for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
1359 		priv->lane_swap[i] = i < priv->lanes ?
1360 			vep->bus.mipi_csi2.data_lanes[i] : i;
1361 
1362 		/* Check for valid lane number. */
1363 		if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
1364 			dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
1365 			return -EINVAL;
1366 		}
1367 	}
1368 
1369 	return 0;
1370 }
1371 
rcsi2_parse_dt(struct rcar_csi2 * priv)1372 static int rcsi2_parse_dt(struct rcar_csi2 *priv)
1373 {
1374 	struct v4l2_async_connection *asc;
1375 	struct fwnode_handle *fwnode;
1376 	struct fwnode_handle *ep;
1377 	struct v4l2_fwnode_endpoint v4l2_ep = {
1378 		.bus_type = V4L2_MBUS_UNKNOWN,
1379 	};
1380 	int ret;
1381 
1382 	ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0);
1383 	if (!ep) {
1384 		dev_err(priv->dev, "Not connected to subdevice\n");
1385 		return -EINVAL;
1386 	}
1387 
1388 	ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
1389 	if (ret) {
1390 		dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
1391 		fwnode_handle_put(ep);
1392 		return -EINVAL;
1393 	}
1394 
1395 	ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
1396 	if (ret) {
1397 		fwnode_handle_put(ep);
1398 		return ret;
1399 	}
1400 
1401 	fwnode = fwnode_graph_get_remote_endpoint(ep);
1402 	fwnode_handle_put(ep);
1403 
1404 	dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
1405 
1406 	v4l2_async_subdev_nf_init(&priv->notifier, &priv->subdev);
1407 	priv->notifier.ops = &rcar_csi2_notify_ops;
1408 
1409 	asc = v4l2_async_nf_add_fwnode(&priv->notifier, fwnode,
1410 				       struct v4l2_async_connection);
1411 	fwnode_handle_put(fwnode);
1412 	if (IS_ERR(asc))
1413 		return PTR_ERR(asc);
1414 
1415 	ret = v4l2_async_nf_register(&priv->notifier);
1416 	if (ret)
1417 		v4l2_async_nf_cleanup(&priv->notifier);
1418 
1419 	return ret;
1420 }
1421 
1422 /* -----------------------------------------------------------------------------
1423  * PHTW initialization sequences.
1424  *
1425  * NOTE: Magic values are from the datasheet and lack documentation.
1426  */
1427 
rcsi2_phtw_write(struct rcar_csi2 * priv,u16 data,u16 code)1428 static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
1429 {
1430 	unsigned int timeout;
1431 
1432 	rcsi2_write(priv, PHTW_REG,
1433 		    PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
1434 		    PHTW_CWEN | PHTW_TESTDIN_CODE(code));
1435 
1436 	/* Wait for DWEN and CWEN to be cleared by hardware. */
1437 	for (timeout = 0; timeout <= 20; timeout++) {
1438 		if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
1439 			return 0;
1440 
1441 		usleep_range(1000, 2000);
1442 	}
1443 
1444 	dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");
1445 
1446 	return -ETIMEDOUT;
1447 }
1448 
rcsi2_phtw_write_array(struct rcar_csi2 * priv,const struct phtw_value * values)1449 static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
1450 				  const struct phtw_value *values)
1451 {
1452 	const struct phtw_value *value;
1453 	int ret;
1454 
1455 	for (value = values; value->data || value->code; value++) {
1456 		ret = rcsi2_phtw_write(priv, value->data, value->code);
1457 		if (ret)
1458 			return ret;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
rcsi2_phtw_write_mbps(struct rcar_csi2 * priv,unsigned int mbps,const struct rcsi2_mbps_reg * values,u16 code)1464 static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
1465 				 const struct rcsi2_mbps_reg *values, u16 code)
1466 {
1467 	const struct rcsi2_mbps_reg *value;
1468 	const struct rcsi2_mbps_reg *prev_value = NULL;
1469 
1470 	for (value = values; value->mbps; value++) {
1471 		if (value->mbps >= mbps)
1472 			break;
1473 		prev_value = value;
1474 	}
1475 
1476 	if (prev_value &&
1477 	    ((mbps - prev_value->mbps) <= (value->mbps - mbps)))
1478 		value = prev_value;
1479 
1480 	if (!value->mbps) {
1481 		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
1482 		return -ERANGE;
1483 	}
1484 
1485 	return rcsi2_phtw_write(priv, value->reg, code);
