xref: /openbmc/linux/mm/vmscan.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 	/* Can active folios be deactivated as part of reclaim? */
97 #define DEACTIVATE_ANON 1
98 #define DEACTIVATE_FILE 2
99 	unsigned int may_deactivate:2;
100 	unsigned int force_deactivate:1;
101 	unsigned int skipped_deactivate:1;
102 
103 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
104 	unsigned int may_writepage:1;
105 
106 	/* Can mapped folios be reclaimed? */
107 	unsigned int may_unmap:1;
108 
109 	/* Can folios be swapped as part of reclaim? */
110 	unsigned int may_swap:1;
111 
112 	/* Proactive reclaim invoked by userspace through memory.reclaim */
113 	unsigned int proactive:1;
114 
115 	/*
116 	 * Cgroup memory below memory.low is protected as long as we
117 	 * don't threaten to OOM. If any cgroup is reclaimed at
118 	 * reduced force or passed over entirely due to its memory.low
119 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
120 	 * result, then go back for one more cycle that reclaims the protected
121 	 * memory (memcg_low_reclaim) to avert OOM.
122 	 */
123 	unsigned int memcg_low_reclaim:1;
124 	unsigned int memcg_low_skipped:1;
125 
126 	unsigned int hibernation_mode:1;
127 
128 	/* One of the zones is ready for compaction */
129 	unsigned int compaction_ready:1;
130 
131 	/* There is easily reclaimable cold cache in the current node */
132 	unsigned int cache_trim_mode:1;
133 
134 	/* The file folios on the current node are dangerously low */
135 	unsigned int file_is_tiny:1;
136 
137 	/* Always discard instead of demoting to lower tier memory */
138 	unsigned int no_demotion:1;
139 
140 	/* Allocation order */
141 	s8 order;
142 
143 	/* Scan (total_size >> priority) pages at once */
144 	s8 priority;
145 
146 	/* The highest zone to isolate folios for reclaim from */
147 	s8 reclaim_idx;
148 
149 	/* This context's GFP mask */
150 	gfp_t gfp_mask;
151 
152 	/* Incremented by the number of inactive pages that were scanned */
153 	unsigned long nr_scanned;
154 
155 	/* Number of pages freed so far during a call to shrink_zones() */
156 	unsigned long nr_reclaimed;
157 
158 	struct {
159 		unsigned int dirty;
160 		unsigned int unqueued_dirty;
161 		unsigned int congested;
162 		unsigned int writeback;
163 		unsigned int immediate;
164 		unsigned int file_taken;
165 		unsigned int taken;
166 	} nr;
167 
168 	/* for recording the reclaimed slab by now */
169 	struct reclaim_state reclaim_state;
170 };
171 
172 #ifdef ARCH_HAS_PREFETCHW
173 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
174 	do {								\
175 		if ((_folio)->lru.prev != _base) {			\
176 			struct folio *prev;				\
177 									\
178 			prev = lru_to_folio(&(_folio->lru));		\
179 			prefetchw(&prev->_field);			\
180 		}							\
181 	} while (0)
182 #else
183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
184 #endif
185 
186 /*
187  * From 0 .. 200.  Higher means more swappy.
188  */
189 int vm_swappiness = 60;
190 
191 LIST_HEAD(shrinker_list);
192 DECLARE_RWSEM(shrinker_rwsem);
193 
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196 
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
shrinker_map_size(int nr_items)198 static inline int shrinker_map_size(int nr_items)
199 {
200 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202 
shrinker_defer_size(int nr_items)203 static inline int shrinker_defer_size(int nr_items)
204 {
205 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207 
shrinker_info_protected(struct mem_cgroup * memcg,int nid)208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 						     int nid)
210 {
211 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 					 lockdep_is_held(&shrinker_rwsem));
213 }
214 
expand_one_shrinker_info(struct mem_cgroup * memcg,int map_size,int defer_size,int old_map_size,int old_defer_size,int new_nr_max)215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 				    int map_size, int defer_size,
217 				    int old_map_size, int old_defer_size,
218 				    int new_nr_max)
219 {
220 	struct shrinker_info *new, *old;
221 	struct mem_cgroup_per_node *pn;
222 	int nid;
223 	int size = map_size + defer_size;
224 
225 	for_each_node(nid) {
226 		pn = memcg->nodeinfo[nid];
227 		old = shrinker_info_protected(memcg, nid);
228 		/* Not yet online memcg */
229 		if (!old)
230 			return 0;
231 
232 		/* Already expanded this shrinker_info */
233 		if (new_nr_max <= old->map_nr_max)
234 			continue;
235 
236 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
237 		if (!new)
238 			return -ENOMEM;
239 
240 		new->nr_deferred = (atomic_long_t *)(new + 1);
241 		new->map = (void *)new->nr_deferred + defer_size;
242 		new->map_nr_max = new_nr_max;
243 
244 		/* map: set all old bits, clear all new bits */
245 		memset(new->map, (int)0xff, old_map_size);
246 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
247 		/* nr_deferred: copy old values, clear all new values */
248 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
249 		memset((void *)new->nr_deferred + old_defer_size, 0,
250 		       defer_size - old_defer_size);
251 
252 		rcu_assign_pointer(pn->shrinker_info, new);
253 		kvfree_rcu(old, rcu);
254 	}
255 
256 	return 0;
257 }
258 
free_shrinker_info(struct mem_cgroup * memcg)259 void free_shrinker_info(struct mem_cgroup *memcg)
260 {
261 	struct mem_cgroup_per_node *pn;
262 	struct shrinker_info *info;
263 	int nid;
264 
265 	for_each_node(nid) {
266 		pn = memcg->nodeinfo[nid];
267 		info = rcu_dereference_protected(pn->shrinker_info, true);
268 		kvfree(info);
269 		rcu_assign_pointer(pn->shrinker_info, NULL);
270 	}
271 }
272 
alloc_shrinker_info(struct mem_cgroup * memcg)273 int alloc_shrinker_info(struct mem_cgroup *memcg)
274 {
275 	struct shrinker_info *info;
276 	int nid, size, ret = 0;
277 	int map_size, defer_size = 0;
278 
279 	down_write(&shrinker_rwsem);
280 	map_size = shrinker_map_size(shrinker_nr_max);
281 	defer_size = shrinker_defer_size(shrinker_nr_max);
282 	size = map_size + defer_size;
283 	for_each_node(nid) {
284 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
285 		if (!info) {
286 			free_shrinker_info(memcg);
287 			ret = -ENOMEM;
288 			break;
289 		}
290 		info->nr_deferred = (atomic_long_t *)(info + 1);
291 		info->map = (void *)info->nr_deferred + defer_size;
292 		info->map_nr_max = shrinker_nr_max;
293 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
294 	}
295 	up_write(&shrinker_rwsem);
296 
297 	return ret;
298 }
299 
expand_shrinker_info(int new_id)300 static int expand_shrinker_info(int new_id)
301 {
302 	int ret = 0;
303 	int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
304 	int map_size, defer_size = 0;
305 	int old_map_size, old_defer_size = 0;
306 	struct mem_cgroup *memcg;
307 
308 	if (!root_mem_cgroup)
309 		goto out;
310 
311 	lockdep_assert_held(&shrinker_rwsem);
312 
313 	map_size = shrinker_map_size(new_nr_max);
314 	defer_size = shrinker_defer_size(new_nr_max);
315 	old_map_size = shrinker_map_size(shrinker_nr_max);
316 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
317 
318 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
319 	do {
320 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
321 					       old_map_size, old_defer_size,
322 					       new_nr_max);
323 		if (ret) {
324 			mem_cgroup_iter_break(NULL, memcg);
325 			goto out;
326 		}
327 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
328 out:
329 	if (!ret)
330 		shrinker_nr_max = new_nr_max;
331 
332 	return ret;
333 }
334 
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)335 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
336 {
337 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
338 		struct shrinker_info *info;
339 
340 		rcu_read_lock();
341 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
342 		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
343 			/* Pairs with smp mb in shrink_slab() */
344 			smp_mb__before_atomic();
345 			set_bit(shrinker_id, info->map);
346 		}
347 		rcu_read_unlock();
348 	}
349 }
350 
351 static DEFINE_IDR(shrinker_idr);
352 
prealloc_memcg_shrinker(struct shrinker * shrinker)353 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
354 {
355 	int id, ret = -ENOMEM;
356 
357 	if (mem_cgroup_disabled())
358 		return -ENOSYS;
359 
360 	down_write(&shrinker_rwsem);
361 	/* This may call shrinker, so it must use down_read_trylock() */
362 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
363 	if (id < 0)
364 		goto unlock;
365 
366 	if (id >= shrinker_nr_max) {
367 		if (expand_shrinker_info(id)) {
368 			idr_remove(&shrinker_idr, id);
369 			goto unlock;
370 		}
371 	}
372 	shrinker->id = id;
373 	ret = 0;
374 unlock:
375 	up_write(&shrinker_rwsem);
376 	return ret;
377 }
378 
unregister_memcg_shrinker(struct shrinker * shrinker)379 static void unregister_memcg_shrinker(struct shrinker *shrinker)
380 {
381 	int id = shrinker->id;
382 
383 	BUG_ON(id < 0);
384 
385 	lockdep_assert_held(&shrinker_rwsem);
386 
387 	idr_remove(&shrinker_idr, id);
388 }
389 
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
391 				   struct mem_cgroup *memcg)
392 {
393 	struct shrinker_info *info;
394 
395 	info = shrinker_info_protected(memcg, nid);
396 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
397 }
398 
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400 				  struct mem_cgroup *memcg)
401 {
402 	struct shrinker_info *info;
403 
404 	info = shrinker_info_protected(memcg, nid);
405 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
406 }
407 
reparent_shrinker_deferred(struct mem_cgroup * memcg)408 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
409 {
410 	int i, nid;
411 	long nr;
412 	struct mem_cgroup *parent;
413 	struct shrinker_info *child_info, *parent_info;
414 
415 	parent = parent_mem_cgroup(memcg);
416 	if (!parent)
417 		parent = root_mem_cgroup;
418 
419 	/* Prevent from concurrent shrinker_info expand */
420 	down_read(&shrinker_rwsem);
421 	for_each_node(nid) {
422 		child_info = shrinker_info_protected(memcg, nid);
423 		parent_info = shrinker_info_protected(parent, nid);
424 		for (i = 0; i < child_info->map_nr_max; i++) {
425 			nr = atomic_long_read(&child_info->nr_deferred[i]);
426 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
427 		}
428 	}
429 	up_read(&shrinker_rwsem);
430 }
431 
432 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)433 static bool cgroup_reclaim(struct scan_control *sc)
434 {
435 	return sc->target_mem_cgroup;
436 }
437 
438 /*
439  * Returns true for reclaim on the root cgroup. This is true for direct
440  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
441  */
root_reclaim(struct scan_control * sc)442 static bool root_reclaim(struct scan_control *sc)
443 {
444 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
445 }
446 
447 /**
448  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
449  * @sc: scan_control in question
450  *
451  * The normal page dirty throttling mechanism in balance_dirty_pages() is
452  * completely broken with the legacy memcg and direct stalling in
453  * shrink_folio_list() is used for throttling instead, which lacks all the
454  * niceties such as fairness, adaptive pausing, bandwidth proportional
455  * allocation and configurability.
456  *
457  * This function tests whether the vmscan currently in progress can assume
458  * that the normal dirty throttling mechanism is operational.
459  */
writeback_throttling_sane(struct scan_control * sc)460 static bool writeback_throttling_sane(struct scan_control *sc)
461 {
462 	if (!cgroup_reclaim(sc))
463 		return true;
464 #ifdef CONFIG_CGROUP_WRITEBACK
465 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 		return true;
467 #endif
468 	return false;
469 }
470 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)471 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
472 {
473 	return -ENOSYS;
474 }
475 
unregister_memcg_shrinker(struct shrinker * shrinker)476 static void unregister_memcg_shrinker(struct shrinker *shrinker)
477 {
478 }
479 
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)480 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
481 				   struct mem_cgroup *memcg)
482 {
483 	return 0;
484 }
485 
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)486 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
487 				  struct mem_cgroup *memcg)
488 {
489 	return 0;
490 }
491 
cgroup_reclaim(struct scan_control * sc)492 static bool cgroup_reclaim(struct scan_control *sc)
493 {
494 	return false;
495 }
496 
root_reclaim(struct scan_control * sc)497 static bool root_reclaim(struct scan_control *sc)
498 {
499 	return true;
500 }
501 
writeback_throttling_sane(struct scan_control * sc)502 static bool writeback_throttling_sane(struct scan_control *sc)
503 {
504 	return true;
505 }
506 #endif
507 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)508 static void set_task_reclaim_state(struct task_struct *task,
509 				   struct reclaim_state *rs)
510 {
511 	/* Check for an overwrite */
512 	WARN_ON_ONCE(rs && task->reclaim_state);
513 
514 	/* Check for the nulling of an already-nulled member */
515 	WARN_ON_ONCE(!rs && !task->reclaim_state);
516 
517 	task->reclaim_state = rs;
518 }
519 
520 /*
521  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
522  * scan_control->nr_reclaimed.
523  */
flush_reclaim_state(struct scan_control * sc)524 static void flush_reclaim_state(struct scan_control *sc)
525 {
526 	/*
527 	 * Currently, reclaim_state->reclaimed includes three types of pages
528 	 * freed outside of vmscan:
529 	 * (1) Slab pages.
530 	 * (2) Clean file pages from pruned inodes (on highmem systems).
531 	 * (3) XFS freed buffer pages.
532 	 *
533 	 * For all of these cases, we cannot universally link the pages to a
534 	 * single memcg. For example, a memcg-aware shrinker can free one object
535 	 * charged to the target memcg, causing an entire page to be freed.
536 	 * If we count the entire page as reclaimed from the memcg, we end up
537 	 * overestimating the reclaimed amount (potentially under-reclaiming).
538 	 *
539 	 * Only count such pages for global reclaim to prevent under-reclaiming
540 	 * from the target memcg; preventing unnecessary retries during memcg
541 	 * charging and false positives from proactive reclaim.
542 	 *
543 	 * For uncommon cases where the freed pages were actually mostly
544 	 * charged to the target memcg, we end up underestimating the reclaimed
545 	 * amount. This should be fine. The freed pages will be uncharged
546 	 * anyway, even if they are not counted here properly, and we will be
547 	 * able to make forward progress in charging (which is usually in a
548 	 * retry loop).
549 	 *
550 	 * We can go one step further, and report the uncharged objcg pages in
551 	 * memcg reclaim, to make reporting more accurate and reduce
552 	 * underestimation, but it's probably not worth the complexity for now.
553 	 */
554 	if (current->reclaim_state && root_reclaim(sc)) {
555 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
556 		current->reclaim_state->reclaimed = 0;
557 	}
558 }
559 
xchg_nr_deferred(struct shrinker * shrinker,struct shrink_control * sc)560 static long xchg_nr_deferred(struct shrinker *shrinker,
561 			     struct shrink_control *sc)
562 {
563 	int nid = sc->nid;
564 
565 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
566 		nid = 0;
567 
568 	if (sc->memcg &&
569 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
570 		return xchg_nr_deferred_memcg(nid, shrinker,
571 					      sc->memcg);
572 
573 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
574 }
575 
576 
add_nr_deferred(long nr,struct shrinker * shrinker,struct shrink_control * sc)577 static long add_nr_deferred(long nr, struct shrinker *shrinker,
578 			    struct shrink_control *sc)
579 {
580 	int nid = sc->nid;
581 
582 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
583 		nid = 0;
584 
585 	if (sc->memcg &&
586 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
587 		return add_nr_deferred_memcg(nr, nid, shrinker,
588 					     sc->memcg);
589 
590 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
591 }
592 
can_demote(int nid,struct scan_control * sc)593 static bool can_demote(int nid, struct scan_control *sc)
594 {
595 	if (!numa_demotion_enabled)
596 		return false;
597 	if (sc && sc->no_demotion)
598 		return false;
599 	if (next_demotion_node(nid) == NUMA_NO_NODE)
600 		return false;
601 
602 	return true;
603 }
604 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)605 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
606 					  int nid,
607 					  struct scan_control *sc)
608 {
609 	if (memcg == NULL) {
610 		/*
611 		 * For non-memcg reclaim, is there
612 		 * space in any swap device?
613 		 */
614 		if (get_nr_swap_pages() > 0)
615 			return true;
616 	} else {
617 		/* Is the memcg below its swap limit? */
618 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
619 			return true;
620 	}
621 
622 	/*
623 	 * The page can not be swapped.
624 	 *
625 	 * Can it be reclaimed from this node via demotion?
626 	 */
627 	return can_demote(nid, sc);
628 }
629 
630 /*
631  * This misses isolated folios which are not accounted for to save counters.
632  * As the data only determines if reclaim or compaction continues, it is
633  * not expected that isolated folios will be a dominating factor.
634  */
zone_reclaimable_pages(struct zone * zone)635 unsigned long zone_reclaimable_pages(struct zone *zone)
636 {
637 	unsigned long nr;
638 
639 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
640 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
641 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
642 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
643 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
644 	/*
645 	 * If there are no reclaimable file-backed or anonymous pages,
646 	 * ensure zones with sufficient free pages are not skipped.
647 	 * This prevents zones like DMA32 from being ignored in reclaim
648 	 * scenarios where they can still help alleviate memory pressure.
649 	 */
650 	if (nr == 0)
651 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
652 	return nr;
653 }
654 
655 /**
656  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
657  * @lruvec: lru vector
658  * @lru: lru to use
659  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
660  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)661 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
662 				     int zone_idx)
663 {
664 	unsigned long size = 0;
665 	int zid;
666 
667 	for (zid = 0; zid <= zone_idx; zid++) {
668 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
669 
670 		if (!managed_zone(zone))
671 			continue;
672 
673 		if (!mem_cgroup_disabled())
674 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
675 		else
676 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
677 	}
678 	return size;
679 }
680 
681 /*
682  * Add a shrinker callback to be called from the vm.
683  */
__prealloc_shrinker(struct shrinker * shrinker)684 static int __prealloc_shrinker(struct shrinker *shrinker)
685 {
686 	unsigned int size;
687 	int err;
688 
689 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
690 		err = prealloc_memcg_shrinker(shrinker);
691 		if (err != -ENOSYS)
692 			return err;
693 
694 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
695 	}
696 
697 	size = sizeof(*shrinker->nr_deferred);
698 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
699 		size *= nr_node_ids;
700 
701 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
702 	if (!shrinker->nr_deferred)
703 		return -ENOMEM;
704 
705 	return 0;
706 }
707 
708 #ifdef CONFIG_SHRINKER_DEBUG
prealloc_shrinker(struct shrinker * shrinker,const char * fmt,...)709 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
710 {
711 	va_list ap;
712 	int err;
713 
714 	va_start(ap, fmt);
715 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
716 	va_end(ap);
717 	if (!shrinker->name)
718 		return -ENOMEM;
719 
720 	err = __prealloc_shrinker(shrinker);
721 	if (err) {
722 		kfree_const(shrinker->name);
723 		shrinker->name = NULL;
724 	}
725 
726 	return err;
727 }
728 #else
prealloc_shrinker(struct shrinker * shrinker,const char * fmt,...)729 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
730 {
731 	return __prealloc_shrinker(shrinker);
732 }
733 #endif
734 
free_prealloced_shrinker(struct shrinker * shrinker)735 void free_prealloced_shrinker(struct shrinker *shrinker)
736 {
737 #ifdef CONFIG_SHRINKER_DEBUG
738 	kfree_const(shrinker->name);
739 	shrinker->name = NULL;
740 #endif
741 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
742 		down_write(&shrinker_rwsem);
743 		unregister_memcg_shrinker(shrinker);
744 		up_write(&shrinker_rwsem);
745 		return;
746 	}
747 
748 	kfree(shrinker->nr_deferred);
749 	shrinker->nr_deferred = NULL;
750 }
751 
register_shrinker_prepared(struct shrinker * shrinker)752 void register_shrinker_prepared(struct shrinker *shrinker)
753 {
754 	down_write(&shrinker_rwsem);
755 	list_add_tail(&shrinker->list, &shrinker_list);
756 	shrinker->flags |= SHRINKER_REGISTERED;
757 	shrinker_debugfs_add(shrinker);
758 	up_write(&shrinker_rwsem);
759 }
760 
__register_shrinker(struct shrinker * shrinker)761 static int __register_shrinker(struct shrinker *shrinker)
762 {
763 	int err = __prealloc_shrinker(shrinker);
764 
765 	if (err)
766 		return err;
767 	register_shrinker_prepared(shrinker);
768 	return 0;
769 }
770 
771 #ifdef CONFIG_SHRINKER_DEBUG
register_shrinker(struct shrinker * shrinker,const char * fmt,...)772 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
773 {
774 	va_list ap;
775 	int err;
776 
777 	va_start(ap, fmt);
778 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
779 	va_end(ap);
780 	if (!shrinker->name)
781 		return -ENOMEM;
782 
783 	err = __register_shrinker(shrinker);
784 	if (err) {
785 		kfree_const(shrinker->name);
786 		shrinker->name = NULL;
787 	}
788 	return err;
789 }
790 #else
register_shrinker(struct shrinker * shrinker,const char * fmt,...)791 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
792 {
793 	return __register_shrinker(shrinker);
794 }
795 #endif
796 EXPORT_SYMBOL(register_shrinker);
797 
798 /*
799  * Remove one
800  */
unregister_shrinker(struct shrinker * shrinker)801 void unregister_shrinker(struct shrinker *shrinker)
802 {
803 	struct dentry *debugfs_entry;
804 	int debugfs_id;
805 
806 	if (!(shrinker->flags & SHRINKER_REGISTERED))
807 		return;
808 
809 	down_write(&shrinker_rwsem);
810 	list_del(&shrinker->list);
811 	shrinker->flags &= ~SHRINKER_REGISTERED;
812 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
813 		unregister_memcg_shrinker(shrinker);
814 	debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
815 	up_write(&shrinker_rwsem);
816 
817 	shrinker_debugfs_remove(debugfs_entry, debugfs_id);
818 
819 	kfree(shrinker->nr_deferred);
820 	shrinker->nr_deferred = NULL;
821 }
822 EXPORT_SYMBOL(unregister_shrinker);
823 
824 /**
825  * synchronize_shrinkers - Wait for all running shrinkers to complete.
