1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Per core/cpu state
4 *
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/hardirq.h>
21 #include <asm/intel-family.h>
22 #include <asm/intel_pt.h>
23 #include <asm/apic.h>
24 #include <asm/cpu_device_id.h>
25
26 #include "../perf_event.h"
27
28 /*
29 * Intel PerfMon, used on Core and later.
30 */
31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 {
33 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
34 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
35 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
36 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
37 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
38 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
39 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
40 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
41 };
42
43 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 {
45 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
46 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
47 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
48 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
49 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
50 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51 EVENT_CONSTRAINT_END
52 };
53
54 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 {
56 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
57 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
58 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
59 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
60 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
61 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
62 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
63 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
64 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
65 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
66 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
67 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
68 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69 EVENT_CONSTRAINT_END
70 };
71
72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 {
74 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
75 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
76 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
77 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
78 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
79 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
80 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
81 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
82 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
83 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
84 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85 EVENT_CONSTRAINT_END
86 };
87
88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 {
90 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
91 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
92 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93 EVENT_EXTRA_END
94 };
95
96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 {
98 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
99 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
100 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
101 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
102 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
103 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
104 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105 EVENT_CONSTRAINT_END
106 };
107
108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 {
110 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
111 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
112 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
113 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
114 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
115 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
117 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
118 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
119 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
120 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
121 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122
123 /*
124 * When HT is off these events can only run on the bottom 4 counters
125 * When HT is on, they are impacted by the HT bug and require EXCL access
126 */
127 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
128 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
129 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
130 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131
132 EVENT_CONSTRAINT_END
133 };
134
135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 {
137 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
138 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
139 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
140 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
141 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
142 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
143 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
144 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
145 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
147 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
149 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
150
151 /*
152 * When HT is off these events can only run on the bottom 4 counters
153 * When HT is on, they are impacted by the HT bug and require EXCL access
154 */
155 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
156 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
157 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
158 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159
160 EVENT_CONSTRAINT_END
161 };
162
163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 {
165 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
166 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
167 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
168 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169 EVENT_EXTRA_END
170 };
171
172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 {
174 EVENT_CONSTRAINT_END
175 };
176
177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 {
179 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
180 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
181 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182 EVENT_CONSTRAINT_END
183 };
184
185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
186 {
187 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
188 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
189 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
190 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
191 FIXED_EVENT_CONSTRAINT(0x0500, 4),
192 FIXED_EVENT_CONSTRAINT(0x0600, 5),
193 FIXED_EVENT_CONSTRAINT(0x0700, 6),
194 FIXED_EVENT_CONSTRAINT(0x0800, 7),
195 FIXED_EVENT_CONSTRAINT(0x0900, 8),
196 FIXED_EVENT_CONSTRAINT(0x0a00, 9),
197 FIXED_EVENT_CONSTRAINT(0x0b00, 10),
198 FIXED_EVENT_CONSTRAINT(0x0c00, 11),
199 FIXED_EVENT_CONSTRAINT(0x0d00, 12),
200 FIXED_EVENT_CONSTRAINT(0x0e00, 13),
201 FIXED_EVENT_CONSTRAINT(0x0f00, 14),
202 FIXED_EVENT_CONSTRAINT(0x1000, 15),
203 EVENT_CONSTRAINT_END
204 };
205
206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
207 {
208 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
211 EVENT_CONSTRAINT_END
212 };
213
214 static struct event_constraint intel_skl_event_constraints[] = {
215 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
216 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
217 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
218 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
219
220 /*
221 * when HT is off, these can only run on the bottom 4 counters
222 */
223 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
224 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
225 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
226 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
227 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
228
229 EVENT_CONSTRAINT_END
230 };
231
232 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
234 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
235 EVENT_EXTRA_END
236 };
237
238 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
239 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
240 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
241 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
242 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
243 EVENT_EXTRA_END
244 };
245
246 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
247 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
248 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
249 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
250 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
251 EVENT_EXTRA_END
252 };
253
254 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
255 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
256 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
257 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
258 /*
259 * Note the low 8 bits eventsel code is not a continuous field, containing
260 * some #GPing bits. These are masked out.
261 */
262 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
263 EVENT_EXTRA_END
264 };
265
266 static struct event_constraint intel_icl_event_constraints[] = {
267 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
268 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */
269 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
270 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
271 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
272 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
273 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
274 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
275 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
276 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
277 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
278 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
279 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
280 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
281 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
282 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
283 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
284 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
285 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
286 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
287 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
288 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
289 INTEL_EVENT_CONSTRAINT(0xef, 0xf),
290 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
291 EVENT_CONSTRAINT_END
292 };
293
294 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
295 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
296 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
297 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
298 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
299 EVENT_EXTRA_END
300 };
301
302 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
303 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
304 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
305 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
306 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
307 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
308 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
309 EVENT_EXTRA_END
310 };
311
312 static struct event_constraint intel_spr_event_constraints[] = {
313 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
314 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
315 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
316 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
317 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
318 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
319 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
320 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
321 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
322 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
323 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
324 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
325 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
326
327 INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
328 INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
329 /*
330 * Generally event codes < 0x90 are restricted to counters 0-3.
331 * The 0x2E and 0x3C are exception, which has no restriction.
332 */
333 INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
334
335 INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
336 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
337 INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
338 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
339 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
340 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
341 INTEL_EVENT_CONSTRAINT(0xce, 0x1),
342 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
343 /*
344 * Generally event codes >= 0x90 are likely to have no restrictions.
345 * The exception are defined as above.
346 */
347 INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
348
349 EVENT_CONSTRAINT_END
350 };
351
352 static struct extra_reg intel_gnr_extra_regs[] __read_mostly = {
353 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
354 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
355 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
356 INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
357 INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
358 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
359 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
360 EVENT_EXTRA_END
361 };
362
363 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
364 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
365 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
366
367 static struct attribute *nhm_mem_events_attrs[] = {
368 EVENT_PTR(mem_ld_nhm),
369 NULL,
370 };
371
372 /*
373 * topdown events for Intel Core CPUs.
374 *
375 * The events are all in slots, which is a free slot in a 4 wide
376 * pipeline. Some events are already reported in slots, for cycle
377 * events we multiply by the pipeline width (4).
378 *
379 * With Hyper Threading on, topdown metrics are either summed or averaged
380 * between the threads of a core: (count_t0 + count_t1).
381 *
382 * For the average case the metric is always scaled to pipeline width,
383 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
384 */
385
386 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
387 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
388 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
389 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
390 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
391 "event=0xe,umask=0x1"); /* uops_issued.any */
392 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
393 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
394 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
395 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
396 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
397 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
398 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
399 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
400 "4", "2");
401
402 EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
403 EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
404 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
405 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
406 EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
407 EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
408 EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
409 EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
410 EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
411
412 static struct attribute *snb_events_attrs[] = {
413 EVENT_PTR(td_slots_issued),
414 EVENT_PTR(td_slots_retired),
415 EVENT_PTR(td_fetch_bubbles),
416 EVENT_PTR(td_total_slots),
417 EVENT_PTR(td_total_slots_scale),
418 EVENT_PTR(td_recovery_bubbles),
419 EVENT_PTR(td_recovery_bubbles_scale),
420 NULL,
421 };
422
423 static struct attribute *snb_mem_events_attrs[] = {
424 EVENT_PTR(mem_ld_snb),
425 EVENT_PTR(mem_st_snb),
426 NULL,
427 };
428
429 static struct event_constraint intel_hsw_event_constraints[] = {
430 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
431 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
432 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
433 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
434 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
435 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
436 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
437 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
438 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
439 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
440 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
441 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
442
443 /*
444 * When HT is off these events can only run on the bottom 4 counters
445 * When HT is on, they are impacted by the HT bug and require EXCL access
446 */
447 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
448 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
449 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
450 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
451
452 EVENT_CONSTRAINT_END
453 };
454
455 static struct event_constraint intel_bdw_event_constraints[] = {
456 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
457 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
458 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
459 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
460 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
461 /*
462 * when HT is off, these can only run on the bottom 4 counters
463 */
464 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
465 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
466 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
467 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
468 EVENT_CONSTRAINT_END
469 };
470
intel_pmu_event_map(int hw_event)471 static u64 intel_pmu_event_map(int hw_event)
472 {
473 return intel_perfmon_event_map[hw_event];
474 }
475
476 static __initconst const u64 spr_hw_cache_event_ids
477 [PERF_COUNT_HW_CACHE_MAX]
478 [PERF_COUNT_HW_CACHE_OP_MAX]
479 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
480 {
481 [ C(L1D ) ] = {
482 [ C(OP_READ) ] = {
483 [ C(RESULT_ACCESS) ] = 0x81d0,
484 [ C(RESULT_MISS) ] = 0xe124,
485 },
486 [ C(OP_WRITE) ] = {
487 [ C(RESULT_ACCESS) ] = 0x82d0,
488 },
489 },
490 [ C(L1I ) ] = {
491 [ C(OP_READ) ] = {
492 [ C(RESULT_MISS) ] = 0xe424,
493 },
494 [ C(OP_WRITE) ] = {
495 [ C(RESULT_ACCESS) ] = -1,
496 [ C(RESULT_MISS) ] = -1,
497 },
498 },
499 [ C(LL ) ] = {
500 [ C(OP_READ) ] = {
501 [ C(RESULT_ACCESS) ] = 0x12a,
502 [ C(RESULT_MISS) ] = 0x12a,
503 },
504 [ C(OP_WRITE) ] = {
505 [ C(RESULT_ACCESS) ] = 0x12a,
506 [ C(RESULT_MISS) ] = 0x12a,
507 },
508 },
509 [ C(DTLB) ] = {
510 [ C(OP_READ) ] = {
511 [ C(RESULT_ACCESS) ] = 0x81d0,
512 [ C(RESULT_MISS) ] = 0xe12,
513 },
514 [ C(OP_WRITE) ] = {
515 [ C(RESULT_ACCESS) ] = 0x82d0,
516 [ C(RESULT_MISS) ] = 0xe13,
517 },
518 },
519 [ C(ITLB) ] = {
520 [ C(OP_READ) ] = {
521 [ C(RESULT_ACCESS) ] = -1,
522 [ C(RESULT_MISS) ] = 0xe11,
523 },
524 [ C(OP_WRITE) ] = {
525 [ C(RESULT_ACCESS) ] = -1,
526 [ C(RESULT_MISS) ] = -1,
527 },
528 [ C(OP_PREFETCH) ] = {
529 [ C(RESULT_ACCESS) ] = -1,
530 [ C(RESULT_MISS) ] = -1,
531 },
532 },
533 [ C(BPU ) ] = {
534 [ C(OP_READ) ] = {
535 [ C(RESULT_ACCESS) ] = 0x4c4,
536 [ C(RESULT_MISS) ] = 0x4c5,
537 },
538 [ C(OP_WRITE) ] = {
539 [ C(RESULT_ACCESS) ] = -1,
540 [ C(RESULT_MISS) ] = -1,
541 },
542 [ C(OP_PREFETCH) ] = {
543 [ C(RESULT_ACCESS) ] = -1,
544 [ C(RESULT_MISS) ] = -1,
545 },
546 },
547 [ C(NODE) ] = {
548 [ C(OP_READ) ] = {
549 [ C(RESULT_ACCESS) ] = 0x12a,
550 [ C(RESULT_MISS) ] = 0x12a,
551 },
552 },
553 };
554
555 static __initconst const u64 spr_hw_cache_extra_regs
556 [PERF_COUNT_HW_CACHE_MAX]
557 [PERF_COUNT_HW_CACHE_OP_MAX]
558 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
559 {
560 [ C(LL ) ] = {
561 [ C(OP_READ) ] = {
562 [ C(RESULT_ACCESS) ] = 0x10001,
563 [ C(RESULT_MISS) ] = 0x3fbfc00001,
564 },
565 [ C(OP_WRITE) ] = {
566 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
567 [ C(RESULT_MISS) ] = 0x3f3fc00002,
568 },
569 },
570 [ C(NODE) ] = {
571 [ C(OP_READ) ] = {
572 [ C(RESULT_ACCESS) ] = 0x10c000001,
573 [ C(RESULT_MISS) ] = 0x3fb3000001,
574 },
575 },
576 };
577
578 /*
579 * Notes on the events:
580 * - data reads do not include code reads (comparable to earlier tables)
581 * - data counts include speculative execution (except L1 write, dtlb, bpu)
582 * - remote node access includes remote memory, remote cache, remote mmio.
583 * - prefetches are not included in the counts.
584 * - icache miss does not include decoded icache
585 */
586
587 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
588 #define SKL_DEMAND_RFO BIT_ULL(1)
589 #define SKL_ANY_RESPONSE BIT_ULL(16)
590 #define SKL_SUPPLIER_NONE BIT_ULL(17)
591 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
592 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
593 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
594 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
595 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
596 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
597 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
598 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
599 #define SKL_SPL_HIT BIT_ULL(30)
600 #define SKL_SNOOP_NONE BIT_ULL(31)
601 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
602 #define SKL_SNOOP_MISS BIT_ULL(33)
603 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
604 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
605 #define SKL_SNOOP_HITM BIT_ULL(36)
606 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
607 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
608 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
609 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
610 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
611 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
612 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
613 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
614 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
615 SKL_SNOOP_HITM|SKL_SPL_HIT)
616 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
617 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
618 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
619 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
620 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
621
622 static __initconst const u64 skl_hw_cache_event_ids
623 [PERF_COUNT_HW_CACHE_MAX]
624 [PERF_COUNT_HW_CACHE_OP_MAX]
625 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
626 {
627 [ C(L1D ) ] = {
628 [ C(OP_READ) ] = {
629 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
630 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
631 },
632 [ C(OP_WRITE) ] = {
633 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
634 [ C(RESULT_MISS) ] = 0x0,
635 },
636 [ C(OP_PREFETCH) ] = {
637 [ C(RESULT_ACCESS) ] = 0x0,
638 [ C(RESULT_MISS) ] = 0x0,
639 },
640 },
641 [ C(L1I ) ] = {
642 [ C(OP_READ) ] = {
643 [ C(RESULT_ACCESS) ] = 0x0,
644 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
645 },
646 [ C(OP_WRITE) ] = {
647 [ C(RESULT_ACCESS) ] = -1,
648 [ C(RESULT_MISS) ] = -1,
649 },
650 [ C(OP_PREFETCH) ] = {
651 [ C(RESULT_ACCESS) ] = 0x0,
652 [ C(RESULT_MISS) ] = 0x0,
653 },
654 },
655 [ C(LL ) ] = {
656 [ C(OP_READ) ] = {
657 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
658 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
659 },
660 [ C(OP_WRITE) ] = {
661 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
662 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
663 },
664 [ C(OP_PREFETCH) ] = {
665 [ C(RESULT_ACCESS) ] = 0x0,
666 [ C(RESULT_MISS) ] = 0x0,
667 },
668 },
669 [ C(DTLB) ] = {
670 [ C(OP_READ) ] = {
671 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
672 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
673 },
674 [ C(OP_WRITE) ] = {
675 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
676 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
677 },
678 [ C(OP_PREFETCH) ] = {
679 [ C(RESULT_ACCESS) ] = 0x0,
680 [ C(RESULT_MISS) ] = 0x0,
681 },
682 },
683 [ C(ITLB) ] = {
684 [ C(OP_READ) ] = {
685 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
686 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
687 },
688 [ C(OP_WRITE) ] = {
689 [ C(RESULT_ACCESS) ] = -1,
690 [ C(RESULT_MISS) ] = -1,
691 },
692 [ C(OP_PREFETCH) ] = {
693 [ C(RESULT_ACCESS) ] = -1,
694 [ C(RESULT_MISS) ] = -1,
695 },
696 },
697 [ C(BPU ) ] = {
698 [ C(OP_READ) ] = {
699 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
700 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
701 },
702 [ C(OP_WRITE) ] = {
703 [ C(RESULT_ACCESS) ] = -1,
704 [ C(RESULT_MISS) ] = -1,
705 },
706 [ C(OP_PREFETCH) ] = {
707 [ C(RESULT_ACCESS) ] = -1,
708 [ C(RESULT_MISS) ] = -1,
709 },
710 },
711 [ C(NODE) ] = {
712 [ C(OP_READ) ] = {
713 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
714 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
715 },
716 [ C(OP_WRITE) ] = {
717 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
718 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
719 },
720 [ C(OP_PREFETCH) ] = {
721 [ C(RESULT_ACCESS) ] = 0x0,
722 [ C(RESULT_MISS) ] = 0x0,
723 },
724 },
725 };
726
727 static __initconst const u64 skl_hw_cache_extra_regs
728 [PERF_COUNT_HW_CACHE_MAX]
729 [PERF_COUNT_HW_CACHE_OP_MAX]
730 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
731 {
732 [ C(LL ) ] = {
733 [ C(OP_READ) ] = {
734 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
735 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
736 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
737 SKL_L3_MISS|SKL_ANY_SNOOP|
738 SKL_SUPPLIER_NONE,
739 },
740 [ C(OP_WRITE) ] = {
741 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
742 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
743 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
744 SKL_L3_MISS|SKL_ANY_SNOOP|
745 SKL_SUPPLIER_NONE,
746 },
747 [ C(OP_PREFETCH) ] = {
748 [ C(RESULT_ACCESS) ] = 0x0,
749 [ C(RESULT_MISS) ] = 0x0,
750 },
751 },
752 [ C(NODE) ] = {
753 [ C(OP_READ) ] = {
754 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
755 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
756 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
757 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
758 },
759 [ C(OP_WRITE) ] = {
760 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
761 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
762 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
763 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
764 },
765 [ C(OP_PREFETCH) ] = {
766 [ C(RESULT_ACCESS) ] = 0x0,
767 [ C(RESULT_MISS) ] = 0x0,
768 },
769 },
770 };
771
772 #define SNB_DMND_DATA_RD (1ULL << 0)
773 #define SNB_DMND_RFO (1ULL << 1)
774 #define SNB_DMND_IFETCH (1ULL << 2)
775 #define SNB_DMND_WB (1ULL << 3)
776 #define SNB_PF_DATA_RD (1ULL << 4)
777 #define SNB_PF_RFO (1ULL << 5)
778 #define SNB_PF_IFETCH (1ULL << 6)
779 #define SNB_LLC_DATA_RD (1ULL << 7)
780 #define SNB_LLC_RFO (1ULL << 8)
781 #define SNB_LLC_IFETCH (1ULL << 9)
782 #define SNB_BUS_LOCKS (1ULL << 10)
783 #define SNB_STRM_ST (1ULL << 11)
784 #define SNB_OTHER (1ULL << 15)
785 #define SNB_RESP_ANY (1ULL << 16)
786 #define SNB_NO_SUPP (1ULL << 17)
787 #define SNB_LLC_HITM (1ULL << 18)
788 #define SNB_LLC_HITE (1ULL << 19)
789 #define SNB_LLC_HITS (1ULL << 20)
790 #define SNB_LLC_HITF (1ULL << 21)
791 #define SNB_LOCAL (1ULL << 22)
792 #define SNB_REMOTE (0xffULL << 23)
793 #define SNB_SNP_NONE (1ULL << 31)
794 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
795 #define SNB_SNP_MISS (1ULL << 33)
796 #define SNB_NO_FWD (1ULL << 34)
797 #define SNB_SNP_FWD (1ULL << 35)
798 #define SNB_HITM (1ULL << 36)
799 #define SNB_NON_DRAM (1ULL << 37)
800
801 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
802 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
803 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
804
805 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
806 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
807 SNB_HITM)
808
809 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
810 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
811
812 #define SNB_L3_ACCESS SNB_RESP_ANY
813 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
814
815 static __initconst const u64 snb_hw_cache_extra_regs
816 [PERF_COUNT_HW_CACHE_MAX]
817 [PERF_COUNT_HW_CACHE_OP_MAX]
818 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
819 {
820 [ C(LL ) ] = {
821 [ C(OP_READ) ] = {
822 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
823 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
824 },
825 [ C(OP_WRITE) ] = {
826 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
827 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
828 },
829 [ C(OP_PREFETCH) ] = {
830 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
831 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
832 },
833 },
834 [ C(NODE) ] = {
835 [ C(OP_READ) ] = {
836 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
837 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
838 },
839 [ C(OP_WRITE) ] = {
840 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
841 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
842 },
843 [ C(OP_PREFETCH) ] = {
844 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
845 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
846 },
847 },
848 };
849
850 static __initconst const u64 snb_hw_cache_event_ids
851 [PERF_COUNT_HW_CACHE_MAX]
852 [PERF_COUNT_HW_CACHE_OP_MAX]
853 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
854 {
855 [ C(L1D) ] = {
856 [ C(OP_READ) ] = {
857 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
858 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
859 },
860 [ C(OP_WRITE) ] = {
861 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
862 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
863 },
864 [ C(OP_PREFETCH) ] = {
865 [ C(RESULT_ACCESS) ] = 0x0,
866 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
867 },
868 },
869 [ C(L1I ) ] = {
870 [ C(OP_READ) ] = {
871 [ C(RESULT_ACCESS) ] = 0x0,
872 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
873 },
874 [ C(OP_WRITE) ] = {
875 [ C(RESULT_ACCESS) ] = -1,
876 [ C(RESULT_MISS) ] = -1,
877 },
878 [ C(OP_PREFETCH) ] = {
879 [ C(RESULT_ACCESS) ] = 0x0,
880 [ C(RESULT_MISS) ] = 0x0,
881 },
882 },
883 [ C(LL ) ] = {
884 [ C(OP_READ) ] = {
885 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
886 [ C(RESULT_ACCESS) ] = 0x01b7,
887 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
888 [ C(RESULT_MISS) ] = 0x01b7,
889 },
890 [ C(OP_WRITE) ] = {
891 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
892 [ C(RESULT_ACCESS) ] = 0x01b7,
893 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
894 [ C(RESULT_MISS) ] = 0x01b7,
895 },
896 [ C(OP_PREFETCH) ] = {
897 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
898 [ C(RESULT_ACCESS) ] = 0x01b7,
899 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
900 [ C(RESULT_MISS) ] = 0x01b7,
901 },
902 },
903 [ C(DTLB) ] = {
904 [ C(OP_READ) ] = {
905 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
906 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
907 },
908 [ C(OP_WRITE) ] = {
909 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
910 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
911 },
912 [ C(OP_PREFETCH) ] = {
913 [ C(RESULT_ACCESS) ] = 0x0,
914 [ C(RESULT_MISS) ] = 0x0,
915 },
916 },
917 [ C(ITLB) ] = {
918 [ C(OP_READ) ] = {
919 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
920 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
921 },
922 [ C(OP_WRITE) ] = {
923 [ C(RESULT_ACCESS) ] = -1,
924 [ C(RESULT_MISS) ] = -1,
925 },
926 [ C(OP_PREFETCH) ] = {
927 [ C(RESULT_ACCESS) ] = -1,
928 [ C(RESULT_MISS) ] = -1,
929 },
930 },
931 [ C(BPU ) ] = {
932 [ C(OP_READ) ] = {
933 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
934 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
935 },
936 [ C(OP_WRITE) ] = {
937 [ C(RESULT_ACCESS) ] = -1,
938 [ C(RESULT_MISS) ] = -1,
939 },
940 [ C(OP_PREFETCH) ] = {
941 [ C(RESULT_ACCESS) ] = -1,
942 [ C(RESULT_MISS) ] = -1,
943 },
944 },
945 [ C(NODE) ] = {
946 [ C(OP_READ) ] = {
947 [ C(RESULT_ACCESS) ] = 0x01b7,
948 [ C(RESULT_MISS) ] = 0x01b7,
949 },
950 [ C(OP_WRITE) ] = {
951 [ C(RESULT_ACCESS) ] = 0x01b7,
952 [ C(RESULT_MISS) ] = 0x01b7,
953 },
954 [ C(OP_PREFETCH) ] = {
955 [ C(RESULT_ACCESS) ] = 0x01b7,
956 [ C(RESULT_MISS) ] = 0x01b7,
957 },
958 },
959
960 };
961
962 /*
963 * Notes on the events:
964 * - data reads do not include code reads (comparable to earlier tables)
965 * - data counts include speculative execution (except L1 write, dtlb, bpu)
966 * - remote node access includes remote memory, remote cache, remote mmio.
967 * - prefetches are not included in the counts because they are not
968 * reliably counted.