1486 }
1487 
__rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 * priv,unsigned int mbps)1488 static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
1489 					unsigned int mbps)
1490 {
1491 	static const struct phtw_value step1[] = {
1492 		{ .data = 0xcc, .code = 0xe2 },
1493 		{ .data = 0x01, .code = 0xe3 },
1494 		{ .data = 0x11, .code = 0xe4 },
1495 		{ .data = 0x01, .code = 0xe5 },
1496 		{ .data = 0x10, .code = 0x04 },
1497 		{ /* sentinel */ },
1498 	};
1499 
1500 	static const struct phtw_value step2[] = {
1501 		{ .data = 0x38, .code = 0x08 },
1502 		{ .data = 0x01, .code = 0x00 },
1503 		{ .data = 0x4b, .code = 0xac },
1504 		{ .data = 0x03, .code = 0x00 },
1505 		{ .data = 0x80, .code = 0x07 },
1506 		{ /* sentinel */ },
1507 	};
1508 
1509 	int ret;
1510 
1511 	ret = rcsi2_phtw_write_array(priv, step1);
1512 	if (ret)
1513 		return ret;
1514 
1515 	if (mbps != 0 && mbps <= 250) {
1516 		ret = rcsi2_phtw_write(priv, 0x39, 0x05);
1517 		if (ret)
1518 			return ret;
1519 
1520 		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
1521 					    0xf1);
1522 		if (ret)
1523 			return ret;
1524 	}
1525 
1526 	return rcsi2_phtw_write_array(priv, step2);
1527 }
1528 
rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 * priv,unsigned int mbps)1529 static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
1530 {
1531 	return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
1532 }
1533 
rcsi2_init_phtw_h3es2(struct rcar_csi2 * priv,unsigned int mbps)1534 static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
1535 {
1536 	return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
1537 }
1538 
rcsi2_init_phtw_v3m_e3(struct rcar_csi2 * priv,unsigned int mbps)1539 static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1540 {
1541 	return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
1542 }
1543 
rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 * priv)1544 static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1545 {
1546 	static const struct phtw_value step1[] = {
1547 		{ .data = 0xee, .code = 0x34 },
1548 		{ .data = 0xee, .code = 0x44 },
1549 		{ .data = 0xee, .code = 0x54 },
1550 		{ .data = 0xee, .code = 0x84 },
1551 		{ .data = 0xee, .code = 0x94 },
1552 		{ /* sentinel */ },
1553 	};
1554 
1555 	return rcsi2_phtw_write_array(priv, step1);
1556 }
1557 
rcsi2_init_phtw_v3u(struct rcar_csi2 * priv,unsigned int mbps)1558 static int rcsi2_init_phtw_v3u(struct rcar_csi2 *priv,
1559 			       unsigned int mbps)
1560 {
1561 	/* In case of 1500Mbps or less */
1562 	static const struct phtw_value step1[] = {
1563 		{ .data = 0xcc, .code = 0xe2 },
1564 		{ /* sentinel */ },
1565 	};
1566 
1567 	static const struct phtw_value step2[] = {
1568 		{ .data = 0x01, .code = 0xe3 },
1569 		{ .data = 0x11, .code = 0xe4 },
1570 		{ .data = 0x01, .code = 0xe5 },
1571 		{ /* sentinel */ },
1572 	};
1573 
1574 	/* In case of 1500Mbps or less */
1575 	static const struct phtw_value step3[] = {
1576 		{ .data = 0x38, .code = 0x08 },
1577 		{ /* sentinel */ },
1578 	};
1579 
1580 	static const struct phtw_value step4[] = {
1581 		{ .data = 0x01, .code = 0x00 },
1582 		{ .data = 0x4b, .code = 0xac },
1583 		{ .data = 0x03, .code = 0x00 },
1584 		{ .data = 0x80, .code = 0x07 },
1585 		{ /* sentinel */ },
1586 	};
1587 
1588 	int ret;
1589 
1590 	if (mbps != 0 && mbps <= 1500)
1591 		ret = rcsi2_phtw_write_array(priv, step1);
1592 	else
1593 		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3u, 0xe2);
1594 	if (ret)
1595 		return ret;
1596 
1597 	ret = rcsi2_phtw_write_array(priv, step2);
1598 	if (ret)
1599 		return ret;
1600 
1601 	if (mbps != 0 && mbps <= 1500) {
1602 		ret = rcsi2_phtw_write_array(priv, step3);
1603 		if (ret)
1604 			return ret;
1605 	}
1606 
1607 	ret = rcsi2_phtw_write_array(priv, step4);
1608 	if (ret)
1609 		return ret;
1610 
1611 	return ret;
1612 }
1613 
1614 /* -----------------------------------------------------------------------------
1615  * Platform Device Driver.