826  *
827  * This is equivalent to calling unregister_shrink() and register_shrinker(),
828  * but atomically and with less overhead. This is useful to guarantee that all
829  * shrinker invocations have seen an update, before freeing memory, similar to
830  * rcu.
831  */
synchronize_shrinkers(void)832 void synchronize_shrinkers(void)
833 {
834 	down_write(&shrinker_rwsem);
835 	up_write(&shrinker_rwsem);
836 }
837 EXPORT_SYMBOL(synchronize_shrinkers);
838 
839 #define SHRINK_BATCH 128
840 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)841 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
842 				    struct shrinker *shrinker, int priority)
843 {
844 	unsigned long freed = 0;
845 	unsigned long long delta;
846 	long total_scan;
847 	long freeable;
848 	long nr;
849 	long new_nr;
850 	long batch_size = shrinker->batch ? shrinker->batch
851 					  : SHRINK_BATCH;
852 	long scanned = 0, next_deferred;
853 
854 	freeable = shrinker->count_objects(shrinker, shrinkctl);
855 	if (freeable == 0 || freeable == SHRINK_EMPTY)
856 		return freeable;
857 
858 	/*
859 	 * copy the current shrinker scan count into a local variable
860 	 * and zero it so that other concurrent shrinker invocations
861 	 * don't also do this scanning work.
862 	 */
863 	nr = xchg_nr_deferred(shrinker, shrinkctl);
864 
865 	if (shrinker->seeks) {
866 		delta = freeable >> priority;
867 		delta *= 4;
868 		do_div(delta, shrinker->seeks);
869 	} else {
870 		/*
871 		 * These objects don't require any IO to create. Trim
872 		 * them aggressively under memory pressure to keep
873 		 * them from causing refetches in the IO caches.
874 		 */
875 		delta = freeable / 2;
876 	}
877 
878 	total_scan = nr >> priority;
879 	total_scan += delta;
880 	total_scan = min(total_scan, (2 * freeable));
881 
882 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
883 				   freeable, delta, total_scan, priority);
884 
885 	/*
886 	 * Normally, we should not scan less than batch_size objects in one
887 	 * pass to avoid too frequent shrinker calls, but if the slab has less
888 	 * than batch_size objects in total and we are really tight on memory,
889 	 * we will try to reclaim all available objects, otherwise we can end
890 	 * up failing allocations although there are plenty of reclaimable
891 	 * objects spread over several slabs with usage less than the
892 	 * batch_size.
893 	 *
894 	 * We detect the "tight on memory" situations by looking at the total
895 	 * number of objects we want to scan (total_scan). If it is greater
896 	 * than the total number of objects on slab (freeable), we must be
897 	 * scanning at high prio and therefore should try to reclaim as much as
898 	 * possible.
899 	 */
900 	while (total_scan >= batch_size ||
901 	       total_scan >= freeable) {
902 		unsigned long ret;
903 		unsigned long nr_to_scan = min(batch_size, total_scan);
904 
905 		shrinkctl->nr_to_scan = nr_to_scan;
906 		shrinkctl->nr_scanned = nr_to_scan;
907 		ret = shrinker->scan_objects(shrinker, shrinkctl);
908 		if (ret == SHRINK_STOP)
909 			break;
910 		freed += ret;
911 
912 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
913 		total_scan -= shrinkctl->nr_scanned;
914 		scanned += shrinkctl->nr_scanned;
915 
916 		cond_resched();
917 	}
918 
919 	/*
920 	 * The deferred work is increased by any new work (delta) that wasn't
921 	 * done, decreased by old deferred work that was done now.
922 	 *
923 	 * And it is capped to two times of the freeable items.
924 	 */
925 	next_deferred = max_t(long, (nr + delta - scanned), 0);
926 	next_deferred = min(next_deferred, (2 * freeable));
927 
928 	/*
929 	 * move the unused scan count back into the shrinker in a
930 	 * manner that handles concurrent updates.
931 	 */
932 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
933 
934 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
935 	return freed;
936 }
937 
938 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)939 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
940 			struct mem_cgroup *memcg, int priority)
941 {
942 	struct shrinker_info *info;
943 	unsigned long ret, freed = 0;
944 	int i;
945 
946 	if (!mem_cgroup_online(memcg))
947 		return 0;
948 
949 	if (!down_read_trylock(&shrinker_rwsem))
950 		return 0;
951 
952 	info = shrinker_info_protected(memcg, nid);
953 	if (unlikely(!info))
954 		goto unlock;
955 
956 	for_each_set_bit(i, info->map, info->map_nr_max) {
957 		struct shrink_control sc = {
958 			.gfp_mask = gfp_mask,
959 			.nid = nid,
960 			.memcg = memcg,
961 		};
962 		struct shrinker *shrinker;
963 
964 		shrinker = idr_find(&shrinker_idr, i);
965 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
966 			if (!shrinker)
967 				clear_bit(i, info->map);
968 			continue;
969 		}
970 
971 		/* Call non-slab shrinkers even though kmem is disabled */
972 		if (!memcg_kmem_online() &&
973 		    !(shrinker->flags & SHRINKER_NONSLAB))
974 			continue;
975 
976 		ret = do_shrink_slab(&sc, shrinker, priority);
977 		if (ret == SHRINK_EMPTY) {
978 			clear_bit(i, info->map);
979 			/*
980 			 * After the shrinker reported that it had no objects to
981 			 * free, but before we cleared the corresponding bit in
982 			 * the memcg shrinker map, a new object might have been
983 			 * added. To make sure, we have the bit set in this
984 			 * case, we invoke the shrinker one more time and reset
985 			 * the bit if it reports that it is not empty anymore.
986 			 * The memory barrier here pairs with the barrier in
987 			 * set_shrinker_bit():
988 			 *
989 			 * list_lru_add()     shrink_slab_memcg()
990 			 *   list_add_tail()    clear_bit()
991 			 *   <MB>               <MB>
992 			 *   set_bit()          do_shrink_slab()
993 			 */
994 			smp_mb__after_atomic();
995 			ret = do_shrink_slab(&sc, shrinker, priority);
996 			if (ret == SHRINK_EMPTY)
997 				ret = 0;
998 			else
999 				set_shrinker_bit(memcg, nid, i);
1000 		}
1001 		freed += ret;
1002 
1003 		if (rwsem_is_contended(&shrinker_rwsem)) {
1004 			freed = freed ? : 1;
1005 			break;
1006 		}
1007 	}
1008 unlock:
1009 	up_read(&shrinker_rwsem);
1010 	return freed;
1011 }
1012 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)1013 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1014 			struct mem_cgroup *memcg, int priority)
1015 {
1016 	return 0;
1017 }
1018 #endif /* CONFIG_MEMCG */
1019 
1020 /**
1021  * shrink_slab - shrink slab caches
1022  * @gfp_mask: allocation context
1023  * @nid: node whose slab caches to target
1024  * @memcg: memory cgroup whose slab caches to target
1025  * @priority: the reclaim priority
1026  *
1027  * Call the shrink functions to age shrinkable caches.
1028  *
1029  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1030  * unaware shrinkers will receive a node id of 0 instead.
1031  *
1032  * @memcg specifies the memory cgroup to target. Unaware shrinkers
1033  * are called only if it is the root cgroup.
1034  *
1035  * @priority is sc->priority, we take the number of objects and >> by priority
1036  * in order to get the scan target.
1037  *
1038  * Returns the number of reclaimed slab objects.
1039  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)1040 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1041 				 struct mem_cgroup *memcg,
1042 				 int priority)
1043 {
1044 	unsigned long ret, freed = 0;
1045 	struct shrinker *shrinker;
1046 
1047 	/*
1048 	 * The root memcg might be allocated even though memcg is disabled
1049 	 * via "cgroup_disable=memory" boot parameter.  This could make
1050 	 * mem_cgroup_is_root() return false, then just run memcg slab
1051 	 * shrink, but skip global shrink.  This may result in premature
1052 	 * oom.
1053 	 */
1054 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1055 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1056 
1057 	if (!down_read_trylock(&shrinker_rwsem))
1058 		goto out;
1059 
1060 	list_for_each_entry(shrinker, &shrinker_list, list) {
1061 		struct shrink_control sc = {
1062 			.gfp_mask = gfp_mask,
1063 			.nid = nid,
1064 			.memcg = memcg,
1065 		};
1066 
1067 		ret = do_shrink_slab(&sc, shrinker, priority);
1068 		if (ret == SHRINK_EMPTY)
1069 			ret = 0;
1070 		freed += ret;
1071 		/*
1072 		 * Bail out if someone want to register a new shrinker to
1073 		 * prevent the registration from being stalled for long periods
1074 		 * by parallel ongoing shrinking.
1075 		 */
1076 		if (rwsem_is_contended(&shrinker_rwsem)) {
1077 			freed = freed ? : 1;
1078 			break;
1079 		}
1080 	}
1081 
1082 	up_read(&shrinker_rwsem);
1083 out:
1084 	cond_resched();
1085 	return freed;
1086 }
1087 
drop_slab_node(int nid)1088 static unsigned long drop_slab_node(int nid)
1089 {
1090 	unsigned long freed = 0;
1091 	struct mem_cgroup *memcg = NULL;
1092 
1093 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1094 	do {
1095 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1096 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1097 
1098 	return freed;
1099 }
1100 
drop_slab(void)1101 void drop_slab(void)
1102 {
1103 	int nid;
1104 	int shift = 0;
1105 	unsigned long freed;
1106 
1107 	do {
1108 		freed = 0;
1109 		for_each_online_node(nid) {
1110 			if (fatal_signal_pending(current))
1111 				return;
1112 
1113 			freed += drop_slab_node(nid);
1114 		}
1115 	} while ((freed >> shift++) > 1);
1116 }
1117 
reclaimer_offset(void)1118 static int reclaimer_offset(void)
1119 {
1120 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1121 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1122 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1123 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1124 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1125 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1126 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1127 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1128 
1129 	if (current_is_kswapd())
1130 		return 0;
1131 	if (current_is_khugepaged())
1132 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1133 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1134 }
1135 
is_page_cache_freeable(struct folio * folio)1136 static inline int is_page_cache_freeable(struct folio *folio)
1137 {
1138 	/*
1139 	 * A freeable page cache folio is referenced only by the caller
1140 	 * that isolated the folio, the page cache and optional filesystem
1141 	 * private data at folio->private.
1142 	 */
1143 	return folio_ref_count(folio) - folio_test_private(folio) ==
1144 		1 + folio_nr_pages(folio);
1145 }
1146 
1147 /*
1148  * We detected a synchronous write error writing a folio out.  Probably
1149  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1150  * fsync(), msync() or close().
1151  *
1152  * The tricky part is that after writepage we cannot touch the mapping: nothing
1153  * prevents it from being freed up.  But we have a ref on the folio and once
1154  * that folio is locked, the mapping is pinned.
1155  *
1156  * We're allowed to run sleeping folio_lock() here because we know the caller has
1157  * __GFP_FS.
1158  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)1159 static void handle_write_error(struct address_space *mapping,
1160 				struct folio *folio, int error)
1161 {
1162 	folio_lock(folio);
1163 	if (folio_mapping(folio) == mapping)
1164 		mapping_set_error(mapping, error);
1165 	folio_unlock(folio);
1166 }
1167 
skip_throttle_noprogress(pg_data_t * pgdat)1168 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1169 {
1170 	int reclaimable = 0, write_pending = 0;
1171 	int i;
1172 
1173 	/*
1174 	 * If kswapd is disabled, reschedule if necessary but do not
1175 	 * throttle as the system is likely near OOM.
1176 	 */
1177 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1178 		return true;
1179 
1180 	/*
1181 	 * If there are a lot of dirty/writeback folios then do not
1182 	 * throttle as throttling will occur when the folios cycle
1183 	 * towards the end of the LRU if still under writeback.
1184 	 */
1185 	for (i = 0; i < MAX_NR_ZONES; i++) {
1186 		struct zone *zone = pgdat->node_zones + i;
1187 
1188 		if (!managed_zone(zone))
1189 			continue;
1190 
1191 		reclaimable += zone_reclaimable_pages(zone);
1192 		write_pending += zone_page_state_snapshot(zone,
1193 						  NR_ZONE_WRITE_PENDING);
1194 	}
1195 	if (2 * write_pending <= reclaimable)
1196 		return true;
1197 
1198 	return false;
1199 }
1200 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)1201 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1202 {
1203 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1204 	long timeout, ret;
1205 	DEFINE_WAIT(wait);
1206 
1207 	/*
1208 	 * Do not throttle user workers, kthreads other than kswapd or
1209 	 * workqueues. They may be required for reclaim to make
1210 	 * forward progress (e.g. journalling workqueues or kthreads).
1211 	 */
1212 	if (!current_is_kswapd() &&
1213 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1214 		cond_resched();
1215 		return;
1216 	}
1217 
1218 	/*
1219 	 * These figures are pulled out of thin air.
1220 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1221 	 * parallel reclaimers which is a short-lived event so the timeout is
1222 	 * short. Failing to make progress or waiting on writeback are
1223 	 * potentially long-lived events so use a longer timeout. This is shaky
1224 	 * logic as a failure to make progress could be due to anything from
1225 	 * writeback to a slow device to excessive referenced folios at the tail
1226 	 * of the inactive LRU.
1227 	 */
1228 	switch(reason) {
1229 	case VMSCAN_THROTTLE_WRITEBACK:
1230 		timeout = HZ/10;
1231 
1232 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1233 			WRITE_ONCE(pgdat->nr_reclaim_start,
1234 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1235 		}
1236 
1237 		break;
1238 	case VMSCAN_THROTTLE_CONGESTED:
1239 		fallthrough;
1240 	case VMSCAN_THROTTLE_NOPROGRESS:
1241 		if (skip_throttle_noprogress(pgdat)) {
1242 			cond_resched();
1243 			return;
1244 		}
1245 
1246 		timeout = 1;
1247 
1248 		break;
1249 	case VMSCAN_THROTTLE_ISOLATED:
1250 		timeout = HZ/50;
1251 		break;
1252 	default:
1253 		WARN_ON_ONCE(1);
1254 		timeout = HZ;
1255 		break;
1256 	}
1257 
1258 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1259 	ret = schedule_timeout(timeout);
1260 	finish_wait(wqh, &wait);
1261 
1262 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1263 		atomic_dec(&pgdat->nr_writeback_throttled);
1264 
1265 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1266 				jiffies_to_usecs(timeout - ret),
1267 				reason);
1268 }
1269 
1270 /*
1271  * Account for folios written if tasks are throttled waiting on dirty
1272  * folios to clean. If enough folios have been cleaned since throttling
1273  * started then wakeup the throttled tasks.
1274  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)1275 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1276 							int nr_throttled)
1277 {
1278 	unsigned long nr_written;
1279 
1280 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1281 
1282 	/*
1283 	 * This is an inaccurate read as the per-cpu deltas may not
1284 	 * be synchronised. However, given that the system is
1285 	 * writeback throttled, it is not worth taking the penalty
1286 	 * of getting an accurate count. At worst, the throttle
1287 	 * timeout guarantees forward progress.
1288 	 */
1289 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1290 		READ_ONCE(pgdat->nr_reclaim_start);
1291 
1292 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1293 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1294 }
1295 
1296 /* possible outcome of pageout() */
1297 typedef enum {
1298 	/* failed to write folio out, folio is locked */
1299 	PAGE_KEEP,
1300 	/* move folio to the active list, folio is locked */
1301 	PAGE_ACTIVATE,
1302 	/* folio has been sent to the disk successfully, folio is unlocked */
1303 	PAGE_SUCCESS,
1304 	/* folio is clean and locked */
1305 	PAGE_CLEAN,
1306 } pageout_t;
1307 
1308 /*
1309  * pageout is called by shrink_folio_list() for each dirty folio.
1310  * Calls ->writepage().
1311  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug)1312 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1313 			 struct swap_iocb **plug)
1314 {
1315 	/*
1316 	 * If the folio is dirty, only perform writeback if that write
1317 	 * will be non-blocking.  To prevent this allocation from being
1318 	 * stalled by pagecache activity.  But note that there may be
1319 	 * stalls if we need to run get_block().  We could test
1320 	 * PagePrivate for that.
1321 	 *
1322 	 * If this process is currently in __generic_file_write_iter() against
1323 	 * this folio's queue, we can perform writeback even if that
1324 	 * will block.
1325 	 *
1326 	 * If the folio is swapcache, write it back even if that would
1327 	 * block, for some throttling. This happens by accident, because
1328 	 * swap_backing_dev_info is bust: it doesn't reflect the
1329 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1330 	 */
1331 	if (!is_page_cache_freeable(folio))
1332 		return PAGE_KEEP;
1333 	if (!mapping) {
1334 		/*
1335 		 * Some data journaling orphaned folios can have
1336 		 * folio->mapping == NULL while being dirty with clean buffers.
1337 		 */
1338 		if (folio_test_private(folio)) {
1339 			if (try_to_free_buffers(folio)) {
1340 				folio_clear_dirty(folio);
1341 				pr_info("%s: orphaned folio\n", __func__);
1342 				return PAGE_CLEAN;
1343 			}
1344 		}
1345 		return PAGE_KEEP;
1346 	}
1347 	if (mapping->a_ops->writepage == NULL)
1348 		return PAGE_ACTIVATE;
1349 
1350 	if (folio_clear_dirty_for_io(folio)) {
1351 		int res;
1352 		struct writeback_control wbc = {
1353 			.sync_mode = WB_SYNC_NONE,
1354 			.nr_to_write = SWAP_CLUSTER_MAX,
1355 			.range_start = 0,
1356 			.range_end = LLONG_MAX,
1357 			.for_reclaim = 1,
1358 			.swap_plug = plug,
1359 		};
1360 
1361 		folio_set_reclaim(folio);
1362 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1363 		if (res < 0)
1364 			handle_write_error(mapping, folio, res);
1365 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1366 			folio_clear_reclaim(folio);
1367 			return PAGE_ACTIVATE;
1368 		}
1369 
1370 		if (!folio_test_writeback(folio)) {
1371 			/* synchronous write or broken a_ops? */
1372 			folio_clear_reclaim(folio);
1373 		}
1374 		trace_mm_vmscan_write_folio(folio);
1375 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1376 		return PAGE_SUCCESS;
1377 	}
1378 
1379 	return PAGE_CLEAN;
1380 }
1381 
1382 /*
1383  * Same as remove_mapping, but if the folio is removed from the mapping, it
1384  * gets returned with a refcount of 0.
1385  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)1386 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1387 			    bool reclaimed, struct mem_cgroup *target_memcg)
1388 {
1389 	int refcount;
1390 	void *shadow = NULL;
1391 
1392 	BUG_ON(!folio_test_locked(folio));
1393 	BUG_ON(mapping != folio_mapping(folio));
1394 
1395 	if (!folio_test_swapcache(folio))
1396 		spin_lock(&mapping->host->i_lock);
1397 	xa_lock_irq(&mapping->i_pages);
1398 	/*
1399 	 * The non racy check for a busy folio.