969 */
970
971 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
972 #define HSW_DEMAND_RFO BIT_ULL(1)
973 #define HSW_ANY_RESPONSE BIT_ULL(16)
974 #define HSW_SUPPLIER_NONE BIT_ULL(17)
975 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
976 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
977 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
978 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
979 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
980 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
981 HSW_L3_MISS_REMOTE_HOP2P)
982 #define HSW_SNOOP_NONE BIT_ULL(31)
983 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
984 #define HSW_SNOOP_MISS BIT_ULL(33)
985 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
986 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
987 #define HSW_SNOOP_HITM BIT_ULL(36)
988 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
989 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
990 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
991 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
992 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
993 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
994 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
995 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
996 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
997 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
998 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
999
1000 #define BDW_L3_MISS_LOCAL BIT(26)
1001 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
1002 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1003 HSW_L3_MISS_REMOTE_HOP2P)
1004
1005
1006 static __initconst const u64 hsw_hw_cache_event_ids
1007 [PERF_COUNT_HW_CACHE_MAX]
1008 [PERF_COUNT_HW_CACHE_OP_MAX]
1009 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1010 {
1011 [ C(L1D ) ] = {
1012 [ C(OP_READ) ] = {
1013 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1014 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
1015 },
1016 [ C(OP_WRITE) ] = {
1017 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1018 [ C(RESULT_MISS) ] = 0x0,
1019 },
1020 [ C(OP_PREFETCH) ] = {
1021 [ C(RESULT_ACCESS) ] = 0x0,
1022 [ C(RESULT_MISS) ] = 0x0,
1023 },
1024 },
1025 [ C(L1I ) ] = {
1026 [ C(OP_READ) ] = {
1027 [ C(RESULT_ACCESS) ] = 0x0,
1028 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
1029 },
1030 [ C(OP_WRITE) ] = {
1031 [ C(RESULT_ACCESS) ] = -1,
1032 [ C(RESULT_MISS) ] = -1,
1033 },
1034 [ C(OP_PREFETCH) ] = {
1035 [ C(RESULT_ACCESS) ] = 0x0,
1036 [ C(RESULT_MISS) ] = 0x0,
1037 },
1038 },
1039 [ C(LL ) ] = {
1040 [ C(OP_READ) ] = {
1041 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1042 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1043 },
1044 [ C(OP_WRITE) ] = {
1045 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1046 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1047 },
1048 [ C(OP_PREFETCH) ] = {
1049 [ C(RESULT_ACCESS) ] = 0x0,
1050 [ C(RESULT_MISS) ] = 0x0,
1051 },
1052 },
1053 [ C(DTLB) ] = {
1054 [ C(OP_READ) ] = {
1055 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1056 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1057 },
1058 [ C(OP_WRITE) ] = {
1059 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1060 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1061 },
1062 [ C(OP_PREFETCH) ] = {
1063 [ C(RESULT_ACCESS) ] = 0x0,
1064 [ C(RESULT_MISS) ] = 0x0,
1065 },
1066 },
1067 [ C(ITLB) ] = {
1068 [ C(OP_READ) ] = {
1069 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
1070 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1071 },
1072 [ C(OP_WRITE) ] = {
1073 [ C(RESULT_ACCESS) ] = -1,
1074 [ C(RESULT_MISS) ] = -1,
1075 },
1076 [ C(OP_PREFETCH) ] = {
1077 [ C(RESULT_ACCESS) ] = -1,
1078 [ C(RESULT_MISS) ] = -1,
1079 },
1080 },
1081 [ C(BPU ) ] = {
1082 [ C(OP_READ) ] = {
1083 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
1084 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1085 },
1086 [ C(OP_WRITE) ] = {
1087 [ C(RESULT_ACCESS) ] = -1,
1088 [ C(RESULT_MISS) ] = -1,
1089 },
1090 [ C(OP_PREFETCH) ] = {
1091 [ C(RESULT_ACCESS) ] = -1,
1092 [ C(RESULT_MISS) ] = -1,
1093 },
1094 },
1095 [ C(NODE) ] = {
1096 [ C(OP_READ) ] = {
1097 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1098 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1099 },
1100 [ C(OP_WRITE) ] = {
1101 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1102 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1103 },
1104 [ C(OP_PREFETCH) ] = {
1105 [ C(RESULT_ACCESS) ] = 0x0,
1106 [ C(RESULT_MISS) ] = 0x0,
1107 },
1108 },
1109 };
1110
1111 static __initconst const u64 hsw_hw_cache_extra_regs
1112 [PERF_COUNT_HW_CACHE_MAX]
1113 [PERF_COUNT_HW_CACHE_OP_MAX]
1114 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1115 {
1116 [ C(LL ) ] = {
1117 [ C(OP_READ) ] = {
1118 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1119 HSW_LLC_ACCESS,
1120 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1121 HSW_L3_MISS|HSW_ANY_SNOOP,
1122 },
1123 [ C(OP_WRITE) ] = {
1124 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1125 HSW_LLC_ACCESS,
1126 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1127 HSW_L3_MISS|HSW_ANY_SNOOP,
1128 },
1129 [ C(OP_PREFETCH) ] = {
1130 [ C(RESULT_ACCESS) ] = 0x0,
1131 [ C(RESULT_MISS) ] = 0x0,
1132 },
1133 },
1134 [ C(NODE) ] = {
1135 [ C(OP_READ) ] = {
1136 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1137 HSW_L3_MISS_LOCAL_DRAM|
1138 HSW_SNOOP_DRAM,
1139 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1140 HSW_L3_MISS_REMOTE|
1141 HSW_SNOOP_DRAM,
1142 },
1143 [ C(OP_WRITE) ] = {
1144 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1145 HSW_L3_MISS_LOCAL_DRAM|
1146 HSW_SNOOP_DRAM,
1147 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1148 HSW_L3_MISS_REMOTE|
1149 HSW_SNOOP_DRAM,
1150 },
1151 [ C(OP_PREFETCH) ] = {
1152 [ C(RESULT_ACCESS) ] = 0x0,
1153 [ C(RESULT_MISS) ] = 0x0,
1154 },
1155 },
1156 };
1157
1158 static __initconst const u64 westmere_hw_cache_event_ids
1159 [PERF_COUNT_HW_CACHE_MAX]
1160 [PERF_COUNT_HW_CACHE_OP_MAX]
1161 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1162 {
1163 [ C(L1D) ] = {
1164 [ C(OP_READ) ] = {
1165 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1166 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1167 },
1168 [ C(OP_WRITE) ] = {
1169 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1170 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1171 },
1172 [ C(OP_PREFETCH) ] = {
1173 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1174 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1175 },
1176 },
1177 [ C(L1I ) ] = {
1178 [ C(OP_READ) ] = {
1179 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1180 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1181 },
1182 [ C(OP_WRITE) ] = {
1183 [ C(RESULT_ACCESS) ] = -1,
1184 [ C(RESULT_MISS) ] = -1,
1185 },
1186 [ C(OP_PREFETCH) ] = {
1187 [ C(RESULT_ACCESS) ] = 0x0,
1188 [ C(RESULT_MISS) ] = 0x0,
1189 },
1190 },
1191 [ C(LL ) ] = {
1192 [ C(OP_READ) ] = {
1193 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1194 [ C(RESULT_ACCESS) ] = 0x01b7,
1195 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1196 [ C(RESULT_MISS) ] = 0x01b7,
1197 },
1198 /*
1199 * Use RFO, not WRITEBACK, because a write miss would typically occur
1200 * on RFO.
1201 */
1202 [ C(OP_WRITE) ] = {
1203 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1204 [ C(RESULT_ACCESS) ] = 0x01b7,
1205 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1206 [ C(RESULT_MISS) ] = 0x01b7,
1207 },
1208 [ C(OP_PREFETCH) ] = {
1209 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1210 [ C(RESULT_ACCESS) ] = 0x01b7,
1211 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1212 [ C(RESULT_MISS) ] = 0x01b7,
1213 },
1214 },
1215 [ C(DTLB) ] = {
1216 [ C(OP_READ) ] = {
1217 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1218 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1219 },
1220 [ C(OP_WRITE) ] = {
1221 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1222 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1223 },
1224 [ C(OP_PREFETCH) ] = {
1225 [ C(RESULT_ACCESS) ] = 0x0,
1226 [ C(RESULT_MISS) ] = 0x0,
1227 },
1228 },
1229 [ C(ITLB) ] = {
1230 [ C(OP_READ) ] = {
1231 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1232 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1233 },
1234 [ C(OP_WRITE) ] = {
1235 [ C(RESULT_ACCESS) ] = -1,
1236 [ C(RESULT_MISS) ] = -1,
1237 },
1238 [ C(OP_PREFETCH) ] = {
1239 [ C(RESULT_ACCESS) ] = -1,
1240 [ C(RESULT_MISS) ] = -1,
1241 },
1242 },
1243 [ C(BPU ) ] = {
1244 [ C(OP_READ) ] = {
1245 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1246 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1247 },
1248 [ C(OP_WRITE) ] = {
1249 [ C(RESULT_ACCESS) ] = -1,
1250 [ C(RESULT_MISS) ] = -1,
1251 },
1252 [ C(OP_PREFETCH) ] = {
1253 [ C(RESULT_ACCESS) ] = -1,
1254 [ C(RESULT_MISS) ] = -1,
1255 },
1256 },
1257 [ C(NODE) ] = {
1258 [ C(OP_READ) ] = {
1259 [ C(RESULT_ACCESS) ] = 0x01b7,
1260 [ C(RESULT_MISS) ] = 0x01b7,
1261 },
1262 [ C(OP_WRITE) ] = {
1263 [ C(RESULT_ACCESS) ] = 0x01b7,
1264 [ C(RESULT_MISS) ] = 0x01b7,
1265 },
1266 [ C(OP_PREFETCH) ] = {
1267 [ C(RESULT_ACCESS) ] = 0x01b7,
1268 [ C(RESULT_MISS) ] = 0x01b7,
1269 },
1270 },
1271 };
1272
1273 /*
1274 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1275 * See IA32 SDM Vol 3B 30.6.1.3
1276 */
1277
1278 #define NHM_DMND_DATA_RD (1 << 0)
1279 #define NHM_DMND_RFO (1 << 1)
1280 #define NHM_DMND_IFETCH (1 << 2)
1281 #define NHM_DMND_WB (1 << 3)
1282 #define NHM_PF_DATA_RD (1 << 4)
1283 #define NHM_PF_DATA_RFO (1 << 5)
1284 #define NHM_PF_IFETCH (1 << 6)
1285 #define NHM_OFFCORE_OTHER (1 << 7)
1286 #define NHM_UNCORE_HIT (1 << 8)
1287 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1288 #define NHM_OTHER_CORE_HITM (1 << 10)
1289 /* reserved */
1290 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1291 #define NHM_REMOTE_DRAM (1 << 13)
1292 #define NHM_LOCAL_DRAM (1 << 14)
1293 #define NHM_NON_DRAM (1 << 15)
1294
1295 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1296 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1297
1298 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1299 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1300 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1301
1302 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1303 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1304 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1305
1306 static __initconst const u64 nehalem_hw_cache_extra_regs
1307 [PERF_COUNT_HW_CACHE_MAX]
1308 [PERF_COUNT_HW_CACHE_OP_MAX]
1309 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1310 {
1311 [ C(LL ) ] = {
1312 [ C(OP_READ) ] = {
1313 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1314 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1315 },
1316 [ C(OP_WRITE) ] = {
1317 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1318 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1319 },
1320 [ C(OP_PREFETCH) ] = {
1321 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1322 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1323 },
1324 },
1325 [ C(NODE) ] = {
1326 [ C(OP_READ) ] = {
1327 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1328 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1329 },
1330 [ C(OP_WRITE) ] = {
1331 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1332 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1333 },
1334 [ C(OP_PREFETCH) ] = {
1335 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1336 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1337 },
1338 },
1339 };
1340
1341 static __initconst const u64 nehalem_hw_cache_event_ids
1342 [PERF_COUNT_HW_CACHE_MAX]
1343 [PERF_COUNT_HW_CACHE_OP_MAX]
1344 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1345 {
1346 [ C(L1D) ] = {
1347 [ C(OP_READ) ] = {
1348 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1349 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1350 },
1351 [ C(OP_WRITE) ] = {
1352 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1353 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1354 },
1355 [ C(OP_PREFETCH) ] = {
1356 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1357 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1358 },
1359 },
1360 [ C(L1I ) ] = {
1361 [ C(OP_READ) ] = {
1362 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1363 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1364 },
1365 [ C(OP_WRITE) ] = {
1366 [ C(RESULT_ACCESS) ] = -1,
1367 [ C(RESULT_MISS) ] = -1,
1368 },
1369 [ C(OP_PREFETCH) ] = {
1370 [ C(RESULT_ACCESS) ] = 0x0,
1371 [ C(RESULT_MISS) ] = 0x0,
1372 },
1373 },
1374 [ C(LL ) ] = {
1375 [ C(OP_READ) ] = {
1376 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1377 [ C(RESULT_ACCESS) ] = 0x01b7,
1378 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1379 [ C(RESULT_MISS) ] = 0x01b7,
1380 },
1381 /*
1382 * Use RFO, not WRITEBACK, because a write miss would typically occur
1383 * on RFO.
1384 */
1385 [ C(OP_WRITE) ] = {
1386 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1387 [ C(RESULT_ACCESS) ] = 0x01b7,
1388 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1389 [ C(RESULT_MISS) ] = 0x01b7,
1390 },
1391 [ C(OP_PREFETCH) ] = {
1392 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1393 [ C(RESULT_ACCESS) ] = 0x01b7,
1394 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1395 [ C(RESULT_MISS) ] = 0x01b7,
1396 },
1397 },
1398 [ C(DTLB) ] = {
1399 [ C(OP_READ) ] = {
1400 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1401 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1402 },
1403 [ C(OP_WRITE) ] = {
1404 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1405 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1406 },
1407 [ C(OP_PREFETCH) ] = {
1408 [ C(RESULT_ACCESS) ] = 0x0,
1409 [ C(RESULT_MISS) ] = 0x0,
1410 },
1411 },
1412 [ C(ITLB) ] = {
1413 [ C(OP_READ) ] = {
1414 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1415 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1416 },
1417 [ C(OP_WRITE) ] = {
1418 [ C(RESULT_ACCESS) ] = -1,
1419 [ C(RESULT_MISS) ] = -1,
1420 },
1421 [ C(OP_PREFETCH) ] = {
1422 [ C(RESULT_ACCESS) ] = -1,
1423 [ C(RESULT_MISS) ] = -1,
1424 },
1425 },
1426 [ C(BPU ) ] = {
1427 [ C(OP_READ) ] = {
1428 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1429 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1430 },
1431 [ C(OP_WRITE) ] = {
1432 [ C(RESULT_ACCESS) ] = -1,
1433 [ C(RESULT_MISS) ] = -1,
1434 },
1435 [ C(OP_PREFETCH) ] = {
1436 [ C(RESULT_ACCESS) ] = -1,
1437 [ C(RESULT_MISS) ] = -1,
1438 },
1439 },
1440 [ C(NODE) ] = {
1441 [ C(OP_READ) ] = {
1442 [ C(RESULT_ACCESS) ] = 0x01b7,
1443 [ C(RESULT_MISS) ] = 0x01b7,
1444 },
1445 [ C(OP_WRITE) ] = {
1446 [ C(RESULT_ACCESS) ] = 0x01b7,
1447 [ C(RESULT_MISS) ] = 0x01b7,
1448 },
1449 [ C(OP_PREFETCH) ] = {
1450 [ C(RESULT_ACCESS) ] = 0x01b7,
1451 [ C(RESULT_MISS) ] = 0x01b7,
1452 },
1453 },
1454 };
1455
1456 static __initconst const u64 core2_hw_cache_event_ids
1457 [PERF_COUNT_HW_CACHE_MAX]
1458 [PERF_COUNT_HW_CACHE_OP_MAX]
1459 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1460 {
1461 [ C(L1D) ] = {
1462 [ C(OP_READ) ] = {
1463 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1464 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1465 },
1466 [ C(OP_WRITE) ] = {
1467 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1468 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1469 },
1470 [ C(OP_PREFETCH) ] = {
1471 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1472 [ C(RESULT_MISS) ] = 0,
1473 },
1474 },
1475 [ C(L1I ) ] = {
1476 [ C(OP_READ) ] = {
1477 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1478 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1479 },
1480 [ C(OP_WRITE) ] = {
1481 [ C(RESULT_ACCESS) ] = -1,
1482 [ C(RESULT_MISS) ] = -1,
1483 },
1484 [ C(OP_PREFETCH) ] = {
1485 [ C(RESULT_ACCESS) ] = 0,
1486 [ C(RESULT_MISS) ] = 0,
1487 },
1488 },
1489 [ C(LL ) ] = {
1490 [ C(OP_READ) ] = {
1491 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1492 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1493 },
1494 [ C(OP_WRITE) ] = {
1495 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1496 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1497 },
1498 [ C(OP_PREFETCH) ] = {
1499 [ C(RESULT_ACCESS) ] = 0,
1500 [ C(RESULT_MISS) ] = 0,
1501 },
1502 },
1503 [ C(DTLB) ] = {
1504 [ C(OP_READ) ] = {
1505 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1506 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1507 },
1508 [ C(OP_WRITE) ] = {
1509 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1510 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1511 },
1512 [ C(OP_PREFETCH) ] = {
1513 [ C(RESULT_ACCESS) ] = 0,
1514 [ C(RESULT_MISS) ] = 0,
1515 },
1516 },
1517 [ C(ITLB) ] = {
1518 [ C(OP_READ) ] = {
1519 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1520 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1521 },
1522 [ C(OP_WRITE) ] = {
1523 [ C(RESULT_ACCESS) ] = -1,
1524 [ C(RESULT_MISS) ] = -1,
1525 },
1526 [ C(OP_PREFETCH) ] = {
1527 [ C(RESULT_ACCESS) ] = -1,
1528 [ C(RESULT_MISS) ] = -1,
1529 },
1530 },
1531 [ C(BPU ) ] = {
1532 [ C(OP_READ) ] = {
1533 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1534 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1535 },
1536 [ C(OP_WRITE) ] = {
1537 [ C(RESULT_ACCESS) ] = -1,
1538 [ C(RESULT_MISS) ] = -1,
1539 },
1540 [ C(OP_PREFETCH) ] = {
1541 [ C(RESULT_ACCESS) ] = -1,
1542 [ C(RESULT_MISS) ] = -1,
1543 },
1544 },
1545 };
1546
1547 static __initconst const u64 atom_hw_cache_event_ids
1548 [PERF_COUNT_HW_CACHE_MAX]
1549 [PERF_COUNT_HW_CACHE_OP_MAX]
1550 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1551 {
1552 [ C(L1D) ] = {
1553 [ C(OP_READ) ] = {
1554 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1555 [ C(RESULT_MISS) ] = 0,
1556 },
1557 [ C(OP_WRITE) ] = {
1558 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1559 [ C(RESULT_MISS) ] = 0,
1560 },
1561 [ C(OP_PREFETCH) ] = {
1562 [ C(RESULT_ACCESS) ] = 0x0,
1563 [ C(RESULT_MISS) ] = 0,
1564 },
1565 },
1566 [ C(L1I ) ] = {
1567 [ C(OP_READ) ] = {
1568 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1569 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1570 },
1571 [ C(OP_WRITE) ] = {
1572 [ C(RESULT_ACCESS) ] = -1,
1573 [ C(RESULT_MISS) ] = -1,
1574 },
1575 [ C(OP_PREFETCH) ] = {
1576 [ C(RESULT_ACCESS) ] = 0,
1577 [ C(RESULT_MISS) ] = 0,
1578 },
1579 },
1580 [ C(LL ) ] = {
1581 [ C(OP_READ) ] = {
1582 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1583 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1584 },
1585 [ C(OP_WRITE) ] = {
1586 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1587 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1588 },
1589 [ C(OP_PREFETCH) ] = {
1590 [ C(RESULT_ACCESS) ] = 0,
1591 [ C(RESULT_MISS) ] = 0,
1592 },
1593 },
1594 [ C(DTLB) ] = {
1595 [ C(OP_READ) ] = {
1596 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1597 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1598 },
1599 [ C(OP_WRITE) ] = {
1600 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1601 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1602 },
1603 [ C(OP_PREFETCH) ] = {
1604 [ C(RESULT_ACCESS) ] = 0,
1605 [ C(RESULT_MISS) ] = 0,
1606 },
1607 },
1608 [ C(ITLB) ] = {
1609 [ C(OP_READ) ] = {
1610 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1611 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1612 },
1613 [ C(OP_WRITE) ] = {
1614 [ C(RESULT_ACCESS) ] = -1,
1615 [ C(RESULT_MISS) ] = -1,
1616 },
1617 [ C(OP_PREFETCH) ] = {
1618 [ C(RESULT_ACCESS) ] = -1,
1619 [ C(RESULT_MISS) ] = -1,
1620 },
1621 },
1622 [ C(BPU ) ] = {
1623 [ C(OP_READ) ] = {
1624 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1625 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1626 },
1627 [ C(OP_WRITE) ] = {
1628 [ C(RESULT_ACCESS) ] = -1,
1629 [ C(RESULT_MISS) ] = -1,
1630 },
1631 [ C(OP_PREFETCH) ] = {
1632 [ C(RESULT_ACCESS) ] = -1,
1633 [ C(RESULT_MISS) ] = -1,
1634 },
1635 },
1636 };
1637
1638 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1639 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1640 /* no_alloc_cycles.not_delivered */
1641 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1642 "event=0xca,umask=0x50");
1643 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1644 /* uops_retired.all */
1645 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1646 "event=0xc2,umask=0x10");
1647 /* uops_retired.all */
1648 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1649 "event=0xc2,umask=0x10");
1650
1651 static struct attribute *slm_events_attrs[] = {
1652 EVENT_PTR(td_total_slots_slm),
1653 EVENT_PTR(td_total_slots_scale_slm),
1654 EVENT_PTR(td_fetch_bubbles_slm),
1655 EVENT_PTR(td_fetch_bubbles_scale_slm),
1656 EVENT_PTR(td_slots_issued_slm),
1657 EVENT_PTR(td_slots_retired_slm),
1658 NULL
1659 };
1660
1661 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1662 {
1663 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1664 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1665 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1666 EVENT_EXTRA_END
1667 };
1668
1669 #define SLM_DMND_READ SNB_DMND_DATA_RD
1670 #define SLM_DMND_WRITE SNB_DMND_RFO
1671 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1672
1673 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1674 #define SLM_LLC_ACCESS SNB_RESP_ANY
1675 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1676
1677 static __initconst const u64 slm_hw_cache_extra_regs
1678 [PERF_COUNT_HW_CACHE_MAX]
1679 [PERF_COUNT_HW_CACHE_OP_MAX]
1680 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1681 {
1682 [ C(LL ) ] = {
1683 [ C(OP_READ) ] = {
1684 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1685 [ C(RESULT_MISS) ] = 0,
1686 },
1687 [ C(OP_WRITE) ] = {
1688 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1689 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1690 },
1691 [ C(OP_PREFETCH) ] = {
1692 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1693 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1694 },
1695 },
1696 };
1697
1698 static __initconst const u64 slm_hw_cache_event_ids
1699 [PERF_COUNT_HW_CACHE_MAX]
1700 [PERF_COUNT_HW_CACHE_OP_MAX]
1701 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1702 {
1703 [ C(L1D) ] = {
1704 [ C(OP_READ) ] = {
1705 [ C(RESULT_ACCESS) ] = 0,
1706 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1707 },
1708 [ C(OP_WRITE) ] = {
1709 [ C(RESULT_ACCESS) ] = 0,
1710 [ C(RESULT_MISS) ] = 0,
1711 },
1712 [ C(OP_PREFETCH) ] = {
1713 [ C(RESULT_ACCESS) ] = 0,
1714 [ C(RESULT_MISS) ] = 0,
1715 },
1716 },
1717 [ C(L1I ) ] = {
1718 [ C(OP_READ) ] = {
1719 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1720 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1721 },
1722 [ C(OP_WRITE) ] = {
1723 [ C(RESULT_ACCESS) ] = -1,
1724 [ C(RESULT_MISS) ] = -1,
1725 },
1726 [ C(OP_PREFETCH) ] = {
1727 [ C(RESULT_ACCESS) ] = 0,
1728 [ C(RESULT_MISS) ] = 0,
1729 },
1730 },
1731 [ C(LL ) ] = {
1732 [ C(OP_READ) ] = {
1733 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1734 [ C(RESULT_ACCESS) ] = 0x01b7,
1735 [ C(RESULT_MISS) ] = 0,
1736 },
1737 [ C(OP_WRITE) ] = {
1738 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1739 [ C(RESULT_ACCESS) ] = 0x01b7,
1740 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1741 [ C(RESULT_MISS) ] = 0x01b7,
1742 },
1743 [ C(OP_PREFETCH) ] = {
1744 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1745 [ C(RESULT_ACCESS) ] = 0x01b7,
1746 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1747 [ C(RESULT_MISS) ] = 0x01b7,
1748 },
1749 },
1750 [ C(DTLB) ] = {
1751 [ C(OP_READ) ] = {
1752 [ C(RESULT_ACCESS) ] = 0,
1753 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1754 },
1755 [ C(OP_WRITE) ] = {
1756 [ C(RESULT_ACCESS) ] = 0,
1757 [ C(RESULT_MISS) ] = 0,
1758 },
1759 [ C(OP_PREFETCH) ] = {
1760 [ C(RESULT_ACCESS) ] = 0,
1761 [ C(RESULT_MISS) ] = 0,
1762 },
1763 },
1764 [ C(ITLB) ] = {
1765 [ C(OP_READ) ] = {
1766 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1767 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1768 },
1769 [ C(OP_WRITE) ] = {
1770 [ C(RESULT_ACCESS) ] = -1,
1771 [ C(RESULT_MISS) ] = -1,
1772 },
1773 [ C(OP_PREFETCH) ] = {
1774 [ C(RESULT_ACCESS) ] = -1,
1775 [ C(RESULT_MISS) ] = -1,
1776 },
1777 },
1778 [ C(BPU ) ] = {
1779 [ C(OP_READ) ] = {
1780 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1781 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1782 },
1783 [ C(OP_WRITE) ] = {
1784 [ C(RESULT_ACCESS) ] = -1,
1785 [ C(RESULT_MISS) ] = -1,
1786 },
1787 [ C(OP_PREFETCH) ] = {
1788 [ C(RESULT_ACCESS) ] = -1,
1789 [ C(RESULT_MISS) ] = -1,
1790 },
1791 },
1792 };
1793
1794 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1795 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1796 /* UOPS_NOT_DELIVERED.ANY */
1797 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1798 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1799 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1800 /* UOPS_RETIRED.ANY */
1801 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1802 /* UOPS_ISSUED.ANY */
1803 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1804
1805 static struct attribute *glm_events_attrs[] = {
1806 EVENT_PTR(td_total_slots_glm),
1807 EVENT_PTR(td_total_slots_scale_glm),
1808 EVENT_PTR(td_fetch_bubbles_glm),
1809 EVENT_PTR(td_recovery_bubbles_glm),
1810 EVENT_PTR(td_slots_issued_glm),
1811 EVENT_PTR(td_slots_retired_glm),
1812 NULL
1813 };
1814
1815 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1816 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1817 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1818 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1819 EVENT_EXTRA_END
1820 };
1821
1822 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1823 #define GLM_DEMAND_RFO BIT_ULL(1)
1824 #define GLM_ANY_RESPONSE BIT_ULL(16)
1825 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1826 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1827 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1828 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1829 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1830 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1831 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1832
1833 static __initconst const u64 glm_hw_cache_event_ids
1834 [PERF_COUNT_HW_CACHE_MAX]
1835 [PERF_COUNT_HW_CACHE_OP_MAX]
1836 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1837 [C(L1D)] = {
1838 [C(OP_READ)] = {
1839 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1840 [C(RESULT_MISS)] = 0x0,
1841 },
1842 [C(OP_WRITE)] = {
1843 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1844 [C(RESULT_MISS)] = 0x0,
1845 },
1846 [C(OP_PREFETCH)] = {
1847 [C(RESULT_ACCESS)] = 0x0,
1848 [C(RESULT_MISS)] = 0x0,
1849 },
1850 },
1851 [C(L1I)] = {
1852 [C(OP_READ)] = {
1853 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1854 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1855 },
1856 [C(OP_WRITE)] = {
1857 [C(RESULT_ACCESS)] = -1,
1858 [C(RESULT_MISS)] = -1,
1859 },
1860 [C(OP_PREFETCH)] = {
1861 [C(RESULT_ACCESS)] = 0x0,
1862 [C(RESULT_MISS)] = 0x0,
1863 },
1864 },
1865 [C(LL)] = {
1866 [C(OP_READ)] = {
1867 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1868 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1869 },
1870 [C(OP_WRITE)] = {
1871 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1872 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1873 },
1874 [C(OP_PREFETCH)] = {
1875 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1876 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1877 },
1878 },
1879 [C(DTLB)] = {
1880 [C(OP_READ)] = {
1881 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1882 [C(RESULT_MISS)] = 0x0,
1883 },
1884 [C(OP_WRITE)] = {
1885 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1886 [C(RESULT_MISS)] = 0x0,
1887 },
1888 [C(OP_PREFETCH)] = {