1616  */
1617 
rcsi2_link_setup(struct media_entity * entity,const struct media_pad * local,const struct media_pad * remote,u32 flags)1618 static int rcsi2_link_setup(struct media_entity *entity,
1619 			    const struct media_pad *local,
1620 			    const struct media_pad *remote, u32 flags)
1621 {
1622 	struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1623 	struct rcar_csi2 *priv = sd_to_csi2(sd);
1624 	struct video_device *vdev;
1625 	int channel, vc;
1626 	u32 id;
1627 
1628 	if (!is_media_entity_v4l2_video_device(remote->entity)) {
1629 		dev_err(priv->dev, "Remote is not a video device\n");
1630 		return -EINVAL;
1631 	}
1632 
1633 	vdev = media_entity_to_video_device(remote->entity);
1634 
1635 	if (of_property_read_u32(vdev->dev_parent->of_node, "renesas,id", &id)) {
1636 		dev_err(priv->dev, "No renesas,id, can't configure routing\n");
1637 		return -EINVAL;
1638 	}
1639 
1640 	channel = id % 4;
1641 
1642 	if (flags & MEDIA_LNK_FL_ENABLED) {
1643 		if (media_pad_remote_pad_first(local)) {
1644 			dev_dbg(priv->dev,
1645 				"Each VC can only be routed to one output channel\n");
1646 			return -EINVAL;
1647 		}
1648 
1649 		vc = local->index - 1;
1650 
1651 		dev_dbg(priv->dev, "Route VC%d to VIN%u on output channel %d\n",
1652 			vc, id, channel);
1653 	} else {
1654 		vc = -1;
1655 	}
1656 
1657 	priv->channel_vc[channel] = vc;
1658 
1659 	return 0;
1660 }
1661 
1662 static const struct media_entity_operations rcar_csi2_entity_ops = {
1663 	.link_setup = rcsi2_link_setup,
1664 	.link_validate = v4l2_subdev_link_validate,
1665 };
1666 
rcsi2_probe_resources(struct rcar_csi2 * priv,struct platform_device * pdev)1667 static int rcsi2_probe_resources(struct rcar_csi2 *priv,
1668 				 struct platform_device *pdev)
1669 {
1670 	int irq, ret;
1671 
1672 	priv->base = devm_platform_ioremap_resource(pdev, 0);
1673 	if (IS_ERR(priv->base))
1674 		return PTR_ERR(priv->base);
1675 
1676 	irq = platform_get_irq(pdev, 0);
1677 	if (irq < 0)
1678 		return irq;
1679 
1680 	ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
1681 					rcsi2_irq_thread, IRQF_SHARED,
1682 					KBUILD_MODNAME, priv);
1683 	if (ret)
1684 		return ret;
1685 
1686 	priv->rstc = devm_reset_control_get(&pdev->dev, NULL);
1687 
1688 	return PTR_ERR_OR_ZERO(priv->rstc);
1689 }
1690 
1691 static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
1692 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1693 	.start_receiver = rcsi2_start_receiver_gen3,
1694 	.enter_standby = rcsi2_enter_standby_gen3,
1695 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1696 	.csi0clkfreqrange = 0x20,
1697 	.num_channels = 4,
1698 	.clear_ulps = true,
1699 	.support_dphy = true,
1700 };
1701 
1702 static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
1703 	.init_phtw = rcsi2_init_phtw_h3es2,
1704 	.start_receiver = rcsi2_start_receiver_gen3,
1705 	.enter_standby = rcsi2_enter_standby_gen3,
1706 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1707 	.csi0clkfreqrange = 0x20,
1708 	.num_channels = 4,
1709 	.clear_ulps = true,
1710 	.support_dphy = true,
1711 };
1712 
1713 static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
1714 	.start_receiver = rcsi2_start_receiver_gen3,
1715 	.enter_standby = rcsi2_enter_standby_gen3,
1716 	.hsfreqrange = hsfreqrange_m3w,
1717 	.num_channels = 4,
1718 	.support_dphy = true,
1719 };
1720 
1721 static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
1722 	.start_receiver = rcsi2_start_receiver_gen3,
1723 	.enter_standby = rcsi2_enter_standby_gen3,
1724 	.hsfreqrange = hsfreqrange_m3w,
1725 	.num_channels = 4,
1726 	.support_dphy = true,
1727 };
1728 
1729 static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
1730 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1731 	.start_receiver = rcsi2_start_receiver_gen3,
1732 	.enter_standby = rcsi2_enter_standby_gen3,
1733 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1734 	.csi0clkfreqrange = 0x20,