1400 	 *
1401 	 * Must be careful with the order of the tests. When someone has
1402 	 * a ref to the folio, it may be possible that they dirty it then
1403 	 * drop the reference. So if the dirty flag is tested before the
1404 	 * refcount here, then the following race may occur:
1405 	 *
1406 	 * get_user_pages(&page);
1407 	 * [user mapping goes away]
1408 	 * write_to(page);
1409 	 *				!folio_test_dirty(folio)    [good]
1410 	 * folio_set_dirty(folio);
1411 	 * folio_put(folio);
1412 	 *				!refcount(folio)   [good, discard it]
1413 	 *
1414 	 * [oops, our write_to data is lost]
1415 	 *
1416 	 * Reversing the order of the tests ensures such a situation cannot
1417 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1418 	 * load is not satisfied before that of folio->_refcount.
1419 	 *
1420 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1421 	 * and thus under the i_pages lock, then this ordering is not required.
1422 	 */
1423 	refcount = 1 + folio_nr_pages(folio);
1424 	if (!folio_ref_freeze(folio, refcount))
1425 		goto cannot_free;
1426 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1427 	if (unlikely(folio_test_dirty(folio))) {
1428 		folio_ref_unfreeze(folio, refcount);
1429 		goto cannot_free;
1430 	}
1431 
1432 	if (folio_test_swapcache(folio)) {
1433 		swp_entry_t swap = folio->swap;
1434 
1435 		if (reclaimed && !mapping_exiting(mapping))
1436 			shadow = workingset_eviction(folio, target_memcg);
1437 		__delete_from_swap_cache(folio, swap, shadow);
1438 		mem_cgroup_swapout(folio, swap);
1439 		xa_unlock_irq(&mapping->i_pages);
1440 		put_swap_folio(folio, swap);
1441 	} else {
1442 		void (*free_folio)(struct folio *);
1443 
1444 		free_folio = mapping->a_ops->free_folio;
1445 		/*
1446 		 * Remember a shadow entry for reclaimed file cache in
1447 		 * order to detect refaults, thus thrashing, later on.
1448 		 *
1449 		 * But don't store shadows in an address space that is
1450 		 * already exiting.  This is not just an optimization,
1451 		 * inode reclaim needs to empty out the radix tree or
1452 		 * the nodes are lost.  Don't plant shadows behind its
1453 		 * back.
1454 		 *
1455 		 * We also don't store shadows for DAX mappings because the
1456 		 * only page cache folios found in these are zero pages
1457 		 * covering holes, and because we don't want to mix DAX
1458 		 * exceptional entries and shadow exceptional entries in the
1459 		 * same address_space.
1460 		 */
1461 		if (reclaimed && folio_is_file_lru(folio) &&
1462 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1463 			shadow = workingset_eviction(folio, target_memcg);
1464 		__filemap_remove_folio(folio, shadow);
1465 		xa_unlock_irq(&mapping->i_pages);
1466 		if (mapping_shrinkable(mapping))
1467 			inode_add_lru(mapping->host);
1468 		spin_unlock(&mapping->host->i_lock);
1469 
1470 		if (free_folio)
1471 			free_folio(folio);
1472 	}
1473 
1474 	return 1;
1475 
1476 cannot_free:
1477 	xa_unlock_irq(&mapping->i_pages);
1478 	if (!folio_test_swapcache(folio))
1479 		spin_unlock(&mapping->host->i_lock);
1480 	return 0;
1481 }
1482 
1483 /**
1484  * remove_mapping() - Attempt to remove a folio from its mapping.
1485  * @mapping: The address space.
1486  * @folio: The folio to remove.
1487  *
1488  * If the folio is dirty, under writeback or if someone else has a ref
1489  * on it, removal will fail.
1490  * Return: The number of pages removed from the mapping.  0 if the folio
1491  * could not be removed.
1492  * Context: The caller should have a single refcount on the folio and
1493  * hold its lock.
1494  */
remove_mapping(struct address_space * mapping,struct folio * folio)1495 long remove_mapping(struct address_space *mapping, struct folio *folio)
1496 {
1497 	if (__remove_mapping(mapping, folio, false, NULL)) {
1498 		/*
1499 		 * Unfreezing the refcount with 1 effectively
1500 		 * drops the pagecache ref for us without requiring another
1501 		 * atomic operation.
1502 		 */
1503 		folio_ref_unfreeze(folio, 1);
1504 		return folio_nr_pages(folio);
1505 	}
1506 	return 0;
1507 }
1508 
1509 /**
1510  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1511  * @folio: Folio to be returned to an LRU list.
1512  *
1513  * Add previously isolated @folio to appropriate LRU list.
1514  * The folio may still be unevictable for other reasons.
1515  *
1516  * Context: lru_lock must not be held, interrupts must be enabled.
1517  */
folio_putback_lru(struct folio * folio)1518 void folio_putback_lru(struct folio *folio)
1519 {
1520 	folio_add_lru(folio);
1521 	folio_put(folio);		/* drop ref from isolate */
1522 }
1523 
1524 enum folio_references {
1525 	FOLIOREF_RECLAIM,
1526 	FOLIOREF_RECLAIM_CLEAN,
1527 	FOLIOREF_KEEP,
1528 	FOLIOREF_ACTIVATE,
1529 };
1530 
folio_check_references(struct folio * folio,struct scan_control * sc)1531 static enum folio_references folio_check_references(struct folio *folio,
1532 						  struct scan_control *sc)
1533 {
1534 	int referenced_ptes, referenced_folio;
1535 	unsigned long vm_flags;
1536 
1537 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1538 					   &vm_flags);
1539 	referenced_folio = folio_test_clear_referenced(folio);
1540 
1541 	/*
1542 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1543 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1544 	 */
1545 	if (vm_flags & VM_LOCKED)
1546 		return FOLIOREF_ACTIVATE;
1547 
1548 	/* rmap lock contention: rotate */
1549 	if (referenced_ptes == -1)
1550 		return FOLIOREF_KEEP;
1551 
1552 	if (referenced_ptes) {
1553 		/*
1554 		 * All mapped folios start out with page table
1555 		 * references from the instantiating fault, so we need
1556 		 * to look twice if a mapped file/anon folio is used more
1557 		 * than once.
1558 		 *
1559 		 * Mark it and spare it for another trip around the
1560 		 * inactive list.  Another page table reference will
1561 		 * lead to its activation.
1562 		 *
1563 		 * Note: the mark is set for activated folios as well
1564 		 * so that recently deactivated but used folios are
1565 		 * quickly recovered.
1566 		 */
1567 		folio_set_referenced(folio);
1568 
1569 		if (referenced_folio || referenced_ptes > 1)
1570 			return FOLIOREF_ACTIVATE;
1571 
1572 		/*
1573 		 * Activate file-backed executable folios after first usage.
1574 		 */
1575 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1576 			return FOLIOREF_ACTIVATE;
1577 
1578 		return FOLIOREF_KEEP;
1579 	}
1580 
1581 	/* Reclaim if clean, defer dirty folios to writeback */
1582 	if (referenced_folio && folio_is_file_lru(folio))
1583 		return FOLIOREF_RECLAIM_CLEAN;
1584 
1585 	return FOLIOREF_RECLAIM;
1586 }
1587 
1588 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)1589 static void folio_check_dirty_writeback(struct folio *folio,
1590 				       bool *dirty, bool *writeback)
1591 {
1592 	struct address_space *mapping;
1593 
1594 	/*
1595 	 * Anonymous folios are not handled by flushers and must be written
1596 	 * from reclaim context. Do not stall reclaim based on them.
1597 	 * MADV_FREE anonymous folios are put into inactive file list too.
1598 	 * They could be mistakenly treated as file lru. So further anon
1599 	 * test is needed.
1600 	 */
1601 	if (!folio_is_file_lru(folio) ||
1602 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1603 		*dirty = false;
1604 		*writeback = false;
1605 		return;
1606 	}
1607 
1608 	/* By default assume that the folio flags are accurate */
1609 	*dirty = folio_test_dirty(folio);
1610 	*writeback = folio_test_writeback(folio);
1611 
1612 	/* Verify dirty/writeback state if the filesystem supports it */
1613 	if (!folio_test_private(folio))
1614 		return;
1615 
1616 	mapping = folio_mapping(folio);
1617 	if (mapping && mapping->a_ops->is_dirty_writeback)
1618 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1619 }
1620 
alloc_demote_folio(struct folio * src,unsigned long private)1621 static struct folio *alloc_demote_folio(struct folio *src,
1622 		unsigned long private)
1623 {
1624 	struct folio *dst;
1625 	nodemask_t *allowed_mask;
1626 	struct migration_target_control *mtc;
1627 
1628 	mtc = (struct migration_target_control *)private;
1629 
1630 	allowed_mask = mtc->nmask;
1631 	/*
1632 	 * make sure we allocate from the target node first also trying to
1633 	 * demote or reclaim pages from the target node via kswapd if we are
1634 	 * low on free memory on target node. If we don't do this and if
1635 	 * we have free memory on the slower(lower) memtier, we would start
1636 	 * allocating pages from slower(lower) memory tiers without even forcing
1637 	 * a demotion of cold pages from the target memtier. This can result
1638 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1639 	 */
1640 	mtc->nmask = NULL;
1641 	mtc->gfp_mask |= __GFP_THISNODE;
1642 	dst = alloc_migration_target(src, (unsigned long)mtc);
1643 	if (dst)
1644 		return dst;
1645 
1646 	mtc->gfp_mask &= ~__GFP_THISNODE;
1647 	mtc->nmask = allowed_mask;
1648 
1649 	return alloc_migration_target(src, (unsigned long)mtc);
1650 }
1651 
1652 /*
1653  * Take folios on @demote_folios and attempt to demote them to another node.
1654  * Folios which are not demoted are left on @demote_folios.
1655  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1656 static unsigned int demote_folio_list(struct list_head *demote_folios,
1657 				     struct pglist_data *pgdat)
1658 {
1659 	int target_nid = next_demotion_node(pgdat->node_id);
1660 	unsigned int nr_succeeded;
1661 	nodemask_t allowed_mask;
1662 
1663 	struct migration_target_control mtc = {
1664 		/*
1665 		 * Allocate from 'node', or fail quickly and quietly.
1666 		 * When this happens, 'page' will likely just be discarded
1667 		 * instead of migrated.
1668 		 */
1669 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1670 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1671 		.nid = target_nid,
1672 		.nmask = &allowed_mask
1673 	};
1674 
1675 	if (list_empty(demote_folios))
1676 		return 0;
1677 
1678 	if (target_nid == NUMA_NO_NODE)
1679 		return 0;
1680 
1681 	node_get_allowed_targets(pgdat, &allowed_mask);
1682 
1683 	/* Demotion ignores all cpuset and mempolicy settings */
1684 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
1685 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1686 		      &nr_succeeded);
1687 
1688 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1689 
1690 	return nr_succeeded;
1691 }
1692 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1693 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1694 {
1695 	if (gfp_mask & __GFP_FS)
1696 		return true;
1697 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1698 		return false;
1699 	/*
1700 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1701 	 * providing this isn't SWP_FS_OPS.
1702 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1703 	 * but that will never affect SWP_FS_OPS, so the data_race
1704 	 * is safe.
1705 	 */
1706 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1707 }
1708 
1709 /*
1710  * shrink_folio_list() returns the number of reclaimed pages
1711  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1712 static unsigned int shrink_folio_list(struct list_head *folio_list,
1713 		struct pglist_data *pgdat, struct scan_control *sc,
1714 		struct reclaim_stat *stat, bool ignore_references)
1715 {
1716 	LIST_HEAD(ret_folios);
1717 	LIST_HEAD(free_folios);
1718 	LIST_HEAD(demote_folios);
1719 	unsigned int nr_reclaimed = 0;
1720 	unsigned int pgactivate = 0;
1721 	bool do_demote_pass;
1722 	struct swap_iocb *plug = NULL;
1723 
1724 	memset(stat, 0, sizeof(*stat));
1725 	cond_resched();
1726 	do_demote_pass = can_demote(pgdat->node_id, sc);
1727 
1728 retry:
1729 	while (!list_empty(folio_list)) {
1730 		struct address_space *mapping;
1731 		struct folio *folio;
1732 		enum folio_references references = FOLIOREF_RECLAIM;
1733 		bool dirty, writeback;
1734 		unsigned int nr_pages;
1735 
1736 		cond_resched();
1737 
1738 		folio = lru_to_folio(folio_list);
1739 		list_del(&folio->lru);
1740 
1741 		if (!folio_trylock(folio))
1742 			goto keep;
1743 
1744 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1745 
1746 		nr_pages = folio_nr_pages(folio);
1747 
1748 		/* Account the number of base pages */
1749 		sc->nr_scanned += nr_pages;
1750 
1751 		if (unlikely(!folio_evictable(folio)))
1752 			goto activate_locked;
1753 
1754 		if (!sc->may_unmap && folio_mapped(folio))
1755 			goto keep_locked;
1756 
1757 		/* folio_update_gen() tried to promote this page? */
1758 		if (lru_gen_enabled() && !ignore_references &&
1759 		    folio_mapped(folio) && folio_test_referenced(folio))
1760 			goto keep_locked;
1761 
1762 		/*
1763 		 * The number of dirty pages determines if a node is marked
1764 		 * reclaim_congested. kswapd will stall and start writing
1765 		 * folios if the tail of the LRU is all dirty unqueued folios.
1766 		 */
1767 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1768 		if (dirty || writeback)
1769 			stat->nr_dirty += nr_pages;
1770 
1771 		if (dirty && !writeback)
1772 			stat->nr_unqueued_dirty += nr_pages;
1773 
1774 		/*
1775 		 * Treat this folio as congested if folios are cycling
1776 		 * through the LRU so quickly that the folios marked
1777 		 * for immediate reclaim are making it to the end of
1778 		 * the LRU a second time.
1779 		 */
1780 		if (writeback && folio_test_reclaim(folio))
1781 			stat->nr_congested += nr_pages;
1782 
1783 		/*
1784 		 * If a folio at the tail of the LRU is under writeback, there
1785 		 * are three cases to consider.
1786 		 *
1787 		 * 1) If reclaim is encountering an excessive number
1788 		 *    of folios under writeback and this folio has both
1789 		 *    the writeback and reclaim flags set, then it
1790 		 *    indicates that folios are being queued for I/O but
1791 		 *    are being recycled through the LRU before the I/O
1792 		 *    can complete. Waiting on the folio itself risks an
1793 		 *    indefinite stall if it is impossible to writeback
1794 		 *    the folio due to I/O error or disconnected storage
1795 		 *    so instead note that the LRU is being scanned too
1796 		 *    quickly and the caller can stall after the folio
1797 		 *    list has been processed.
1798 		 *
1799 		 * 2) Global or new memcg reclaim encounters a folio that is
1800 		 *    not marked for immediate reclaim, or the caller does not
1801 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1802 		 *    not to fs). In this case mark the folio for immediate
1803 		 *    reclaim and continue scanning.
1804 		 *
1805 		 *    Require may_enter_fs() because we would wait on fs, which
1806 		 *    may not have submitted I/O yet. And the loop driver might
1807 		 *    enter reclaim, and deadlock if it waits on a folio for
1808 		 *    which it is needed to do the write (loop masks off
1809 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1810 		 *    would probably show more reasons.
1811 		 *
1812 		 * 3) Legacy memcg encounters a folio that already has the
1813 		 *    reclaim flag set. memcg does not have any dirty folio
1814 		 *    throttling so we could easily OOM just because too many
1815 		 *    folios are in writeback and there is nothing else to
1816 		 *    reclaim. Wait for the writeback to complete.
1817 		 *
1818 		 * In cases 1) and 2) we activate the folios to get them out of
1819 		 * the way while we continue scanning for clean folios on the
1820 		 * inactive list and refilling from the active list. The
1821 		 * observation here is that waiting for disk writes is more
1822 		 * expensive than potentially causing reloads down the line.
1823 		 * Since they're marked for immediate reclaim, they won't put
1824 		 * memory pressure on the cache working set any longer than it
1825 		 * takes to write them to disk.
1826 		 */
1827 		if (folio_test_writeback(folio)) {
1828 			/* Case 1 above */
1829 			if (current_is_kswapd() &&
1830 			    folio_test_reclaim(folio) &&
1831 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1832 				stat->nr_immediate += nr_pages;
1833 				goto activate_locked;
1834 
1835 			/* Case 2 above */
1836 			} else if (writeback_throttling_sane(sc) ||
1837 			    !folio_test_reclaim(folio) ||
1838 			    !may_enter_fs(folio, sc->gfp_mask)) {
1839 				/*
1840 				 * This is slightly racy -
1841 				 * folio_end_writeback() might have
1842 				 * just cleared the reclaim flag, then
1843 				 * setting the reclaim flag here ends up
1844 				 * interpreted as the readahead flag - but
1845 				 * that does not matter enough to care.
1846 				 * What we do want is for this folio to
1847 				 * have the reclaim flag set next time
1848 				 * memcg reclaim reaches the tests above,
1849 				 * so it will then wait for writeback to
1850 				 * avoid OOM; and it's also appropriate
1851 				 * in global reclaim.
1852 				 */
1853 				folio_set_reclaim(folio);
1854 				stat->nr_writeback += nr_pages;
1855 				goto activate_locked;
1856 
1857 			/* Case 3 above */
1858 			} else {
1859 				folio_unlock(folio);
1860 				folio_wait_writeback(folio);
1861 				/* then go back and try same folio again */
1862 				list_add_tail(&folio->lru, folio_list);
1863 				continue;
1864 			}
1865 		}
1866 
1867 		if (!ignore_references)
1868 			references = folio_check_references(folio, sc);
1869 
1870 		switch (references) {
1871 		case FOLIOREF_ACTIVATE:
1872 			goto activate_locked;
1873 		case FOLIOREF_KEEP:
1874 			stat->nr_ref_keep += nr_pages;
1875 			goto keep_locked;
1876 		case FOLIOREF_RECLAIM:
1877 		case FOLIOREF_RECLAIM_CLEAN:
1878 			; /* try to reclaim the folio below */
1879 		}
1880 
1881 		/*
1882 		 * Before reclaiming the folio, try to relocate
1883 		 * its contents to another node.
1884 		 */
1885 		if (do_demote_pass &&
1886 		    (thp_migration_supported() || !folio_test_large(folio))) {
1887 			list_add(&folio->lru, &demote_folios);
1888 			folio_unlock(folio);
1889 			continue;
1890 		}
1891 
1892 		/*
1893 		 * Anonymous process memory has backing store?
1894 		 * Try to allocate it some swap space here.
1895 		 * Lazyfree folio could be freed directly
1896 		 */
1897 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1898 			if (!folio_test_swapcache(folio)) {
1899 				if (!(sc->gfp_mask & __GFP_IO))
1900 					goto keep_locked;
1901 				if (folio_maybe_dma_pinned(folio))
1902 					goto keep_locked;
1903 				if (folio_test_large(folio)) {
1904 					/* cannot split folio, skip it */
1905 					if (!can_split_folio(folio, NULL))
1906 						goto activate_locked;
1907 					/*
1908 					 * Split folios without a PMD map right
1909 					 * away. Chances are some or all of the
1910 					 * tail pages can be freed without IO.
1911 					 */
1912 					if (!folio_entire_mapcount(folio) &&
1913 					    split_folio_to_list(folio,
1914 								folio_list))
1915 						goto activate_locked;
1916 				}
1917 				if (!add_to_swap(folio)) {
1918 					if (!folio_test_large(folio))
1919 						goto activate_locked_split;
1920 					/* Fallback to swap normal pages */
1921 					if (split_folio_to_list(folio,
1922 								folio_list))
1923 						goto activate_locked;
1924 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1925 					count_vm_event(THP_SWPOUT_FALLBACK);
1926 #endif
1927 					if (!add_to_swap(folio))
1928 						goto activate_locked_split;
1929 				}
1930 			}
1931 		} else if (folio_test_swapbacked(folio) &&
1932 			   folio_test_large(folio)) {
1933 			/* Split shmem folio */
1934 			if (split_folio_to_list(folio, folio_list))
1935 				goto keep_locked;
1936 		}
1937 
1938 		/*
1939 		 * If the folio was split above, the tail pages will make
1940 		 * their own pass through this function and be accounted
1941 		 * then.