1889 [C(RESULT_ACCESS)] = 0x0,
1890 [C(RESULT_MISS)] = 0x0,
1891 },
1892 },
1893 [C(ITLB)] = {
1894 [C(OP_READ)] = {
1895 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1896 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1897 },
1898 [C(OP_WRITE)] = {
1899 [C(RESULT_ACCESS)] = -1,
1900 [C(RESULT_MISS)] = -1,
1901 },
1902 [C(OP_PREFETCH)] = {
1903 [C(RESULT_ACCESS)] = -1,
1904 [C(RESULT_MISS)] = -1,
1905 },
1906 },
1907 [C(BPU)] = {
1908 [C(OP_READ)] = {
1909 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1910 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1911 },
1912 [C(OP_WRITE)] = {
1913 [C(RESULT_ACCESS)] = -1,
1914 [C(RESULT_MISS)] = -1,
1915 },
1916 [C(OP_PREFETCH)] = {
1917 [C(RESULT_ACCESS)] = -1,
1918 [C(RESULT_MISS)] = -1,
1919 },
1920 },
1921 };
1922
1923 static __initconst const u64 glm_hw_cache_extra_regs
1924 [PERF_COUNT_HW_CACHE_MAX]
1925 [PERF_COUNT_HW_CACHE_OP_MAX]
1926 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1927 [C(LL)] = {
1928 [C(OP_READ)] = {
1929 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1930 GLM_LLC_ACCESS,
1931 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1932 GLM_LLC_MISS,
1933 },
1934 [C(OP_WRITE)] = {
1935 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1936 GLM_LLC_ACCESS,
1937 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1938 GLM_LLC_MISS,
1939 },
1940 [C(OP_PREFETCH)] = {
1941 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1942 GLM_LLC_ACCESS,
1943 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1944 GLM_LLC_MISS,
1945 },
1946 },
1947 };
1948
1949 static __initconst const u64 glp_hw_cache_event_ids
1950 [PERF_COUNT_HW_CACHE_MAX]
1951 [PERF_COUNT_HW_CACHE_OP_MAX]
1952 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1953 [C(L1D)] = {
1954 [C(OP_READ)] = {
1955 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1956 [C(RESULT_MISS)] = 0x0,
1957 },
1958 [C(OP_WRITE)] = {
1959 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1960 [C(RESULT_MISS)] = 0x0,
1961 },
1962 [C(OP_PREFETCH)] = {
1963 [C(RESULT_ACCESS)] = 0x0,
1964 [C(RESULT_MISS)] = 0x0,
1965 },
1966 },
1967 [C(L1I)] = {
1968 [C(OP_READ)] = {
1969 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1970 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1971 },
1972 [C(OP_WRITE)] = {
1973 [C(RESULT_ACCESS)] = -1,
1974 [C(RESULT_MISS)] = -1,
1975 },
1976 [C(OP_PREFETCH)] = {
1977 [C(RESULT_ACCESS)] = 0x0,
1978 [C(RESULT_MISS)] = 0x0,
1979 },
1980 },
1981 [C(LL)] = {
1982 [C(OP_READ)] = {
1983 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1984 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1985 },
1986 [C(OP_WRITE)] = {
1987 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1988 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1989 },
1990 [C(OP_PREFETCH)] = {
1991 [C(RESULT_ACCESS)] = 0x0,
1992 [C(RESULT_MISS)] = 0x0,
1993 },
1994 },
1995 [C(DTLB)] = {
1996 [C(OP_READ)] = {
1997 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1998 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1999 },
2000 [C(OP_WRITE)] = {
2001 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2002 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
2003 },
2004 [C(OP_PREFETCH)] = {
2005 [C(RESULT_ACCESS)] = 0x0,
2006 [C(RESULT_MISS)] = 0x0,
2007 },
2008 },
2009 [C(ITLB)] = {
2010 [C(OP_READ)] = {
2011 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
2012 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
2013 },
2014 [C(OP_WRITE)] = {
2015 [C(RESULT_ACCESS)] = -1,
2016 [C(RESULT_MISS)] = -1,
2017 },
2018 [C(OP_PREFETCH)] = {
2019 [C(RESULT_ACCESS)] = -1,
2020 [C(RESULT_MISS)] = -1,
2021 },
2022 },
2023 [C(BPU)] = {
2024 [C(OP_READ)] = {
2025 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
2026 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
2027 },
2028 [C(OP_WRITE)] = {
2029 [C(RESULT_ACCESS)] = -1,
2030 [C(RESULT_MISS)] = -1,
2031 },
2032 [C(OP_PREFETCH)] = {
2033 [C(RESULT_ACCESS)] = -1,
2034 [C(RESULT_MISS)] = -1,
2035 },
2036 },
2037 };
2038
2039 static __initconst const u64 glp_hw_cache_extra_regs
2040 [PERF_COUNT_HW_CACHE_MAX]
2041 [PERF_COUNT_HW_CACHE_OP_MAX]
2042 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2043 [C(LL)] = {
2044 [C(OP_READ)] = {
2045 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2046 GLM_LLC_ACCESS,
2047 [C(RESULT_MISS)] = GLM_DEMAND_READ|
2048 GLM_LLC_MISS,
2049 },
2050 [C(OP_WRITE)] = {
2051 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2052 GLM_LLC_ACCESS,
2053 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2054 GLM_LLC_MISS,
2055 },
2056 [C(OP_PREFETCH)] = {
2057 [C(RESULT_ACCESS)] = 0x0,
2058 [C(RESULT_MISS)] = 0x0,
2059 },
2060 },
2061 };
2062
2063 #define TNT_LOCAL_DRAM BIT_ULL(26)
2064 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
2065 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
2066 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
2067 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2068 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2069 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2070
2071 static __initconst const u64 tnt_hw_cache_extra_regs
2072 [PERF_COUNT_HW_CACHE_MAX]
2073 [PERF_COUNT_HW_CACHE_OP_MAX]
2074 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2075 [C(LL)] = {
2076 [C(OP_READ)] = {
2077 [C(RESULT_ACCESS)] = TNT_DEMAND_READ|
2078 TNT_LLC_ACCESS,
2079 [C(RESULT_MISS)] = TNT_DEMAND_READ|
2080 TNT_LLC_MISS,
2081 },
2082 [C(OP_WRITE)] = {
2083 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
2084 TNT_LLC_ACCESS,
2085 [C(RESULT_MISS)] = TNT_DEMAND_WRITE|
2086 TNT_LLC_MISS,
2087 },
2088 [C(OP_PREFETCH)] = {
2089 [C(RESULT_ACCESS)] = 0x0,
2090 [C(RESULT_MISS)] = 0x0,
2091 },
2092 },
2093 };
2094
2095 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
2096 EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
2097 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
2098 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
2099
2100 static struct attribute *tnt_events_attrs[] = {
2101 EVENT_PTR(td_fe_bound_tnt),
2102 EVENT_PTR(td_retiring_tnt),
2103 EVENT_PTR(td_bad_spec_tnt),
2104 EVENT_PTR(td_be_bound_tnt),
2105 NULL,
2106 };
2107
2108 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2109 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2110 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2111 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2112 EVENT_EXTRA_END
2113 };
2114
2115 EVENT_ATTR_STR(mem-loads, mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3");
2116 EVENT_ATTR_STR(mem-stores, mem_st_grt, "event=0xd0,umask=0x6");
2117
2118 static struct attribute *grt_mem_attrs[] = {
2119 EVENT_PTR(mem_ld_grt),
2120 EVENT_PTR(mem_st_grt),
2121 NULL
2122 };
2123
2124 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2125 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2126 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2127 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2128 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2129 EVENT_EXTRA_END
2130 };
2131
2132 EVENT_ATTR_STR(topdown-retiring, td_retiring_cmt, "event=0x72,umask=0x0");
2133 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_cmt, "event=0x73,umask=0x0");
2134
2135 static struct attribute *cmt_events_attrs[] = {
2136 EVENT_PTR(td_fe_bound_tnt),
2137 EVENT_PTR(td_retiring_cmt),
2138 EVENT_PTR(td_bad_spec_cmt),
2139 EVENT_PTR(td_be_bound_tnt),
2140 NULL
2141 };
2142
2143 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2144 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2145 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2146 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2147 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2148 INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2149 INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2150 EVENT_EXTRA_END
2151 };
2152
2153 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
2154 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
2155 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
2156 #define KNL_MCDRAM_FAR BIT_ULL(22)
2157 #define KNL_DDR_LOCAL BIT_ULL(23)
2158 #define KNL_DDR_FAR BIT_ULL(24)
2159 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2160 KNL_DDR_LOCAL | KNL_DDR_FAR)
2161 #define KNL_L2_READ SLM_DMND_READ
2162 #define KNL_L2_WRITE SLM_DMND_WRITE
2163 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
2164 #define KNL_L2_ACCESS SLM_LLC_ACCESS
2165 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2166 KNL_DRAM_ANY | SNB_SNP_ANY | \
2167 SNB_NON_DRAM)
2168
2169 static __initconst const u64 knl_hw_cache_extra_regs
2170 [PERF_COUNT_HW_CACHE_MAX]
2171 [PERF_COUNT_HW_CACHE_OP_MAX]
2172 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2173 [C(LL)] = {
2174 [C(OP_READ)] = {
2175 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2176 [C(RESULT_MISS)] = 0,
2177 },
2178 [C(OP_WRITE)] = {
2179 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2180 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
2181 },
2182 [C(OP_PREFETCH)] = {
2183 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2184 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
2185 },
2186 },
2187 };
2188
2189 /*
2190 * Used from PMIs where the LBRs are already disabled.
2191 *
2192 * This function could be called consecutively. It is required to remain in
2193 * disabled state if called consecutively.
2194 *
2195 * During consecutive calls, the same disable value will be written to related
2196 * registers, so the PMU state remains unchanged.
2197 *
2198 * intel_bts events don't coexist with intel PMU's BTS events because of
2199 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2200 * disabled around intel PMU's event batching etc, only inside the PMI handler.
2201 *
2202 * Avoid PEBS_ENABLE MSR access in PMIs.
2203 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2204 * It doesn't matter if the PEBS is enabled or not.
2205 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2206 * access PEBS_ENABLE MSR in disable_all()/enable_all().
2207 * However, there are some cases which may change PEBS status, e.g. PMI
2208 * throttle. The PEBS_ENABLE should be updated where the status changes.
2209 */
__intel_pmu_disable_all(bool bts)2210 static __always_inline void __intel_pmu_disable_all(bool bts)
2211 {
2212 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2213
2214 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2215
2216 if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2217 intel_pmu_disable_bts();
2218 }
2219
intel_pmu_disable_all(void)2220 static __always_inline void intel_pmu_disable_all(void)
2221 {
2222 __intel_pmu_disable_all(true);
2223 intel_pmu_pebs_disable_all();
2224 intel_pmu_lbr_disable_all();
2225 }
2226
__intel_pmu_enable_all(int added,bool pmi)2227 static void __intel_pmu_enable_all(int added, bool pmi)
2228 {
2229 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2230 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2231
2232 intel_pmu_lbr_enable_all(pmi);
2233
2234 if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2235 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2236 cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2237 }
2238
2239 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2240 intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2241
2242 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2243 struct perf_event *event =
2244 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2245
2246 if (WARN_ON_ONCE(!event))
2247 return;
2248
2249 intel_pmu_enable_bts(event->hw.config);
2250 }
2251 }
2252
intel_pmu_enable_all(int added)2253 static void intel_pmu_enable_all(int added)
2254 {
2255 intel_pmu_pebs_enable_all();
2256 __intel_pmu_enable_all(added, false);
2257 }
2258
2259 static noinline int
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt,unsigned long flags)2260 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2261 unsigned int cnt, unsigned long flags)
2262 {
2263 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2264
2265 intel_pmu_lbr_read();
2266 cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2267
2268 memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2269 intel_pmu_enable_all(0);
2270 local_irq_restore(flags);
2271 return cnt;
2272 }
2273
2274 static int
intel_pmu_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)2275 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2276 {
2277 unsigned long flags;
2278
2279 /* must not have branches... */
2280 local_irq_save(flags);
2281 __intel_pmu_disable_all(false); /* we don't care about BTS */
2282 __intel_pmu_lbr_disable();
2283 /* ... until here */
2284 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2285 }
2286
2287 static int
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)2288 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2289 {
2290 unsigned long flags;
2291
2292 /* must not have branches... */
2293 local_irq_save(flags);
2294 __intel_pmu_disable_all(false); /* we don't care about BTS */
2295 __intel_pmu_arch_lbr_disable();
2296 /* ... until here */
2297 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2298 }
2299
2300 /*
2301 * Workaround for:
2302 * Intel Errata AAK100 (model 26)
2303 * Intel Errata AAP53 (model 30)
2304 * Intel Errata BD53 (model 44)
2305 *
2306 * The official story:
2307 * These chips need to be 'reset' when adding counters by programming the
2308 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2309 * in sequence on the same PMC or on different PMCs.
2310 *
2311 * In practice it appears some of these events do in fact count, and
2312 * we need to program all 4 events.
2313 */
intel_pmu_nhm_workaround(void)2314 static void intel_pmu_nhm_workaround(void)
2315 {
2316 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2317 static const unsigned long nhm_magic[4] = {
2318 0x4300B5,
2319 0x4300D2,
2320 0x4300B1,
2321 0x4300B1
2322 };
2323 struct perf_event *event;
2324 int i;
2325
2326 /*
2327 * The Errata requires below steps:
2328 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2329 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2330 * the corresponding PMCx;
2331 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2332 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2333 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2334 */
2335
2336 /*
2337 * The real steps we choose are a little different from above.
2338 * A) To reduce MSR operations, we don't run step 1) as they
2339 * are already cleared before this function is called;
2340 * B) Call x86_perf_event_update to save PMCx before configuring
2341 * PERFEVTSELx with magic number;
2342 * C) With step 5), we do clear only when the PERFEVTSELx is
2343 * not used currently.
2344 * D) Call x86_perf_event_set_period to restore PMCx;
2345 */
2346
2347 /* We always operate 4 pairs of PERF Counters */
2348 for (i = 0; i < 4; i++) {
2349 event = cpuc->events[i];
2350 if (event)
2351 static_call(x86_pmu_update)(event);
2352 }
2353
2354 for (i = 0; i < 4; i++) {
2355 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2356 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2357 }
2358
2359 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2360 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2361
2362 for (i = 0; i < 4; i++) {
2363 event = cpuc->events[i];
2364
2365 if (event) {
2366 static_call(x86_pmu_set_period)(event);
2367 __x86_pmu_enable_event(&event->hw,
2368 ARCH_PERFMON_EVENTSEL_ENABLE);
2369 } else
2370 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2371 }
2372 }
2373
intel_pmu_nhm_enable_all(int added)2374 static void intel_pmu_nhm_enable_all(int added)
2375 {
2376 if (added)
2377 intel_pmu_nhm_workaround();
2378 intel_pmu_enable_all(added);
2379 }
2380
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2381 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2382 {
2383 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2384
2385 if (cpuc->tfa_shadow != val) {
2386 cpuc->tfa_shadow = val;
2387 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2388 }
2389 }
2390
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2391 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2392 {
2393 /*
2394 * We're going to use PMC3, make sure TFA is set before we touch it.
2395 */
2396 if (cntr == 3)
2397 intel_set_tfa(cpuc, true);
2398 }
2399
intel_tfa_pmu_enable_all(int added)2400 static void intel_tfa_pmu_enable_all(int added)
2401 {
2402 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2403
2404 /*
2405 * If we find PMC3 is no longer used when we enable the PMU, we can
2406 * clear TFA.
2407 */
2408 if (!test_bit(3, cpuc->active_mask))
2409 intel_set_tfa(cpuc, false);
2410
2411 intel_pmu_enable_all(added);
2412 }
2413
intel_pmu_get_status(void)2414 static inline u64 intel_pmu_get_status(void)
2415 {
2416 u64 status;
2417
2418 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2419
2420 return status;
2421 }
2422
intel_pmu_ack_status(u64 ack)2423 static inline void intel_pmu_ack_status(u64 ack)
2424 {
2425 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2426 }
2427
event_is_checkpointed(struct perf_event * event)2428 static inline bool event_is_checkpointed(struct perf_event *event)
2429 {
2430 return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2431 }
2432
intel_set_masks(struct perf_event * event,int idx)2433 static inline void intel_set_masks(struct perf_event *event, int idx)
2434 {
2435 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2436
2437 if (event->attr.exclude_host)
2438 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2439 if (event->attr.exclude_guest)
2440 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2441 if (event_is_checkpointed(event))
2442 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2443 }
2444
intel_clear_masks(struct perf_event * event,int idx)2445 static inline void intel_clear_masks(struct perf_event *event, int idx)
2446 {
2447 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2448
2449 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2450 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2451 __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2452 }
2453
intel_pmu_disable_fixed(struct perf_event * event)2454 static void intel_pmu_disable_fixed(struct perf_event *event)
2455 {
2456 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2457 struct hw_perf_event *hwc = &event->hw;
2458 int idx = hwc->idx;
2459 u64 mask;
2460
2461 if (is_topdown_idx(idx)) {
2462 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2463
2464 /*
2465 * When there are other active TopDown events,
2466 * don't disable the fixed counter 3.
2467 */
2468 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2469 return;
2470 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2471 }
2472
2473 intel_clear_masks(event, idx);
2474
2475 mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2476 cpuc->fixed_ctrl_val &= ~mask;
2477 }
2478
intel_pmu_disable_event(struct perf_event * event)2479 static void intel_pmu_disable_event(struct perf_event *event)
2480 {
2481 struct hw_perf_event *hwc = &event->hw;
2482 int idx = hwc->idx;
2483
2484 switch (idx) {
2485 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2486 intel_clear_masks(event, idx);
2487 x86_pmu_disable_event(event);
2488 break;
2489 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2490 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2491 intel_pmu_disable_fixed(event);
2492 break;
2493 case INTEL_PMC_IDX_FIXED_BTS:
2494 intel_pmu_disable_bts();
2495 intel_pmu_drain_bts_buffer();
2496 return;
2497 case INTEL_PMC_IDX_FIXED_VLBR:
2498 intel_clear_masks(event, idx);
2499 break;
2500 default:
2501 intel_clear_masks(event, idx);
2502 pr_warn("Failed to disable the event with invalid index %d\n",
2503 idx);
2504 return;
2505 }
2506
2507 /*
2508 * Needs to be called after x86_pmu_disable_event,
2509 * so we don't trigger the event without PEBS bit set.
2510 */
2511 if (unlikely(event->attr.precise_ip))
2512 intel_pmu_pebs_disable(event);
2513 }
2514
intel_pmu_assign_event(struct perf_event * event,int idx)2515 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2516 {
2517 if (is_pebs_pt(event))
2518 perf_report_aux_output_id(event, idx);
2519 }
2520
intel_pmu_del_event(struct perf_event * event)2521 static void intel_pmu_del_event(struct perf_event *event)
2522 {
2523 if (needs_branch_stack(event))
2524 intel_pmu_lbr_del(event);
2525 if (event->attr.precise_ip)
2526 intel_pmu_pebs_del(event);
2527 }
2528
icl_set_topdown_event_period(struct perf_event * event)2529 static int icl_set_topdown_event_period(struct perf_event *event)
2530 {
2531 struct hw_perf_event *hwc = &event->hw;
2532 s64 left = local64_read(&hwc->period_left);
2533
2534 /*
2535 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2536 * Software should start both registers, PERF_METRICS and fixed
2537 * counter 3, from zero.
2538 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2539 * After that, both MSRs will be cleared for each read.
2540 * Don't need to clear them again.
2541 */
2542 if (left == x86_pmu.max_period) {
2543 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2544 wrmsrl(MSR_PERF_METRICS, 0);
2545 hwc->saved_slots = 0;
2546 hwc->saved_metric = 0;
2547 }
2548
2549 if ((hwc->saved_slots) && is_slots_event(event)) {
2550 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2551 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2552 }
2553
2554 perf_event_update_userpage(event);
2555
2556 return 0;
2557 }
2558
adl_set_topdown_event_period(struct perf_event * event)2559 static int adl_set_topdown_event_period(struct perf_event *event)
2560 {
2561 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2562
2563 if (pmu->cpu_type != hybrid_big)
2564 return 0;
2565
2566 return icl_set_topdown_event_period(event);
2567 }
2568
2569 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2570
icl_get_metrics_event_value(u64 metric,u64 slots,int idx)2571 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2572 {
2573 u32 val;
2574
2575 /*
2576 * The metric is reported as an 8bit integer fraction
2577 * summing up to 0xff.
2578 * slots-in-metric = (Metric / 0xff) * slots
2579 */
2580 val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2581 return mul_u64_u32_div(slots, val, 0xff);
2582 }
2583
icl_get_topdown_value(struct perf_event * event,u64 slots,u64 metrics)2584 static u64 icl_get_topdown_value(struct perf_event *event,
2585 u64 slots, u64 metrics)
2586 {
2587 int idx = event->hw.idx;
2588 u64 delta;
2589
2590 if (is_metric_idx(idx))
2591 delta = icl_get_metrics_event_value(metrics, slots, idx);
2592 else
2593 delta = slots;
2594
2595 return delta;
2596 }
2597
__icl_update_topdown_event(struct perf_event * event,u64 slots,u64 metrics,u64 last_slots,u64 last_metrics)2598 static void __icl_update_topdown_event(struct perf_event *event,
2599 u64 slots, u64 metrics,
2600 u64 last_slots, u64 last_metrics)
2601 {
2602 u64 delta, last = 0;
2603
2604 delta = icl_get_topdown_value(event, slots, metrics);
2605 if (last_slots)
2606 last = icl_get_topdown_value(event, last_slots, last_metrics);
2607
2608 /*
2609 * The 8bit integer fraction of metric may be not accurate,
2610 * especially when the changes is very small.
2611 * For example, if only a few bad_spec happens, the fraction
2612 * may be reduced from 1 to 0. If so, the bad_spec event value
2613 * will be 0 which is definitely less than the last value.
2614 * Avoid update event->count for this case.
2615 */
2616 if (delta > last) {
2617 delta -= last;
2618 local64_add(delta, &event->count);
2619 }
2620 }
2621
update_saved_topdown_regs(struct perf_event * event,u64 slots,u64 metrics,int metric_end)2622 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2623 u64 metrics, int metric_end)
2624 {
2625 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2626 struct perf_event *other;
2627 int idx;
2628
2629 event->hw.saved_slots = slots;
2630 event->hw.saved_metric = metrics;
2631
2632 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2633 if (!is_topdown_idx(idx))
2634 continue;
2635 other = cpuc->events[idx];
2636 other->hw.saved_slots = slots;
2637 other->hw.saved_metric = metrics;
2638 }
2639 }
2640
2641 /*
2642 * Update all active Topdown events.
2643 *
2644 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2645 * modify by a NMI. PMU has to be disabled before calling this function.
2646 */
2647
intel_update_topdown_event(struct perf_event * event,int metric_end)2648 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2649 {
2650 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2651 struct perf_event *other;
2652 u64 slots, metrics;
2653 bool reset = true;
2654 int idx;
2655
2656 /* read Fixed counter 3 */
2657 rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2658 if (!slots)
2659 return 0;
2660
2661 /* read PERF_METRICS */
2662 rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2663
2664 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2665 if (!is_topdown_idx(idx))
2666 continue;
2667 other = cpuc->events[idx];
2668 __icl_update_topdown_event(other, slots, metrics,
2669 event ? event->hw.saved_slots : 0,
2670 event ? event->hw.saved_metric : 0);
2671 }
2672
2673 /*
2674 * Check and update this event, which may have been cleared
2675 * in active_mask e.g. x86_pmu_stop()
2676 */
2677 if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2678 __icl_update_topdown_event(event, slots, metrics,
2679 event->hw.saved_slots,
2680 event->hw.saved_metric);
2681
2682 /*
2683 * In x86_pmu_stop(), the event is cleared in active_mask first,
2684 * then drain the delta, which indicates context switch for
2685 * counting.
2686 * Save metric and slots for context switch.
2687 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2688 * Because the values will be restored in next schedule in.
2689 */
2690 update_saved_topdown_regs(event, slots, metrics, metric_end);
2691 reset = false;
2692 }
2693
2694 if (reset) {
2695 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2696 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2697 wrmsrl(MSR_PERF_METRICS, 0);
2698 if (event)
2699 update_saved_topdown_regs(event, 0, 0, metric_end);
2700 }
2701
2702 return slots;
2703 }
2704
icl_update_topdown_event(struct perf_event * event)2705 static u64 icl_update_topdown_event(struct perf_event *event)
2706 {
2707 return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2708 x86_pmu.num_topdown_events - 1);
2709 }
2710
adl_update_topdown_event(struct perf_event * event)2711 static u64 adl_update_topdown_event(struct perf_event *event)
2712 {
2713 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2714
2715 if (pmu->cpu_type != hybrid_big)
2716 return 0;
2717
2718 return icl_update_topdown_event(event);
2719 }
2720
2721 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
2722
intel_pmu_read_topdown_event(struct perf_event * event)2723 static void intel_pmu_read_topdown_event(struct perf_event *event)
2724 {
2725 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2726
2727 /* Only need to call update_topdown_event() once for group read. */
2728 if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2729 !is_slots_event(event))
2730 return;
2731
2732 perf_pmu_disable(event->pmu);
2733 static_call(intel_pmu_update_topdown_event)(event);
2734 perf_pmu_enable(event->pmu);
2735 }
2736
intel_pmu_read_event(struct perf_event * event)2737 static void intel_pmu_read_event(struct perf_event *event)
2738 {
2739 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2740 intel_pmu_auto_reload_read(event);
2741 else if (is_topdown_count(event))
2742 intel_pmu_read_topdown_event(event);
2743 else
2744 x86_perf_event_update(event);
2745 }
2746
intel_pmu_enable_fixed(struct perf_event * event)2747 static void intel_pmu_enable_fixed(struct perf_event *event)
2748 {
2749 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2750 struct hw_perf_event *hwc = &event->hw;
2751 u64 mask, bits = 0;
2752 int idx = hwc->idx;
2753
2754 if (is_topdown_idx(idx)) {
2755 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2756 /*
2757 * When there are other active TopDown events,
2758 * don't enable the fixed counter 3 again.