1735 	.num_channels = 4,
1736 	.clear_ulps = true,
1737 	.support_dphy = true,
1738 };
1739 
1740 static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
1741 	.init_phtw = rcsi2_init_phtw_v3m_e3,
1742 	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1743 	.start_receiver = rcsi2_start_receiver_gen3,
1744 	.enter_standby = rcsi2_enter_standby_gen3,
1745 	.num_channels = 4,
1746 	.support_dphy = true,
1747 };
1748 
1749 static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
1750 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1751 	.start_receiver = rcsi2_start_receiver_gen3,
1752 	.enter_standby = rcsi2_enter_standby_gen3,
1753 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1754 	.csi0clkfreqrange = 0x20,
1755 	.clear_ulps = true,
1756 	.support_dphy = true,
1757 };
1758 
1759 static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
1760 	.init_phtw = rcsi2_init_phtw_v3m_e3,
1761 	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1762 	.start_receiver = rcsi2_start_receiver_gen3,
1763 	.enter_standby = rcsi2_enter_standby_gen3,
1764 	.num_channels = 2,
1765 	.support_dphy = true,
1766 };
1767 
1768 static const struct rcar_csi2_info rcar_csi2_info_r8a779a0 = {
1769 	.init_phtw = rcsi2_init_phtw_v3u,
1770 	.start_receiver = rcsi2_start_receiver_gen3,
1771 	.enter_standby = rcsi2_enter_standby_gen3,
1772 	.hsfreqrange = hsfreqrange_v3u,
1773 	.csi0clkfreqrange = 0x20,
1774 	.clear_ulps = true,
1775 	.use_isp = true,
1776 	.support_dphy = true,
1777 };
1778 
1779 static const struct rcar_csi2_info rcar_csi2_info_r8a779g0 = {
1780 	.start_receiver = rcsi2_start_receiver_v4h,
1781 	.use_isp = true,
1782 	.support_cphy = true,
1783 };
1784 
1785 static const struct of_device_id rcar_csi2_of_table[] = {
1786 	{
1787 		.compatible = "renesas,r8a774a1-csi2",
1788 		.data = &rcar_csi2_info_r8a7796,
1789 	},
1790 	{
1791 		.compatible = "renesas,r8a774b1-csi2",
1792 		.data = &rcar_csi2_info_r8a77965,
1793 	},
1794 	{
1795 		.compatible = "renesas,r8a774c0-csi2",
1796 		.data = &rcar_csi2_info_r8a77990,
1797 	},
1798 	{
1799 		.compatible = "renesas,r8a774e1-csi2",
1800 		.data = &rcar_csi2_info_r8a7795,
1801 	},
1802 	{
1803 		.compatible = "renesas,r8a7795-csi2",
1804 		.data = &rcar_csi2_info_r8a7795,
1805 	},
1806 	{
1807 		.compatible = "renesas,r8a7796-csi2",
1808 		.data = &rcar_csi2_info_r8a7796,
1809 	},
1810 	{
1811 		.compatible = "renesas,r8a77961-csi2",
1812 		.data = &rcar_csi2_info_r8a77961,
1813 	},
1814 	{
1815 		.compatible = "renesas,r8a77965-csi2",
1816 		.data = &rcar_csi2_info_r8a77965,
1817 	},
1818 	{
1819 		.compatible = "renesas,r8a77970-csi2",
1820 		.data = &rcar_csi2_info_r8a77970,
1821 	},
1822 	{
1823 		.compatible = "renesas,r8a77980-csi2",
1824 		.data = &rcar_csi2_info_r8a77980,
1825 	},
1826 	{
1827 		.compatible = "renesas,r8a77990-csi2",
1828 		.data = &rcar_csi2_info_r8a77990,
1829 	},
1830 	{
1831 		.compatible = "renesas,r8a779a0-csi2",
1832 		.data = &rcar_csi2_info_r8a779a0,
1833 	},
1834 	{
1835 		.compatible = "renesas,r8a779g0-csi2",
1836 		.data = &rcar_csi2_info_r8a779g0,
1837 	},
1838 	{ /* sentinel */ },
1839 };
1840 MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);
1841 
1842 static const struct soc_device_attribute r8a7795[] = {
1843 	{
1844 		.soc_id = "r8a7795", .revision = "ES2.*",
1845 		.data = &rcar_csi2_info_r8a7795es2,
1846 	},
1847 	{ /* sentinel */ }
1848 };
1849 
rcsi2_probe(struct platform_device * pdev)1850 static int rcsi2_probe(struct platform_device *pdev)
1851 {
1852 	const struct soc_device_attribute *attr;
1853 	struct rcar_csi2 *priv;
1854 	unsigned int i, num_pads;
1855 	int ret;
1856 
1857 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1858 	if (!priv)
1859 		return -ENOMEM;
1860 
1861 	priv->info = of_device_get_match_data(&pdev->dev);
1862 
1863 	/*
1864 	 * The different ES versions of r8a7795 (H3) behave differently but
1865 	 * share the same compatible string.