1942 		 */
1943 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1944 			sc->nr_scanned -= (nr_pages - 1);
1945 			nr_pages = 1;
1946 		}
1947 
1948 		/*
1949 		 * The folio is mapped into the page tables of one or more
1950 		 * processes. Try to unmap it here.
1951 		 */
1952 		if (folio_mapped(folio)) {
1953 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1954 			bool was_swapbacked = folio_test_swapbacked(folio);
1955 
1956 			if (folio_test_pmd_mappable(folio))
1957 				flags |= TTU_SPLIT_HUGE_PMD;
1958 
1959 			try_to_unmap(folio, flags);
1960 			if (folio_mapped(folio)) {
1961 				stat->nr_unmap_fail += nr_pages;
1962 				if (!was_swapbacked &&
1963 				    folio_test_swapbacked(folio))
1964 					stat->nr_lazyfree_fail += nr_pages;
1965 				goto activate_locked;
1966 			}
1967 		}
1968 
1969 		/*
1970 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1971 		 * No point in trying to reclaim folio if it is pinned.
1972 		 * Furthermore we don't want to reclaim underlying fs metadata
1973 		 * if the folio is pinned and thus potentially modified by the
1974 		 * pinning process as that may upset the filesystem.
1975 		 */
1976 		if (folio_maybe_dma_pinned(folio))
1977 			goto activate_locked;
1978 
1979 		mapping = folio_mapping(folio);
1980 		if (folio_test_dirty(folio)) {
1981 			/*
1982 			 * Only kswapd can writeback filesystem folios
1983 			 * to avoid risk of stack overflow. But avoid
1984 			 * injecting inefficient single-folio I/O into
1985 			 * flusher writeback as much as possible: only
1986 			 * write folios when we've encountered many
1987 			 * dirty folios, and when we've already scanned
1988 			 * the rest of the LRU for clean folios and see
1989 			 * the same dirty folios again (with the reclaim
1990 			 * flag set).
1991 			 */
1992 			if (folio_is_file_lru(folio) &&
1993 			    (!current_is_kswapd() ||
1994 			     !folio_test_reclaim(folio) ||
1995 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1996 				/*
1997 				 * Immediately reclaim when written back.
1998 				 * Similar in principle to folio_deactivate()
1999 				 * except we already have the folio isolated
2000 				 * and know it's dirty
2001 				 */
2002 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
2003 						nr_pages);
2004 				folio_set_reclaim(folio);
2005 
2006 				goto activate_locked;
2007 			}
2008 
2009 			if (references == FOLIOREF_RECLAIM_CLEAN)
2010 				goto keep_locked;
2011 			if (!may_enter_fs(folio, sc->gfp_mask))
2012 				goto keep_locked;
2013 			if (!sc->may_writepage)
2014 				goto keep_locked;
2015 
2016 			/*
2017 			 * Folio is dirty. Flush the TLB if a writable entry
2018 			 * potentially exists to avoid CPU writes after I/O
2019 			 * starts and then write it out here.
2020 			 */
2021 			try_to_unmap_flush_dirty();
2022 			switch (pageout(folio, mapping, &plug)) {
2023 			case PAGE_KEEP:
2024 				goto keep_locked;
2025 			case PAGE_ACTIVATE:
2026 				goto activate_locked;
2027 			case PAGE_SUCCESS:
2028 				stat->nr_pageout += nr_pages;
2029 
2030 				if (folio_test_writeback(folio))
2031 					goto keep;
2032 				if (folio_test_dirty(folio))
2033 					goto keep;
2034 
2035 				/*
2036 				 * A synchronous write - probably a ramdisk.  Go
2037 				 * ahead and try to reclaim the folio.
2038 				 */
2039 				if (!folio_trylock(folio))
2040 					goto keep;
2041 				if (folio_test_dirty(folio) ||
2042 				    folio_test_writeback(folio))
2043 					goto keep_locked;
2044 				mapping = folio_mapping(folio);
2045 				fallthrough;
2046 			case PAGE_CLEAN:
2047 				; /* try to free the folio below */
2048 			}
2049 		}
2050 
2051 		/*
2052 		 * If the folio has buffers, try to free the buffer
2053 		 * mappings associated with this folio. If we succeed
2054 		 * we try to free the folio as well.
2055 		 *
2056 		 * We do this even if the folio is dirty.
2057 		 * filemap_release_folio() does not perform I/O, but it
2058 		 * is possible for a folio to have the dirty flag set,
2059 		 * but it is actually clean (all its buffers are clean).
2060 		 * This happens if the buffers were written out directly,
2061 		 * with submit_bh(). ext3 will do this, as well as
2062 		 * the blockdev mapping.  filemap_release_folio() will
2063 		 * discover that cleanness and will drop the buffers
2064 		 * and mark the folio clean - it can be freed.
2065 		 *
2066 		 * Rarely, folios can have buffers and no ->mapping.
2067 		 * These are the folios which were not successfully
2068 		 * invalidated in truncate_cleanup_folio().  We try to
2069 		 * drop those buffers here and if that worked, and the
2070 		 * folio is no longer mapped into process address space
2071 		 * (refcount == 1) it can be freed.  Otherwise, leave
2072 		 * the folio on the LRU so it is swappable.
2073 		 */
2074 		if (folio_needs_release(folio)) {
2075 			if (!filemap_release_folio(folio, sc->gfp_mask))
2076 				goto activate_locked;
2077 			if (!mapping && folio_ref_count(folio) == 1) {
2078 				folio_unlock(folio);
2079 				if (folio_put_testzero(folio))
2080 					goto free_it;
2081 				else {
2082 					/*
2083 					 * rare race with speculative reference.
2084 					 * the speculative reference will free
2085 					 * this folio shortly, so we may
2086 					 * increment nr_reclaimed here (and
2087 					 * leave it off the LRU).
2088 					 */
2089 					nr_reclaimed += nr_pages;
2090 					continue;
2091 				}
2092 			}
2093 		}
2094 
2095 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2096 			/* follow __remove_mapping for reference */
2097 			if (!folio_ref_freeze(folio, 1))
2098 				goto keep_locked;
2099 			/*
2100 			 * The folio has only one reference left, which is
2101 			 * from the isolation. After the caller puts the
2102 			 * folio back on the lru and drops the reference, the
2103 			 * folio will be freed anyway. It doesn't matter
2104 			 * which lru it goes on. So we don't bother checking
2105 			 * the dirty flag here.
2106 			 */
2107 			count_vm_events(PGLAZYFREED, nr_pages);
2108 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2109 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2110 							 sc->target_mem_cgroup))
2111 			goto keep_locked;
2112 
2113 		folio_unlock(folio);
2114 free_it:
2115 		/*
2116 		 * Folio may get swapped out as a whole, need to account
2117 		 * all pages in it.
2118 		 */
2119 		nr_reclaimed += nr_pages;
2120 
2121 		/*
2122 		 * Is there need to periodically free_folio_list? It would
2123 		 * appear not as the counts should be low
2124 		 */
2125 		if (unlikely(folio_test_large(folio)))
2126 			destroy_large_folio(folio);
2127 		else
2128 			list_add(&folio->lru, &free_folios);
2129 		continue;
2130 
2131 activate_locked_split:
2132 		/*
2133 		 * The tail pages that are failed to add into swap cache
2134 		 * reach here.  Fixup nr_scanned and nr_pages.
2135 		 */
2136 		if (nr_pages > 1) {
2137 			sc->nr_scanned -= (nr_pages - 1);
2138 			nr_pages = 1;
2139 		}
2140 activate_locked:
2141 		/* Not a candidate for swapping, so reclaim swap space. */
2142 		if (folio_test_swapcache(folio) &&
2143 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2144 			folio_free_swap(folio);
2145 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2146 		if (!folio_test_mlocked(folio)) {
2147 			int type = folio_is_file_lru(folio);
2148 			folio_set_active(folio);
2149 			stat->nr_activate[type] += nr_pages;
2150 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2151 		}
2152 keep_locked:
2153 		folio_unlock(folio);
2154 keep:
2155 		list_add(&folio->lru, &ret_folios);
2156 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2157 				folio_test_unevictable(folio), folio);
2158 	}
2159 	/* 'folio_list' is always empty here */
2160 
2161 	/* Migrate folios selected for demotion */
2162 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2163 	/* Folios that could not be demoted are still in @demote_folios */
2164 	if (!list_empty(&demote_folios)) {
2165 		/* Folios which weren't demoted go back on @folio_list */
2166 		list_splice_init(&demote_folios, folio_list);
2167 
2168 		/*
2169 		 * goto retry to reclaim the undemoted folios in folio_list if
2170 		 * desired.
2171 		 *
2172 		 * Reclaiming directly from top tier nodes is not often desired
2173 		 * due to it breaking the LRU ordering: in general memory
2174 		 * should be reclaimed from lower tier nodes and demoted from
2175 		 * top tier nodes.
2176 		 *
2177 		 * However, disabling reclaim from top tier nodes entirely
2178 		 * would cause ooms in edge scenarios where lower tier memory
2179 		 * is unreclaimable for whatever reason, eg memory being
2180 		 * mlocked or too hot to reclaim. We can disable reclaim
2181 		 * from top tier nodes in proactive reclaim though as that is
2182 		 * not real memory pressure.
2183 		 */
2184 		if (!sc->proactive) {
2185 			do_demote_pass = false;
2186 			goto retry;
2187 		}
2188 	}
2189 
2190 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2191 
2192 	mem_cgroup_uncharge_list(&free_folios);
2193 	try_to_unmap_flush();
2194 	free_unref_page_list(&free_folios);
2195 
2196 	list_splice(&ret_folios, folio_list);
2197 	count_vm_events(PGACTIVATE, pgactivate);
2198 
2199 	if (plug)
2200 		swap_write_unplug(plug);
2201 	return nr_reclaimed;
2202 }
2203 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)2204 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2205 					   struct list_head *folio_list)
2206 {
2207 	struct scan_control sc = {
2208 		.gfp_mask = GFP_KERNEL,
2209 		.may_unmap = 1,
2210 	};
2211 	struct reclaim_stat stat;
2212 	unsigned int nr_reclaimed;
2213 	struct folio *folio, *next;
2214 	LIST_HEAD(clean_folios);
2215 	unsigned int noreclaim_flag;
2216 
2217 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2218 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2219 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2220 		    !folio_test_unevictable(folio)) {
2221 			folio_clear_active(folio);
2222 			list_move(&folio->lru, &clean_folios);
2223 		}
2224 	}
2225 
2226 	/*
2227 	 * We should be safe here since we are only dealing with file pages and
2228 	 * we are not kswapd and therefore cannot write dirty file pages. But
2229 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2230 	 * change in the future.
2231 	 */
2232 	noreclaim_flag = memalloc_noreclaim_save();
2233 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2234 					&stat, true);
2235 	memalloc_noreclaim_restore(noreclaim_flag);
2236 
2237 	list_splice(&clean_folios, folio_list);
2238 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2239 			    -(long)nr_reclaimed);
2240 	/*
2241 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2242 	 * they will rotate back to anonymous LRU in the end if it failed to
2243 	 * discard so isolated count will be mismatched.
2244 	 * Compensate the isolated count for both LRU lists.
2245 	 */
2246 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2247 			    stat.nr_lazyfree_fail);
2248 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2249 			    -(long)stat.nr_lazyfree_fail);
2250 	return nr_reclaimed;
2251 }
2252 
2253 /*
2254  * Update LRU sizes after isolating pages. The LRU size updates must
2255  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2256  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)2257 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2258 			enum lru_list lru, unsigned long *nr_zone_taken)
2259 {
2260 	int zid;
2261 
2262 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2263 		if (!nr_zone_taken[zid])
2264 			continue;
2265 
2266 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2267 	}
2268 
2269 }
2270 
2271 /*
2272  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2273  *
2274  * lruvec->lru_lock is heavily contended.  Some of the functions that
2275  * shrink the lists perform better by taking out a batch of pages
2276  * and working on them outside the LRU lock.
2277  *
2278  * For pagecache intensive workloads, this function is the hottest
2279  * spot in the kernel (apart from copy_*_user functions).
2280  *
2281  * Lru_lock must be held before calling this function.
2282  *
2283  * @nr_to_scan:	The number of eligible pages to look through on the list.
2284  * @lruvec:	The LRU vector to pull pages from.
2285  * @dst:	The temp list to put pages on to.
2286  * @nr_scanned:	The number of pages that were scanned.
2287  * @sc:		The scan_control struct for this reclaim session
2288  * @lru:	LRU list id for isolating
2289  *
2290  * returns how many pages were moved onto *@dst.
2291  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)2292 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2293 		struct lruvec *lruvec, struct list_head *dst,
2294 		unsigned long *nr_scanned, struct scan_control *sc,
2295 		enum lru_list lru)
2296 {
2297 	struct list_head *src = &lruvec->lists[lru];
2298 	unsigned long nr_taken = 0;
2299 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2300 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2301 	unsigned long skipped = 0;
2302 	unsigned long scan, total_scan, nr_pages;
2303 	LIST_HEAD(folios_skipped);
2304 
2305 	total_scan = 0;
2306 	scan = 0;
2307 	while (scan < nr_to_scan && !list_empty(src)) {
2308 		struct list_head *move_to = src;
2309 		struct folio *folio;
2310 
2311 		folio = lru_to_folio(src);
2312 		prefetchw_prev_lru_folio(folio, src, flags);
2313 
2314 		nr_pages = folio_nr_pages(folio);
2315 		total_scan += nr_pages;
2316 
2317 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2318 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2319 			move_to = &folios_skipped;
2320 			goto move;
2321 		}
2322 
2323 		/*
2324 		 * Do not count skipped folios because that makes the function
2325 		 * return with no isolated folios if the LRU mostly contains
2326 		 * ineligible folios.  This causes the VM to not reclaim any
2327 		 * folios, triggering a premature OOM.
2328 		 * Account all pages in a folio.
2329 		 */
2330 		scan += nr_pages;
2331 
2332 		if (!folio_test_lru(folio))
2333 			goto move;
2334 		if (!sc->may_unmap && folio_mapped(folio))
2335 			goto move;
2336 
2337 		/*
2338 		 * Be careful not to clear the lru flag until after we're
2339 		 * sure the folio is not being freed elsewhere -- the
2340 		 * folio release code relies on it.
2341 		 */
2342 		if (unlikely(!folio_try_get(folio)))
2343 			goto move;
2344 
2345 		if (!folio_test_clear_lru(folio)) {
2346 			/* Another thread is already isolating this folio */
2347 			folio_put(folio);
2348 			goto move;
2349 		}
2350 
2351 		nr_taken += nr_pages;
2352 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2353 		move_to = dst;
2354 move:
2355 		list_move(&folio->lru, move_to);
2356 	}
2357 
2358 	/*
2359 	 * Splice any skipped folios to the start of the LRU list. Note that
2360 	 * this disrupts the LRU order when reclaiming for lower zones but
2361 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2362 	 * scanning would soon rescan the same folios to skip and waste lots
2363 	 * of cpu cycles.
2364 	 */
2365 	if (!list_empty(&folios_skipped)) {
2366 		int zid;
2367 
2368 		list_splice(&folios_skipped, src);
2369 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2370 			if (!nr_skipped[zid])
2371 				continue;
2372 
2373 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2374 			skipped += nr_skipped[zid];
2375 		}
2376 	}
2377 	*nr_scanned = total_scan;
2378 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2379 				    total_scan, skipped, nr_taken,
2380 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2381 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2382 	return nr_taken;
2383 }
2384 
2385 /**
2386  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2387  * @folio: Folio to isolate from its LRU list.
2388  *
2389  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2390  * corresponding to whatever LRU list the folio was on.
2391  *
2392  * The folio will have its LRU flag cleared.  If it was found on the
2393  * active list, it will have the Active flag set.  If it was found on the
2394  * unevictable list, it will have the Unevictable flag set.  These flags
2395  * may need to be cleared by the caller before letting the page go.
2396  *
2397  * Context:
2398  *
2399  * (1) Must be called with an elevated refcount on the folio. This is a
2400  *     fundamental difference from isolate_lru_folios() (which is called
2401  *     without a stable reference).
2402  * (2) The lru_lock must not be held.
2403  * (3) Interrupts must be enabled.
2404  *
2405  * Return: true if the folio was removed from an LRU list.
2406  * false if the folio was not on an LRU list.
2407  */
folio_isolate_lru(struct folio * folio)2408 bool folio_isolate_lru(struct folio *folio)
2409 {
2410 	bool ret = false;
2411 
2412 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2413 
2414 	if (folio_test_clear_lru(folio)) {
2415 		struct lruvec *lruvec;
2416 
2417 		folio_get(folio);
2418 		lruvec = folio_lruvec_lock_irq(folio);
2419 		lruvec_del_folio(lruvec, folio);
2420 		unlock_page_lruvec_irq(lruvec);
2421 		ret = true;
2422 	}
2423 
2424 	return ret;
2425 }
2426 
2427 /*
2428  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2429  * then get rescheduled. When there are massive number of tasks doing page
2430  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2431  * the LRU list will go small and be scanned faster than necessary, leading to
2432  * unnecessary swapping, thrashing and OOM.
2433  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)2434 static int too_many_isolated(struct pglist_data *pgdat, int file,
2435 		struct scan_control *sc)
2436 {
2437 	unsigned long inactive, isolated;
2438 	bool too_many;
2439 
2440 	if (current_is_kswapd())
2441 		return 0;
2442 
2443 	if (!writeback_throttling_sane(sc))
2444 		return 0;
2445 
2446 	if (file) {
2447 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2448 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2449 	} else {
2450 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2451 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2452 	}
2453 
2454 	/*
2455 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2456 	 * won't get blocked by normal direct-reclaimers, forming a circular
2457 	 * deadlock.
2458 	 */
2459 	if (gfp_has_io_fs(sc->gfp_mask))
2460 		inactive >>= 3;
2461 
2462 	too_many = isolated > inactive;
2463 
2464 	/* Wake up tasks throttled due to too_many_isolated. */
2465 	if (!too_many)
2466 		wake_throttle_isolated(pgdat);
2467 
2468 	return too_many;
2469 }
2470 
2471 /*
2472  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2473  * On return, @list is reused as a list of folios to be freed by the caller.
2474  *
2475  * Returns the number of pages moved to the given lruvec.
2476  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)2477 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2478 		struct list_head *list)
2479 {
2480 	int nr_pages, nr_moved = 0;
2481 	LIST_HEAD(folios_to_free);
2482 
2483 	while (!list_empty(list)) {
2484 		struct folio *folio = lru_to_folio(list);
2485 
2486 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2487 		list_del(&folio->lru);
2488 		if (unlikely(!folio_evictable(folio))) {
2489 			spin_unlock_irq(&lruvec->lru_lock);
2490 			folio_putback_lru(folio);
2491 			spin_lock_irq(&lruvec->lru_lock);
2492 			continue;
2493 		}
2494 
2495 		/*
2496 		 * The folio_set_lru needs to be kept here for list integrity.
2497 		 * Otherwise:
2498 		 *   #0 move_folios_to_lru             #1 release_pages
2499 		 *   if (!folio_put_testzero())
2500 		 *				      if (folio_put_testzero())
2501 		 *				        !lru //skip lru_lock
2502 		 *     folio_set_lru()
2503 		 *     list_add(&folio->lru,)
2504 		 *                                        list_add(&folio->lru,)
2505 		 */
2506 		folio_set_lru(folio);
2507 
2508 		if (unlikely(folio_put_testzero(folio))) {
2509 			__folio_clear_lru_flags(folio);
2510 
2511 			if (unlikely(folio_test_large(folio))) {
2512 				spin_unlock_irq(&lruvec->lru_lock);
2513 				destroy_large_folio(folio);
2514 				spin_lock_irq(&lruvec->lru_lock);
2515 			} else
2516 				list_add(&folio->lru, &folios_to_free);
2517 
2518 			continue;
2519 		}
2520 
2521 		/*
2522 		 * All pages were isolated from the same lruvec (and isolation
2523 		 * inhibits memcg migration).
2524 		 */
2525 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2526 		lruvec_add_folio(lruvec, folio);
2527 		nr_pages = folio_nr_pages(folio);
2528 		nr_moved += nr_pages;
2529 		if (folio_test_active(folio))
2530 			workingset_age_nonresident(lruvec, nr_pages);
2531 	}
2532 
2533 	/*
2534 	 * To save our caller's stack, now use input list for pages to free.
2535 	 */
2536 	list_splice(&folios_to_free, list);
2537 
2538 	return nr_moved;
2539 }
2540 
2541 /*
2542  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2543  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2544  * we should not throttle.  Otherwise it is safe to do so.