2759 */
2760 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2761 return;
2762
2763 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2764 }
2765
2766 intel_set_masks(event, idx);
2767
2768 /*
2769 * Enable IRQ generation (0x8), if not PEBS,
2770 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2771 * if requested:
2772 */
2773 if (!event->attr.precise_ip)
2774 bits |= INTEL_FIXED_0_ENABLE_PMI;
2775 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2776 bits |= INTEL_FIXED_0_USER;
2777 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2778 bits |= INTEL_FIXED_0_KERNEL;
2779
2780 /*
2781 * ANY bit is supported in v3 and up
2782 */
2783 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2784 bits |= INTEL_FIXED_0_ANYTHREAD;
2785
2786 idx -= INTEL_PMC_IDX_FIXED;
2787 bits = intel_fixed_bits_by_idx(idx, bits);
2788 mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2789
2790 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2791 bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2792 mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2793 }
2794
2795 cpuc->fixed_ctrl_val &= ~mask;
2796 cpuc->fixed_ctrl_val |= bits;
2797 }
2798
intel_pmu_enable_event(struct perf_event * event)2799 static void intel_pmu_enable_event(struct perf_event *event)
2800 {
2801 struct hw_perf_event *hwc = &event->hw;
2802 int idx = hwc->idx;
2803
2804 if (unlikely(event->attr.precise_ip))
2805 intel_pmu_pebs_enable(event);
2806
2807 switch (idx) {
2808 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2809 intel_set_masks(event, idx);
2810 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2811 break;
2812 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2813 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2814 intel_pmu_enable_fixed(event);
2815 break;
2816 case INTEL_PMC_IDX_FIXED_BTS:
2817 if (!__this_cpu_read(cpu_hw_events.enabled))
2818 return;
2819 intel_pmu_enable_bts(hwc->config);
2820 break;
2821 case INTEL_PMC_IDX_FIXED_VLBR:
2822 intel_set_masks(event, idx);
2823 break;
2824 default:
2825 pr_warn("Failed to enable the event with invalid index %d\n",
2826 idx);
2827 }
2828 }
2829
intel_pmu_add_event(struct perf_event * event)2830 static void intel_pmu_add_event(struct perf_event *event)
2831 {
2832 if (event->attr.precise_ip)
2833 intel_pmu_pebs_add(event);
2834 if (needs_branch_stack(event))
2835 intel_pmu_lbr_add(event);
2836 }
2837
2838 /*
2839 * Save and restart an expired event. Called by NMI contexts,
2840 * so it has to be careful about preempting normal event ops:
2841 */
intel_pmu_save_and_restart(struct perf_event * event)2842 int intel_pmu_save_and_restart(struct perf_event *event)
2843 {
2844 static_call(x86_pmu_update)(event);
2845 /*
2846 * For a checkpointed counter always reset back to 0. This
2847 * avoids a situation where the counter overflows, aborts the
2848 * transaction and is then set back to shortly before the
2849 * overflow, and overflows and aborts again.
2850 */
2851 if (unlikely(event_is_checkpointed(event))) {
2852 /* No race with NMIs because the counter should not be armed */
2853 wrmsrl(event->hw.event_base, 0);
2854 local64_set(&event->hw.prev_count, 0);
2855 }
2856 return static_call(x86_pmu_set_period)(event);
2857 }
2858
intel_pmu_set_period(struct perf_event * event)2859 static int intel_pmu_set_period(struct perf_event *event)
2860 {
2861 if (unlikely(is_topdown_count(event)))
2862 return static_call(intel_pmu_set_topdown_event_period)(event);
2863
2864 return x86_perf_event_set_period(event);
2865 }
2866
intel_pmu_update(struct perf_event * event)2867 static u64 intel_pmu_update(struct perf_event *event)
2868 {
2869 if (unlikely(is_topdown_count(event)))
2870 return static_call(intel_pmu_update_topdown_event)(event);
2871
2872 return x86_perf_event_update(event);
2873 }
2874
intel_pmu_reset(void)2875 static void intel_pmu_reset(void)
2876 {
2877 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2878 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2879 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2880 int num_counters = hybrid(cpuc->pmu, num_counters);
2881 unsigned long flags;
2882 int idx;
2883
2884 if (!num_counters)
2885 return;
2886
2887 local_irq_save(flags);
2888
2889 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2890
2891 for (idx = 0; idx < num_counters; idx++) {
2892 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2893 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
2894 }
2895 for (idx = 0; idx < num_counters_fixed; idx++) {
2896 if (fixed_counter_disabled(idx, cpuc->pmu))
2897 continue;
2898 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2899 }
2900
2901 if (ds)
2902 ds->bts_index = ds->bts_buffer_base;
2903
2904 /* Ack all overflows and disable fixed counters */
2905 if (x86_pmu.version >= 2) {
2906 intel_pmu_ack_status(intel_pmu_get_status());
2907 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2908 }
2909
2910 /* Reset LBRs and LBR freezing */
2911 if (x86_pmu.lbr_nr) {
2912 update_debugctlmsr(get_debugctlmsr() &
2913 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2914 }
2915
2916 local_irq_restore(flags);
2917 }
2918
2919 /*
2920 * We may be running with guest PEBS events created by KVM, and the
2921 * PEBS records are logged into the guest's DS and invisible to host.
2922 *
2923 * In the case of guest PEBS overflow, we only trigger a fake event
2924 * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2925 * The guest will then vm-entry and check the guest DS area to read
2926 * the guest PEBS records.
2927 *
2928 * The contents and other behavior of the guest event do not matter.
2929 */
x86_pmu_handle_guest_pebs(struct pt_regs * regs,struct perf_sample_data * data)2930 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2931 struct perf_sample_data *data)
2932 {
2933 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2934 u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2935 struct perf_event *event = NULL;
2936 int bit;
2937
2938 if (!unlikely(perf_guest_state()))
2939 return;
2940
2941 if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2942 !guest_pebs_idxs)
2943 return;
2944
2945 for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2946 INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2947 event = cpuc->events[bit];
2948 if (!event->attr.precise_ip)
2949 continue;
2950
2951 perf_sample_data_init(data, 0, event->hw.last_period);
2952 if (perf_event_overflow(event, data, regs))
2953 x86_pmu_stop(event, 0);
2954
2955 /* Inject one fake event is enough. */
2956 break;
2957 }
2958 }
2959
handle_pmi_common(struct pt_regs * regs,u64 status)2960 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2961 {
2962 struct perf_sample_data data;
2963 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2964 int bit;
2965 int handled = 0;
2966 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2967
2968 inc_irq_stat(apic_perf_irqs);
2969
2970 /*
2971 * Ignore a range of extra bits in status that do not indicate
2972 * overflow by themselves.
2973 */
2974 status &= ~(GLOBAL_STATUS_COND_CHG |
2975 GLOBAL_STATUS_ASIF |
2976 GLOBAL_STATUS_LBRS_FROZEN);
2977 if (!status)
2978 return 0;
2979 /*
2980 * In case multiple PEBS events are sampled at the same time,
2981 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2982 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2983 * having their bits set in the status register. This is a sign
2984 * that there was at least one PEBS record pending at the time
2985 * of the PMU interrupt. PEBS counters must only be processed
2986 * via the drain_pebs() calls and not via the regular sample
2987 * processing loop coming after that the function, otherwise
2988 * phony regular samples may be generated in the sampling buffer
2989 * not marked with the EXACT tag. Another possibility is to have
2990 * one PEBS event and at least one non-PEBS event which overflows
2991 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2992 * not be set, yet the overflow status bit for the PEBS counter will
2993 * be on Skylake.
2994 *
2995 * To avoid this problem, we systematically ignore the PEBS-enabled
2996 * counters from the GLOBAL_STATUS mask and we always process PEBS
2997 * events via drain_pebs().
2998 */
2999 status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
3000
3001 /*
3002 * PEBS overflow sets bit 62 in the global status register
3003 */
3004 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3005 u64 pebs_enabled = cpuc->pebs_enabled;
3006
3007 handled++;
3008 x86_pmu_handle_guest_pebs(regs, &data);
3009 x86_pmu.drain_pebs(regs, &data);
3010 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
3011
3012 /*
3013 * PMI throttle may be triggered, which stops the PEBS event.
3014 * Although cpuc->pebs_enabled is updated accordingly, the
3015 * MSR_IA32_PEBS_ENABLE is not updated. Because the
3016 * cpuc->enabled has been forced to 0 in PMI.
3017 * Update the MSR if pebs_enabled is changed.
3018 */
3019 if (pebs_enabled != cpuc->pebs_enabled)
3020 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3021 }
3022
3023 /*
3024 * Intel PT
3025 */
3026 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3027 handled++;
3028 if (!perf_guest_handle_intel_pt_intr())
3029 intel_pt_interrupt();
3030 }
3031
3032 /*
3033 * Intel Perf metrics
3034 */
3035 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3036 handled++;
3037 static_call(intel_pmu_update_topdown_event)(NULL);
3038 }
3039
3040 /*
3041 * Checkpointed counters can lead to 'spurious' PMIs because the
3042 * rollback caused by the PMI will have cleared the overflow status
3043 * bit. Therefore always force probe these counters.
3044 */
3045 status |= cpuc->intel_cp_status;
3046
3047 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3048 struct perf_event *event = cpuc->events[bit];
3049
3050 handled++;
3051
3052 if (!test_bit(bit, cpuc->active_mask))
3053 continue;
3054
3055 if (!intel_pmu_save_and_restart(event))
3056 continue;
3057
3058 perf_sample_data_init(&data, 0, event->hw.last_period);
3059
3060 if (has_branch_stack(event))
3061 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack);
3062
3063 if (perf_event_overflow(event, &data, regs))
3064 x86_pmu_stop(event, 0);
3065 }
3066
3067 return handled;
3068 }
3069
3070 /*
3071 * This handler is triggered by the local APIC, so the APIC IRQ handling
3072 * rules apply:
3073 */
intel_pmu_handle_irq(struct pt_regs * regs)3074 static int intel_pmu_handle_irq(struct pt_regs *regs)
3075 {
3076 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3077 bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3078 bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3079 int loops;
3080 u64 status;
3081 int handled;
3082 int pmu_enabled;
3083
3084 /*
3085 * Save the PMU state.
3086 * It needs to be restored when leaving the handler.
3087 */
3088 pmu_enabled = cpuc->enabled;
3089 /*
3090 * In general, the early ACK is only applied for old platforms.
3091 * For the big core starts from Haswell, the late ACK should be
3092 * applied.
3093 * For the small core after Tremont, we have to do the ACK right
3094 * before re-enabling counters, which is in the middle of the
3095 * NMI handler.
3096 */
3097 if (!late_ack && !mid_ack)
3098 apic_write(APIC_LVTPC, APIC_DM_NMI);
3099 intel_bts_disable_local();
3100 cpuc->enabled = 0;
3101 __intel_pmu_disable_all(true);
3102 handled = intel_pmu_drain_bts_buffer();
3103 handled += intel_bts_interrupt();
3104 status = intel_pmu_get_status();
3105 if (!status)
3106 goto done;
3107
3108 loops = 0;
3109 again:
3110 intel_pmu_lbr_read();
3111 intel_pmu_ack_status(status);
3112 if (++loops > 100) {
3113 static bool warned;
3114
3115 if (!warned) {
3116 WARN(1, "perfevents: irq loop stuck!\n");
3117 perf_event_print_debug();
3118 warned = true;
3119 }
3120 intel_pmu_reset();
3121 goto done;
3122 }
3123
3124 handled += handle_pmi_common(regs, status);
3125
3126 /*
3127 * Repeat if there is more work to be done:
3128 */
3129 status = intel_pmu_get_status();
3130 if (status)
3131 goto again;
3132
3133 done:
3134 if (mid_ack)
3135 apic_write(APIC_LVTPC, APIC_DM_NMI);
3136 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3137 cpuc->enabled = pmu_enabled;
3138 if (pmu_enabled)
3139 __intel_pmu_enable_all(0, true);
3140 intel_bts_enable_local();
3141
3142 /*
3143 * Only unmask the NMI after the overflow counters
3144 * have been reset. This avoids spurious NMIs on
3145 * Haswell CPUs.
3146 */
3147 if (late_ack)
3148 apic_write(APIC_LVTPC, APIC_DM_NMI);
3149 return handled;
3150 }
3151
3152 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)3153 intel_bts_constraints(struct perf_event *event)
3154 {
3155 if (unlikely(intel_pmu_has_bts(event)))
3156 return &bts_constraint;
3157
3158 return NULL;
3159 }
3160
3161 /*
3162 * Note: matches a fake event, like Fixed2.
3163 */
3164 static struct event_constraint *
intel_vlbr_constraints(struct perf_event * event)3165 intel_vlbr_constraints(struct perf_event *event)
3166 {
3167 struct event_constraint *c = &vlbr_constraint;
3168
3169 if (unlikely(constraint_match(c, event->hw.config))) {
3170 event->hw.flags |= c->flags;
3171 return c;
3172 }
3173
3174 return NULL;
3175 }
3176
intel_alt_er(struct cpu_hw_events * cpuc,int idx,u64 config)3177 static int intel_alt_er(struct cpu_hw_events *cpuc,
3178 int idx, u64 config)
3179 {
3180 struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3181 int alt_idx = idx;
3182
3183 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3184 return idx;
3185
3186 if (idx == EXTRA_REG_RSP_0)
3187 alt_idx = EXTRA_REG_RSP_1;
3188
3189 if (idx == EXTRA_REG_RSP_1)
3190 alt_idx = EXTRA_REG_RSP_0;
3191
3192 if (config & ~extra_regs[alt_idx].valid_mask)
3193 return idx;
3194
3195 return alt_idx;
3196 }
3197
intel_fixup_er(struct perf_event * event,int idx)3198 static void intel_fixup_er(struct perf_event *event, int idx)
3199 {
3200 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3201 event->hw.extra_reg.idx = idx;
3202
3203 if (idx == EXTRA_REG_RSP_0) {
3204 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3205 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3206 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3207 } else if (idx == EXTRA_REG_RSP_1) {
3208 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3209 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3210 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3211 }
3212 }
3213
3214 /*
3215 * manage allocation of shared extra msr for certain events
3216 *
3217 * sharing can be:
3218 * per-cpu: to be shared between the various events on a single PMU
3219 * per-core: per-cpu + shared by HT threads
3220 */
3221 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)3222 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3223 struct perf_event *event,
3224 struct hw_perf_event_extra *reg)
3225 {
3226 struct event_constraint *c = &emptyconstraint;
3227 struct er_account *era;
3228 unsigned long flags;
3229 int idx = reg->idx;
3230
3231 /*
3232 * reg->alloc can be set due to existing state, so for fake cpuc we
3233 * need to ignore this, otherwise we might fail to allocate proper fake
3234 * state for this extra reg constraint. Also see the comment below.
3235 */
3236 if (reg->alloc && !cpuc->is_fake)
3237 return NULL; /* call x86_get_event_constraint() */
3238
3239 again:
3240 era = &cpuc->shared_regs->regs[idx];
3241 /*
3242 * we use spin_lock_irqsave() to avoid lockdep issues when
3243 * passing a fake cpuc
3244 */
3245 raw_spin_lock_irqsave(&era->lock, flags);
3246
3247 if (!atomic_read(&era->ref) || era->config == reg->config) {
3248
3249 /*
3250 * If its a fake cpuc -- as per validate_{group,event}() we
3251 * shouldn't touch event state and we can avoid doing so
3252 * since both will only call get_event_constraints() once
3253 * on each event, this avoids the need for reg->alloc.
3254 *
3255 * Not doing the ER fixup will only result in era->reg being
3256 * wrong, but since we won't actually try and program hardware
3257 * this isn't a problem either.
3258 */
3259 if (!cpuc->is_fake) {
3260 if (idx != reg->idx)
3261 intel_fixup_er(event, idx);
3262
3263 /*
3264 * x86_schedule_events() can call get_event_constraints()
3265 * multiple times on events in the case of incremental
3266 * scheduling(). reg->alloc ensures we only do the ER
3267 * allocation once.
3268 */
3269 reg->alloc = 1;
3270 }
3271
3272 /* lock in msr value */
3273 era->config = reg->config;
3274 era->reg = reg->reg;
3275
3276 /* one more user */
3277 atomic_inc(&era->ref);
3278
3279 /*
3280 * need to call x86_get_event_constraint()
3281 * to check if associated event has constraints
3282 */
3283 c = NULL;
3284 } else {
3285 idx = intel_alt_er(cpuc, idx, reg->config);
3286 if (idx != reg->idx) {
3287 raw_spin_unlock_irqrestore(&era->lock, flags);
3288 goto again;
3289 }
3290 }
3291 raw_spin_unlock_irqrestore(&era->lock, flags);
3292
3293 return c;
3294 }
3295
3296 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)3297 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3298 struct hw_perf_event_extra *reg)
3299 {
3300 struct er_account *era;
3301
3302 /*
3303 * Only put constraint if extra reg was actually allocated. Also takes
3304 * care of event which do not use an extra shared reg.
3305 *
3306 * Also, if this is a fake cpuc we shouldn't touch any event state
3307 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3308 * either since it'll be thrown out.
3309 */
3310 if (!reg->alloc || cpuc->is_fake)
3311 return;
3312
3313 era = &cpuc->shared_regs->regs[reg->idx];
3314
3315 /* one fewer user */
3316 atomic_dec(&era->ref);
3317
3318 /* allocate again next time */
3319 reg->alloc = 0;
3320 }
3321
3322 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3323 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3324 struct perf_event *event)
3325 {
3326 struct event_constraint *c = NULL, *d;
3327 struct hw_perf_event_extra *xreg, *breg;
3328
3329 xreg = &event->hw.extra_reg;
3330 if (xreg->idx != EXTRA_REG_NONE) {
3331 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3332 if (c == &emptyconstraint)
3333 return c;
3334 }
3335 breg = &event->hw.branch_reg;
3336 if (breg->idx != EXTRA_REG_NONE) {
3337 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3338 if (d == &emptyconstraint) {
3339 __intel_shared_reg_put_constraints(cpuc, xreg);
3340 c = d;
3341 }
3342 }
3343 return c;
3344 }
3345
3346 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3347 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3348 struct perf_event *event)
3349 {
3350 struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3351 struct event_constraint *c;
3352
3353 if (event_constraints) {
3354 for_each_event_constraint(c, event_constraints) {
3355 if (constraint_match(c, event->hw.config)) {
3356 event->hw.flags |= c->flags;
3357 return c;
3358 }
3359 }
3360 }
3361
3362 return &hybrid_var(cpuc->pmu, unconstrained);
3363 }
3364
3365 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3366 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3367 struct perf_event *event)
3368 {
3369 struct event_constraint *c;
3370
3371 c = intel_vlbr_constraints(event);
3372 if (c)
3373 return c;
3374
3375 c = intel_bts_constraints(event);
3376 if (c)
3377 return c;
3378
3379 c = intel_shared_regs_constraints(cpuc, event);
3380 if (c)
3381 return c;
3382
3383 c = intel_pebs_constraints(event);
3384 if (c)
3385 return c;
3386
3387 return x86_get_event_constraints(cpuc, idx, event);
3388 }
3389
3390 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)3391 intel_start_scheduling(struct cpu_hw_events *cpuc)
3392 {
3393 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3394 struct intel_excl_states *xl;
3395 int tid = cpuc->excl_thread_id;
3396
3397 /*
3398 * nothing needed if in group validation mode
3399 */
3400 if (cpuc->is_fake || !is_ht_workaround_enabled())
3401 return;
3402
3403 /*
3404 * no exclusion needed
3405 */
3406 if (WARN_ON_ONCE(!excl_cntrs))
3407 return;
3408
3409 xl = &excl_cntrs->states[tid];
3410
3411 xl->sched_started = true;
3412 /*
3413 * lock shared state until we are done scheduling
3414 * in stop_event_scheduling()
3415 * makes scheduling appear as a transaction
3416 */
3417 raw_spin_lock(&excl_cntrs->lock);
3418 }
3419
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)3420 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3421 {
3422 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3423 struct event_constraint *c = cpuc->event_constraint[idx];
3424 struct intel_excl_states *xl;
3425 int tid = cpuc->excl_thread_id;
3426
3427 if (cpuc->is_fake || !is_ht_workaround_enabled())
3428 return;
3429
3430 if (WARN_ON_ONCE(!excl_cntrs))
3431 return;
3432
3433 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3434 return;
3435
3436 xl = &excl_cntrs->states[tid];
3437
3438 lockdep_assert_held(&excl_cntrs->lock);
3439
3440 if (c->flags & PERF_X86_EVENT_EXCL)
3441 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3442 else
3443 xl->state[cntr] = INTEL_EXCL_SHARED;
3444 }
3445
3446 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)3447 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3448 {
3449 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3450 struct intel_excl_states *xl;
3451 int tid = cpuc->excl_thread_id;
3452
3453 /*
3454 * nothing needed if in group validation mode
3455 */
3456 if (cpuc->is_fake || !is_ht_workaround_enabled())
3457 return;
3458 /*
3459 * no exclusion needed
3460 */
3461 if (WARN_ON_ONCE(!excl_cntrs))
3462 return;
3463
3464 xl = &excl_cntrs->states[tid];
3465
3466 xl->sched_started = false;
3467 /*
3468 * release shared state lock (acquired in intel_start_scheduling())
3469 */
3470 raw_spin_unlock(&excl_cntrs->lock);
3471 }
3472
3473 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)3474 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3475 {
3476 WARN_ON_ONCE(!cpuc->constraint_list);
3477
3478 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3479 struct event_constraint *cx;
3480
3481 /*
3482 * grab pre-allocated constraint entry
3483 */
3484 cx = &cpuc->constraint_list[idx];
3485
3486 /*
3487 * initialize dynamic constraint
3488 * with static constraint
3489 */
3490 *cx = *c;
3491
3492 /*
3493 * mark constraint as dynamic
3494 */
3495 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3496 c = cx;
3497 }
3498
3499 return c;
3500 }
3501
3502 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)3503 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3504 int idx, struct event_constraint *c)
3505 {
3506 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3507 struct intel_excl_states *xlo;
3508 int tid = cpuc->excl_thread_id;
3509 int is_excl, i, w;
3510
3511 /*
3512 * validating a group does not require
3513 * enforcing cross-thread exclusion
3514 */
3515 if (cpuc->is_fake || !is_ht_workaround_enabled())
3516 return c;
3517
3518 /*
3519 * no exclusion needed
3520 */
3521 if (WARN_ON_ONCE(!excl_cntrs))
3522 return c;
3523
3524 /*
3525 * because we modify the constraint, we need
3526 * to make a copy. Static constraints come
3527 * from static const tables.
3528 *
3529 * only needed when constraint has not yet
3530 * been cloned (marked dynamic)
3531 */
3532 c = dyn_constraint(cpuc, c, idx);
3533
3534 /*
3535 * From here on, the constraint is dynamic.
3536 * Either it was just allocated above, or it
3537 * was allocated during a earlier invocation
3538 * of this function
3539 */
3540
3541 /*
3542 * state of sibling HT
3543 */
3544 xlo = &excl_cntrs->states[tid ^ 1];
3545
3546 /*
3547 * event requires exclusive counter access
3548 * across HT threads
3549 */
3550 is_excl = c->flags & PERF_X86_EVENT_EXCL;
3551 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3552 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3553 if (!cpuc->n_excl++)
3554 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3555 }
3556
3557 /*
3558 * Modify static constraint with current dynamic
3559 * state of thread
3560 *
3561 * EXCLUSIVE: sibling counter measuring exclusive event
3562 * SHARED : sibling counter measuring non-exclusive event
3563 * UNUSED : sibling counter unused
3564 */
3565 w = c->weight;
3566 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3567 /*
3568 * exclusive event in sibling counter
3569 * our corresponding counter cannot be used
3570 * regardless of our event
3571 */
3572 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3573 __clear_bit(i, c->idxmsk);
3574 w--;
3575 continue;
3576 }
3577 /*
3578 * if measuring an exclusive event, sibling
3579 * measuring non-exclusive, then counter cannot
3580 * be used
3581 */
3582 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3583 __clear_bit(i, c->idxmsk);
3584 w--;
3585 continue;
3586 }
3587 }
3588
3589 /*
3590 * if we return an empty mask, then switch
3591 * back to static empty constraint to avoid
3592 * the cost of freeing later on
3593 */
3594 if (!w)
3595 c = &emptyconstraint;
3596
3597 c->weight = w;
3598
3599 return c;
3600 }
3601
3602 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3603 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3604 struct perf_event *event)
3605 {
3606 struct event_constraint *c1, *c2;
3607
3608 c1 = cpuc->event_constraint[idx];
3609
3610 /*
3611 * first time only
3612 * - static constraint: no change across incremental scheduling calls
3613 * - dynamic constraint: handled by intel_get_excl_constraints()
3614 */
3615 c2 = __intel_get_event_constraints(cpuc, idx, event);
3616 if (c1) {
3617 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3618 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3619 c1->weight = c2->weight;
3620 c2 = c1;
3621 }
3622
3623 if (cpuc->excl_cntrs)
3624 return intel_get_excl_constraints(cpuc, event, idx, c2);
3625
3626 return c2;
3627 }
3628
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3629 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3630 struct perf_event *event)
3631 {
3632 struct hw_perf_event *hwc = &event->hw;
3633 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3634 int tid = cpuc->excl_thread_id;
3635 struct intel_excl_states *xl;
3636
3637 /*
3638 * nothing needed if in group validation mode
3639 */
3640 if (cpuc->is_fake)
3641 return;
3642
3643 if (WARN_ON_ONCE(!excl_cntrs))
3644 return;
3645
3646 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3647 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3648 if (!--cpuc->n_excl)
3649 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3650 }
3651
3652 /*
3653 * If event was actually assigned, then mark the counter state as
3654 * unused now.
3655 */
3656 if (hwc->idx >= 0) {
3657 xl = &excl_cntrs->states[tid];
3658
3659 /*
3660 * put_constraint may be called from x86_schedule_events()
3661 * which already has the lock held so here make locking
3662 * conditional.
3663 */
3664 if (!xl->sched_started)
3665 raw_spin_lock(&excl_cntrs->lock);
3666
3667 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3668
3669 if (!xl->sched_started)
3670 raw_spin_unlock(&excl_cntrs->lock);
3671 }
3672 }
3673
3674 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3675 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3676 struct perf_event *event)
3677 {
3678 struct hw_perf_event_extra *reg;
3679
3680 reg = &event->hw.extra_reg;
3681 if (reg->idx != EXTRA_REG_NONE)
3682 __intel_shared_reg_put_constraints(cpuc, reg);
3683
3684 reg = &event->hw.branch_reg;
3685 if (reg->idx != EXTRA_REG_NONE)
3686 __intel_shared_reg_put_constraints(cpuc, reg);
3687 }
3688
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3689 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3690 struct perf_event *event)
3691 {
3692 intel_put_shared_regs_event_constraints(cpuc, event);
3693
3694 /*
3695 * is PMU has exclusive counter restrictions, then
3696 * all events are subject to and must call the
3697 * put_excl_constraints() routine
3698 */
3699 if (cpuc->excl_cntrs)
3700 intel_put_excl_constraints(cpuc, event);
3701 }
3702
intel_pebs_aliases_core2(struct perf_event * event)3703 static void intel_pebs_aliases_core2(struct perf_event *event)
3704 {
3705 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3706 /*
3707 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3708 * (0x003c) so that we can use it with PEBS.