1866 	 */
1867 	attr = soc_device_match(r8a7795);
1868 	if (attr)
1869 		priv->info = attr->data;
1870 
1871 	priv->dev = &pdev->dev;
1872 
1873 	mutex_init(&priv->lock);
1874 	priv->stream_count = 0;
1875 
1876 	ret = rcsi2_probe_resources(priv, pdev);
1877 	if (ret) {
1878 		dev_err(priv->dev, "Failed to get resources\n");
1879 		goto error_mutex;
1880 	}
1881 
1882 	platform_set_drvdata(pdev, priv);
1883 
1884 	ret = rcsi2_parse_dt(priv);
1885 	if (ret)
1886 		goto error_mutex;
1887 
1888 	priv->subdev.owner = THIS_MODULE;
1889 	priv->subdev.dev = &pdev->dev;
1890 	v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
1891 	v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
1892 	snprintf(priv->subdev.name, V4L2_SUBDEV_NAME_SIZE, "%s %s",
1893 		 KBUILD_MODNAME, dev_name(&pdev->dev));
1894 	priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
1895 
1896 	priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1897 	priv->subdev.entity.ops = &rcar_csi2_entity_ops;
1898 
1899 	num_pads = priv->info->use_isp ? 2 : NR_OF_RCAR_CSI2_PAD;
1900 
1901 	priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1902 	for (i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++)
1903 		priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;
1904 
1905 	ret = media_entity_pads_init(&priv->subdev.entity, num_pads,
1906 				     priv->pads);
1907 	if (ret)
1908 		goto error_async;
1909 
1910 	for (i = 0; i < ARRAY_SIZE(priv->channel_vc); i++)
1911 		priv->channel_vc[i] = -1;
1912 
1913 	pm_runtime_enable(&pdev->dev);
1914 
1915 	ret = v4l2_async_register_subdev(&priv->subdev);
1916 	if (ret < 0)
1917 		goto error_pm_runtime;
1918 
1919 	dev_info(priv->dev, "%d lanes found\n", priv->lanes);
1920 
1921 	return 0;
1922 
1923 error_pm_runtime:
1924 	pm_runtime_disable(&pdev->dev);
1925 error_async:
1926 	v4l2_async_nf_unregister(&priv->notifier);
1927 	v4l2_async_nf_cleanup(&priv->notifier);
1928 error_mutex:
1929 	mutex_destroy(&priv->lock);
1930 
1931 	return ret;
1932 }
1933 
rcsi2_remove(struct platform_device * pdev)1934 static void rcsi2_remove(struct platform_device *pdev)
1935 {
1936 	struct rcar_csi2 *priv = platform_get_drvdata(pdev);
1937 
1938 	v4l2_async_nf_unregister(&priv->notifier);
1939 	v4l2_async_nf_cleanup(&priv->notifier);
1940 	v4l2_async_unregister_subdev(&priv->subdev);
1941 	v4l2_subdev_cleanup(&priv->subdev);
1942 
1943 	pm_runtime_disable(&pdev->dev);
1944 
1945 	mutex_destroy(&priv->lock);
1946 }
1947 
1948 static struct platform_driver rcar_csi2_pdrv = {
1949 	.remove_new = rcsi2_remove,
1950 	.probe	= rcsi2_probe,
1951 	.driver	= {
1952 		.name	= "rcar-csi2",
1953 		.suppress_bind_attrs = true,
1954 		.of_match_table	= rcar_csi2_of_table,
1955 	},
1956 };
1957 
1958 module_platform_driver(rcar_csi2_pdrv);
1959 
1960 MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
1961 MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
1962 MODULE_LICENSE("GPL");
1963