2545  */
current_may_throttle(void)2546 static int current_may_throttle(void)
2547 {
2548 	return !(current->flags & PF_LOCAL_THROTTLE);
2549 }
2550 
2551 /*
2552  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2553  * of reclaimed pages
2554  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2555 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2556 		struct lruvec *lruvec, struct scan_control *sc,
2557 		enum lru_list lru)
2558 {
2559 	LIST_HEAD(folio_list);
2560 	unsigned long nr_scanned;
2561 	unsigned int nr_reclaimed = 0;
2562 	unsigned long nr_taken;
2563 	struct reclaim_stat stat;
2564 	bool file = is_file_lru(lru);
2565 	enum vm_event_item item;
2566 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2567 	bool stalled = false;
2568 
2569 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2570 		if (stalled)
2571 			return 0;
2572 
2573 		/* wait a bit for the reclaimer. */
2574 		stalled = true;
2575 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2576 
2577 		/* We are about to die and free our memory. Return now. */
2578 		if (fatal_signal_pending(current))
2579 			return SWAP_CLUSTER_MAX;
2580 	}
2581 
2582 	lru_add_drain();
2583 
2584 	spin_lock_irq(&lruvec->lru_lock);
2585 
2586 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2587 				     &nr_scanned, sc, lru);
2588 
2589 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2590 	item = PGSCAN_KSWAPD + reclaimer_offset();
2591 	if (!cgroup_reclaim(sc))
2592 		__count_vm_events(item, nr_scanned);
2593 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2594 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2595 
2596 	spin_unlock_irq(&lruvec->lru_lock);
2597 
2598 	if (nr_taken == 0)
2599 		return 0;
2600 
2601 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2602 
2603 	spin_lock_irq(&lruvec->lru_lock);
2604 	move_folios_to_lru(lruvec, &folio_list);
2605 
2606 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2607 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2608 	if (!cgroup_reclaim(sc))
2609 		__count_vm_events(item, nr_reclaimed);
2610 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2611 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2612 	spin_unlock_irq(&lruvec->lru_lock);
2613 
2614 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2615 	mem_cgroup_uncharge_list(&folio_list);
2616 	free_unref_page_list(&folio_list);
2617 
2618 	/*
2619 	 * If dirty folios are scanned that are not queued for IO, it
2620 	 * implies that flushers are not doing their job. This can
2621 	 * happen when memory pressure pushes dirty folios to the end of
2622 	 * the LRU before the dirty limits are breached and the dirty
2623 	 * data has expired. It can also happen when the proportion of
2624 	 * dirty folios grows not through writes but through memory
2625 	 * pressure reclaiming all the clean cache. And in some cases,
2626 	 * the flushers simply cannot keep up with the allocation
2627 	 * rate. Nudge the flusher threads in case they are asleep.
2628 	 */
2629 	if (stat.nr_unqueued_dirty == nr_taken) {
2630 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2631 		/*
2632 		 * For cgroupv1 dirty throttling is achieved by waking up
2633 		 * the kernel flusher here and later waiting on folios
2634 		 * which are in writeback to finish (see shrink_folio_list()).
2635 		 *
2636 		 * Flusher may not be able to issue writeback quickly
2637 		 * enough for cgroupv1 writeback throttling to work
2638 		 * on a large system.
2639 		 */
2640 		if (!writeback_throttling_sane(sc))
2641 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2642 	}
2643 
2644 	sc->nr.dirty += stat.nr_dirty;
2645 	sc->nr.congested += stat.nr_congested;
2646 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2647 	sc->nr.writeback += stat.nr_writeback;
2648 	sc->nr.immediate += stat.nr_immediate;
2649 	sc->nr.taken += nr_taken;
2650 	if (file)
2651 		sc->nr.file_taken += nr_taken;
2652 
2653 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2654 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2655 	return nr_reclaimed;
2656 }
2657 
2658 /*
2659  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2660  *
2661  * We move them the other way if the folio is referenced by one or more
2662  * processes.
2663  *
2664  * If the folios are mostly unmapped, the processing is fast and it is
2665  * appropriate to hold lru_lock across the whole operation.  But if
2666  * the folios are mapped, the processing is slow (folio_referenced()), so
2667  * we should drop lru_lock around each folio.  It's impossible to balance
2668  * this, so instead we remove the folios from the LRU while processing them.
2669  * It is safe to rely on the active flag against the non-LRU folios in here
2670  * because nobody will play with that bit on a non-LRU folio.
2671  *
2672  * The downside is that we have to touch folio->_refcount against each folio.
2673  * But we had to alter folio->flags anyway.
2674  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2675 static void shrink_active_list(unsigned long nr_to_scan,
2676 			       struct lruvec *lruvec,
2677 			       struct scan_control *sc,
2678 			       enum lru_list lru)
2679 {
2680 	unsigned long nr_taken;
2681 	unsigned long nr_scanned;
2682 	unsigned long vm_flags;
2683 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2684 	LIST_HEAD(l_active);
2685 	LIST_HEAD(l_inactive);
2686 	unsigned nr_deactivate, nr_activate;
2687 	unsigned nr_rotated = 0;
2688 	int file = is_file_lru(lru);
2689 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2690 
2691 	lru_add_drain();
2692 
2693 	spin_lock_irq(&lruvec->lru_lock);
2694 
2695 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2696 				     &nr_scanned, sc, lru);
2697 
2698 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2699 
2700 	if (!cgroup_reclaim(sc))
2701 		__count_vm_events(PGREFILL, nr_scanned);
2702 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2703 
2704 	spin_unlock_irq(&lruvec->lru_lock);
2705 
2706 	while (!list_empty(&l_hold)) {
2707 		struct folio *folio;
2708 
2709 		cond_resched();
2710 		folio = lru_to_folio(&l_hold);
2711 		list_del(&folio->lru);
2712 
2713 		if (unlikely(!folio_evictable(folio))) {
2714 			folio_putback_lru(folio);
2715 			continue;
2716 		}
2717 
2718 		if (unlikely(buffer_heads_over_limit)) {
2719 			if (folio_needs_release(folio) &&
2720 			    folio_trylock(folio)) {
2721 				filemap_release_folio(folio, 0);
2722 				folio_unlock(folio);
2723 			}
2724 		}
2725 
2726 		/* Referenced or rmap lock contention: rotate */
2727 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2728 				     &vm_flags) != 0) {
2729 			/*
2730 			 * Identify referenced, file-backed active folios and
2731 			 * give them one more trip around the active list. So
2732 			 * that executable code get better chances to stay in
2733 			 * memory under moderate memory pressure.  Anon folios
2734 			 * are not likely to be evicted by use-once streaming
2735 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2736 			 * so we ignore them here.
2737 			 */
2738 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2739 				nr_rotated += folio_nr_pages(folio);
2740 				list_add(&folio->lru, &l_active);
2741 				continue;
2742 			}
2743 		}
2744 
2745 		folio_clear_active(folio);	/* we are de-activating */
2746 		folio_set_workingset(folio);
2747 		list_add(&folio->lru, &l_inactive);
2748 	}
2749 
2750 	/*
2751 	 * Move folios back to the lru list.
2752 	 */
2753 	spin_lock_irq(&lruvec->lru_lock);
2754 
2755 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2756 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2757 	/* Keep all free folios in l_active list */
2758 	list_splice(&l_inactive, &l_active);
2759 
2760 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2761 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2762 
2763 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2764 	spin_unlock_irq(&lruvec->lru_lock);
2765 
2766 	if (nr_rotated)
2767 		lru_note_cost(lruvec, file, 0, nr_rotated);
2768 	mem_cgroup_uncharge_list(&l_active);
2769 	free_unref_page_list(&l_active);
2770 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2771 			nr_deactivate, nr_rotated, sc->priority, file);
2772 }
2773 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2774 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2775 				      struct pglist_data *pgdat)
2776 {
2777 	struct reclaim_stat dummy_stat;
2778 	unsigned int nr_reclaimed;
2779 	struct folio *folio;
2780 	struct scan_control sc = {
2781 		.gfp_mask = GFP_KERNEL,
2782 		.may_writepage = 1,
2783 		.may_unmap = 1,
2784 		.may_swap = 1,
2785 		.no_demotion = 1,
2786 	};
2787 
2788 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2789 	while (!list_empty(folio_list)) {
2790 		folio = lru_to_folio(folio_list);
2791 		list_del(&folio->lru);
2792 		folio_putback_lru(folio);
2793 	}
2794 
2795 	return nr_reclaimed;
2796 }
2797 
reclaim_pages(struct list_head * folio_list)2798 unsigned long reclaim_pages(struct list_head *folio_list)
2799 {
2800 	int nid;
2801 	unsigned int nr_reclaimed = 0;
2802 	LIST_HEAD(node_folio_list);
2803 	unsigned int noreclaim_flag;
2804 
2805 	if (list_empty(folio_list))
2806 		return nr_reclaimed;
2807 
2808 	noreclaim_flag = memalloc_noreclaim_save();
2809 
2810 	nid = folio_nid(lru_to_folio(folio_list));
2811 	do {
2812 		struct folio *folio = lru_to_folio(folio_list);
2813 
2814 		if (nid == folio_nid(folio)) {
2815 			folio_clear_active(folio);
2816 			list_move(&folio->lru, &node_folio_list);
2817 			continue;
2818 		}
2819 
2820 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2821 		nid = folio_nid(lru_to_folio(folio_list));
2822 	} while (!list_empty(folio_list));
2823 
2824 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2825 
2826 	memalloc_noreclaim_restore(noreclaim_flag);
2827 
2828 	return nr_reclaimed;
2829 }
2830 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2831 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2832 				 struct lruvec *lruvec, struct scan_control *sc)
2833 {
2834 	if (is_active_lru(lru)) {
2835 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2836 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2837 		else
2838 			sc->skipped_deactivate = 1;
2839 		return 0;
2840 	}
2841 
2842 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2843 }
2844 
2845 /*
2846  * The inactive anon list should be small enough that the VM never has
2847  * to do too much work.
2848  *
2849  * The inactive file list should be small enough to leave most memory
2850  * to the established workingset on the scan-resistant active list,
2851  * but large enough to avoid thrashing the aggregate readahead window.
2852  *
2853  * Both inactive lists should also be large enough that each inactive
2854  * folio has a chance to be referenced again before it is reclaimed.
2855  *
2856  * If that fails and refaulting is observed, the inactive list grows.
2857  *
2858  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2859  * on this LRU, maintained by the pageout code. An inactive_ratio
2860  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2861  *
2862  * total     target    max
2863  * memory    ratio     inactive
2864  * -------------------------------------
2865  *   10MB       1         5MB
2866  *  100MB       1        50MB
2867  *    1GB       3       250MB
2868  *   10GB      10       0.9GB
2869  *  100GB      31         3GB
2870  *    1TB     101        10GB
2871  *   10TB     320        32GB
2872  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2873 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2874 {
2875 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2876 	unsigned long inactive, active;
2877 	unsigned long inactive_ratio;
2878 	unsigned long gb;
2879 
2880 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2881 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2882 
2883 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2884 	if (gb)
2885 		inactive_ratio = int_sqrt(10 * gb);
2886 	else
2887 		inactive_ratio = 1;
2888 
2889 	return inactive * inactive_ratio < active;
2890 }
2891 
2892 enum scan_balance {
2893 	SCAN_EQUAL,
2894 	SCAN_FRACT,
2895 	SCAN_ANON,
2896 	SCAN_FILE,
2897 };
2898 
prepare_scan_count(pg_data_t * pgdat,struct scan_control * sc)2899 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2900 {
2901 	unsigned long file;
2902 	struct lruvec *target_lruvec;
2903 
2904 	if (lru_gen_enabled())
2905 		return;
2906 
2907 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2908 
2909 	/*
2910 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2911 	 * lruvec stats for heuristics.
2912 	 */
2913 	mem_cgroup_flush_stats();
2914 
2915 	/*
2916 	 * Determine the scan balance between anon and file LRUs.
2917 	 */
2918 	spin_lock_irq(&target_lruvec->lru_lock);
2919 	sc->anon_cost = target_lruvec->anon_cost;
2920 	sc->file_cost = target_lruvec->file_cost;
2921 	spin_unlock_irq(&target_lruvec->lru_lock);
2922 
2923 	/*
2924 	 * Target desirable inactive:active list ratios for the anon
2925 	 * and file LRU lists.
2926 	 */
2927 	if (!sc->force_deactivate) {
2928 		unsigned long refaults;
2929 
2930 		/*
2931 		 * When refaults are being observed, it means a new
2932 		 * workingset is being established. Deactivate to get
2933 		 * rid of any stale active pages quickly.
2934 		 */
2935 		refaults = lruvec_page_state(target_lruvec,
2936 				WORKINGSET_ACTIVATE_ANON);
2937 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2938 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2939 			sc->may_deactivate |= DEACTIVATE_ANON;
2940 		else
2941 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2942 
2943 		refaults = lruvec_page_state(target_lruvec,
2944 				WORKINGSET_ACTIVATE_FILE);
2945 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2946 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2947 			sc->may_deactivate |= DEACTIVATE_FILE;
2948 		else
2949 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2950 	} else
2951 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2952 
2953 	/*
2954 	 * If we have plenty of inactive file pages that aren't
2955 	 * thrashing, try to reclaim those first before touching
2956 	 * anonymous pages.
2957 	 */
2958 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2959 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2960 		sc->cache_trim_mode = 1;
2961 	else
2962 		sc->cache_trim_mode = 0;
2963 
2964 	/*
2965 	 * Prevent the reclaimer from falling into the cache trap: as
2966 	 * cache pages start out inactive, every cache fault will tip
2967 	 * the scan balance towards the file LRU.  And as the file LRU
2968 	 * shrinks, so does the window for rotation from references.
2969 	 * This means we have a runaway feedback loop where a tiny
2970 	 * thrashing file LRU becomes infinitely more attractive than
2971 	 * anon pages.  Try to detect this based on file LRU size.
2972 	 */
2973 	if (!cgroup_reclaim(sc)) {
2974 		unsigned long total_high_wmark = 0;
2975 		unsigned long free, anon;
2976 		int z;
2977 
2978 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2979 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2980 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2981 
2982 		for (z = 0; z < MAX_NR_ZONES; z++) {
2983 			struct zone *zone = &pgdat->node_zones[z];
2984 
2985 			if (!managed_zone(zone))
2986 				continue;
2987 
2988 			total_high_wmark += high_wmark_pages(zone);
2989 		}
2990 
2991 		/*
2992 		 * Consider anon: if that's low too, this isn't a
2993 		 * runaway file reclaim problem, but rather just
2994 		 * extreme pressure. Reclaim as per usual then.
2995 		 */
2996 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2997 
2998 		sc->file_is_tiny =
2999 			file + free <= total_high_wmark &&
3000 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3001 			anon >> sc->priority;
3002 	}
3003 }
3004 
3005 /*
3006  * Determine how aggressively the anon and file LRU lists should be
3007  * scanned.
3008  *
3009  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3010  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3011  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)3012 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3013 			   unsigned long *nr)
3014 {
3015 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3016 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3017 	unsigned long anon_cost, file_cost, total_cost;
3018 	int swappiness = mem_cgroup_swappiness(memcg);
3019 	u64 fraction[ANON_AND_FILE];
3020 	u64 denominator = 0;	/* gcc */
3021 	enum scan_balance scan_balance;
3022 	unsigned long ap, fp;
3023 	enum lru_list lru;
3024 
3025 	/* If we have no swap space, do not bother scanning anon folios. */
3026 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3027 		scan_balance = SCAN_FILE;
3028 		goto out;
3029 	}
3030 
3031 	/*
3032 	 * Global reclaim will swap to prevent OOM even with no
3033 	 * swappiness, but memcg users want to use this knob to
3034 	 * disable swapping for individual groups completely when
3035 	 * using the memory controller's swap limit feature would be
3036 	 * too expensive.
3037 	 */
3038 	if (cgroup_reclaim(sc) && !swappiness) {
3039 		scan_balance = SCAN_FILE;
3040 		goto out;
3041 	}
3042 
3043 	/*
3044 	 * Do not apply any pressure balancing cleverness when the
3045 	 * system is close to OOM, scan both anon and file equally
3046 	 * (unless the swappiness setting disagrees with swapping).
3047 	 */
3048 	if (!sc->priority && swappiness) {
3049 		scan_balance = SCAN_EQUAL;
3050 		goto out;
3051 	}
3052 
3053 	/*
3054 	 * If the system is almost out of file pages, force-scan anon.
3055 	 */
3056 	if (sc->file_is_tiny) {
3057 		scan_balance = SCAN_ANON;
3058 		goto out;
3059 	}
3060 
3061 	/*
3062 	 * If there is enough inactive page cache, we do not reclaim
3063 	 * anything from the anonymous working right now.
3064 	 */
3065 	if (sc->cache_trim_mode) {
3066 		scan_balance = SCAN_FILE;
3067 		goto out;
3068 	}
3069 
3070 	scan_balance = SCAN_FRACT;
3071 	/*
3072 	 * Calculate the pressure balance between anon and file pages.
3073 	 *
3074 	 * The amount of pressure we put on each LRU is inversely
3075 	 * proportional to the cost of reclaiming each list, as
3076 	 * determined by the share of pages that are refaulting, times
3077 	 * the relative IO cost of bringing back a swapped out
3078 	 * anonymous page vs reloading a filesystem page (swappiness).
3079 	 *
3080 	 * Although we limit that influence to ensure no list gets
3081 	 * left behind completely: at least a third of the pressure is
3082 	 * applied, before swappiness.
3083 	 *
3084 	 * With swappiness at 100, anon and file have equal IO cost.
3085 	 */
3086 	total_cost = sc->anon_cost + sc->file_cost;
3087 	anon_cost = total_cost + sc->anon_cost;
3088 	file_cost = total_cost + sc->file_cost;
3089 	total_cost = anon_cost + file_cost;
3090 
3091 	ap = swappiness * (total_cost + 1);
3092 	ap /= anon_cost + 1;
3093 
3094 	fp = (200 - swappiness) * (total_cost + 1);
3095 	fp /= file_cost + 1;
3096 
3097 	fraction[0] = ap;
3098 	fraction[1] = fp;
3099 	denominator = ap + fp;
3100 out:
3101 	for_each_evictable_lru(lru) {
3102 		int file = is_file_lru(lru);
3103 		unsigned long lruvec_size;
3104 		unsigned long low, min;
3105 		unsigned long scan;
3106 
3107 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3108 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3109 				      &min, &low);
3110 
3111 		if (min || low) {
3112 			/*
3113 			 * Scale a cgroup's reclaim pressure by proportioning
3114 			 * its current usage to its memory.low or memory.min
3115 			 * setting.
3116 			 *
3117 			 * This is important, as otherwise scanning aggression
3118 			 * becomes extremely binary -- from nothing as we
3119 			 * approach the memory protection threshold, to totally
3120 			 * nominal as we exceed it.  This results in requiring
3121 			 * setting extremely liberal protection thresholds. It
3122 			 * also means we simply get no protection at all if we
3123 			 * set it too low, which is not ideal.
3124 			 *
3125 			 * If there is any protection in place, we reduce scan
3126 			 * pressure by how much of the total memory used is
3127 			 * within protection thresholds.
3128 			 *
3129 			 * There is one special case: in the first reclaim pass,
3130 			 * we skip over all groups that are within their low
3131 			 * protection. If that fails to reclaim enough pages to
3132 			 * satisfy the reclaim goal, we come back and override
3133 			 * the best-effort low protection. However, we still
3134 			 * ideally want to honor how well-behaved groups are in
3135 			 * that case instead of simply punishing them all
3136 			 * equally. As such, we reclaim them based on how much
3137 			 * memory they are using, reducing the scan pressure
3138 			 * again by how much of the total memory used is under
3139 			 * hard protection.
3140 			 */
3141 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3142 			unsigned long protection;
3143 
3144 			/* memory.low scaling, make sure we retry before OOM */
3145 			if (!sc->memcg_low_reclaim && low > min) {
3146 				protection = low;
3147 				sc->memcg_low_skipped = 1;
3148 			} else {
3149 				protection = min;
3150 			}
3151 
3152 			/* Avoid TOCTOU with earlier protection check */
3153 			cgroup_size = max(cgroup_size, protection);
3154 
3155 			scan = lruvec_size - lruvec_size * protection /
3156 				(cgroup_size + 1);
3157 
3158 			/*
3159 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3160 			 * reclaim moving forwards, avoiding decrementing
3161 			 * sc->priority further than desirable.