3709 *
3710 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3711 * PEBS capable. However we can use INST_RETIRED.ANY_P
3712 * (0x00c0), which is a PEBS capable event, to get the same
3713 * count.
3714 *
3715 * INST_RETIRED.ANY_P counts the number of cycles that retires
3716 * CNTMASK instructions. By setting CNTMASK to a value (16)
3717 * larger than the maximum number of instructions that can be
3718 * retired per cycle (4) and then inverting the condition, we
3719 * count all cycles that retire 16 or less instructions, which
3720 * is every cycle.
3721 *
3722 * Thereby we gain a PEBS capable cycle counter.
3723 */
3724 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3725
3726 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3727 event->hw.config = alt_config;
3728 }
3729 }
3730
intel_pebs_aliases_snb(struct perf_event * event)3731 static void intel_pebs_aliases_snb(struct perf_event *event)
3732 {
3733 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3734 /*
3735 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3736 * (0x003c) so that we can use it with PEBS.
3737 *
3738 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3739 * PEBS capable. However we can use UOPS_RETIRED.ALL
3740 * (0x01c2), which is a PEBS capable event, to get the same
3741 * count.
3742 *
3743 * UOPS_RETIRED.ALL counts the number of cycles that retires
3744 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3745 * larger than the maximum number of micro-ops that can be
3746 * retired per cycle (4) and then inverting the condition, we
3747 * count all cycles that retire 16 or less micro-ops, which
3748 * is every cycle.
3749 *
3750 * Thereby we gain a PEBS capable cycle counter.
3751 */
3752 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3753
3754 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3755 event->hw.config = alt_config;
3756 }
3757 }
3758
intel_pebs_aliases_precdist(struct perf_event * event)3759 static void intel_pebs_aliases_precdist(struct perf_event *event)
3760 {
3761 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3762 /*
3763 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3764 * (0x003c) so that we can use it with PEBS.
3765 *
3766 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3767 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3768 * (0x01c0), which is a PEBS capable event, to get the same
3769 * count.
3770 *
3771 * The PREC_DIST event has special support to minimize sample
3772 * shadowing effects. One drawback is that it can be
3773 * only programmed on counter 1, but that seems like an
3774 * acceptable trade off.
3775 */
3776 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3777
3778 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3779 event->hw.config = alt_config;
3780 }
3781 }
3782
intel_pebs_aliases_ivb(struct perf_event * event)3783 static void intel_pebs_aliases_ivb(struct perf_event *event)
3784 {
3785 if (event->attr.precise_ip < 3)
3786 return intel_pebs_aliases_snb(event);
3787 return intel_pebs_aliases_precdist(event);
3788 }
3789
intel_pebs_aliases_skl(struct perf_event * event)3790 static void intel_pebs_aliases_skl(struct perf_event *event)
3791 {
3792 if (event->attr.precise_ip < 3)
3793 return intel_pebs_aliases_core2(event);
3794 return intel_pebs_aliases_precdist(event);
3795 }
3796
intel_pmu_large_pebs_flags(struct perf_event * event)3797 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3798 {
3799 unsigned long flags = x86_pmu.large_pebs_flags;
3800
3801 if (event->attr.use_clockid)
3802 flags &= ~PERF_SAMPLE_TIME;
3803 if (!event->attr.exclude_kernel)
3804 flags &= ~PERF_SAMPLE_REGS_USER;
3805 if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3806 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3807 return flags;
3808 }
3809
intel_pmu_bts_config(struct perf_event * event)3810 static int intel_pmu_bts_config(struct perf_event *event)
3811 {
3812 struct perf_event_attr *attr = &event->attr;
3813
3814 if (unlikely(intel_pmu_has_bts(event))) {
3815 /* BTS is not supported by this architecture. */
3816 if (!x86_pmu.bts_active)
3817 return -EOPNOTSUPP;
3818
3819 /* BTS is currently only allowed for user-mode. */
3820 if (!attr->exclude_kernel)
3821 return -EOPNOTSUPP;
3822
3823 /* BTS is not allowed for precise events. */
3824 if (attr->precise_ip)
3825 return -EOPNOTSUPP;
3826
3827 /* disallow bts if conflicting events are present */
3828 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3829 return -EBUSY;
3830
3831 event->destroy = hw_perf_lbr_event_destroy;
3832 }
3833
3834 return 0;
3835 }
3836
core_pmu_hw_config(struct perf_event * event)3837 static int core_pmu_hw_config(struct perf_event *event)
3838 {
3839 int ret = x86_pmu_hw_config(event);
3840
3841 if (ret)
3842 return ret;
3843
3844 return intel_pmu_bts_config(event);
3845 }
3846
3847 #define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
3848 ((x86_pmu.num_topdown_events - 1) << 8))
3849
is_available_metric_event(struct perf_event * event)3850 static bool is_available_metric_event(struct perf_event *event)
3851 {
3852 return is_metric_event(event) &&
3853 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3854 }
3855
is_mem_loads_event(struct perf_event * event)3856 static inline bool is_mem_loads_event(struct perf_event *event)
3857 {
3858 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3859 }
3860
is_mem_loads_aux_event(struct perf_event * event)3861 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3862 {
3863 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3864 }
3865
require_mem_loads_aux_event(struct perf_event * event)3866 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3867 {
3868 if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3869 return false;
3870
3871 if (is_hybrid())
3872 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3873
3874 return true;
3875 }
3876
intel_pmu_has_cap(struct perf_event * event,int idx)3877 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3878 {
3879 union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3880
3881 return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3882 }
3883
intel_pmu_freq_start_period(struct perf_event * event)3884 static u64 intel_pmu_freq_start_period(struct perf_event *event)
3885 {
3886 int type = event->attr.type;
3887 u64 config, factor;
3888 s64 start;
3889
3890 /*
3891 * The 127 is the lowest possible recommended SAV (sample after value)
3892 * for a 4000 freq (default freq), according to the event list JSON file.
3893 * Also, assume the workload is idle 50% time.
3894 */
3895 factor = 64 * 4000;
3896 if (type != PERF_TYPE_HARDWARE && type != PERF_TYPE_HW_CACHE)
3897 goto end;
3898
3899 /*
3900 * The estimation of the start period in the freq mode is
3901 * based on the below assumption.
3902 *
3903 * For a cycles or an instructions event, 1GHZ of the
3904 * underlying platform, 1 IPC. The workload is idle 50% time.
3905 * The start period = 1,000,000,000 * 1 / freq / 2.
3906 * = 500,000,000 / freq
3907 *
3908 * Usually, the branch-related events occur less than the
3909 * instructions event. According to the Intel event list JSON
3910 * file, the SAV (sample after value) of a branch-related event
3911 * is usually 1/4 of an instruction event.
3912 * The start period of branch-related events = 125,000,000 / freq.
3913 *
3914 * The cache-related events occurs even less. The SAV is usually
3915 * 1/20 of an instruction event.
3916 * The start period of cache-related events = 25,000,000 / freq.
3917 */
3918 config = event->attr.config & PERF_HW_EVENT_MASK;
3919 if (type == PERF_TYPE_HARDWARE) {
3920 switch (config) {
3921 case PERF_COUNT_HW_CPU_CYCLES:
3922 case PERF_COUNT_HW_INSTRUCTIONS:
3923 case PERF_COUNT_HW_BUS_CYCLES:
3924 case PERF_COUNT_HW_STALLED_CYCLES_FRONTEND:
3925 case PERF_COUNT_HW_STALLED_CYCLES_BACKEND:
3926 case PERF_COUNT_HW_REF_CPU_CYCLES:
3927 factor = 500000000;
3928 break;
3929 case PERF_COUNT_HW_BRANCH_INSTRUCTIONS:
3930 case PERF_COUNT_HW_BRANCH_MISSES:
3931 factor = 125000000;
3932 break;
3933 case PERF_COUNT_HW_CACHE_REFERENCES:
3934 case PERF_COUNT_HW_CACHE_MISSES:
3935 factor = 25000000;
3936 break;
3937 default:
3938 goto end;
3939 }
3940 }
3941
3942 if (type == PERF_TYPE_HW_CACHE)
3943 factor = 25000000;
3944 end:
3945 /*
3946 * Usually, a prime or a number with less factors (close to prime)
3947 * is chosen as an SAV, which makes it less likely that the sampling
3948 * period synchronizes with some periodic event in the workload.
3949 * Minus 1 to make it at least avoiding values near power of twos
3950 * for the default freq.
3951 */
3952 start = DIV_ROUND_UP_ULL(factor, event->attr.sample_freq) - 1;
3953
3954 if (start > x86_pmu.max_period)
3955 start = x86_pmu.max_period;
3956
3957 if (x86_pmu.limit_period)
3958 x86_pmu.limit_period(event, &start);
3959
3960 return start;
3961 }
3962
intel_pmu_hw_config(struct perf_event * event)3963 static int intel_pmu_hw_config(struct perf_event *event)
3964 {
3965 int ret = x86_pmu_hw_config(event);
3966
3967 if (ret)
3968 return ret;
3969
3970 ret = intel_pmu_bts_config(event);
3971 if (ret)
3972 return ret;
3973
3974 if (event->attr.freq && event->attr.sample_freq) {
3975 event->hw.sample_period = intel_pmu_freq_start_period(event);
3976 event->hw.last_period = event->hw.sample_period;
3977 local64_set(&event->hw.period_left, event->hw.sample_period);
3978 }
3979
3980 if (event->attr.precise_ip) {
3981 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3982 return -EINVAL;
3983
3984 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3985 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3986 if (!(event->attr.sample_type &
3987 ~intel_pmu_large_pebs_flags(event))) {
3988 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3989 event->attach_state |= PERF_ATTACH_SCHED_CB;
3990 }
3991 }
3992 if (x86_pmu.pebs_aliases)
3993 x86_pmu.pebs_aliases(event);
3994 }
3995
3996 if (needs_branch_stack(event)) {
3997 ret = intel_pmu_setup_lbr_filter(event);
3998 if (ret)
3999 return ret;
4000 event->attach_state |= PERF_ATTACH_SCHED_CB;
4001
4002 /*
4003 * BTS is set up earlier in this path, so don't account twice
4004 */
4005 if (!unlikely(intel_pmu_has_bts(event))) {
4006 /* disallow lbr if conflicting events are present */
4007 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4008 return -EBUSY;
4009
4010 event->destroy = hw_perf_lbr_event_destroy;
4011 }
4012 }
4013
4014 if (event->attr.aux_output) {
4015 if (!event->attr.precise_ip)
4016 return -EINVAL;
4017
4018 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
4019 }
4020
4021 if ((event->attr.type == PERF_TYPE_HARDWARE) ||
4022 (event->attr.type == PERF_TYPE_HW_CACHE))
4023 return 0;
4024
4025 /*
4026 * Config Topdown slots and metric events
4027 *
4028 * The slots event on Fixed Counter 3 can support sampling,
4029 * which will be handled normally in x86_perf_event_update().
4030 *
4031 * Metric events don't support sampling and require being paired
4032 * with a slots event as group leader. When the slots event
4033 * is used in a metrics group, it too cannot support sampling.
4034 */
4035 if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4036 if (event->attr.config1 || event->attr.config2)
4037 return -EINVAL;
4038
4039 /*
4040 * The TopDown metrics events and slots event don't
4041 * support any filters.
4042 */
4043 if (event->attr.config & X86_ALL_EVENT_FLAGS)
4044 return -EINVAL;
4045
4046 if (is_available_metric_event(event)) {
4047 struct perf_event *leader = event->group_leader;
4048
4049 /* The metric events don't support sampling. */
4050 if (is_sampling_event(event))
4051 return -EINVAL;
4052
4053 /* The metric events require a slots group leader. */
4054 if (!is_slots_event(leader))
4055 return -EINVAL;
4056
4057 /*
4058 * The leader/SLOTS must not be a sampling event for
4059 * metric use; hardware requires it starts at 0 when used
4060 * in conjunction with MSR_PERF_METRICS.
4061 */
4062 if (is_sampling_event(leader))
4063 return -EINVAL;
4064
4065 event->event_caps |= PERF_EV_CAP_SIBLING;
4066 /*
4067 * Only once we have a METRICs sibling do we
4068 * need TopDown magic.
4069 */
4070 leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4071 event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4072 }
4073 }
4074
4075 /*
4076 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4077 * doesn't function quite right. As a work-around it needs to always be
4078 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4079 * The actual count of this second event is irrelevant it just needs
4080 * to be active to make the first event function correctly.
4081 *
4082 * In a group, the auxiliary event must be in front of the load latency
4083 * event. The rule is to simplify the implementation of the check.
4084 * That's because perf cannot have a complete group at the moment.
4085 */
4086 if (require_mem_loads_aux_event(event) &&
4087 (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4088 is_mem_loads_event(event)) {
4089 struct perf_event *leader = event->group_leader;
4090 struct perf_event *sibling = NULL;
4091
4092 /*
4093 * When this memload event is also the first event (no group
4094 * exists yet), then there is no aux event before it.
4095 */
4096 if (leader == event)
4097 return -ENODATA;
4098
4099 if (!is_mem_loads_aux_event(leader)) {
4100 for_each_sibling_event(sibling, leader) {
4101 if (is_mem_loads_aux_event(sibling))
4102 break;
4103 }
4104 if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4105 return -ENODATA;
4106 }
4107 }
4108
4109 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4110 return 0;
4111
4112 if (x86_pmu.version < 3)
4113 return -EINVAL;
4114
4115 ret = perf_allow_cpu(&event->attr);
4116 if (ret)
4117 return ret;
4118
4119 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4120
4121 return 0;
4122 }
4123
4124 /*
4125 * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4126 * The host perf conext helps to prepare the values of the real hardware for
4127 * a set of msrs that need to be switched atomically in a vmx transaction.
4128 *
4129 * For example, the pseudocode needed to add a new msr should look like:
4130 *
4131 * arr[(*nr)++] = (struct perf_guest_switch_msr){
4132 * .msr = the hardware msr address,
4133 * .host = the value the hardware has when it doesn't run a guest,
4134 * .guest = the value the hardware has when it runs a guest,
4135 * };
4136 *
4137 * These values have nothing to do with the emulated values the guest sees
4138 * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4139 * specifically in the intel_pmu_{get,set}_msr().
4140 */
intel_guest_get_msrs(int * nr,void * data)4141 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4142 {
4143 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4144 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4145 struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4146 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4147 u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4148 int global_ctrl, pebs_enable;
4149
4150 /*
4151 * In addition to obeying exclude_guest/exclude_host, remove bits being
4152 * used for PEBS when running a guest, because PEBS writes to virtual
4153 * addresses (not physical addresses).
4154 */
4155 *nr = 0;
4156 global_ctrl = (*nr)++;
4157 arr[global_ctrl] = (struct perf_guest_switch_msr){
4158 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4159 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4160 .guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4161 };
4162
4163 if (!x86_pmu.pebs)
4164 return arr;
4165
4166 /*
4167 * If PMU counter has PEBS enabled it is not enough to
4168 * disable counter on a guest entry since PEBS memory
4169 * write can overshoot guest entry and corrupt guest
4170 * memory. Disabling PEBS solves the problem.
4171 *
4172 * Don't do this if the CPU already enforces it.
4173 */
4174 if (x86_pmu.pebs_no_isolation) {
4175 arr[(*nr)++] = (struct perf_guest_switch_msr){
4176 .msr = MSR_IA32_PEBS_ENABLE,
4177 .host = cpuc->pebs_enabled,
4178 .guest = 0,
4179 };
4180 return arr;
4181 }
4182
4183 if (!kvm_pmu || !x86_pmu.pebs_ept)
4184 return arr;
4185
4186 arr[(*nr)++] = (struct perf_guest_switch_msr){
4187 .msr = MSR_IA32_DS_AREA,
4188 .host = (unsigned long)cpuc->ds,
4189 .guest = kvm_pmu->ds_area,
4190 };
4191
4192 if (x86_pmu.intel_cap.pebs_baseline) {
4193 arr[(*nr)++] = (struct perf_guest_switch_msr){
4194 .msr = MSR_PEBS_DATA_CFG,
4195 .host = cpuc->active_pebs_data_cfg,
4196 .guest = kvm_pmu->pebs_data_cfg,
4197 };
4198 }
4199
4200 pebs_enable = (*nr)++;
4201 arr[pebs_enable] = (struct perf_guest_switch_msr){
4202 .msr = MSR_IA32_PEBS_ENABLE,
4203 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4204 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4205 };
4206
4207 if (arr[pebs_enable].host) {
4208 /* Disable guest PEBS if host PEBS is enabled. */
4209 arr[pebs_enable].guest = 0;
4210 } else {
4211 /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4212 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4213 arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4214 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4215 arr[global_ctrl].guest |= arr[pebs_enable].guest;
4216 }
4217
4218 return arr;
4219 }
4220
core_guest_get_msrs(int * nr,void * data)4221 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4222 {
4223 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4224 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4225 int idx;
4226
4227 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4228 struct perf_event *event = cpuc->events[idx];
4229
4230 arr[idx].msr = x86_pmu_config_addr(idx);
4231 arr[idx].host = arr[idx].guest = 0;
4232
4233 if (!test_bit(idx, cpuc->active_mask))
4234 continue;
4235
4236 arr[idx].host = arr[idx].guest =
4237 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4238
4239 if (event->attr.exclude_host)
4240 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4241 else if (event->attr.exclude_guest)
4242 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4243 }
4244
4245 *nr = x86_pmu.num_counters;
4246 return arr;
4247 }
4248
core_pmu_enable_event(struct perf_event * event)4249 static void core_pmu_enable_event(struct perf_event *event)
4250 {
4251 if (!event->attr.exclude_host)
4252 x86_pmu_enable_event(event);
4253 }
4254
core_pmu_enable_all(int added)4255 static void core_pmu_enable_all(int added)
4256 {
4257 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4258 int idx;
4259
4260 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4261 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4262
4263 if (!test_bit(idx, cpuc->active_mask) ||
4264 cpuc->events[idx]->attr.exclude_host)
4265 continue;
4266
4267 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4268 }
4269 }
4270
hsw_hw_config(struct perf_event * event)4271 static int hsw_hw_config(struct perf_event *event)
4272 {
4273 int ret = intel_pmu_hw_config(event);
4274
4275 if (ret)
4276 return ret;
4277 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4278 return 0;
4279 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4280
4281 /*
4282 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4283 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4284 * this combination.
4285 */
4286 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4287 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4288 event->attr.precise_ip > 0))
4289 return -EOPNOTSUPP;
4290
4291 if (event_is_checkpointed(event)) {
4292 /*
4293 * Sampling of checkpointed events can cause situations where
4294 * the CPU constantly aborts because of a overflow, which is
4295 * then checkpointed back and ignored. Forbid checkpointing
4296 * for sampling.
4297 *
4298 * But still allow a long sampling period, so that perf stat
4299 * from KVM works.
4300 */
4301 if (event->attr.sample_period > 0 &&
4302 event->attr.sample_period < 0x7fffffff)
4303 return -EOPNOTSUPP;
4304 }
4305 return 0;
4306 }
4307
4308 static struct event_constraint counter0_constraint =
4309 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4310
4311 static struct event_constraint counter1_constraint =
4312 INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4313
4314 static struct event_constraint counter0_1_constraint =
4315 INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4316
4317 static struct event_constraint counter2_constraint =
4318 EVENT_CONSTRAINT(0, 0x4, 0);
4319
4320 static struct event_constraint fixed0_constraint =
4321 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4322
4323 static struct event_constraint fixed0_counter0_constraint =
4324 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4325
4326 static struct event_constraint fixed0_counter0_1_constraint =
4327 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4328
4329 static struct event_constraint counters_1_7_constraint =
4330 INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4331
4332 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4333 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4334 struct perf_event *event)
4335 {
4336 struct event_constraint *c;
4337
4338 c = intel_get_event_constraints(cpuc, idx, event);
4339
4340 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4341 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4342 if (c->idxmsk64 & (1U << 2))
4343 return &counter2_constraint;
4344 return &emptyconstraint;
4345 }
4346
4347 return c;
4348 }
4349
4350 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4351 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4352 struct perf_event *event)
4353 {
4354 /*
4355 * Fixed counter 0 has less skid.
4356 * Force instruction:ppp in Fixed counter 0
4357 */
4358 if ((event->attr.precise_ip == 3) &&
4359 constraint_match(&fixed0_constraint, event->hw.config))
4360 return &fixed0_constraint;
4361
4362 return hsw_get_event_constraints(cpuc, idx, event);
4363 }
4364
4365 static struct event_constraint *
spr_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4366 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4367 struct perf_event *event)
4368 {
4369 struct event_constraint *c;
4370
4371 c = icl_get_event_constraints(cpuc, idx, event);
4372
4373 /*
4374 * The :ppp indicates the Precise Distribution (PDist) facility, which
4375 * is only supported on the GP counter 0. If a :ppp event which is not
4376 * available on the GP counter 0, error out.
4377 * Exception: Instruction PDIR is only available on the fixed counter 0.
4378 */
4379 if ((event->attr.precise_ip == 3) &&
4380 !constraint_match(&fixed0_constraint, event->hw.config)) {
4381 if (c->idxmsk64 & BIT_ULL(0))
4382 return &counter0_constraint;
4383
4384 return &emptyconstraint;
4385 }
4386
4387 return c;
4388 }
4389
4390 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4391 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4392 struct perf_event *event)
4393 {
4394 struct event_constraint *c;
4395
4396 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4397 if (event->attr.precise_ip == 3)
4398 return &counter0_constraint;
4399
4400 c = intel_get_event_constraints(cpuc, idx, event);
4401
4402 return c;
4403 }
4404
4405 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4406 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4407 struct perf_event *event)
4408 {
4409 struct event_constraint *c;
4410
4411 c = intel_get_event_constraints(cpuc, idx, event);
4412
4413 /*
4414 * :ppp means to do reduced skid PEBS,
4415 * which is available on PMC0 and fixed counter 0.
4416 */
4417 if (event->attr.precise_ip == 3) {
4418 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4419 if (constraint_match(&fixed0_constraint, event->hw.config))
4420 return &fixed0_counter0_constraint;
4421
4422 return &counter0_constraint;
4423 }
4424
4425 return c;
4426 }
4427
4428 static bool allow_tsx_force_abort = true;
4429
4430 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4431 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4432 struct perf_event *event)
4433 {
4434 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4435
4436 /*
4437 * Without TFA we must not use PMC3.
4438 */
4439 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4440 c = dyn_constraint(cpuc, c, idx);
4441 c->idxmsk64 &= ~(1ULL << 3);
4442 c->weight--;
4443 }
4444
4445 return c;
4446 }
4447
4448 static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4449 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4450 struct perf_event *event)
4451 {
4452 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4453
4454 if (pmu->cpu_type == hybrid_big)
4455 return spr_get_event_constraints(cpuc, idx, event);
4456 else if (pmu->cpu_type == hybrid_small)
4457 return tnt_get_event_constraints(cpuc, idx, event);
4458
4459 WARN_ON(1);
4460 return &emptyconstraint;
4461 }
4462
4463 static struct event_constraint *
cmt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4464 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4465 struct perf_event *event)
4466 {
4467 struct event_constraint *c;
4468
4469 c = intel_get_event_constraints(cpuc, idx, event);
4470
4471 /*
4472 * The :ppp indicates the Precise Distribution (PDist) facility, which
4473 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4474 * If a :ppp event which is not available on the above eligible counters,
4475 * error out.
4476 */
4477 if (event->attr.precise_ip == 3) {
4478 /* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4479 if (constraint_match(&fixed0_constraint, event->hw.config))
4480 return &fixed0_counter0_1_constraint;
4481
4482 switch (c->idxmsk64 & 0x3ull) {
4483 case 0x1:
4484 return &counter0_constraint;
4485 case 0x2:
4486 return &counter1_constraint;
4487 case 0x3:
4488 return &counter0_1_constraint;
4489 }
4490 return &emptyconstraint;
4491 }
4492
4493 return c;
4494 }
4495
4496 static struct event_constraint *
rwc_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4497 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4498 struct perf_event *event)
4499 {
4500 struct event_constraint *c;
4501
4502 c = spr_get_event_constraints(cpuc, idx, event);
4503
4504 /* The Retire Latency is not supported by the fixed counter 0. */
4505 if (event->attr.precise_ip &&
4506 (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4507 constraint_match(&fixed0_constraint, event->hw.config)) {
4508 /*
4509 * The Instruction PDIR is only available
4510 * on the fixed counter 0. Error out for this case.
4511 */
4512 if (event->attr.precise_ip == 3)
4513 return &emptyconstraint;
4514 return &counters_1_7_constraint;
4515 }
4516
4517 return c;
4518 }
4519
4520 static struct event_constraint *
mtl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4521 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4522 struct perf_event *event)
4523 {
4524 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4525
4526 if (pmu->cpu_type == hybrid_big)
4527 return rwc_get_event_constraints(cpuc, idx, event);
4528 if (pmu->cpu_type == hybrid_small)
4529 return cmt_get_event_constraints(cpuc, idx, event);
4530
4531 WARN_ON(1);
4532 return &emptyconstraint;
4533 }
4534
adl_hw_config(struct perf_event * event)4535 static int adl_hw_config(struct perf_event *event)
4536 {
4537 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4538
4539 if (pmu->cpu_type == hybrid_big)
4540 return hsw_hw_config(event);
4541 else if (pmu->cpu_type == hybrid_small)
4542 return intel_pmu_hw_config(event);
4543
4544 WARN_ON(1);
4545 return -EOPNOTSUPP;
4546 }
4547
adl_get_hybrid_cpu_type(void)4548 static u8 adl_get_hybrid_cpu_type(void)
4549 {
4550 return hybrid_big;
4551 }
4552
erratum_hsw11(struct perf_event * event)4553 static inline bool erratum_hsw11(struct perf_event *event)
4554 {
4555 return (event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4556 X86_CONFIG(.event=0xc0, .umask=0x01);
4557 }
4558
4559 /*
4560 * The HSW11 requires a period larger than 100 which is the same as the BDM11.
4561 * A minimum period of 128 is enforced as well for the INST_RETIRED.ALL.
4562 *
4563 * The message 'interrupt took too long' can be observed on any counter which
4564 * was armed with a period < 32 and two events expired in the same NMI.
4565 * A minimum period of 32 is enforced for the rest of the events.
4566 */
hsw_limit_period(struct perf_event * event,s64 * left)4567 static void hsw_limit_period(struct perf_event *event, s64 *left)
4568 {
4569 *left = max(*left, erratum_hsw11(event) ? 128 : 32);
4570 }
4571
4572 /*
4573 * Broadwell:
4574 *
4575 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4576 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4577 * the two to enforce a minimum period of 128 (the smallest value that has bits
4578 * 0-5 cleared and >= 100).
4579 *
4580 * Because of how the code in x86_perf_event_set_period() works, the truncation
4581 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4582 * to make up for the 'lost' events due to carrying the 'error' in period_left.
4583 *
4584 * Therefore the effective (average) period matches the requested period,
4585 * despite coarser hardware granularity.
4586 */
bdw_limit_period(struct perf_event * event,s64 * left)4587 static void bdw_limit_period(struct perf_event *event, s64 *left)
4588 {
4589 if (erratum_hsw11(event)) {
4590 if (*left < 128)
4591 *left = 128;
4592 *left &= ~0x3fULL;
4593 }
4594 }
4595
nhm_limit_period(struct perf_event * event,s64 * left)4596 static void nhm_limit_period(struct perf_event *event, s64 *left)
4597 {
4598 *left = max(*left, 32LL);
4599 }
4600
spr_limit_period(struct perf_event * event,s64 * left)4601 static void spr_limit_period(struct perf_event *event, s64 *left)
4602 {
4603 if (event->attr.precise_ip == 3)
4604 *left = max(*left, 128LL);
4605 }
4606
4607 PMU_FORMAT_ATTR(event, "config:0-7" );
4608 PMU_FORMAT_ATTR(umask, "config:8-15" );
4609 PMU_FORMAT_ATTR(edge, "config:18" );
4610 PMU_FORMAT_ATTR(pc, "config:19" );
4611 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
4612 PMU_FORMAT_ATTR(inv, "config:23" );
4613 PMU_FORMAT_ATTR(cmask, "config:24-31" );
4614 PMU_FORMAT_ATTR(in_tx, "config:32");
4615 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4616
4617 static struct attribute *intel_arch_formats_attr[] = {
4618 &format_attr_event.attr,
4619 &format_attr_umask.attr,
4620 &format_attr_edge.attr,
4621 &format_attr_pc.attr,
4622 &format_attr_inv.attr,
4623 &format_attr_cmask.attr,
4624 NULL,
4625 };
4626
intel_event_sysfs_show(char * page,u64 config)4627 ssize_t intel_event_sysfs_show(char *page, u64 config)
4628 {
4629 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4630
4631 return x86_event_sysfs_show(page, config, event);
4632 }
4633
allocate_shared_regs(int cpu)4634 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4635 {
4636 struct intel_shared_regs *regs;
4637 int i;
4638
4639 regs = kzalloc_node(sizeof(struct intel_shared_regs),
4640 GFP_KERNEL, cpu_to_node(cpu));
4641 if (regs) {
4642 /*
4643 * initialize the locks to keep lockdep happy
4644 */
4645 for (i = 0; i < EXTRA_REG_MAX; i++)
4646 raw_spin_lock_init(®s->regs[i].lock);
4647
4648 regs->core_id = -1;
4649 }
4650 return regs;
4651 }
4652
allocate_excl_cntrs(int cpu)4653 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4654 {
4655 struct intel_excl_cntrs *c;
4656
4657 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4658 GFP_KERNEL, cpu_to_node(cpu));
4659 if (c) {
4660 raw_spin_lock_init(&c->lock);
4661 c->core_id = -1;
4662 }
4663 return c;
4664 }
4665
4666
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)4667 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4668 {
4669 cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4670
4671 if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4672 cpuc->shared_regs = allocate_shared_regs(cpu);
4673 if (!cpuc->shared_regs)
4674 goto err;
4675 }
4676
4677 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4678 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4679
4680 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4681 if (!cpuc->constraint_list)
4682 goto err_shared_regs;
4683 }
4684
4685 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4686 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4687 if (!cpuc->excl_cntrs)
4688 goto err_constraint_list;
4689
4690 cpuc->excl_thread_id = 0;
4691 }
4692
4693 return 0;
4694
4695 err_constraint_list:
4696 kfree(cpuc->constraint_list);
4697 cpuc->constraint_list = NULL;
4698
4699 err_shared_regs:
4700 kfree(cpuc->shared_regs);
4701 cpuc->shared_regs = NULL;
4702
4703 err:
4704 return -ENOMEM;
4705 }
4706
intel_pmu_cpu_prepare(int cpu)4707 static int intel_pmu_cpu_prepare(int cpu)
4708 {
4709 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4710 }
4711
flip_smm_bit(void * data)4712 static void flip_smm_bit(void *data)
4713 {
4714 unsigned long set = *(unsigned long *)data;
4715
4716 if (set > 0) {
4717 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4718 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4719 } else {
4720 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4721 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4722 }
4723 }
4724
4725 static void intel_pmu_check_num_counters(int *num_counters,
4726 int *num_counters_fixed,
4727 u64 *intel_ctrl, u64 fixed_mask);
4728
update_pmu_cap(struct x86_hybrid_pmu * pmu)4729 static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
4730 {
4731 unsigned int cntr, fixed_cntr, ecx, edx;
4732 union cpuid35_eax eax;
4733 union cpuid35_ebx ebx;
4734
4735 cpuid(ARCH_PERFMON_EXT_LEAF, &eax.full, &ebx.full, &ecx, &edx);
4736
4737 if (eax.split.cntr_subleaf) {
4738 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
4739 &cntr, &fixed_cntr, &ecx, &edx);
4740 pmu->num_counters = fls(cntr);
4741 pmu->num_counters_fixed = fls(fixed_cntr);
4742 intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
4743 &pmu->intel_ctrl, fixed_cntr);
4744 }
4745 }
4746
init_hybrid_pmu(int cpu)4747 static bool init_hybrid_pmu(int cpu)
4748 {
4749 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4750 u8 cpu_type = get_this_hybrid_cpu_type();
4751 struct x86_hybrid_pmu *pmu = NULL;
4752 int i;
4753
4754 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4755 cpu_type = x86_pmu.get_hybrid_cpu_type();
4756
4757 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4758 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4759 pmu = &x86_pmu.hybrid_pmu[i];
4760 break;
4761 }
4762 }
4763 if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4764 cpuc->pmu = NULL;
4765 return false;
4766 }
4767
4768 /* Only check and dump the PMU information for the first CPU */
4769 if (!cpumask_empty(&pmu->supported_cpus))
4770 goto end;
4771
4772 if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
4773 update_pmu_cap(pmu);
4774
4775 if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4776 return false;
4777
4778 pr_info("%s PMU driver: ", pmu->name);
4779
4780 if (pmu->intel_cap.pebs_output_pt_available)
4781 pr_cont("PEBS-via-PT ");
4782
4783 pr_cont("\n");
4784
4785 x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4786 pmu->intel_ctrl);
4787
4788 end:
4789 cpumask_set_cpu(cpu, &pmu->supported_cpus);
4790 cpuc->pmu = &pmu->pmu;
4791
4792 return true;
4793 }
4794
intel_pmu_cpu_starting(int cpu)4795 static void intel_pmu_cpu_starting(int cpu)
4796 {
4797 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4798 int core_id = topology_core_id(cpu);
4799 int i;
4800
4801 if (is_hybrid() && !init_hybrid_pmu(cpu))
4802 return;
4803
4804 init_debug_store_on_cpu(cpu);
4805 /*
4806 * Deal with CPUs that don't clear their LBRs on power-up, and that may
4807 * even boot with LBRs enabled.
4808 */
4809 if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && x86_pmu.lbr_nr)
4810 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR_BIT);
4811 intel_pmu_lbr_reset();
4812
4813 cpuc->lbr_sel = NULL;
4814
4815 if (x86_pmu.flags & PMU_FL_TFA) {
4816 WARN_ON_ONCE(cpuc->tfa_shadow);
4817 cpuc->tfa_shadow = ~0ULL;
4818 intel_set_tfa(cpuc, false);
4819 }
4820
4821 if (x86_pmu.version > 1)
4822 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4823
4824 /*
4825 * Disable perf metrics if any added CPU doesn't support it.
4826 *
4827 * Turn off the check for a hybrid architecture, because the
4828 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4829 * the architecture features. The perf metrics is a model-specific
4830 * feature for now. The corresponding bit should always be 0 on
4831 * a hybrid platform, e.g., Alder Lake.
4832 */
4833 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4834 union perf_capabilities perf_cap;
4835
4836 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4837 if (!perf_cap.perf_metrics) {
4838 x86_pmu.intel_cap.perf_metrics = 0;
4839 x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4840 }
4841 }
4842
4843 if (!cpuc->shared_regs)
4844 return;
4845
4846 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4847 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4848 struct intel_shared_regs *pc;
4849
4850 pc = per_cpu(cpu_hw_events, i).shared_regs;
4851 if (pc && pc->core_id == core_id) {
4852 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4853 cpuc->shared_regs = pc;
4854 break;
4855 }
4856 }
4857 cpuc->shared_regs->core_id = core_id;
4858 cpuc->shared_regs->refcnt++;
4859 }
4860
4861 if (x86_pmu.lbr_sel_map)
4862 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4863
4864 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4865 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4866 struct cpu_hw_events *sibling;
4867 struct intel_excl_cntrs *c;
4868
4869 sibling = &per_cpu(cpu_hw_events, i);
4870 c = sibling->excl_cntrs;
4871 if (c && c->core_id == core_id) {
4872 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4873 cpuc->excl_cntrs = c;
4874 if (!sibling->excl_thread_id)
4875 cpuc->excl_thread_id = 1;
4876 break;
4877 }
4878 }
4879 cpuc->excl_cntrs->core_id = core_id;
4880 cpuc->excl_cntrs->refcnt++;
4881 }
4882 }
4883
free_excl_cntrs(struct cpu_hw_events * cpuc)4884 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4885 {
4886 struct intel_excl_cntrs *c;
4887
4888 c = cpuc->excl_cntrs;
4889 if (c) {
4890 if (c->core_id == -1 || --c->refcnt == 0)
4891 kfree(c);
4892 cpuc->excl_cntrs = NULL;
4893 }
4894
4895 kfree(cpuc->constraint_list);
4896 cpuc->constraint_list = NULL;
4897 }
4898
intel_pmu_cpu_dying(int cpu)4899 static void intel_pmu_cpu_dying(int cpu)
4900 {
4901 fini_debug_store_on_cpu(cpu);
4902 }
4903
intel_cpuc_finish(struct cpu_hw_events * cpuc)4904 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4905 {
4906 struct intel_shared_regs *pc;
4907
4908 pc = cpuc->shared_regs;
4909 if (pc) {
4910 if (pc->core_id == -1 || --pc->refcnt == 0)
4911 kfree(pc);
4912 cpuc->shared_regs = NULL;
4913 }
4914
4915 free_excl_cntrs(cpuc);
4916 }
4917
intel_pmu_cpu_dead(int cpu)4918 static void intel_pmu_cpu_dead(int cpu)
4919 {
4920 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4921
4922 intel_cpuc_finish(cpuc);
4923
4924 if (is_hybrid() && cpuc->pmu)
4925 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4926 }
4927
intel_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)4928 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
4929 bool sched_in)
4930 {
4931 intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
4932 intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
4933 }
4934
intel_pmu_swap_task_ctx(struct perf_event_pmu_context * prev_epc,struct perf_event_pmu_context * next_epc)4935 static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
4936 struct perf_event_pmu_context *next_epc)
4937 {
4938 intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
4939 }
4940
intel_pmu_check_period(struct perf_event * event,u64 value)4941 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4942 {
4943 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4944 }
4945
intel_aux_output_init(void)4946 static void intel_aux_output_init(void)
4947 {
4948 /* Refer also intel_pmu_aux_output_match() */
4949 if (x86_pmu.intel_cap.pebs_output_pt_available)
4950 x86_pmu.assign = intel_pmu_assign_event;
4951 }
4952
intel_pmu_aux_output_match(struct perf_event * event)4953 static int intel_pmu_aux_output_match(struct perf_event *event)
4954 {
4955 /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4956 if (!x86_pmu.intel_cap.pebs_output_pt_available)
4957 return 0;
4958
4959 return is_intel_pt_event(event);
4960 }
4961
intel_pmu_filter(struct pmu * pmu,int cpu,bool * ret)4962 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
4963 {
4964 struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
4965
4966 *ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
4967 }
4968
4969 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4970
4971 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4972
4973 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4974
4975 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
4976
4977 static struct attribute *intel_arch3_formats_attr[] = {
4978 &format_attr_event.attr,
4979 &format_attr_umask.attr,
4980 &format_attr_edge.attr,
4981 &format_attr_pc.attr,
4982 &format_attr_any.attr,
4983 &format_attr_inv.attr,
4984 &format_attr_cmask.attr,
4985 NULL,
4986 };
4987
4988 static struct attribute *hsw_format_attr[] = {
4989 &format_attr_in_tx.attr,
4990 &format_attr_in_tx_cp.attr,
4991 &format_attr_offcore_rsp.attr,
4992 &format_attr_ldlat.attr,
4993 NULL
4994 };
4995
4996 static struct attribute *nhm_format_attr[] = {
4997 &format_attr_offcore_rsp.attr,
4998 &format_attr_ldlat.attr,
4999 NULL
5000 };
5001
5002 static struct attribute *slm_format_attr[] = {
5003 &format_attr_offcore_rsp.attr,
5004 NULL
5005 };
5006
5007 static struct attribute *cmt_format_attr[] = {
5008 &format_attr_offcore_rsp.attr,
5009 &format_attr_ldlat.attr,
5010 &format_attr_snoop_rsp.attr,
5011 NULL
5012 };
5013
5014 static struct attribute *skl_format_attr[] = {
5015 &format_attr_frontend.attr,
5016 NULL,
5017 };
5018
5019 static __initconst const struct x86_pmu core_pmu = {
5020 .name = "core",
5021 .handle_irq = x86_pmu_handle_irq,
5022 .disable_all = x86_pmu_disable_all,
5023 .enable_all = core_pmu_enable_all,
5024 .enable = core_pmu_enable_event,
5025 .disable = x86_pmu_disable_event,
5026 .hw_config = core_pmu_hw_config,
5027 .schedule_events = x86_schedule_events,
5028 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
5029 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5030 .event_map = intel_pmu_event_map,
5031 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
5032 .apic = 1,
5033 .large_pebs_flags = LARGE_PEBS_FLAGS,
5034
5035 /*
5036 * Intel PMCs cannot be accessed sanely above 32-bit width,
5037 * so we install an artificial 1<<31 period regardless of
5038 * the generic event period:
5039 */
5040 .max_period = (1ULL<<31) - 1,
5041 .get_event_constraints = intel_get_event_constraints,
5042 .put_event_constraints = intel_put_event_constraints,
5043 .event_constraints = intel_core_event_constraints,
5044 .guest_get_msrs = core_guest_get_msrs,
5045 .format_attrs = intel_arch_formats_attr,
5046 .events_sysfs_show = intel_event_sysfs_show,
5047
5048 /*
5049 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5050 * together with PMU version 1 and thus be using core_pmu with
5051 * shared_regs. We need following callbacks here to allocate
5052 * it properly.
5053 */
5054 .cpu_prepare = intel_pmu_cpu_prepare,
5055 .cpu_starting = intel_pmu_cpu_starting,
5056 .cpu_dying = intel_pmu_cpu_dying,
5057 .cpu_dead = intel_pmu_cpu_dead,
5058
5059 .check_period = intel_pmu_check_period,
5060
5061 .lbr_reset = intel_pmu_lbr_reset_64,
5062 .lbr_read = intel_pmu_lbr_read_64,
5063 .lbr_save = intel_pmu_lbr_save,
5064 .lbr_restore = intel_pmu_lbr_restore,
5065 };
5066
5067 static __initconst const struct x86_pmu intel_pmu = {
5068 .name = "Intel",
5069 .handle_irq = intel_pmu_handle_irq,
5070 .disable_all = intel_pmu_disable_all,
5071 .enable_all = intel_pmu_enable_all,
5072 .enable = intel_pmu_enable_event,
5073 .disable = intel_pmu_disable_event,
5074 .add = intel_pmu_add_event,
5075 .del = intel_pmu_del_event,
5076 .read = intel_pmu_read_event,
5077 .set_period = intel_pmu_set_period,
5078 .update = intel_pmu_update,
5079 .hw_config = intel_pmu_hw_config,
5080 .schedule_events = x86_schedule_events,
5081 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
5082 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5083 .event_map = intel_pmu_event_map,
5084 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
5085 .apic = 1,
5086 .large_pebs_flags = LARGE_PEBS_FLAGS,
5087 /*
5088 * Intel PMCs cannot be accessed sanely above 32 bit width,
5089 * so we install an artificial 1<<31 period regardless of
5090 * the generic event period:
5091 */
5092 .max_period = (1ULL << 31) - 1,
5093 .get_event_constraints = intel_get_event_constraints,
5094 .put_event_constraints = intel_put_event_constraints,
5095 .pebs_aliases = intel_pebs_aliases_core2,
5096
5097 .format_attrs = intel_arch3_formats_attr,
5098 .events_sysfs_show = intel_event_sysfs_show,
5099
5100 .cpu_prepare = intel_pmu_cpu_prepare,
5101 .cpu_starting = intel_pmu_cpu_starting,
5102 .cpu_dying = intel_pmu_cpu_dying,
5103 .cpu_dead = intel_pmu_cpu_dead,
5104
5105 .guest_get_msrs = intel_guest_get_msrs,
5106 .sched_task = intel_pmu_sched_task,
5107 .swap_task_ctx = intel_pmu_swap_task_ctx,
5108
5109 .check_period = intel_pmu_check_period,
5110
5111 .aux_output_match = intel_pmu_aux_output_match,
5112
5113 .lbr_reset = intel_pmu_lbr_reset_64,
5114 .lbr_read = intel_pmu_lbr_read_64,
5115 .lbr_save = intel_pmu_lbr_save,
5116 .lbr_restore = intel_pmu_lbr_restore,
5117
5118 /*
5119 * SMM has access to all 4 rings and while traditionally SMM code only
5120 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5121 *
5122 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5123 * between SMM or not, this results in what should be pure userspace
5124 * counters including SMM data.
5125 *
5126 * This is a clear privilege issue, therefore globally disable
5127 * counting SMM by default.
5128 */
5129 .attr_freeze_on_smi = 1,
5130 };
5131
intel_clovertown_quirk(void)5132 static __init void intel_clovertown_quirk(void)
5133 {
5134 /*
5135 * PEBS is unreliable due to:
5136 *
5137 * AJ67 - PEBS may experience CPL leaks
5138 * AJ68 - PEBS PMI may be delayed by one event
5139 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5140 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5141 *
5142 * AJ67 could be worked around by restricting the OS/USR flags.
5143 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5144 *
5145 * AJ106 could possibly be worked around by not allowing LBR
5146 * usage from PEBS, including the fixup.
5147 * AJ68 could possibly be worked around by always programming
5148 * a pebs_event_reset[0] value and coping with the lost events.
5149 *
5150 * But taken together it might just make sense to not enable PEBS on
5151 * these chips.
5152 */
5153 pr_warn("PEBS disabled due to CPU errata\n");
5154 x86_pmu.pebs = 0;
5155 x86_pmu.pebs_constraints = NULL;
5156 }
5157
5158 static const struct x86_cpu_desc isolation_ucodes[] = {
5159 INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f),
5160 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e),
5161 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015),
5162 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037),
5163 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a),
5164 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023),
5165 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014),
5166 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010),
5167 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009),
5168 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009),
5169 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002),
5170 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 1, 0x0b000014),
5171 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021),
5172 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000),
5173 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 5, 0x00000000),
5174 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 6, 0x00000000),
5175 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 7, 0x00000000),
5176 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 11, 0x00000000),
5177 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c),
5178 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c),
5179 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e),
5180 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e),
5181 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e),
5182 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e),
5183 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e),
5184 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e),
5185 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e),
5186 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e),
5187 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e),
5188 {}
5189 };
5190
intel_check_pebs_isolation(void)5191 static void intel_check_pebs_isolation(void)
5192 {
5193 x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
5194 }
5195
intel_pebs_isolation_quirk(void)5196 static __init void intel_pebs_isolation_quirk(void)
5197 {
5198 WARN_ON_ONCE(x86_pmu.check_microcode);
5199 x86_pmu.check_microcode = intel_check_pebs_isolation;
5200 intel_check_pebs_isolation();
5201 }
5202
5203 static const struct x86_cpu_desc pebs_ucodes[] = {
5204 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028),
5205 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618),
5206 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c),
5207 {}
5208 };
5209
intel_snb_pebs_broken(void)5210 static bool intel_snb_pebs_broken(void)
5211 {
5212 return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
5213 }
5214
intel_snb_check_microcode(void)5215 static void intel_snb_check_microcode(void)
5216 {
5217 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5218 return;
5219
5220 /*
5221 * Serialized by the microcode lock..
5222 */
5223 if (x86_pmu.pebs_broken) {
5224 pr_info("PEBS enabled due to microcode update\n");
5225 x86_pmu.pebs_broken = 0;
5226 } else {
5227 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5228 x86_pmu.pebs_broken = 1;
5229 }
5230 }
5231
is_lbr_from(unsigned long msr)5232 static bool is_lbr_from(unsigned long msr)
5233 {
5234 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5235
5236 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5237 }
5238
5239 /*
5240 * Under certain circumstances, access certain MSR may cause #GP.
5241 * The function tests if the input MSR can be safely accessed.
5242 */
check_msr(unsigned long msr,u64 mask)5243 static bool check_msr(unsigned long msr, u64 mask)
5244 {
5245 u64 val_old, val_new, val_tmp;
5246
5247 /*
5248 * Disable the check for real HW, so we don't
5249 * mess with potentially enabled registers:
5250 */
5251 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5252 return true;
5253
5254 /*
5255 * Read the current value, change it and read it back to see if it
5256 * matches, this is needed to detect certain hardware emulators
5257 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5258 */
5259 if (rdmsrl_safe(msr, &val_old))
5260 return false;
5261
5262 /*
5263 * Only change the bits which can be updated by wrmsrl.
5264 */
5265 val_tmp = val_old ^ mask;
5266
5267 if (is_lbr_from(msr))
5268 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5269
5270 if (wrmsrl_safe(msr, val_tmp) ||
5271 rdmsrl_safe(msr, &val_new))
5272 return false;
5273
5274 /*
5275 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
5276 * should equal rdmsrl()'s even with the quirk.
5277 */
5278 if (val_new != val_tmp)
5279 return false;
5280
5281 if (is_lbr_from(msr))
5282 val_old = lbr_from_signext_quirk_wr(val_old);
5283
5284 /* Here it's sure that the MSR can be safely accessed.
5285 * Restore the old value and return.