3162 			 */
3163 			scan = max(scan, SWAP_CLUSTER_MAX);
3164 		} else {
3165 			scan = lruvec_size;
3166 		}
3167 
3168 		scan >>= sc->priority;
3169 
3170 		/*
3171 		 * If the cgroup's already been deleted, make sure to
3172 		 * scrape out the remaining cache.
3173 		 */
3174 		if (!scan && !mem_cgroup_online(memcg))
3175 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3176 
3177 		switch (scan_balance) {
3178 		case SCAN_EQUAL:
3179 			/* Scan lists relative to size */
3180 			break;
3181 		case SCAN_FRACT:
3182 			/*
3183 			 * Scan types proportional to swappiness and
3184 			 * their relative recent reclaim efficiency.
3185 			 * Make sure we don't miss the last page on
3186 			 * the offlined memory cgroups because of a
3187 			 * round-off error.
3188 			 */
3189 			scan = mem_cgroup_online(memcg) ?
3190 			       div64_u64(scan * fraction[file], denominator) :
3191 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3192 						  denominator);
3193 			break;
3194 		case SCAN_FILE:
3195 		case SCAN_ANON:
3196 			/* Scan one type exclusively */
3197 			if ((scan_balance == SCAN_FILE) != file)
3198 				scan = 0;
3199 			break;
3200 		default:
3201 			/* Look ma, no brain */
3202 			BUG();
3203 		}
3204 
3205 		nr[lru] = scan;
3206 	}
3207 }
3208 
3209 /*
3210  * Anonymous LRU management is a waste if there is
3211  * ultimately no way to reclaim the memory.
3212  */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)3213 static bool can_age_anon_pages(struct pglist_data *pgdat,
3214 			       struct scan_control *sc)
3215 {
3216 	/* Aging the anon LRU is valuable if swap is present: */
3217 	if (total_swap_pages > 0)
3218 		return true;
3219 
3220 	/* Also valuable if anon pages can be demoted: */
3221 	return can_demote(pgdat->node_id, sc);
3222 }
3223 
3224 #ifdef CONFIG_LRU_GEN
3225 
3226 #ifdef CONFIG_LRU_GEN_ENABLED
3227 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3228 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3229 #else
3230 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3231 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3232 #endif
3233 
should_walk_mmu(void)3234 static bool should_walk_mmu(void)
3235 {
3236 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
3237 }
3238 
should_clear_pmd_young(void)3239 static bool should_clear_pmd_young(void)
3240 {
3241 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
3242 }
3243 
3244 /******************************************************************************
3245  *                          shorthand helpers
3246  ******************************************************************************/
3247 
3248 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3249 
3250 #define DEFINE_MAX_SEQ(lruvec)						\
3251 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3252 
3253 #define DEFINE_MIN_SEQ(lruvec)						\
3254 	unsigned long min_seq[ANON_AND_FILE] = {			\
3255 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3256 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3257 	}
3258 
3259 #define for_each_gen_type_zone(gen, type, zone)				\
3260 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3261 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3262 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3263 
3264 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3265 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3266 
get_lruvec(struct mem_cgroup * memcg,int nid)3267 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3268 {
3269 	struct pglist_data *pgdat = NODE_DATA(nid);
3270 
3271 #ifdef CONFIG_MEMCG
3272 	if (memcg) {
3273 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3274 
3275 		/* see the comment in mem_cgroup_lruvec() */
3276 		if (!lruvec->pgdat)
3277 			lruvec->pgdat = pgdat;
3278 
3279 		return lruvec;
3280 	}
3281 #endif
3282 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3283 
3284 	return &pgdat->__lruvec;
3285 }
3286 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)3287 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3288 {
3289 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3290 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3291 
3292 	if (!sc->may_swap)
3293 		return 0;
3294 
3295 	if (!can_demote(pgdat->node_id, sc) &&
3296 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3297 		return 0;
3298 
3299 	return mem_cgroup_swappiness(memcg);
3300 }
3301 
get_nr_gens(struct lruvec * lruvec,int type)3302 static int get_nr_gens(struct lruvec *lruvec, int type)
3303 {
3304 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3305 }
3306 
seq_is_valid(struct lruvec * lruvec)3307 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3308 {
3309 	/* see the comment on lru_gen_folio */
3310 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3311 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3312 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3313 }
3314 
3315 /******************************************************************************
3316  *                          Bloom filters
3317  ******************************************************************************/
3318 
3319 /*
3320  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3321  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3322  * bits in a bitmap, k is the number of hash functions and n is the number of
3323  * inserted items.
3324  *
3325  * Page table walkers use one of the two filters to reduce their search space.
3326  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3327  * aging uses the double-buffering technique to flip to the other filter each
3328  * time it produces a new generation. For non-leaf entries that have enough
3329  * leaf entries, the aging carries them over to the next generation in
3330  * walk_pmd_range(); the eviction also report them when walking the rmap
3331  * in lru_gen_look_around().
3332  *
3333  * For future optimizations:
3334  * 1. It's not necessary to keep both filters all the time. The spare one can be
3335  *    freed after the RCU grace period and reallocated if needed again.
3336  * 2. And when reallocating, it's worth scaling its size according to the number
3337  *    of inserted entries in the other filter, to reduce the memory overhead on
3338  *    small systems and false positives on large systems.
3339  * 3. Jenkins' hash function is an alternative to Knuth's.
3340  */
3341 #define BLOOM_FILTER_SHIFT	15
3342 
filter_gen_from_seq(unsigned long seq)3343 static inline int filter_gen_from_seq(unsigned long seq)
3344 {
3345 	return seq % NR_BLOOM_FILTERS;
3346 }
3347 
get_item_key(void * item,int * key)3348 static void get_item_key(void *item, int *key)
3349 {
3350 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3351 
3352 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3353 
3354 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3355 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3356 }
3357 
test_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)3358 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3359 {
3360 	int key[2];
3361 	unsigned long *filter;
3362 	int gen = filter_gen_from_seq(seq);
3363 
3364 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3365 	if (!filter)
3366 		return true;
3367 
3368 	get_item_key(item, key);
3369 
3370 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3371 }
3372 
update_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)3373 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3374 {
3375 	int key[2];
3376 	unsigned long *filter;
3377 	int gen = filter_gen_from_seq(seq);
3378 
3379 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3380 	if (!filter)
3381 		return;
3382 
3383 	get_item_key(item, key);
3384 
3385 	if (!test_bit(key[0], filter))
3386 		set_bit(key[0], filter);
3387 	if (!test_bit(key[1], filter))
3388 		set_bit(key[1], filter);
3389 }
3390 
reset_bloom_filter(struct lruvec * lruvec,unsigned long seq)3391 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3392 {
3393 	unsigned long *filter;
3394 	int gen = filter_gen_from_seq(seq);
3395 
3396 	filter = lruvec->mm_state.filters[gen];
3397 	if (filter) {
3398 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3399 		return;
3400 	}
3401 
3402 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3403 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3404 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3405 }
3406 
3407 /******************************************************************************
3408  *                          mm_struct list
3409  ******************************************************************************/
3410 
get_mm_list(struct mem_cgroup * memcg)3411 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3412 {
3413 	static struct lru_gen_mm_list mm_list = {
3414 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3415 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3416 	};
3417 
3418 #ifdef CONFIG_MEMCG
3419 	if (memcg)
3420 		return &memcg->mm_list;
3421 #endif
3422 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3423 
3424 	return &mm_list;
3425 }
3426 
lru_gen_add_mm(struct mm_struct * mm)3427 void lru_gen_add_mm(struct mm_struct *mm)
3428 {
3429 	int nid;
3430 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3431 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3432 
3433 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3434 #ifdef CONFIG_MEMCG
3435 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3436 	mm->lru_gen.memcg = memcg;
3437 #endif
3438 	spin_lock(&mm_list->lock);
3439 
3440 	for_each_node_state(nid, N_MEMORY) {
3441 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3442 
3443 		/* the first addition since the last iteration */
3444 		if (lruvec->mm_state.tail == &mm_list->fifo)
3445 			lruvec->mm_state.tail = &mm->lru_gen.list;
3446 	}
3447 
3448 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3449 
3450 	spin_unlock(&mm_list->lock);
3451 }
3452 
lru_gen_del_mm(struct mm_struct * mm)3453 void lru_gen_del_mm(struct mm_struct *mm)
3454 {
3455 	int nid;
3456 	struct lru_gen_mm_list *mm_list;
3457 	struct mem_cgroup *memcg = NULL;
3458 
3459 	if (list_empty(&mm->lru_gen.list))
3460 		return;
3461 
3462 #ifdef CONFIG_MEMCG
3463 	memcg = mm->lru_gen.memcg;
3464 #endif
3465 	mm_list = get_mm_list(memcg);
3466 
3467 	spin_lock(&mm_list->lock);
3468 
3469 	for_each_node(nid) {
3470 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3471 
3472 		/* where the current iteration continues after */
3473 		if (lruvec->mm_state.head == &mm->lru_gen.list)
3474 			lruvec->mm_state.head = lruvec->mm_state.head->prev;
3475 
3476 		/* where the last iteration ended before */
3477 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3478 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3479 	}
3480 
3481 	list_del_init(&mm->lru_gen.list);
3482 
3483 	spin_unlock(&mm_list->lock);
3484 
3485 #ifdef CONFIG_MEMCG
3486 	mem_cgroup_put(mm->lru_gen.memcg);
3487 	mm->lru_gen.memcg = NULL;
3488 #endif
3489 }
3490 
3491 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)3492 void lru_gen_migrate_mm(struct mm_struct *mm)
3493 {
3494 	struct mem_cgroup *memcg;
3495 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3496 
3497 	VM_WARN_ON_ONCE(task->mm != mm);
3498 	lockdep_assert_held(&task->alloc_lock);
3499 
3500 	/* for mm_update_next_owner() */
3501 	if (mem_cgroup_disabled())
3502 		return;
3503 
3504 	/* migration can happen before addition */
3505 	if (!mm->lru_gen.memcg)
3506 		return;
3507 
3508 	rcu_read_lock();
3509 	memcg = mem_cgroup_from_task(task);
3510 	rcu_read_unlock();
3511 	if (memcg == mm->lru_gen.memcg)
3512 		return;
3513 
3514 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3515 
3516 	lru_gen_del_mm(mm);
3517 	lru_gen_add_mm(mm);
3518 }
3519 #endif
3520 
reset_mm_stats(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,bool last)3521 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3522 {
3523 	int i;
3524 	int hist;
3525 
3526 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3527 
3528 	if (walk) {
3529 		hist = lru_hist_from_seq(walk->max_seq);
3530 
3531 		for (i = 0; i < NR_MM_STATS; i++) {
3532 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3533 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3534 			walk->mm_stats[i] = 0;
3535 		}
3536 	}
3537 
3538 	if (NR_HIST_GENS > 1 && last) {
3539 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3540 
3541 		for (i = 0; i < NR_MM_STATS; i++)
3542 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3543 	}
3544 }
3545 
should_skip_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3546 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3547 {
3548 	int type;
3549 	unsigned long size = 0;
3550 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3551 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3552 
3553 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3554 		return true;
3555 
3556 	clear_bit(key, &mm->lru_gen.bitmap);
3557 
3558 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3559 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3560 			       get_mm_counter(mm, MM_ANONPAGES) +
3561 			       get_mm_counter(mm, MM_SHMEMPAGES);
3562 	}
3563 
3564 	if (size < MIN_LRU_BATCH)
3565 		return true;
3566 
3567 	return !mmget_not_zero(mm);
3568 }
3569 
iterate_mm_list(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3570 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3571 			    struct mm_struct **iter)
3572 {
3573 	bool first = false;
3574 	bool last = false;
3575 	struct mm_struct *mm = NULL;
3576 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3577 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3578 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3579 
3580 	/*
3581 	 * mm_state->seq is incremented after each iteration of mm_list. There
3582 	 * are three interesting cases for this page table walker:
3583 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3584 	 *    nothing left to do.
3585 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3586 	 *    so that a fresh set of PTE tables can be recorded.
3587 	 * 3. It ended the current iteration: it needs to reset the mm stats
3588 	 *    counters and tell its caller to increment max_seq.
3589 	 */
3590 	spin_lock(&mm_list->lock);
3591 
3592 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3593 
3594 	if (walk->max_seq <= mm_state->seq)
3595 		goto done;
3596 
3597 	if (!mm_state->head)
3598 		mm_state->head = &mm_list->fifo;
3599 
3600 	if (mm_state->head == &mm_list->fifo)
3601 		first = true;
3602 
3603 	do {
3604 		mm_state->head = mm_state->head->next;
3605 		if (mm_state->head == &mm_list->fifo) {
3606 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3607 			last = true;
3608 			break;
3609 		}
3610 
3611 		/* force scan for those added after the last iteration */
3612 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3613 			mm_state->tail = mm_state->head->next;
3614 			walk->force_scan = true;
3615 		}
3616 
3617 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3618 		if (should_skip_mm(mm, walk))
3619 			mm = NULL;
3620 	} while (!mm);
3621 done:
3622 	if (*iter || last)
3623 		reset_mm_stats(lruvec, walk, last);
3624 
3625 	spin_unlock(&mm_list->lock);
3626 
3627 	if (mm && first)
3628 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3629 
3630 	if (*iter)
3631 		mmput_async(*iter);
3632 
3633 	*iter = mm;
3634 
3635 	return last;
3636 }
3637 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long max_seq)3638 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3639 {
3640 	bool success = false;
3641 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3642 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3643 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3644 
3645 	spin_lock(&mm_list->lock);
3646 
3647 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3648 
3649 	if (max_seq > mm_state->seq) {
3650 		mm_state->head = NULL;
3651 		mm_state->tail = NULL;
3652 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3653 		reset_mm_stats(lruvec, NULL, true);
3654 		success = true;
3655 	}
3656 
3657 	spin_unlock(&mm_list->lock);
3658 
3659 	return success;
3660 }
3661 
3662 /******************************************************************************
3663  *                          PID controller
3664  ******************************************************************************/
3665 
3666 /*
3667  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3668  *
3669  * The P term is refaulted/(evicted+protected) from a tier in the generation
3670  * currently being evicted; the I term is the exponential moving average of the
3671  * P term over the generations previously evicted, using the smoothing factor
3672  * 1/2; the D term isn't supported.
3673  *
3674  * The setpoint (SP) is always the first tier of one type; the process variable
3675  * (PV) is either any tier of the other type or any other tier of the same
3676  * type.
3677  *
3678  * The error is the difference between the SP and the PV; the correction is to
3679  * turn off protection when SP>PV or turn on protection when SP<PV.
3680  *
3681  * For future optimizations:
3682  * 1. The D term may discount the other two terms over time so that long-lived
3683  *    generations can resist stale information.
3684  */
3685 struct ctrl_pos {
3686 	unsigned long refaulted;
3687 	unsigned long total;
3688 	int gain;
3689 };
3690 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3691 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3692 			  struct ctrl_pos *pos)
3693 {
3694 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3695 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3696 
3697 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3698 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3699 	pos->total = lrugen->avg_total[type][tier] +
3700 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3701 	if (tier)
3702 		pos->total += lrugen->protected[hist][type][tier - 1];
3703 	pos->gain = gain;
3704 }
3705 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3706 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3707 {
3708 	int hist, tier;
3709 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3710 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3711 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3712 
3713 	lockdep_assert_held(&lruvec->lru_lock);
3714 
3715 	if (!carryover && !clear)
3716 		return;
3717 
3718 	hist = lru_hist_from_seq(seq);
3719 
3720 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3721 		if (carryover) {
3722 			unsigned long sum;
3723 
3724 			sum = lrugen->avg_refaulted[type][tier] +
3725 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3726 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3727 
3728 			sum = lrugen->avg_total[type][tier] +
3729 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3730 			if (tier)
3731 				sum += lrugen->protected[hist][type][tier - 1];
3732 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3733 		}
3734 
3735 		if (clear) {
3736 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3737 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3738 			if (tier)
3739 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3740 		}
3741 	}
3742 }
3743 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3744 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3745 {
3746 	/*
3747 	 * Return true if the PV has a limited number of refaults or a lower
3748 	 * refaulted/total than the SP.
3749 	 */
3750 	return pv->refaulted < MIN_LRU_BATCH ||
3751 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3752 	       (sp->refaulted + 1) * pv->total * pv->gain;
3753 }
3754 
3755 /******************************************************************************
3756  *                          the aging
3757  ******************************************************************************/
3758 
3759 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3760 static int folio_update_gen(struct folio *folio, int gen)
3761 {
3762 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3763 
3764 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3765 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3766 
3767 	do {
3768 		/* lru_gen_del_folio() has isolated this page? */
3769 		if (!(old_flags & LRU_GEN_MASK)) {
3770 			/* for shrink_folio_list() */
3771 			new_flags = old_flags | BIT(PG_referenced);
3772 			continue;
3773 		}
3774 
3775 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3776 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3777 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3778 
3779 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3780 }
3781 
3782 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3783 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3784 {
3785 	int type = folio_is_file_lru(folio);
3786 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3787 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3788 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3789 
3790 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3791 
3792 	do {
3793 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3794 		/* folio_update_gen() has promoted this page? */
3795 		if (new_gen >= 0 && new_gen != old_gen)
3796 			return new_gen;
3797 
3798 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3799 
3800 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3801 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3802 		/* for folio_end_writeback() */
3803 		if (reclaiming)
3804 			new_flags |= BIT(PG_reclaim);
3805 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3806 
3807 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3808 
3809 	return new_gen;
3810 }
3811 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3812 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3813 			      int old_gen, int new_gen)
3814 {
3815 	int type = folio_is_file_lru(folio);
3816 	int zone = folio_zonenum(folio);
3817 	int delta = folio_nr_pages(folio);
3818 
3819 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3820 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3821 
3822 	walk->batched++;
3823 
3824 	walk->nr_pages[old_gen][type][zone] -= delta;
3825 	walk->nr_pages[new_gen][type][zone] += delta;
3826 }
3827 
reset_batch_size(struct lruvec * lruvec,struct lru_gen_mm_walk * walk)3828 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3829 {
3830 	int gen, type, zone;
3831 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3832 
3833 	walk->batched = 0;
3834 
3835 	for_each_gen_type_zone(gen, type, zone) {
3836 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3837 		int delta = walk->nr_pages[gen][type][zone];
3838 
3839 		if (!delta)
3840 			continue;
3841 
3842 		walk->nr_pages[gen][type][zone] = 0;
3843 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3844 			   lrugen->nr_pages[gen][type][zone] + delta);
3845 
3846 		if (lru_gen_is_active(lruvec, gen))
3847 			lru += LRU_ACTIVE;
3848 		__update_lru_size(lruvec, lru, zone, delta);
3849 	}
3850 }
3851 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3852 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3853 {
3854 	struct address_space *mapping;
3855 	struct vm_area_struct *vma = args->vma;
3856 	struct lru_gen_mm_walk *walk = args->private;
3857 
3858 	if (!vma_is_accessible(vma))
3859 		return true;
3860 
3861 	if (is_vm_hugetlb_page(vma))
3862 		return true;
3863 
3864 	if (!vma_has_recency(vma))
3865 		return true;
3866 
3867 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3868 		return true;
3869 
3870 	if (vma == get_gate_vma(vma->vm_mm))
3871 		return true;
3872 
3873 	if (vma_is_anonymous(vma))
3874 		return !walk->can_swap;
3875 
3876 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3877 		return true;
3878 
3879 	mapping = vma->vm_file->f_mapping;
3880 	if (mapping_unevictable(mapping))
3881 		return true;
3882 
3883 	if (shmem_mapping(mapping))
3884 		return !walk->can_swap;
3885 
3886 	/* to exclude special mappings like dax, etc. */
3887 	return !mapping->a_ops->read_folio;
3888 }
3889 
3890 /*
3891  * Some userspace memory allocators map many single-page VMAs. Instead of
3892  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3893  * table to reduce zigzags and improve cache performance.