5286 */
5287 wrmsrl(msr, val_old);
5288
5289 return true;
5290 }
5291
intel_sandybridge_quirk(void)5292 static __init void intel_sandybridge_quirk(void)
5293 {
5294 x86_pmu.check_microcode = intel_snb_check_microcode;
5295 cpus_read_lock();
5296 intel_snb_check_microcode();
5297 cpus_read_unlock();
5298 }
5299
5300 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5301 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5302 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5303 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5304 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5305 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5306 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5307 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5308 };
5309
intel_arch_events_quirk(void)5310 static __init void intel_arch_events_quirk(void)
5311 {
5312 int bit;
5313
5314 /* disable event that reported as not present by cpuid */
5315 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5316 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5317 pr_warn("CPUID marked event: \'%s\' unavailable\n",
5318 intel_arch_events_map[bit].name);
5319 }
5320 }
5321
intel_nehalem_quirk(void)5322 static __init void intel_nehalem_quirk(void)
5323 {
5324 union cpuid10_ebx ebx;
5325
5326 ebx.full = x86_pmu.events_maskl;
5327 if (ebx.split.no_branch_misses_retired) {
5328 /*
5329 * Erratum AAJ80 detected, we work it around by using
5330 * the BR_MISP_EXEC.ANY event. This will over-count
5331 * branch-misses, but it's still much better than the
5332 * architectural event which is often completely bogus:
5333 */
5334 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5335 ebx.split.no_branch_misses_retired = 0;
5336 x86_pmu.events_maskl = ebx.full;
5337 pr_info("CPU erratum AAJ80 worked around\n");
5338 }
5339 }
5340
5341 /*
5342 * enable software workaround for errata:
5343 * SNB: BJ122
5344 * IVB: BV98
5345 * HSW: HSD29
5346 *
5347 * Only needed when HT is enabled. However detecting
5348 * if HT is enabled is difficult (model specific). So instead,
5349 * we enable the workaround in the early boot, and verify if
5350 * it is needed in a later initcall phase once we have valid
5351 * topology information to check if HT is actually enabled
5352 */
intel_ht_bug(void)5353 static __init void intel_ht_bug(void)
5354 {
5355 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5356
5357 x86_pmu.start_scheduling = intel_start_scheduling;
5358 x86_pmu.commit_scheduling = intel_commit_scheduling;
5359 x86_pmu.stop_scheduling = intel_stop_scheduling;
5360 }
5361
5362 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
5363 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
5364
5365 /* Haswell special events */
5366 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
5367 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
5368 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
5369 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
5370 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
5371 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
5372 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
5373 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
5374 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
5375 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
5376 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
5377 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
5378
5379 static struct attribute *hsw_events_attrs[] = {
5380 EVENT_PTR(td_slots_issued),
5381 EVENT_PTR(td_slots_retired),
5382 EVENT_PTR(td_fetch_bubbles),
5383 EVENT_PTR(td_total_slots),
5384 EVENT_PTR(td_total_slots_scale),
5385 EVENT_PTR(td_recovery_bubbles),
5386 EVENT_PTR(td_recovery_bubbles_scale),
5387 NULL
5388 };
5389
5390 static struct attribute *hsw_mem_events_attrs[] = {
5391 EVENT_PTR(mem_ld_hsw),
5392 EVENT_PTR(mem_st_hsw),
5393 NULL,
5394 };
5395
5396 static struct attribute *hsw_tsx_events_attrs[] = {
5397 EVENT_PTR(tx_start),
5398 EVENT_PTR(tx_commit),
5399 EVENT_PTR(tx_abort),
5400 EVENT_PTR(tx_capacity),
5401 EVENT_PTR(tx_conflict),
5402 EVENT_PTR(el_start),
5403 EVENT_PTR(el_commit),
5404 EVENT_PTR(el_abort),
5405 EVENT_PTR(el_capacity),
5406 EVENT_PTR(el_conflict),
5407 EVENT_PTR(cycles_t),
5408 EVENT_PTR(cycles_ct),
5409 NULL
5410 };
5411
5412 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
5413 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5414 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
5415 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5416
5417 static struct attribute *icl_events_attrs[] = {
5418 EVENT_PTR(mem_ld_hsw),
5419 EVENT_PTR(mem_st_hsw),
5420 NULL,
5421 };
5422
5423 static struct attribute *icl_td_events_attrs[] = {
5424 EVENT_PTR(slots),
5425 EVENT_PTR(td_retiring),
5426 EVENT_PTR(td_bad_spec),
5427 EVENT_PTR(td_fe_bound),
5428 EVENT_PTR(td_be_bound),
5429 NULL,
5430 };
5431
5432 static struct attribute *icl_tsx_events_attrs[] = {
5433 EVENT_PTR(tx_start),
5434 EVENT_PTR(tx_abort),
5435 EVENT_PTR(tx_commit),
5436 EVENT_PTR(tx_capacity_read),
5437 EVENT_PTR(tx_capacity_write),
5438 EVENT_PTR(tx_conflict),
5439 EVENT_PTR(el_start),
5440 EVENT_PTR(el_abort),
5441 EVENT_PTR(el_commit),
5442 EVENT_PTR(el_capacity_read),
5443 EVENT_PTR(el_capacity_write),
5444 EVENT_PTR(el_conflict),
5445 EVENT_PTR(cycles_t),
5446 EVENT_PTR(cycles_ct),
5447 NULL,
5448 };
5449
5450
5451 EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
5452 EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
5453
5454 static struct attribute *spr_events_attrs[] = {
5455 EVENT_PTR(mem_ld_hsw),
5456 EVENT_PTR(mem_st_spr),
5457 EVENT_PTR(mem_ld_aux),
5458 NULL,
5459 };
5460
5461 static struct attribute *spr_td_events_attrs[] = {
5462 EVENT_PTR(slots),
5463 EVENT_PTR(td_retiring),
5464 EVENT_PTR(td_bad_spec),
5465 EVENT_PTR(td_fe_bound),
5466 EVENT_PTR(td_be_bound),
5467 EVENT_PTR(td_heavy_ops),
5468 EVENT_PTR(td_br_mispredict),
5469 EVENT_PTR(td_fetch_lat),
5470 EVENT_PTR(td_mem_bound),
5471 NULL,
5472 };
5473
5474 static struct attribute *spr_tsx_events_attrs[] = {
5475 EVENT_PTR(tx_start),
5476 EVENT_PTR(tx_abort),
5477 EVENT_PTR(tx_commit),
5478 EVENT_PTR(tx_capacity_read),
5479 EVENT_PTR(tx_capacity_write),
5480 EVENT_PTR(tx_conflict),
5481 EVENT_PTR(cycles_t),
5482 EVENT_PTR(cycles_ct),
5483 NULL,
5484 };
5485
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)5486 static ssize_t freeze_on_smi_show(struct device *cdev,
5487 struct device_attribute *attr,
5488 char *buf)
5489 {
5490 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5491 }
5492
5493 static DEFINE_MUTEX(freeze_on_smi_mutex);
5494
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5495 static ssize_t freeze_on_smi_store(struct device *cdev,
5496 struct device_attribute *attr,
5497 const char *buf, size_t count)
5498 {
5499 unsigned long val;
5500 ssize_t ret;
5501
5502 ret = kstrtoul(buf, 0, &val);
5503 if (ret)
5504 return ret;
5505
5506 if (val > 1)
5507 return -EINVAL;
5508
5509 mutex_lock(&freeze_on_smi_mutex);
5510
5511 if (x86_pmu.attr_freeze_on_smi == val)
5512 goto done;
5513
5514 x86_pmu.attr_freeze_on_smi = val;
5515
5516 cpus_read_lock();
5517 on_each_cpu(flip_smm_bit, &val, 1);
5518 cpus_read_unlock();
5519 done:
5520 mutex_unlock(&freeze_on_smi_mutex);
5521
5522 return count;
5523 }
5524
update_tfa_sched(void * ignored)5525 static void update_tfa_sched(void *ignored)
5526 {
5527 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5528
5529 /*
5530 * check if PMC3 is used
5531 * and if so force schedule out for all event types all contexts
5532 */
5533 if (test_bit(3, cpuc->active_mask))
5534 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5535 }
5536
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)5537 static ssize_t show_sysctl_tfa(struct device *cdev,
5538 struct device_attribute *attr,
5539 char *buf)
5540 {
5541 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5542 }
5543
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5544 static ssize_t set_sysctl_tfa(struct device *cdev,
5545 struct device_attribute *attr,
5546 const char *buf, size_t count)
5547 {
5548 bool val;
5549 ssize_t ret;
5550
5551 ret = kstrtobool(buf, &val);
5552 if (ret)
5553 return ret;
5554
5555 /* no change */
5556 if (val == allow_tsx_force_abort)
5557 return count;
5558
5559 allow_tsx_force_abort = val;
5560
5561 cpus_read_lock();
5562 on_each_cpu(update_tfa_sched, NULL, 1);
5563 cpus_read_unlock();
5564
5565 return count;
5566 }
5567
5568
5569 static DEVICE_ATTR_RW(freeze_on_smi);
5570
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)5571 static ssize_t branches_show(struct device *cdev,
5572 struct device_attribute *attr,
5573 char *buf)
5574 {
5575 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5576 }
5577
5578 static DEVICE_ATTR_RO(branches);
5579
5580 static struct attribute *lbr_attrs[] = {
5581 &dev_attr_branches.attr,
5582 NULL
5583 };
5584
5585 static char pmu_name_str[30];
5586
pmu_name_show(struct device * cdev,struct device_attribute * attr,char * buf)5587 static ssize_t pmu_name_show(struct device *cdev,
5588 struct device_attribute *attr,
5589 char *buf)
5590 {
5591 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5592 }
5593
5594 static DEVICE_ATTR_RO(pmu_name);
5595
5596 static struct attribute *intel_pmu_caps_attrs[] = {
5597 &dev_attr_pmu_name.attr,
5598 NULL
5599 };
5600
5601 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5602 show_sysctl_tfa,
5603 set_sysctl_tfa);
5604
5605 static struct attribute *intel_pmu_attrs[] = {
5606 &dev_attr_freeze_on_smi.attr,
5607 &dev_attr_allow_tsx_force_abort.attr,
5608 NULL,
5609 };
5610
5611 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5612 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5613 {
5614 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5615 }
5616
5617 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)5618 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5619 {
5620 return x86_pmu.pebs ? attr->mode : 0;
5621 }
5622
5623 static umode_t
mem_is_visible(struct kobject * kobj,struct attribute * attr,int i)5624 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5625 {
5626 if (attr == &event_attr_mem_ld_aux.attr.attr)
5627 return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
5628
5629 return pebs_is_visible(kobj, attr, i);
5630 }
5631
5632 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)5633 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5634 {
5635 return x86_pmu.lbr_nr ? attr->mode : 0;
5636 }
5637
5638 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)5639 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5640 {
5641 return x86_pmu.version >= 2 ? attr->mode : 0;
5642 }
5643
5644 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)5645 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5646 {
5647 if (attr == &dev_attr_allow_tsx_force_abort.attr)
5648 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5649
5650 return attr->mode;
5651 }
5652
5653 static umode_t
td_is_visible(struct kobject * kobj,struct attribute * attr,int i)5654 td_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5655 {
5656 /*
5657 * Hide the perf metrics topdown events
5658 * if the feature is not enumerated.
5659 */
5660 if (x86_pmu.num_topdown_events)
5661 return x86_pmu.intel_cap.perf_metrics ? attr->mode : 0;
5662
5663 return attr->mode;
5664 }
5665
5666 static struct attribute_group group_events_td = {
5667 .name = "events",
5668 .is_visible = td_is_visible,
5669 };
5670
5671 static struct attribute_group group_events_mem = {
5672 .name = "events",
5673 .is_visible = mem_is_visible,
5674 };
5675
5676 static struct attribute_group group_events_tsx = {
5677 .name = "events",
5678 .is_visible = tsx_is_visible,
5679 };
5680
5681 static struct attribute_group group_caps_gen = {
5682 .name = "caps",
5683 .attrs = intel_pmu_caps_attrs,
5684 };
5685
5686 static struct attribute_group group_caps_lbr = {
5687 .name = "caps",
5688 .attrs = lbr_attrs,
5689 .is_visible = lbr_is_visible,
5690 };
5691
5692 static struct attribute_group group_format_extra = {
5693 .name = "format",
5694 .is_visible = exra_is_visible,
5695 };
5696
5697 static struct attribute_group group_format_extra_skl = {
5698 .name = "format",
5699 .is_visible = exra_is_visible,
5700 };
5701
5702 static struct attribute_group group_default = {
5703 .attrs = intel_pmu_attrs,
5704 .is_visible = default_is_visible,
5705 };
5706
5707 static const struct attribute_group *attr_update[] = {
5708 &group_events_td,
5709 &group_events_mem,
5710 &group_events_tsx,
5711 &group_caps_gen,
5712 &group_caps_lbr,
5713 &group_format_extra,
5714 &group_format_extra_skl,
5715 &group_default,
5716 NULL,
5717 };
5718
5719 EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
5720 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5721 EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5722 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5723 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5724 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
5725 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
5726 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
5727 EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
5728
5729 static struct attribute *adl_hybrid_events_attrs[] = {
5730 EVENT_PTR(slots_adl),
5731 EVENT_PTR(td_retiring_adl),
5732 EVENT_PTR(td_bad_spec_adl),
5733 EVENT_PTR(td_fe_bound_adl),
5734 EVENT_PTR(td_be_bound_adl),
5735 EVENT_PTR(td_heavy_ops_adl),
5736 EVENT_PTR(td_br_mis_adl),
5737 EVENT_PTR(td_fetch_lat_adl),
5738 EVENT_PTR(td_mem_bound_adl),
5739 NULL,
5740 };
5741
5742 /* Must be in IDX order */
5743 EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5744 EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
5745 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
5746
5747 static struct attribute *adl_hybrid_mem_attrs[] = {
5748 EVENT_PTR(mem_ld_adl),
5749 EVENT_PTR(mem_st_adl),
5750 EVENT_PTR(mem_ld_aux_adl),
5751 NULL,
5752 };
5753
5754 static struct attribute *mtl_hybrid_mem_attrs[] = {
5755 EVENT_PTR(mem_ld_adl),
5756 EVENT_PTR(mem_st_adl),
5757 NULL
5758 };
5759
5760 EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
5761 EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
5762 EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
5763 EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
5764 EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
5765 EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5766 EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
5767 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
5768
5769 static struct attribute *adl_hybrid_tsx_attrs[] = {
5770 EVENT_PTR(tx_start_adl),
5771 EVENT_PTR(tx_abort_adl),
5772 EVENT_PTR(tx_commit_adl),
5773 EVENT_PTR(tx_capacity_read_adl),
5774 EVENT_PTR(tx_capacity_write_adl),
5775 EVENT_PTR(tx_conflict_adl),
5776 EVENT_PTR(cycles_t_adl),
5777 EVENT_PTR(cycles_ct_adl),
5778 NULL,
5779 };
5780
5781 FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
5782 FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
5783 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5784 FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small);
5785 FORMAT_ATTR_HYBRID(frontend, hybrid_big);
5786
5787 #define ADL_HYBRID_RTM_FORMAT_ATTR \
5788 FORMAT_HYBRID_PTR(in_tx), \
5789 FORMAT_HYBRID_PTR(in_tx_cp)
5790
5791 #define ADL_HYBRID_FORMAT_ATTR \
5792 FORMAT_HYBRID_PTR(offcore_rsp), \
5793 FORMAT_HYBRID_PTR(ldlat), \
5794 FORMAT_HYBRID_PTR(frontend)
5795
5796 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5797 ADL_HYBRID_RTM_FORMAT_ATTR,
5798 ADL_HYBRID_FORMAT_ATTR,
5799 NULL
5800 };
5801
5802 static struct attribute *adl_hybrid_extra_attr[] = {
5803 ADL_HYBRID_FORMAT_ATTR,
5804 NULL
5805 };
5806
5807 FORMAT_ATTR_HYBRID(snoop_rsp, hybrid_small);
5808
5809 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
5810 ADL_HYBRID_RTM_FORMAT_ATTR,
5811 ADL_HYBRID_FORMAT_ATTR,
5812 FORMAT_HYBRID_PTR(snoop_rsp),
5813 NULL
5814 };
5815
5816 static struct attribute *mtl_hybrid_extra_attr[] = {
5817 ADL_HYBRID_FORMAT_ATTR,
5818 FORMAT_HYBRID_PTR(snoop_rsp),
5819 NULL
5820 };
5821
is_attr_for_this_pmu(struct kobject * kobj,struct attribute * attr)5822 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5823 {
5824 struct device *dev = kobj_to_dev(kobj);
5825 struct x86_hybrid_pmu *pmu =
5826 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5827 struct perf_pmu_events_hybrid_attr *pmu_attr =
5828 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5829
5830 return pmu->cpu_type & pmu_attr->pmu_type;
5831 }
5832
hybrid_events_is_visible(struct kobject * kobj,struct attribute * attr,int i)5833 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5834 struct attribute *attr, int i)
5835 {
5836 return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5837 }
5838
hybrid_find_supported_cpu(struct x86_hybrid_pmu * pmu)5839 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5840 {
5841 int cpu = cpumask_first(&pmu->supported_cpus);
5842
5843 return (cpu >= nr_cpu_ids) ? -1 : cpu;
5844 }
5845
hybrid_tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5846 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5847 struct attribute *attr, int i)
5848 {
5849 struct device *dev = kobj_to_dev(kobj);
5850 struct x86_hybrid_pmu *pmu =
5851 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5852 int cpu = hybrid_find_supported_cpu(pmu);
5853
5854 return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5855 }
5856
hybrid_format_is_visible(struct kobject * kobj,struct attribute * attr,int i)5857 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5858 struct attribute *attr, int i)
5859 {
5860 struct device *dev = kobj_to_dev(kobj);
5861 struct x86_hybrid_pmu *pmu =
5862 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5863 struct perf_pmu_format_hybrid_attr *pmu_attr =
5864 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5865 int cpu = hybrid_find_supported_cpu(pmu);
5866
5867 return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5868 }
5869
hybrid_td_is_visible(struct kobject * kobj,struct attribute * attr,int i)5870 static umode_t hybrid_td_is_visible(struct kobject *kobj,
5871 struct attribute *attr, int i)
5872 {
5873 struct device *dev = kobj_to_dev(kobj);
5874 struct x86_hybrid_pmu *pmu =
5875 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5876
5877 if (!is_attr_for_this_pmu(kobj, attr))
5878 return 0;
5879
5880
5881 /* Only the big core supports perf metrics */
5882 if (pmu->cpu_type == hybrid_big)
5883 return pmu->intel_cap.perf_metrics ? attr->mode : 0;
5884
5885 return attr->mode;
5886 }
5887
5888 static struct attribute_group hybrid_group_events_td = {
5889 .name = "events",
5890 .is_visible = hybrid_td_is_visible,
5891 };
5892
5893 static struct attribute_group hybrid_group_events_mem = {
5894 .name = "events",
5895 .is_visible = hybrid_events_is_visible,
5896 };
5897
5898 static struct attribute_group hybrid_group_events_tsx = {
5899 .name = "events",
5900 .is_visible = hybrid_tsx_is_visible,
5901 };
5902
5903 static struct attribute_group hybrid_group_format_extra = {
5904 .name = "format",
5905 .is_visible = hybrid_format_is_visible,
5906 };
5907
intel_hybrid_get_attr_cpus(struct device * dev,struct device_attribute * attr,char * buf)5908 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5909 struct device_attribute *attr,
5910 char *buf)
5911 {
5912 struct x86_hybrid_pmu *pmu =
5913 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5914
5915 return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5916 }
5917
5918 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5919 static struct attribute *intel_hybrid_cpus_attrs[] = {
5920 &dev_attr_cpus.attr,
5921 NULL,
5922 };
5923
5924 static struct attribute_group hybrid_group_cpus = {
5925 .attrs = intel_hybrid_cpus_attrs,
5926 };
5927
5928 static const struct attribute_group *hybrid_attr_update[] = {
5929 &hybrid_group_events_td,
5930 &hybrid_group_events_mem,
5931 &hybrid_group_events_tsx,
5932 &group_caps_gen,
5933 &group_caps_lbr,
5934 &hybrid_group_format_extra,
5935 &group_default,
5936 &hybrid_group_cpus,
5937 NULL,
5938 };
5939
5940 static struct attribute *empty_attrs;
5941
intel_pmu_check_num_counters(int * num_counters,int * num_counters_fixed,u64 * intel_ctrl,u64 fixed_mask)5942 static void intel_pmu_check_num_counters(int *num_counters,
5943 int *num_counters_fixed,
5944 u64 *intel_ctrl, u64 fixed_mask)
5945 {
5946 if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5947 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5948 *num_counters, INTEL_PMC_MAX_GENERIC);
5949 *num_counters = INTEL_PMC_MAX_GENERIC;
5950 }
5951 *intel_ctrl = (1ULL << *num_counters) - 1;
5952
5953 if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5954 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5955 *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5956 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5957 }
5958
5959 *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5960 }
5961
intel_pmu_check_event_constraints(struct event_constraint * event_constraints,int num_counters,int num_counters_fixed,u64 intel_ctrl)5962 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5963 int num_counters,
5964 int num_counters_fixed,
5965 u64 intel_ctrl)
5966 {
5967 struct event_constraint *c;
5968
5969 if (!event_constraints)
5970 return;
5971
5972 /*
5973 * event on fixed counter2 (REF_CYCLES) only works on this
5974 * counter, so do not extend mask to generic counters
5975 */
5976 for_each_event_constraint(c, event_constraints) {
5977 /*
5978 * Don't extend the topdown slots and metrics
5979 * events to the generic counters.
5980 */
5981 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5982 /*
5983 * Disable topdown slots and metrics events,
5984 * if slots event is not in CPUID.
5985 */
5986 if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5987 c->idxmsk64 = 0;
5988 c->weight = hweight64(c->idxmsk64);
5989 continue;
5990 }
5991
5992 if (c->cmask == FIXED_EVENT_FLAGS) {
5993 /* Disabled fixed counters which are not in CPUID */
5994 c->idxmsk64 &= intel_ctrl;
5995
5996 /*
5997 * Don't extend the pseudo-encoding to the
5998 * generic counters
5999 */
6000 if (!use_fixed_pseudo_encoding(c->code))
6001 c->idxmsk64 |= (1ULL << num_counters) - 1;
6002 }
6003 c->idxmsk64 &=
6004 ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
6005 c->weight = hweight64(c->idxmsk64);
6006 }
6007 }
6008
intel_pmu_check_extra_regs(struct extra_reg * extra_regs)6009 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
6010 {
6011 struct extra_reg *er;
6012
6013 /*
6014 * Access extra MSR may cause #GP under certain circumstances.
6015 * E.g. KVM doesn't support offcore event
6016 * Check all extra_regs here.
6017 */
6018 if (!extra_regs)
6019 return;
6020
6021 for (er = extra_regs; er->msr; er++) {
6022 er->extra_msr_access = check_msr(er->msr, 0x11UL);
6023 /* Disable LBR select mapping */
6024 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
6025 x86_pmu.lbr_sel_map = NULL;
6026 }
6027 }
6028
intel_pmu_check_hybrid_pmus(u64 fixed_mask)6029 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
6030 {
6031 struct x86_hybrid_pmu *pmu;
6032 int i;
6033
6034 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
6035 pmu = &x86_pmu.hybrid_pmu[i];
6036
6037 intel_pmu_check_num_counters(&pmu->num_counters,
6038 &pmu->num_counters_fixed,
6039 &pmu->intel_ctrl,
6040 fixed_mask);
6041
6042 if (pmu->intel_cap.perf_metrics) {
6043 pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6044 pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
6045 }
6046
6047 if (pmu->intel_cap.pebs_output_pt_available)
6048 pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
6049
6050 intel_pmu_check_event_constraints(pmu->event_constraints,
6051 pmu->num_counters,
6052 pmu->num_counters_fixed,
6053 pmu->intel_ctrl);
6054
6055 intel_pmu_check_extra_regs(pmu->extra_regs);
6056 }
6057 }
6058
is_mtl(u8 x86_model)6059 static __always_inline bool is_mtl(u8 x86_model)
6060 {
6061 return (x86_model == INTEL_FAM6_METEORLAKE) ||
6062 (x86_model == INTEL_FAM6_METEORLAKE_L);
6063 }
6064
intel_pmu_init(void)6065 __init int intel_pmu_init(void)
6066 {
6067 struct attribute **extra_skl_attr = &empty_attrs;
6068 struct attribute **extra_attr = &empty_attrs;
6069 struct attribute **td_attr = &empty_attrs;
6070 struct attribute **mem_attr = &empty_attrs;
6071 struct attribute **tsx_attr = &empty_attrs;
6072 union cpuid10_edx edx;
6073 union cpuid10_eax eax;
6074 union cpuid10_ebx ebx;
6075 unsigned int fixed_mask;
6076 bool pmem = false;
6077 int version, i;
6078 char *name;
6079 struct x86_hybrid_pmu *pmu;
6080
6081 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6082 switch (boot_cpu_data.x86) {
6083 case 0x6:
6084 return p6_pmu_init();
6085 case 0xb:
6086 return knc_pmu_init();
6087 case 0xf:
6088 return p4_pmu_init();
6089 }
6090 return -ENODEV;
6091 }
6092
6093 /*
6094 * Check whether the Architectural PerfMon supports
6095 * Branch Misses Retired hw_event or not.
6096 */
6097 cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6098 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6099 return -ENODEV;
6100
6101 version = eax.split.version_id;
6102 if (version < 2)
6103 x86_pmu = core_pmu;
6104 else
6105 x86_pmu = intel_pmu;
6106
6107 x86_pmu.version = version;
6108 x86_pmu.num_counters = eax.split.num_counters;
6109 x86_pmu.cntval_bits = eax.split.bit_width;
6110 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
6111
6112 x86_pmu.events_maskl = ebx.full;
6113 x86_pmu.events_mask_len = eax.split.mask_length;
6114
6115 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
6116 x86_pmu.pebs_capable = PEBS_COUNTER_MASK;
6117
6118 /*
6119 * Quirk: v2 perfmon does not report fixed-purpose events, so
6120 * assume at least 3 events, when not running in a hypervisor:
6121 */
6122 if (version > 1 && version < 5) {
6123 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6124
6125 x86_pmu.num_counters_fixed =
6126 max((int)edx.split.num_counters_fixed, assume);
6127
6128 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
6129 } else if (version >= 5)
6130 x86_pmu.num_counters_fixed = fls(fixed_mask);
6131
6132 if (boot_cpu_has(X86_FEATURE_PDCM)) {
6133 u64 capabilities;
6134
6135 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
6136 x86_pmu.intel_cap.capabilities = capabilities;
6137 }
6138
6139 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6140 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6141 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6142 }
6143
6144 if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6145 intel_pmu_arch_lbr_init();
6146
6147 intel_ds_init();
6148
6149 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6150
6151 if (version >= 5) {
6152 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6153 if (x86_pmu.intel_cap.anythread_deprecated)
6154 pr_cont(" AnyThread deprecated, ");
6155 }
6156
6157 /*
6158 * Install the hw-cache-events table:
6159 */
6160 switch (boot_cpu_data.x86_model) {
6161 case INTEL_FAM6_CORE_YONAH:
6162 pr_cont("Core events, ");
6163 name = "core";
6164 break;
6165
6166 case INTEL_FAM6_CORE2_MEROM:
6167 x86_add_quirk(intel_clovertown_quirk);
6168 fallthrough;
6169
6170 case INTEL_FAM6_CORE2_MEROM_L:
6171 case INTEL_FAM6_CORE2_PENRYN:
6172 case INTEL_FAM6_CORE2_DUNNINGTON:
6173 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6174 sizeof(hw_cache_event_ids));
6175
6176 intel_pmu_lbr_init_core();
6177
6178 x86_pmu.event_constraints = intel_core2_event_constraints;
6179 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6180 pr_cont("Core2 events, ");
6181 name = "core2";
6182 break;
6183
6184 case INTEL_FAM6_NEHALEM:
6185 case INTEL_FAM6_NEHALEM_EP:
6186 case INTEL_FAM6_NEHALEM_EX:
6187 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6188 sizeof(hw_cache_event_ids));
6189 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6190 sizeof(hw_cache_extra_regs));
6191
6192 intel_pmu_lbr_init_nhm();
6193
6194 x86_pmu.event_constraints = intel_nehalem_event_constraints;
6195 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6196 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6197 x86_pmu.extra_regs = intel_nehalem_extra_regs;
6198 x86_pmu.limit_period = nhm_limit_period;
6199
6200 mem_attr = nhm_mem_events_attrs;
6201
6202 /* UOPS_ISSUED.STALLED_CYCLES */
6203 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6204 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6205 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6206 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6207 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6208
6209 intel_pmu_pebs_data_source_nhm();
6210 x86_add_quirk(intel_nehalem_quirk);
6211 x86_pmu.pebs_no_tlb = 1;
6212 extra_attr = nhm_format_attr;
6213
6214 pr_cont("Nehalem events, ");
6215 name = "nehalem";
6216 break;
6217
6218 case INTEL_FAM6_ATOM_BONNELL:
6219 case INTEL_FAM6_ATOM_BONNELL_MID:
6220 case INTEL_FAM6_ATOM_SALTWELL:
6221 case INTEL_FAM6_ATOM_SALTWELL_MID:
6222 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
6223 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
6224 sizeof(hw_cache_event_ids));
6225
6226 intel_pmu_lbr_init_atom();
6227
6228 x86_pmu.event_constraints = intel_gen_event_constraints;
6229 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
6230 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
6231 pr_cont("Atom events, ");
6232 name = "bonnell";
6233 break;
6234
6235 case INTEL_FAM6_ATOM_SILVERMONT:
6236 case INTEL_FAM6_ATOM_SILVERMONT_D:
6237 case INTEL_FAM6_ATOM_SILVERMONT_MID:
6238 case INTEL_FAM6_ATOM_AIRMONT:
6239 case INTEL_FAM6_ATOM_AIRMONT_MID:
6240 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
6241 sizeof(hw_cache_event_ids));
6242 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
6243 sizeof(hw_cache_extra_regs));
6244
6245 intel_pmu_lbr_init_slm();
6246
6247 x86_pmu.event_constraints = intel_slm_event_constraints;
6248 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6249 x86_pmu.extra_regs = intel_slm_extra_regs;
6250 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6251 td_attr = slm_events_attrs;
6252 extra_attr = slm_format_attr;
6253 pr_cont("Silvermont events, ");
6254 name = "silvermont";
6255 break;
6256
6257 case INTEL_FAM6_ATOM_GOLDMONT:
6258 case INTEL_FAM6_ATOM_GOLDMONT_D:
6259 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
6260 sizeof(hw_cache_event_ids));
6261 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
6262 sizeof(hw_cache_extra_regs));
6263
6264 intel_pmu_lbr_init_skl();
6265
6266 x86_pmu.event_constraints = intel_slm_event_constraints;
6267 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
6268 x86_pmu.extra_regs = intel_glm_extra_regs;
6269 /*
6270 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6271 * for precise cycles.