3894  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3895 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3896 			 unsigned long *vm_start, unsigned long *vm_end)
3897 {
3898 	unsigned long start = round_up(*vm_end, size);
3899 	unsigned long end = (start | ~mask) + 1;
3900 	VMA_ITERATOR(vmi, args->mm, start);
3901 
3902 	VM_WARN_ON_ONCE(mask & size);
3903 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3904 
3905 	for_each_vma(vmi, args->vma) {
3906 		if (end && end <= args->vma->vm_start)
3907 			return false;
3908 
3909 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3910 			continue;
3911 
3912 		*vm_start = max(start, args->vma->vm_start);
3913 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3914 
3915 		return true;
3916 	}
3917 
3918 	return false;
3919 }
3920 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr)3921 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3922 {
3923 	unsigned long pfn = pte_pfn(pte);
3924 
3925 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3926 
3927 	if (!pte_present(pte) || is_zero_pfn(pfn))
3928 		return -1;
3929 
3930 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3931 		return -1;
3932 
3933 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3934 		return -1;
3935 
3936 	return pfn;
3937 }
3938 
3939 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)3940 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3941 {
3942 	unsigned long pfn = pmd_pfn(pmd);
3943 
3944 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3945 
3946 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3947 		return -1;
3948 
3949 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3950 		return -1;
3951 
3952 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3953 		return -1;
3954 
3955 	return pfn;
3956 }
3957 #endif
3958 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat,bool can_swap)3959 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3960 				   struct pglist_data *pgdat, bool can_swap)
3961 {
3962 	struct folio *folio;
3963 
3964 	/* try to avoid unnecessary memory loads */
3965 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3966 		return NULL;
3967 
3968 	folio = pfn_folio(pfn);
3969 	if (folio_nid(folio) != pgdat->node_id)
3970 		return NULL;
3971 
3972 	if (folio_memcg_rcu(folio) != memcg)
3973 		return NULL;
3974 
3975 	/* file VMAs can contain anon pages from COW */
3976 	if (!folio_is_file_lru(folio) && !can_swap)
3977 		return NULL;
3978 
3979 	return folio;
3980 }
3981 
suitable_to_scan(int total,int young)3982 static bool suitable_to_scan(int total, int young)
3983 {
3984 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3985 
3986 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3987 	return young * n >= total;
3988 }
3989 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3990 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3991 			   struct mm_walk *args)
3992 {
3993 	int i;
3994 	pte_t *pte;
3995 	spinlock_t *ptl;
3996 	unsigned long addr;
3997 	int total = 0;
3998 	int young = 0;
3999 	struct lru_gen_mm_walk *walk = args->private;
4000 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4001 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4002 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4003 
4004 	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
4005 	if (!pte)
4006 		return false;
4007 	if (!spin_trylock(ptl)) {
4008 		pte_unmap(pte);
4009 		return false;
4010 	}
4011 
4012 	arch_enter_lazy_mmu_mode();
4013 restart:
4014 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
4015 		unsigned long pfn;
4016 		struct folio *folio;
4017 		pte_t ptent = ptep_get(pte + i);
4018 
4019 		total++;
4020 		walk->mm_stats[MM_LEAF_TOTAL]++;
4021 
4022 		pfn = get_pte_pfn(ptent, args->vma, addr);
4023 		if (pfn == -1)
4024 			continue;
4025 
4026 		if (!pte_young(ptent)) {
4027 			walk->mm_stats[MM_LEAF_OLD]++;
4028 			continue;
4029 		}
4030 
4031 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4032 		if (!folio)
4033 			continue;
4034 
4035 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4036 			VM_WARN_ON_ONCE(true);
4037 
4038 		young++;
4039 		walk->mm_stats[MM_LEAF_YOUNG]++;
4040 
4041 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4042 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4043 		      !folio_test_swapcache(folio)))
4044 			folio_mark_dirty(folio);
4045 
4046 		old_gen = folio_update_gen(folio, new_gen);
4047 		if (old_gen >= 0 && old_gen != new_gen)
4048 			update_batch_size(walk, folio, old_gen, new_gen);
4049 	}
4050 
4051 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4052 		goto restart;
4053 
4054 	arch_leave_lazy_mmu_mode();
4055 	pte_unmap_unlock(pte, ptl);
4056 
4057 	return suitable_to_scan(total, young);
4058 }
4059 
4060 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)4061 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4062 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4063 {
4064 	int i;
4065 	pmd_t *pmd;
4066 	spinlock_t *ptl;
4067 	struct lru_gen_mm_walk *walk = args->private;
4068 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4069 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4070 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4071 
4072 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4073 
4074 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4075 	if (*first == -1) {
4076 		*first = addr;
4077 		bitmap_zero(bitmap, MIN_LRU_BATCH);
4078 		return;
4079 	}
4080 
4081 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4082 	if (i && i <= MIN_LRU_BATCH) {
4083 		__set_bit(i - 1, bitmap);
4084 		return;
4085 	}
4086 
4087 	pmd = pmd_offset(pud, *first);
4088 
4089 	ptl = pmd_lockptr(args->mm, pmd);
4090 	if (!spin_trylock(ptl))
4091 		goto done;
4092 
4093 	arch_enter_lazy_mmu_mode();
4094 
4095 	do {
4096 		unsigned long pfn;
4097 		struct folio *folio;
4098 
4099 		/* don't round down the first address */
4100 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4101 
4102 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4103 		if (pfn == -1)
4104 			goto next;
4105 
4106 		if (!pmd_trans_huge(pmd[i])) {
4107 			if (should_clear_pmd_young())
4108 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4109 			goto next;
4110 		}
4111 
4112 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4113 		if (!folio)
4114 			goto next;
4115 
4116 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4117 			goto next;
4118 
4119 		walk->mm_stats[MM_LEAF_YOUNG]++;
4120 
4121 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4122 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4123 		      !folio_test_swapcache(folio)))
4124 			folio_mark_dirty(folio);
4125 
4126 		old_gen = folio_update_gen(folio, new_gen);
4127 		if (old_gen >= 0 && old_gen != new_gen)
4128 			update_batch_size(walk, folio, old_gen, new_gen);
4129 next:
4130 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4131 	} while (i <= MIN_LRU_BATCH);
4132 
4133 	arch_leave_lazy_mmu_mode();
4134 	spin_unlock(ptl);
4135 done:
4136 	*first = -1;
4137 }
4138 #else
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)4139 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4140 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4141 {
4142 }
4143 #endif
4144 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)4145 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4146 			   struct mm_walk *args)
4147 {
4148 	int i;
4149 	pmd_t *pmd;
4150 	unsigned long next;
4151 	unsigned long addr;
4152 	struct vm_area_struct *vma;
4153 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
4154 	unsigned long first = -1;
4155 	struct lru_gen_mm_walk *walk = args->private;
4156 
4157 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4158 
4159 	/*
4160 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4161 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4162 	 * the PMD lock to clear the accessed bit in PMD entries.
4163 	 */
4164 	pmd = pmd_offset(pud, start & PUD_MASK);
4165 restart:
4166 	/* walk_pte_range() may call get_next_vma() */
4167 	vma = args->vma;
4168 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4169 		pmd_t val = pmdp_get_lockless(pmd + i);
4170 
4171 		next = pmd_addr_end(addr, end);
4172 
4173 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4174 			walk->mm_stats[MM_LEAF_TOTAL]++;
4175 			continue;
4176 		}
4177 
4178 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4179 		if (pmd_trans_huge(val)) {
4180 			unsigned long pfn = pmd_pfn(val);
4181 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4182 
4183 			walk->mm_stats[MM_LEAF_TOTAL]++;
4184 
4185 			if (!pmd_young(val)) {
4186 				walk->mm_stats[MM_LEAF_OLD]++;
4187 				continue;
4188 			}
4189 
4190 			/* try to avoid unnecessary memory loads */
4191 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4192 				continue;
4193 
4194 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4195 			continue;
4196 		}
4197 #endif
4198 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4199 
4200 		if (should_clear_pmd_young()) {
4201 			if (!pmd_young(val))
4202 				continue;
4203 
4204 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4205 		}
4206 
4207 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4208 			continue;
4209 
4210 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4211 
4212 		if (!walk_pte_range(&val, addr, next, args))
4213 			continue;
4214 
4215 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4216 
4217 		/* carry over to the next generation */
4218 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4219 	}
4220 
4221 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4222 
4223 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4224 		goto restart;
4225 }
4226 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)4227 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4228 			  struct mm_walk *args)
4229 {
4230 	int i;
4231 	pud_t *pud;
4232 	unsigned long addr;
4233 	unsigned long next;
4234 	struct lru_gen_mm_walk *walk = args->private;
4235 
4236 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4237 
4238 	pud = pud_offset(p4d, start & P4D_MASK);
4239 restart:
4240 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4241 		pud_t val = READ_ONCE(pud[i]);
4242 
4243 		next = pud_addr_end(addr, end);
4244 
4245 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4246 			continue;
4247 
4248 		walk_pmd_range(&val, addr, next, args);
4249 
4250 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4251 			end = (addr | ~PUD_MASK) + 1;
4252 			goto done;
4253 		}
4254 	}
4255 
4256 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4257 		goto restart;
4258 
4259 	end = round_up(end, P4D_SIZE);
4260 done:
4261 	if (!end || !args->vma)
4262 		return 1;
4263 
4264 	walk->next_addr = max(end, args->vma->vm_start);
4265 
4266 	return -EAGAIN;
4267 }
4268 
walk_mm(struct lruvec * lruvec,struct mm_struct * mm,struct lru_gen_mm_walk * walk)4269 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4270 {
4271 	static const struct mm_walk_ops mm_walk_ops = {
4272 		.test_walk = should_skip_vma,
4273 		.p4d_entry = walk_pud_range,
4274 		.walk_lock = PGWALK_RDLOCK,
4275 	};
4276 
4277 	int err;
4278 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4279 
4280 	walk->next_addr = FIRST_USER_ADDRESS;
4281 
4282 	do {
4283 		DEFINE_MAX_SEQ(lruvec);
4284 
4285 		err = -EBUSY;
4286 
4287 		/* another thread might have called inc_max_seq() */
4288 		if (walk->max_seq != max_seq)
4289 			break;
4290 
4291 		/* folio_update_gen() requires stable folio_memcg() */
4292 		if (!mem_cgroup_trylock_pages(memcg))
4293 			break;
4294 
4295 		/* the caller might be holding the lock for write */
4296 		if (mmap_read_trylock(mm)) {
4297 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4298 
4299 			mmap_read_unlock(mm);
4300 		}
4301 
4302 		mem_cgroup_unlock_pages();
4303 
4304 		if (walk->batched) {
4305 			spin_lock_irq(&lruvec->lru_lock);
4306 			reset_batch_size(lruvec, walk);
4307 			spin_unlock_irq(&lruvec->lru_lock);
4308 		}
4309 
4310 		cond_resched();
4311 	} while (err == -EAGAIN);
4312 }
4313 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)4314 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4315 {
4316 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4317 
4318 	if (pgdat && current_is_kswapd()) {
4319 		VM_WARN_ON_ONCE(walk);
4320 
4321 		walk = &pgdat->mm_walk;
4322 	} else if (!walk && force_alloc) {
4323 		VM_WARN_ON_ONCE(current_is_kswapd());
4324 
4325 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4326 	}
4327 
4328 	current->reclaim_state->mm_walk = walk;
4329 
4330 	return walk;
4331 }
4332 
clear_mm_walk(void)4333 static void clear_mm_walk(void)
4334 {
4335 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4336 
4337 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4338 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4339 
4340 	current->reclaim_state->mm_walk = NULL;
4341 
4342 	if (!current_is_kswapd())
4343 		kfree(walk);
4344 }
4345 
inc_min_seq(struct lruvec * lruvec,int type,bool can_swap)4346 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4347 {
4348 	int zone;
4349 	int remaining = MAX_LRU_BATCH;
4350 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4351 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4352 
4353 	if (type == LRU_GEN_ANON && !can_swap)
4354 		goto done;
4355 
4356 	/* prevent cold/hot inversion if force_scan is true */
4357 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4358 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4359 
4360 		while (!list_empty(head)) {
4361 			struct folio *folio = lru_to_folio(head);
4362 
4363 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4364 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4365 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4366 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4367 
4368 			new_gen = folio_inc_gen(lruvec, folio, false);
4369 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4370 
4371 			if (!--remaining)
4372 				return false;
4373 		}
4374 	}
4375 done:
4376 	reset_ctrl_pos(lruvec, type, true);
4377 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4378 
4379 	return true;
4380 }
4381 
try_to_inc_min_seq(struct lruvec * lruvec,bool can_swap)4382 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4383 {
4384 	int gen, type, zone;
4385 	bool success = false;
4386 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4387 	DEFINE_MIN_SEQ(lruvec);
4388 
4389 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4390 
4391 	/* find the oldest populated generation */
4392 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4393 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4394 			gen = lru_gen_from_seq(min_seq[type]);
4395 
4396 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4397 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4398 					goto next;
4399 			}
4400 
4401 			min_seq[type]++;
4402 		}
4403 next:
4404 		;
4405 	}
4406 
4407 	/* see the comment on lru_gen_folio */
4408 	if (can_swap) {
4409 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4410 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4411 	}
4412 
4413 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4414 		if (min_seq[type] == lrugen->min_seq[type])
4415 			continue;
4416 
4417 		reset_ctrl_pos(lruvec, type, true);
4418 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4419 		success = true;
4420 	}
4421 
4422 	return success;
4423 }
4424 
inc_max_seq(struct lruvec * lruvec,bool can_swap,bool force_scan)4425 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4426 {
4427 	int prev, next;
4428 	int type, zone;
4429 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4430 restart:
4431 	spin_lock_irq(&lruvec->lru_lock);
4432 
4433 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4434 
4435 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4436 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4437 			continue;
4438 
4439 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4440 
4441 		if (inc_min_seq(lruvec, type, can_swap))
4442 			continue;
4443 
4444 		spin_unlock_irq(&lruvec->lru_lock);
4445 		cond_resched();
4446 		goto restart;
4447 	}
4448 
4449 	/*
4450 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4451 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4452 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4453 	 * overlap, cold/hot inversion happens.
4454 	 */
4455 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4456 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4457 
4458 	for (type = 0; type < ANON_AND_FILE; type++) {
4459 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4460 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4461 			long delta = lrugen->nr_pages[prev][type][zone] -
4462 				     lrugen->nr_pages[next][type][zone];
4463 
4464 			if (!delta)
4465 				continue;
4466 
4467 			__update_lru_size(lruvec, lru, zone, delta);
4468 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4469 		}
4470 	}
4471 
4472 	for (type = 0; type < ANON_AND_FILE; type++)
4473 		reset_ctrl_pos(lruvec, type, false);
4474 
4475 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4476 	/* make sure preceding modifications appear */
4477 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4478 
4479 	spin_unlock_irq(&lruvec->lru_lock);
4480 }
4481 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,bool force_scan)4482 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4483 			       struct scan_control *sc, bool can_swap, bool force_scan)
4484 {
4485 	bool success;
4486 	struct lru_gen_mm_walk *walk;
4487 	struct mm_struct *mm = NULL;
4488 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4489 
4490 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4491 
4492 	/* see the comment in iterate_mm_list() */
4493 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4494 		success = false;
4495 		goto done;
4496 	}
4497 
4498 	/*
4499 	 * If the hardware doesn't automatically set the accessed bit, fallback
4500 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4501 	 * handful of PTEs. Spreading the work out over a period of time usually
4502 	 * is less efficient, but it avoids bursty page faults.
4503 	 */
4504 	if (!should_walk_mmu()) {
4505 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4506 		goto done;
4507 	}
4508 
4509 	walk = set_mm_walk(NULL, true);
4510 	if (!walk) {
4511 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4512 		goto done;
4513 	}
4514 
4515 	walk->lruvec = lruvec;
4516 	walk->max_seq = max_seq;
4517 	walk->can_swap = can_swap;
4518 	walk->force_scan = force_scan;
4519 
4520 	do {
4521 		success = iterate_mm_list(lruvec, walk, &mm);
4522 		if (mm)
4523 			walk_mm(lruvec, mm, walk);
4524 	} while (mm);
4525 done:
4526 	if (success)
4527 		inc_max_seq(lruvec, can_swap, force_scan);
4528 
4529 	return success;
4530 }
4531 
4532 /******************************************************************************
4533  *                          working set protection
4534  ******************************************************************************/
4535 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4536 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4537 {
4538 	int priority;
4539 	unsigned long reclaimable;
4540 
4541 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4542 		return;
4543 	/*
4544 	 * Determine the initial priority based on
4545 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4546 	 * where reclaimed_to_scanned_ratio = inactive / total.
4547 	 */
4548 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4549 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4550 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4551 
4552 	/* round down reclaimable and round up sc->nr_to_reclaim */
4553 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4554 
4555 	/*
4556 	 * The estimation is based on LRU pages only, so cap it to prevent
4557 	 * overshoots of shrinker objects by large margins.
4558 	 */
4559 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4560 }
4561 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4562 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4563 {
4564 	int gen, type, zone;
4565 	unsigned long total = 0;
4566 	bool can_swap = get_swappiness(lruvec, sc);
4567 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4568 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4569 	DEFINE_MAX_SEQ(lruvec);
4570 	DEFINE_MIN_SEQ(lruvec);
4571 
4572 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4573 		unsigned long seq;
4574 
4575 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4576 			gen = lru_gen_from_seq(seq);
4577 
4578 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4579 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4580 		}
4581 	}
4582 
4583 	/* whether the size is big enough to be helpful */
4584 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4585 }
4586 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4587 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4588 				  unsigned long min_ttl)
4589 {
4590 	int gen;
4591 	unsigned long birth;
4592 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4593 	DEFINE_MIN_SEQ(lruvec);
4594 
4595 	if (mem_cgroup_below_min(NULL, memcg))
4596 		return false;
4597 
4598 	if (!lruvec_is_sizable(lruvec, sc))
4599 		return false;
4600 
4601 	/* see the comment on lru_gen_folio */
4602 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4603 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4604 
4605 	return time_is_before_jiffies(birth + min_ttl);
4606 }
4607 
4608 /* to protect the working set of the last N jiffies */
4609 static unsigned long lru_gen_min_ttl __read_mostly;
4610 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4611 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4612 {
4613 	struct mem_cgroup *memcg;
4614 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4615 	bool reclaimable = !min_ttl;
4616 
4617 	VM_WARN_ON_ONCE(!current_is_kswapd());
4618 
4619 	set_initial_priority(pgdat, sc);
4620 
4621 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4622 	do {
4623 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4624 
4625 		mem_cgroup_calculate_protection(NULL, memcg);
4626 
4627 		if (!reclaimable)
4628 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4629 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4630 
4631 	/*
4632 	 * The main goal is to OOM kill if every generation from all memcgs is
4633 	 * younger than min_ttl. However, another possibility is all memcgs are
4634 	 * either too small or below min.
4635 	 */
4636 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4637 		struct oom_control oc = {
4638 			.gfp_mask = sc->gfp_mask,
4639 		};
4640 
4641 		out_of_memory(&oc);
4642 
4643 		mutex_unlock(&oom_lock);
4644 	}
4645 }
4646 
4647 /******************************************************************************
4648  *                          rmap/PT walk feedback
4649  ******************************************************************************/
4650 
4651 /*
4652  * This function exploits spatial locality when shrink_folio_list() walks the
4653  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4654  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4655  * the PTE table to the Bloom filter. This forms a feedback loop between the
4656  * eviction and the aging.