6272 * :pp is identical to :ppp
6273 */
6274 x86_pmu.pebs_aliases = NULL;
6275 x86_pmu.pebs_prec_dist = true;
6276 x86_pmu.lbr_pt_coexist = true;
6277 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6278 td_attr = glm_events_attrs;
6279 extra_attr = slm_format_attr;
6280 pr_cont("Goldmont events, ");
6281 name = "goldmont";
6282 break;
6283
6284 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
6285 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6286 sizeof(hw_cache_event_ids));
6287 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
6288 sizeof(hw_cache_extra_regs));
6289
6290 intel_pmu_lbr_init_skl();
6291
6292 x86_pmu.event_constraints = intel_slm_event_constraints;
6293 x86_pmu.extra_regs = intel_glm_extra_regs;
6294 /*
6295 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6296 * for precise cycles.
6297 */
6298 x86_pmu.pebs_aliases = NULL;
6299 x86_pmu.pebs_prec_dist = true;
6300 x86_pmu.lbr_pt_coexist = true;
6301 x86_pmu.pebs_capable = ~0ULL;
6302 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6303 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6304 x86_pmu.get_event_constraints = glp_get_event_constraints;
6305 td_attr = glm_events_attrs;
6306 /* Goldmont Plus has 4-wide pipeline */
6307 event_attr_td_total_slots_scale_glm.event_str = "4";
6308 extra_attr = slm_format_attr;
6309 pr_cont("Goldmont plus events, ");
6310 name = "goldmont_plus";
6311 break;
6312
6313 case INTEL_FAM6_ATOM_TREMONT_D:
6314 case INTEL_FAM6_ATOM_TREMONT:
6315 case INTEL_FAM6_ATOM_TREMONT_L:
6316 x86_pmu.late_ack = true;
6317 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6318 sizeof(hw_cache_event_ids));
6319 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6320 sizeof(hw_cache_extra_regs));
6321 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6322
6323 intel_pmu_lbr_init_skl();
6324
6325 x86_pmu.event_constraints = intel_slm_event_constraints;
6326 x86_pmu.extra_regs = intel_tnt_extra_regs;
6327 /*
6328 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6329 * for precise cycles.
6330 */
6331 x86_pmu.pebs_aliases = NULL;
6332 x86_pmu.pebs_prec_dist = true;
6333 x86_pmu.lbr_pt_coexist = true;
6334 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6335 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6336 td_attr = tnt_events_attrs;
6337 extra_attr = slm_format_attr;
6338 pr_cont("Tremont events, ");
6339 name = "Tremont";
6340 break;
6341
6342 case INTEL_FAM6_ATOM_GRACEMONT:
6343 x86_pmu.mid_ack = true;
6344 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6345 sizeof(hw_cache_event_ids));
6346 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6347 sizeof(hw_cache_extra_regs));
6348 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6349
6350 x86_pmu.event_constraints = intel_slm_event_constraints;
6351 x86_pmu.pebs_constraints = intel_grt_pebs_event_constraints;
6352 x86_pmu.extra_regs = intel_grt_extra_regs;
6353
6354 x86_pmu.pebs_aliases = NULL;
6355 x86_pmu.pebs_prec_dist = true;
6356 x86_pmu.pebs_block = true;
6357 x86_pmu.lbr_pt_coexist = true;
6358 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6359 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6360
6361 intel_pmu_pebs_data_source_grt();
6362 x86_pmu.pebs_latency_data = adl_latency_data_small;
6363 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6364 x86_pmu.limit_period = spr_limit_period;
6365 td_attr = tnt_events_attrs;
6366 mem_attr = grt_mem_attrs;
6367 extra_attr = nhm_format_attr;
6368 pr_cont("Gracemont events, ");
6369 name = "gracemont";
6370 break;
6371
6372 case INTEL_FAM6_ATOM_CRESTMONT:
6373 case INTEL_FAM6_ATOM_CRESTMONT_X:
6374 x86_pmu.mid_ack = true;
6375 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6376 sizeof(hw_cache_event_ids));
6377 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6378 sizeof(hw_cache_extra_regs));
6379 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6380
6381 x86_pmu.event_constraints = intel_slm_event_constraints;
6382 x86_pmu.pebs_constraints = intel_grt_pebs_event_constraints;
6383 x86_pmu.extra_regs = intel_cmt_extra_regs;
6384
6385 x86_pmu.pebs_aliases = NULL;
6386 x86_pmu.pebs_prec_dist = true;
6387 x86_pmu.lbr_pt_coexist = true;
6388 x86_pmu.pebs_block = true;
6389 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6390 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6391
6392 intel_pmu_pebs_data_source_cmt();
6393 x86_pmu.pebs_latency_data = mtl_latency_data_small;
6394 x86_pmu.get_event_constraints = cmt_get_event_constraints;
6395 x86_pmu.limit_period = spr_limit_period;
6396 td_attr = cmt_events_attrs;
6397 mem_attr = grt_mem_attrs;
6398 extra_attr = cmt_format_attr;
6399 pr_cont("Crestmont events, ");
6400 name = "crestmont";
6401 break;
6402
6403 case INTEL_FAM6_WESTMERE:
6404 case INTEL_FAM6_WESTMERE_EP:
6405 case INTEL_FAM6_WESTMERE_EX:
6406 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6407 sizeof(hw_cache_event_ids));
6408 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6409 sizeof(hw_cache_extra_regs));
6410
6411 intel_pmu_lbr_init_nhm();
6412
6413 x86_pmu.event_constraints = intel_westmere_event_constraints;
6414 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6415 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6416 x86_pmu.extra_regs = intel_westmere_extra_regs;
6417 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6418
6419 mem_attr = nhm_mem_events_attrs;
6420
6421 /* UOPS_ISSUED.STALLED_CYCLES */
6422 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6423 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6424 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6425 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6426 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6427
6428 intel_pmu_pebs_data_source_nhm();
6429 extra_attr = nhm_format_attr;
6430 pr_cont("Westmere events, ");
6431 name = "westmere";
6432 break;
6433
6434 case INTEL_FAM6_SANDYBRIDGE:
6435 case INTEL_FAM6_SANDYBRIDGE_X:
6436 x86_add_quirk(intel_sandybridge_quirk);
6437 x86_add_quirk(intel_ht_bug);
6438 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6439 sizeof(hw_cache_event_ids));
6440 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6441 sizeof(hw_cache_extra_regs));
6442
6443 intel_pmu_lbr_init_snb();
6444
6445 x86_pmu.event_constraints = intel_snb_event_constraints;
6446 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6447 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6448 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6449 x86_pmu.extra_regs = intel_snbep_extra_regs;
6450 else
6451 x86_pmu.extra_regs = intel_snb_extra_regs;
6452
6453
6454 /* all extra regs are per-cpu when HT is on */
6455 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6456 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6457
6458 td_attr = snb_events_attrs;
6459 mem_attr = snb_mem_events_attrs;
6460
6461 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6462 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6463 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6464 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6465 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6466 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6467
6468 extra_attr = nhm_format_attr;
6469
6470 pr_cont("SandyBridge events, ");
6471 name = "sandybridge";
6472 break;
6473
6474 case INTEL_FAM6_IVYBRIDGE:
6475 case INTEL_FAM6_IVYBRIDGE_X:
6476 x86_add_quirk(intel_ht_bug);
6477 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6478 sizeof(hw_cache_event_ids));
6479 /* dTLB-load-misses on IVB is different than SNB */
6480 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6481
6482 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6483 sizeof(hw_cache_extra_regs));
6484
6485 intel_pmu_lbr_init_snb();
6486
6487 x86_pmu.event_constraints = intel_ivb_event_constraints;
6488 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6489 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6490 x86_pmu.pebs_prec_dist = true;
6491 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6492 x86_pmu.extra_regs = intel_snbep_extra_regs;
6493 else
6494 x86_pmu.extra_regs = intel_snb_extra_regs;
6495 /* all extra regs are per-cpu when HT is on */
6496 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6497 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6498
6499 td_attr = snb_events_attrs;
6500 mem_attr = snb_mem_events_attrs;
6501
6502 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6503 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6504 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6505
6506 extra_attr = nhm_format_attr;
6507
6508 pr_cont("IvyBridge events, ");
6509 name = "ivybridge";
6510 break;
6511
6512
6513 case INTEL_FAM6_HASWELL:
6514 case INTEL_FAM6_HASWELL_X:
6515 case INTEL_FAM6_HASWELL_L:
6516 case INTEL_FAM6_HASWELL_G:
6517 x86_add_quirk(intel_ht_bug);
6518 x86_add_quirk(intel_pebs_isolation_quirk);
6519 x86_pmu.late_ack = true;
6520 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6521 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6522
6523 intel_pmu_lbr_init_hsw();
6524
6525 x86_pmu.event_constraints = intel_hsw_event_constraints;
6526 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6527 x86_pmu.extra_regs = intel_snbep_extra_regs;
6528 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6529 x86_pmu.pebs_prec_dist = true;
6530 /* all extra regs are per-cpu when HT is on */
6531 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6532 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6533
6534 x86_pmu.hw_config = hsw_hw_config;
6535 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6536 x86_pmu.limit_period = hsw_limit_period;
6537 x86_pmu.lbr_double_abort = true;
6538 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6539 hsw_format_attr : nhm_format_attr;
6540 td_attr = hsw_events_attrs;
6541 mem_attr = hsw_mem_events_attrs;
6542 tsx_attr = hsw_tsx_events_attrs;
6543 pr_cont("Haswell events, ");
6544 name = "haswell";
6545 break;
6546
6547 case INTEL_FAM6_BROADWELL:
6548 case INTEL_FAM6_BROADWELL_D:
6549 case INTEL_FAM6_BROADWELL_G:
6550 case INTEL_FAM6_BROADWELL_X:
6551 x86_add_quirk(intel_pebs_isolation_quirk);
6552 x86_pmu.late_ack = true;
6553 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6554 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6555
6556 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6557 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6558 BDW_L3_MISS|HSW_SNOOP_DRAM;
6559 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6560 HSW_SNOOP_DRAM;
6561 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6562 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6563 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6564 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6565
6566 intel_pmu_lbr_init_hsw();
6567
6568 x86_pmu.event_constraints = intel_bdw_event_constraints;
6569 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6570 x86_pmu.extra_regs = intel_snbep_extra_regs;
6571 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6572 x86_pmu.pebs_prec_dist = true;
6573 /* all extra regs are per-cpu when HT is on */
6574 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6575 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6576
6577 x86_pmu.hw_config = hsw_hw_config;
6578 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6579 x86_pmu.limit_period = bdw_limit_period;
6580 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6581 hsw_format_attr : nhm_format_attr;
6582 td_attr = hsw_events_attrs;
6583 mem_attr = hsw_mem_events_attrs;
6584 tsx_attr = hsw_tsx_events_attrs;
6585 pr_cont("Broadwell events, ");
6586 name = "broadwell";
6587 break;
6588
6589 case INTEL_FAM6_XEON_PHI_KNL:
6590 case INTEL_FAM6_XEON_PHI_KNM:
6591 memcpy(hw_cache_event_ids,
6592 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6593 memcpy(hw_cache_extra_regs,
6594 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6595 intel_pmu_lbr_init_knl();
6596
6597 x86_pmu.event_constraints = intel_slm_event_constraints;
6598 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6599 x86_pmu.extra_regs = intel_knl_extra_regs;
6600
6601 /* all extra regs are per-cpu when HT is on */
6602 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6603 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6604 extra_attr = slm_format_attr;
6605 pr_cont("Knights Landing/Mill events, ");
6606 name = "knights-landing";
6607 break;
6608
6609 case INTEL_FAM6_SKYLAKE_X:
6610 pmem = true;
6611 fallthrough;
6612 case INTEL_FAM6_SKYLAKE_L:
6613 case INTEL_FAM6_SKYLAKE:
6614 case INTEL_FAM6_KABYLAKE_L:
6615 case INTEL_FAM6_KABYLAKE:
6616 case INTEL_FAM6_COMETLAKE_L:
6617 case INTEL_FAM6_COMETLAKE:
6618 x86_add_quirk(intel_pebs_isolation_quirk);
6619 x86_pmu.late_ack = true;
6620 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6621 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6622 intel_pmu_lbr_init_skl();
6623
6624 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6625 event_attr_td_recovery_bubbles.event_str_noht =
6626 "event=0xd,umask=0x1,cmask=1";
6627 event_attr_td_recovery_bubbles.event_str_ht =
6628 "event=0xd,umask=0x1,cmask=1,any=1";
6629
6630 x86_pmu.event_constraints = intel_skl_event_constraints;
6631 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6632 x86_pmu.extra_regs = intel_skl_extra_regs;
6633 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6634 x86_pmu.pebs_prec_dist = true;
6635 /* all extra regs are per-cpu when HT is on */
6636 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6637 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6638
6639 x86_pmu.hw_config = hsw_hw_config;
6640 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6641 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6642 hsw_format_attr : nhm_format_attr;
6643 extra_skl_attr = skl_format_attr;
6644 td_attr = hsw_events_attrs;
6645 mem_attr = hsw_mem_events_attrs;
6646 tsx_attr = hsw_tsx_events_attrs;
6647 intel_pmu_pebs_data_source_skl(pmem);
6648
6649 /*
6650 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6651 * TSX force abort hooks are not required on these systems. Only deploy
6652 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6653 */
6654 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6655 !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6656 x86_pmu.flags |= PMU_FL_TFA;
6657 x86_pmu.get_event_constraints = tfa_get_event_constraints;
6658 x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6659 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6660 }
6661
6662 pr_cont("Skylake events, ");
6663 name = "skylake";
6664 break;
6665
6666 case INTEL_FAM6_ICELAKE_X:
6667 case INTEL_FAM6_ICELAKE_D:
6668 x86_pmu.pebs_ept = 1;
6669 pmem = true;
6670 fallthrough;
6671 case INTEL_FAM6_ICELAKE_L:
6672 case INTEL_FAM6_ICELAKE:
6673 case INTEL_FAM6_TIGERLAKE_L:
6674 case INTEL_FAM6_TIGERLAKE:
6675 case INTEL_FAM6_ROCKETLAKE:
6676 x86_pmu.late_ack = true;
6677 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6678 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6679 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6680 intel_pmu_lbr_init_skl();
6681
6682 x86_pmu.event_constraints = intel_icl_event_constraints;
6683 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6684 x86_pmu.extra_regs = intel_icl_extra_regs;
6685 x86_pmu.pebs_aliases = NULL;
6686 x86_pmu.pebs_prec_dist = true;
6687 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6688 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6689
6690 x86_pmu.hw_config = hsw_hw_config;
6691 x86_pmu.get_event_constraints = icl_get_event_constraints;
6692 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6693 hsw_format_attr : nhm_format_attr;
6694 extra_skl_attr = skl_format_attr;
6695 mem_attr = icl_events_attrs;
6696 td_attr = icl_td_events_attrs;
6697 tsx_attr = icl_tsx_events_attrs;
6698 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6699 x86_pmu.lbr_pt_coexist = true;
6700 intel_pmu_pebs_data_source_skl(pmem);
6701 x86_pmu.num_topdown_events = 4;
6702 static_call_update(intel_pmu_update_topdown_event,
6703 &icl_update_topdown_event);
6704 static_call_update(intel_pmu_set_topdown_event_period,
6705 &icl_set_topdown_event_period);
6706 pr_cont("Icelake events, ");
6707 name = "icelake";
6708 break;
6709
6710 case INTEL_FAM6_SAPPHIRERAPIDS_X:
6711 case INTEL_FAM6_EMERALDRAPIDS_X:
6712 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6713 x86_pmu.extra_regs = intel_spr_extra_regs;
6714 fallthrough;
6715 case INTEL_FAM6_GRANITERAPIDS_X:
6716 case INTEL_FAM6_GRANITERAPIDS_D:
6717 pmem = true;
6718 x86_pmu.late_ack = true;
6719 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6720 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6721
6722 x86_pmu.event_constraints = intel_spr_event_constraints;
6723 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6724 if (!x86_pmu.extra_regs)
6725 x86_pmu.extra_regs = intel_gnr_extra_regs;
6726 x86_pmu.limit_period = spr_limit_period;
6727 x86_pmu.pebs_ept = 1;
6728 x86_pmu.pebs_aliases = NULL;
6729 x86_pmu.pebs_prec_dist = true;
6730 x86_pmu.pebs_block = true;
6731 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6732 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6733 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6734
6735 x86_pmu.hw_config = hsw_hw_config;
6736 x86_pmu.get_event_constraints = spr_get_event_constraints;
6737 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6738 hsw_format_attr : nhm_format_attr;
6739 extra_skl_attr = skl_format_attr;
6740 mem_attr = spr_events_attrs;
6741 td_attr = spr_td_events_attrs;
6742 tsx_attr = spr_tsx_events_attrs;
6743 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6744 x86_pmu.lbr_pt_coexist = true;
6745 intel_pmu_pebs_data_source_skl(pmem);
6746 x86_pmu.num_topdown_events = 8;
6747 static_call_update(intel_pmu_update_topdown_event,
6748 &icl_update_topdown_event);
6749 static_call_update(intel_pmu_set_topdown_event_period,
6750 &icl_set_topdown_event_period);
6751 pr_cont("Sapphire Rapids events, ");
6752 name = "sapphire_rapids";
6753 break;
6754
6755 case INTEL_FAM6_ALDERLAKE:
6756 case INTEL_FAM6_ALDERLAKE_L:
6757 case INTEL_FAM6_RAPTORLAKE:
6758 case INTEL_FAM6_RAPTORLAKE_P:
6759 case INTEL_FAM6_RAPTORLAKE_S:
6760 case INTEL_FAM6_METEORLAKE:
6761 case INTEL_FAM6_METEORLAKE_L:
6762 /*
6763 * Alder Lake has 2 types of CPU, core and atom.
6764 *
6765 * Initialize the common PerfMon capabilities here.
6766 */
6767 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6768 sizeof(struct x86_hybrid_pmu),
6769 GFP_KERNEL);
6770 if (!x86_pmu.hybrid_pmu)
6771 return -ENOMEM;
6772 static_branch_enable(&perf_is_hybrid);
6773 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6774
6775 x86_pmu.pebs_aliases = NULL;
6776 x86_pmu.pebs_prec_dist = true;
6777 x86_pmu.pebs_block = true;
6778 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6779 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6780 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6781 x86_pmu.lbr_pt_coexist = true;
6782 x86_pmu.pebs_latency_data = adl_latency_data_small;
6783 x86_pmu.num_topdown_events = 8;
6784 static_call_update(intel_pmu_update_topdown_event,
6785 &adl_update_topdown_event);
6786 static_call_update(intel_pmu_set_topdown_event_period,
6787 &adl_set_topdown_event_period);
6788
6789 x86_pmu.filter = intel_pmu_filter;
6790 x86_pmu.get_event_constraints = adl_get_event_constraints;
6791 x86_pmu.hw_config = adl_hw_config;
6792 x86_pmu.limit_period = spr_limit_period;
6793 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6794 /*
6795 * The rtm_abort_event is used to check whether to enable GPRs
6796 * for the RTM abort event. Atom doesn't have the RTM abort
6797 * event. There is no harmful to set it in the common
6798 * x86_pmu.rtm_abort_event.
6799 */
6800 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6801
6802 td_attr = adl_hybrid_events_attrs;
6803 mem_attr = adl_hybrid_mem_attrs;
6804 tsx_attr = adl_hybrid_tsx_attrs;
6805 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6806 adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6807
6808 /* Initialize big core specific PerfMon capabilities.*/
6809 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6810 pmu->name = "cpu_core";
6811 pmu->cpu_type = hybrid_big;
6812 pmu->late_ack = true;
6813 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6814 pmu->num_counters = x86_pmu.num_counters + 2;
6815 pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6816 } else {
6817 pmu->num_counters = x86_pmu.num_counters;
6818 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6819 }
6820
6821 /*
6822 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6823 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6824 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6825 * mistakenly add extra counters for P-cores. Correct the number of
6826 * counters here.
6827 */
6828 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6829 pmu->num_counters = x86_pmu.num_counters;
6830 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6831 }
6832
6833 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6834 pmu->unconstrained = (struct event_constraint)
6835 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6836 0, pmu->num_counters, 0, 0);
6837 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6838 pmu->intel_cap.perf_metrics = 1;
6839 pmu->intel_cap.pebs_output_pt_available = 0;
6840
6841 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6842 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6843 pmu->event_constraints = intel_spr_event_constraints;
6844 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6845 pmu->extra_regs = intel_spr_extra_regs;
6846
6847 /* Initialize Atom core specific PerfMon capabilities.*/
6848 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6849 pmu->name = "cpu_atom";
6850 pmu->cpu_type = hybrid_small;
6851 pmu->mid_ack = true;
6852 pmu->num_counters = x86_pmu.num_counters;
6853 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6854 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6855 pmu->unconstrained = (struct event_constraint)
6856 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6857 0, pmu->num_counters, 0, 0);
6858 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6859 pmu->intel_cap.perf_metrics = 0;
6860 pmu->intel_cap.pebs_output_pt_available = 1;
6861
6862 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6863 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6864 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6865 pmu->event_constraints = intel_slm_event_constraints;
6866 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6867 pmu->extra_regs = intel_grt_extra_regs;
6868 if (is_mtl(boot_cpu_data.x86_model)) {
6869 x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].extra_regs = intel_gnr_extra_regs;
6870 x86_pmu.pebs_latency_data = mtl_latency_data_small;
6871 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6872 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
6873 mem_attr = mtl_hybrid_mem_attrs;
6874 intel_pmu_pebs_data_source_mtl();
6875 x86_pmu.get_event_constraints = mtl_get_event_constraints;
6876 pmu->extra_regs = intel_cmt_extra_regs;
6877 pr_cont("Meteorlake Hybrid events, ");
6878 name = "meteorlake_hybrid";
6879 } else {
6880 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6881 intel_pmu_pebs_data_source_adl();
6882 pr_cont("Alderlake Hybrid events, ");
6883 name = "alderlake_hybrid";
6884 }
6885 break;
6886
6887 default:
6888 switch (x86_pmu.version) {
6889 case 1:
6890 x86_pmu.event_constraints = intel_v1_event_constraints;
6891 pr_cont("generic architected perfmon v1, ");
6892 name = "generic_arch_v1";
6893 break;
6894 case 2:
6895 case 3:
6896 case 4:
6897 /*
6898 * default constraints for v2 and up
6899 */
6900 x86_pmu.event_constraints = intel_gen_event_constraints;
6901 pr_cont("generic architected perfmon, ");
6902 name = "generic_arch_v2+";
6903 break;
6904 default:
6905 /*
6906 * The default constraints for v5 and up can support up to
6907 * 16 fixed counters. For the fixed counters 4 and later,
6908 * the pseudo-encoding is applied.
6909 * The constraints may be cut according to the CPUID enumeration
6910 * by inserting the EVENT_CONSTRAINT_END.
6911 */
6912 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6913 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6914 intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6915 x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6916 pr_cont("generic architected perfmon, ");
6917 name = "generic_arch_v5+";
6918 break;
6919 }
6920 }
6921
6922 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6923
6924 if (!is_hybrid()) {
6925 group_events_td.attrs = td_attr;
6926 group_events_mem.attrs = mem_attr;
6927 group_events_tsx.attrs = tsx_attr;
6928 group_format_extra.attrs = extra_attr;
6929 group_format_extra_skl.attrs = extra_skl_attr;
6930
6931 x86_pmu.attr_update = attr_update;
6932 } else {
6933 hybrid_group_events_td.attrs = td_attr;
6934 hybrid_group_events_mem.attrs = mem_attr;
6935 hybrid_group_events_tsx.attrs = tsx_attr;
6936 hybrid_group_format_extra.attrs = extra_attr;
6937
6938 x86_pmu.attr_update = hybrid_attr_update;
6939 }
6940
6941 intel_pmu_check_num_counters(&x86_pmu.num_counters,
6942 &x86_pmu.num_counters_fixed,
6943 &x86_pmu.intel_ctrl,
6944 (u64)fixed_mask);
6945
6946 /* AnyThread may be deprecated on arch perfmon v5 or later */
6947 if (x86_pmu.intel_cap.anythread_deprecated)
6948 x86_pmu.format_attrs = intel_arch_formats_attr;
6949
6950 intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6951 x86_pmu.num_counters,
6952 x86_pmu.num_counters_fixed,
6953 x86_pmu.intel_ctrl);
6954 /*
6955 * Access LBR MSR may cause #GP under certain circumstances.
6956 * Check all LBR MSR here.
6957 * Disable LBR access if any LBR MSRs can not be accessed.
6958 */
6959 if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6960 x86_pmu.lbr_nr = 0;
6961 for (i = 0; i < x86_pmu.lbr_nr; i++) {
6962 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6963 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6964 x86_pmu.lbr_nr = 0;
6965 }
6966
6967 if (x86_pmu.lbr_nr) {
6968 intel_pmu_lbr_init();
6969
6970 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6971
6972 /* only support branch_stack snapshot for perfmon >= v2 */
6973 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6974 if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6975 static_call_update(perf_snapshot_branch_stack,
6976 intel_pmu_snapshot_arch_branch_stack);
6977 } else {
6978 static_call_update(perf_snapshot_branch_stack,
6979 intel_pmu_snapshot_branch_stack);
6980 }
6981 }
6982 }
6983
6984 intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6985
6986 /* Support full width counters using alternative MSR range */
6987 if (x86_pmu.intel_cap.full_width_write) {
6988 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6989 x86_pmu.perfctr = MSR_IA32_PMC0;
6990 pr_cont("full-width counters, ");
6991 }
6992
6993 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6994 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6995
6996 if (is_hybrid())
6997 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6998
6999 if (x86_pmu.intel_cap.pebs_timing_info)
7000 x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
7001
7002 intel_aux_output_init();
7003
7004 return 0;
7005 }
7006
7007 /*
7008 * HT bug: phase 2 init
7009 * Called once we have valid topology information to check
7010 * whether or not HT is enabled
7011 * If HT is off, then we disable the workaround
7012 */
fixup_ht_bug(void)7013 static __init int fixup_ht_bug(void)
7014 {
7015 int c;
7016 /*
7017 * problem not present on this CPU model, nothing to do
7018 */
7019 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
7020 return 0;
7021
7022 if (topology_max_smt_threads() > 1) {
7023 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
7024 return 0;
7025 }
7026
7027 cpus_read_lock();
7028
7029 hardlockup_detector_perf_stop();
7030
7031 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
7032
7033 x86_pmu.start_scheduling = NULL;
7034 x86_pmu.commit_scheduling = NULL;
7035 x86_pmu.stop_scheduling = NULL;
7036
7037 hardlockup_detector_perf_restart();
7038
7039 for_each_online_cpu(c)
7040 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
7041
7042 cpus_read_unlock();
7043 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
7044 return 0;
7045 }
7046 subsys_initcall(fixup_ht_bug)
7047