4657  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4658 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4659 {
4660 	int i;
4661 	unsigned long start;
4662 	unsigned long end;
4663 	struct lru_gen_mm_walk *walk;
4664 	int young = 0;
4665 	pte_t *pte = pvmw->pte;
4666 	unsigned long addr = pvmw->address;
4667 	struct vm_area_struct *vma = pvmw->vma;
4668 	struct folio *folio = pfn_folio(pvmw->pfn);
4669 	bool can_swap = !folio_is_file_lru(folio);
4670 	struct mem_cgroup *memcg = folio_memcg(folio);
4671 	struct pglist_data *pgdat = folio_pgdat(folio);
4672 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4673 	DEFINE_MAX_SEQ(lruvec);
4674 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4675 
4676 	lockdep_assert_held(pvmw->ptl);
4677 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4678 
4679 	if (spin_is_contended(pvmw->ptl))
4680 		return;
4681 
4682 	/* exclude special VMAs containing anon pages from COW */
4683 	if (vma->vm_flags & VM_SPECIAL)
4684 		return;
4685 
4686 	/* avoid taking the LRU lock under the PTL when possible */
4687 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4688 
4689 	start = max(addr & PMD_MASK, vma->vm_start);
4690 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4691 
4692 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4693 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4694 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4695 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4696 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4697 		else {
4698 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4699 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4700 		}
4701 	}
4702 
4703 	/* folio_update_gen() requires stable folio_memcg() */
4704 	if (!mem_cgroup_trylock_pages(memcg))
4705 		return;
4706 
4707 	arch_enter_lazy_mmu_mode();
4708 
4709 	pte -= (addr - start) / PAGE_SIZE;
4710 
4711 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4712 		unsigned long pfn;
4713 		pte_t ptent = ptep_get(pte + i);
4714 
4715 		pfn = get_pte_pfn(ptent, vma, addr);
4716 		if (pfn == -1)
4717 			continue;
4718 
4719 		if (!pte_young(ptent))
4720 			continue;
4721 
4722 		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4723 		if (!folio)
4724 			continue;
4725 
4726 		if (!ptep_test_and_clear_young(vma, addr, pte + i))
4727 			VM_WARN_ON_ONCE(true);
4728 
4729 		young++;
4730 
4731 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4732 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4733 		      !folio_test_swapcache(folio)))
4734 			folio_mark_dirty(folio);
4735 
4736 		if (walk) {
4737 			old_gen = folio_update_gen(folio, new_gen);
4738 			if (old_gen >= 0 && old_gen != new_gen)
4739 				update_batch_size(walk, folio, old_gen, new_gen);
4740 
4741 			continue;
4742 		}
4743 
4744 		old_gen = folio_lru_gen(folio);
4745 		if (old_gen < 0)
4746 			folio_set_referenced(folio);
4747 		else if (old_gen != new_gen)
4748 			folio_activate(folio);
4749 	}
4750 
4751 	arch_leave_lazy_mmu_mode();
4752 	mem_cgroup_unlock_pages();
4753 
4754 	/* feedback from rmap walkers to page table walkers */
4755 	if (suitable_to_scan(i, young))
4756 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4757 }
4758 
4759 /******************************************************************************
4760  *                          memcg LRU
4761  ******************************************************************************/
4762 
4763 /* see the comment on MEMCG_NR_GENS */
4764 enum {
4765 	MEMCG_LRU_NOP,
4766 	MEMCG_LRU_HEAD,
4767 	MEMCG_LRU_TAIL,
4768 	MEMCG_LRU_OLD,
4769 	MEMCG_LRU_YOUNG,
4770 };
4771 
4772 #ifdef CONFIG_MEMCG
4773 
lru_gen_memcg_seg(struct lruvec * lruvec)4774 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4775 {
4776 	return READ_ONCE(lruvec->lrugen.seg);
4777 }
4778 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4779 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4780 {
4781 	int seg;
4782 	int old, new;
4783 	unsigned long flags;
4784 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4785 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4786 
4787 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4788 
4789 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4790 
4791 	seg = 0;
4792 	new = old = lruvec->lrugen.gen;
4793 
4794 	/* see the comment on MEMCG_NR_GENS */
4795 	if (op == MEMCG_LRU_HEAD)
4796 		seg = MEMCG_LRU_HEAD;
4797 	else if (op == MEMCG_LRU_TAIL)
4798 		seg = MEMCG_LRU_TAIL;
4799 	else if (op == MEMCG_LRU_OLD)
4800 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4801 	else if (op == MEMCG_LRU_YOUNG)
4802 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4803 	else
4804 		VM_WARN_ON_ONCE(true);
4805 
4806 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4807 	WRITE_ONCE(lruvec->lrugen.gen, new);
4808 
4809 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4810 
4811 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4812 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4813 	else
4814 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4815 
4816 	pgdat->memcg_lru.nr_memcgs[old]--;
4817 	pgdat->memcg_lru.nr_memcgs[new]++;
4818 
4819 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4820 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4821 
4822 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4823 }
4824 
lru_gen_online_memcg(struct mem_cgroup * memcg)4825 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4826 {
4827 	int gen;
4828 	int nid;
4829 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4830 
4831 	for_each_node(nid) {
4832 		struct pglist_data *pgdat = NODE_DATA(nid);
4833 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4834 
4835 		spin_lock_irq(&pgdat->memcg_lru.lock);
4836 
4837 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4838 
4839 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4840 
4841 		lruvec->lrugen.gen = gen;
4842 
4843 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4844 		pgdat->memcg_lru.nr_memcgs[gen]++;
4845 
4846 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4847 	}
4848 }
4849 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4850 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4851 {
4852 	int nid;
4853 
4854 	for_each_node(nid) {
4855 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4856 
4857 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4858 	}
4859 }
4860 
lru_gen_release_memcg(struct mem_cgroup * memcg)4861 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4862 {
4863 	int gen;
4864 	int nid;
4865 
4866 	for_each_node(nid) {
4867 		struct pglist_data *pgdat = NODE_DATA(nid);
4868 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4869 
4870 		spin_lock_irq(&pgdat->memcg_lru.lock);
4871 
4872 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4873 			goto unlock;
4874 
4875 		gen = lruvec->lrugen.gen;
4876 
4877 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4878 		pgdat->memcg_lru.nr_memcgs[gen]--;
4879 
4880 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4881 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4882 unlock:
4883 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4884 	}
4885 }
4886 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4887 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4888 {
4889 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4890 
4891 	/* see the comment on MEMCG_NR_GENS */
4892 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4893 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4894 }
4895 
4896 #else /* !CONFIG_MEMCG */
4897 
lru_gen_memcg_seg(struct lruvec * lruvec)4898 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4899 {
4900 	return 0;
4901 }
4902 
4903 #endif
4904 
4905 /******************************************************************************
4906  *                          the eviction
4907  ******************************************************************************/
4908 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4909 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4910 		       int tier_idx)
4911 {
4912 	bool success;
4913 	int gen = folio_lru_gen(folio);
4914 	int type = folio_is_file_lru(folio);
4915 	int zone = folio_zonenum(folio);
4916 	int delta = folio_nr_pages(folio);
4917 	int refs = folio_lru_refs(folio);
4918 	int tier = lru_tier_from_refs(refs);
4919 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4920 
4921 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4922 
4923 	/* unevictable */
4924 	if (!folio_evictable(folio)) {
4925 		success = lru_gen_del_folio(lruvec, folio, true);
4926 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4927 		folio_set_unevictable(folio);
4928 		lruvec_add_folio(lruvec, folio);
4929 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4930 		return true;
4931 	}
4932 
4933 	/* dirty lazyfree */
4934 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4935 		success = lru_gen_del_folio(lruvec, folio, true);
4936 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4937 		folio_set_swapbacked(folio);
4938 		lruvec_add_folio_tail(lruvec, folio);
4939 		return true;
4940 	}
4941 
4942 	/* promoted */
4943 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4944 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4945 		return true;
4946 	}
4947 
4948 	/* protected */
4949 	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4950 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4951 
4952 		gen = folio_inc_gen(lruvec, folio, false);
4953 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4954 
4955 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4956 			   lrugen->protected[hist][type][tier - 1] + delta);
4957 		return true;
4958 	}
4959 
4960 	/* ineligible */
4961 	if (zone > sc->reclaim_idx) {
4962 		gen = folio_inc_gen(lruvec, folio, false);
4963 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4964 		return true;
4965 	}
4966 
4967 	/* waiting for writeback */
4968 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4969 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4970 		gen = folio_inc_gen(lruvec, folio, true);
4971 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4972 		return true;
4973 	}
4974 
4975 	return false;
4976 }
4977 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4978 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4979 {
4980 	bool success;
4981 
4982 	/* swapping inhibited */
4983 	if (!(sc->gfp_mask & __GFP_IO) &&
4984 	    (folio_test_dirty(folio) ||
4985 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4986 		return false;
4987 
4988 	/* raced with release_pages() */
4989 	if (!folio_try_get(folio))
4990 		return false;
4991 
4992 	/* raced with another isolation */
4993 	if (!folio_test_clear_lru(folio)) {
4994 		folio_put(folio);
4995 		return false;
4996 	}
4997 
4998 	/* see the comment on MAX_NR_TIERS */
4999 	if (!folio_test_referenced(folio))
5000 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
5001 
5002 	/* for shrink_folio_list() */
5003 	folio_clear_reclaim(folio);
5004 	folio_clear_referenced(folio);
5005 
5006 	success = lru_gen_del_folio(lruvec, folio, true);
5007 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
5008 
5009 	return true;
5010 }
5011 
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)5012 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
5013 		       int type, int tier, struct list_head *list)
5014 {
5015 	int i;
5016 	int gen;
5017 	enum vm_event_item item;
5018 	int sorted = 0;
5019 	int scanned = 0;
5020 	int isolated = 0;
5021 	int remaining = MAX_LRU_BATCH;
5022 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5023 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5024 
5025 	VM_WARN_ON_ONCE(!list_empty(list));
5026 
5027 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
5028 		return 0;
5029 
5030 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
5031 
5032 	for (i = MAX_NR_ZONES; i > 0; i--) {
5033 		LIST_HEAD(moved);
5034 		int skipped = 0;
5035 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
5036 		struct list_head *head = &lrugen->folios[gen][type][zone];
5037 
5038 		while (!list_empty(head)) {
5039 			struct folio *folio = lru_to_folio(head);
5040 			int delta = folio_nr_pages(folio);
5041 
5042 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5043 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5044 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5045 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5046 
5047 			scanned += delta;
5048 
5049 			if (sort_folio(lruvec, folio, sc, tier))
5050 				sorted += delta;
5051 			else if (isolate_folio(lruvec, folio, sc)) {
5052 				list_add(&folio->lru, list);
5053 				isolated += delta;
5054 			} else {
5055 				list_move(&folio->lru, &moved);
5056 				skipped += delta;
5057 			}
5058 
5059 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5060 				break;
5061 		}
5062 
5063 		if (skipped) {
5064 			list_splice(&moved, head);
5065 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5066 		}
5067 
5068 		if (!remaining || isolated >= MIN_LRU_BATCH)
5069 			break;
5070 	}
5071 
5072 	item = PGSCAN_KSWAPD + reclaimer_offset();
5073 	if (!cgroup_reclaim(sc)) {
5074 		__count_vm_events(item, isolated);
5075 		__count_vm_events(PGREFILL, sorted);
5076 	}
5077 	__count_memcg_events(memcg, item, isolated);
5078 	__count_memcg_events(memcg, PGREFILL, sorted);
5079 	__count_vm_events(PGSCAN_ANON + type, isolated);
5080 
5081 	/*
5082 	 * There might not be eligible folios due to reclaim_idx. Check the
5083 	 * remaining to prevent livelock if it's not making progress.
5084 	 */
5085 	return isolated || !remaining ? scanned : 0;
5086 }
5087 
get_tier_idx(struct lruvec * lruvec,int type)5088 static int get_tier_idx(struct lruvec *lruvec, int type)
5089 {
5090 	int tier;
5091 	struct ctrl_pos sp, pv;
5092 
5093 	/*
5094 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5095 	 * This value is chosen because any other tier would have at least twice
5096 	 * as many refaults as the first tier.
5097 	 */
5098 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
5099 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5100 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
5101 		if (!positive_ctrl_err(&sp, &pv))
5102 			break;
5103 	}
5104 
5105 	return tier - 1;
5106 }
5107 
get_type_to_scan(struct lruvec * lruvec,int swappiness,int * tier_idx)5108 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5109 {
5110 	int type, tier;
5111 	struct ctrl_pos sp, pv;
5112 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5113 
5114 	/*
5115 	 * Compare the first tier of anon with that of file to determine which
5116 	 * type to scan. Also need to compare other tiers of the selected type
5117 	 * with the first tier of the other type to determine the last tier (of
5118 	 * the selected type) to evict.
5119 	 */
5120 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5121 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5122 	type = positive_ctrl_err(&sp, &pv);
5123 
5124 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5125 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5126 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5127 		if (!positive_ctrl_err(&sp, &pv))
5128 			break;
5129 	}
5130 
5131 	*tier_idx = tier - 1;
5132 
5133 	return type;
5134 }
5135 
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)5136 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5137 			  int *type_scanned, struct list_head *list)
5138 {
5139 	int i;
5140 	int type;
5141 	int scanned;
5142 	int tier = -1;
5143 	DEFINE_MIN_SEQ(lruvec);
5144 
5145 	/*
5146 	 * Try to make the obvious choice first. When anon and file are both
5147 	 * available from the same generation, interpret swappiness 1 as file
5148 	 * first and 200 as anon first.
5149 	 */
5150 	if (!swappiness)
5151 		type = LRU_GEN_FILE;
5152 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5153 		type = LRU_GEN_ANON;
5154 	else if (swappiness == 1)
5155 		type = LRU_GEN_FILE;
5156 	else if (swappiness == 200)
5157 		type = LRU_GEN_ANON;
5158 	else
5159 		type = get_type_to_scan(lruvec, swappiness, &tier);
5160 
5161 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5162 		if (tier < 0)
5163 			tier = get_tier_idx(lruvec, type);
5164 
5165 		scanned = scan_folios(lruvec, sc, type, tier, list);
5166 		if (scanned)
5167 			break;
5168 
5169 		type = !type;
5170 		tier = -1;
5171 	}
5172 
5173 	*type_scanned = type;
5174 
5175 	return scanned;
5176 }
5177 
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)5178 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5179 {
5180 	int type;
5181 	int scanned;
5182 	int reclaimed;
5183 	LIST_HEAD(list);
5184 	LIST_HEAD(clean);
5185 	struct folio *folio;
5186 	struct folio *next;
5187 	enum vm_event_item item;
5188 	struct reclaim_stat stat;
5189 	struct lru_gen_mm_walk *walk;
5190 	bool skip_retry = false;
5191 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5192 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5193 
5194 	spin_lock_irq(&lruvec->lru_lock);
5195 
5196 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5197 
5198 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5199 
5200 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5201 		scanned = 0;
5202 
5203 	spin_unlock_irq(&lruvec->lru_lock);
5204 
5205 	if (list_empty(&list))
5206 		return scanned;
5207 retry:
5208 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5209 	sc->nr_reclaimed += reclaimed;
5210 
5211 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5212 		if (!folio_evictable(folio)) {
5213 			list_del(&folio->lru);
5214 			folio_putback_lru(folio);
5215 			continue;
5216 		}
5217 
5218 		if (folio_test_reclaim(folio) &&
5219 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5220 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5221 			if (folio_test_workingset(folio))
5222 				folio_set_referenced(folio);
5223 			continue;
5224 		}
5225 
5226 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5227 		    folio_mapped(folio) || folio_test_locked(folio) ||
5228 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5229 			/* don't add rejected folios to the oldest generation */
5230 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5231 				      BIT(PG_active));
5232 			continue;
5233 		}
5234 
5235 		/* retry folios that may have missed folio_rotate_reclaimable() */
5236 		list_move(&folio->lru, &clean);
5237 	}
5238 
5239 	spin_lock_irq(&lruvec->lru_lock);
5240 
5241 	move_folios_to_lru(lruvec, &list);
5242 
5243 	walk = current->reclaim_state->mm_walk;
5244 	if (walk && walk->batched)
5245 		reset_batch_size(lruvec, walk);
5246 
5247 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5248 	if (!cgroup_reclaim(sc))
5249 		__count_vm_events(item, reclaimed);
5250 	__count_memcg_events(memcg, item, reclaimed);
5251 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5252 
5253 	spin_unlock_irq(&lruvec->lru_lock);
5254 
5255 	mem_cgroup_uncharge_list(&list);
5256 	free_unref_page_list(&list);
5257 
5258 	INIT_LIST_HEAD(&list);
5259 	list_splice_init(&clean, &list);
5260 
5261 	if (!list_empty(&list)) {
5262 		skip_retry = true;
5263 		goto retry;
5264 	}
5265 
5266 	return scanned;
5267 }
5268 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,unsigned long * nr_to_scan)5269 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5270 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5271 {
5272 	int gen, type, zone;
5273 	unsigned long old = 0;
5274 	unsigned long young = 0;
5275 	unsigned long total = 0;
5276 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5277 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5278 	DEFINE_MIN_SEQ(lruvec);
5279 
5280 	/* whether this lruvec is completely out of cold folios */
5281 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5282 		*nr_to_scan = 0;
5283 		return true;
5284 	}
5285 
5286 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5287 		unsigned long seq;
5288 
5289 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5290 			unsigned long size = 0;
5291 
5292 			gen = lru_gen_from_seq(seq);
5293 
5294 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5295 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5296 
5297 			total += size;
5298 			if (seq == max_seq)
5299 				young += size;
5300 			else if (seq + MIN_NR_GENS == max_seq)
5301 				old += size;
5302 		}
5303 	}
5304 
5305 	/* try to scrape all its memory if this memcg was deleted */
5306 	if (!mem_cgroup_online(memcg)) {
5307 		*nr_to_scan = total;
5308 		return false;
5309 	}
5310 
5311 	*nr_to_scan = total >> sc->priority;
5312 
5313 	/*
5314 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5315 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5316 	 * ideal number of generations is MIN_NR_GENS+1.
5317 	 */
5318 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5319 		return false;
5320 
5321 	/*
5322 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5323 	 * of the total number of pages for each generation. A reasonable range
5324 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5325 	 * aging cares about the upper bound of hot pages, while the eviction
5326 	 * cares about the lower bound of cold pages.
5327 	 */
5328 	if (young * MIN_NR_GENS > total)
5329 		return true;
5330 	if (old * (MIN_NR_GENS + 2) < total)
5331 		return true;
5332 
5333 	return false;
5334 }
5335 
5336 /*
5337  * For future optimizations:
5338  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5339  *    reclaim.
5340  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,bool can_swap)5341 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5342 {
5343 	unsigned long nr_to_scan;
5344 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5345 	DEFINE_MAX_SEQ(lruvec);
5346 
5347 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5348 		return -1;
5349 
5350 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5351 		return nr_to_scan;
5352 
5353 	/* skip the aging path at the default priority */
5354 	if (sc->priority == DEF_PRIORITY)
5355 		return nr_to_scan;
5356 
5357 	/* skip this lruvec as it's low on cold folios */
5358 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5359 }
5360 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)5361 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
5362 {
5363 	int i;
5364 	enum zone_watermarks mark;
5365 
5366 	/* don't abort memcg reclaim to ensure fairness */
5367 	if (!root_reclaim(sc))
5368 		return false;
5369 
5370 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
5371 		return true;
5372 
5373 	/* check the order to exclude compaction-induced reclaim */
5374 	if (!current_is_kswapd() || sc->order)
5375 		return false;
5376 
5377 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
5378 	       WMARK_PROMO : WMARK_HIGH;
5379 
5380 	for (i = 0; i <= sc->reclaim_idx; i++) {
5381 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5382 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
5383 
5384 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
5385 			return false;
5386 	}
5387 
5388 	/* kswapd should abort if all eligible zones are safe */
5389 	return true;
5390 }
5391 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5392 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5393 {
5394 	long nr_to_scan;
5395 	unsigned long scanned = 0;
5396 	int swappiness = get_swappiness(lruvec, sc);
5397 
5398 	/* clean file folios are more likely to exist */
5399 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5400 		swappiness = 1;
5401 
5402 	while (true) {
5403 		int delta;
5404 
5405 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5406 		if (nr_to_scan <= 0)
5407 			break;
5408 
5409 		delta = evict_folios(lruvec, sc, swappiness);
5410 		if (!delta)
5411 			break;
5412 
5413 		scanned += delta;
5414 		if (scanned >= nr_to_scan)
5415 			break;
5416 
5417 		if (should_abort_scan(lruvec, sc))
5418 			break;
5419 
5420 		cond_resched();
5421 	}
5422 
5423 	/* whether this lruvec should be rotated */
5424 	return nr_to_scan < 0;
5425 }
5426 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)5427 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5428 {
5429 	bool success;
5430 	unsigned long scanned = sc->nr_scanned;
5431 	unsigned long reclaimed = sc->nr_reclaimed;
5432 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5433 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5434 
5435 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
5436 	if (mem_cgroup_below_min(NULL, memcg))
5437 		return MEMCG_LRU_YOUNG;
5438 
5439 	if (mem_cgroup_below_low(NULL, memcg)) {
5440 		/* see the comment on MEMCG_NR_GENS */
5441 		if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL)
5442 			return MEMCG_LRU_TAIL;
5443 
5444 		memcg_memory_event(memcg, MEMCG_LOW);
5445 	}
5446 
5447 	success = try_to_shrink_lruvec(lruvec, sc);
5448 
5449 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5450 
5451 	if (!sc->proactive)
5452 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5453 			   sc->nr_reclaimed - reclaimed);
5454 
5455 	flush_reclaim_state(sc);
5456 
5457 	if (success && mem_cgroup_online(memcg))
5458 		return MEMCG_LRU_YOUNG;
5459 
5460 	if (!success && lruvec_is_sizable(lruvec, sc))
5461 		return 0;
5462 
5463 	/* one retry if offlined or too small */
5464 	return lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL ?
5465 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5466 }
5467 
5468 #ifdef CONFIG_MEMCG
5469 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)5470 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5471 {
5472 	int op;
5473 	int gen;
5474 	int bin;
5475 	int first_bin;
5476 	struct lruvec *lruvec;
5477 	struct lru_gen_folio *lrugen;
5478 	struct mem_cgroup *memcg;
5479 	struct hlist_nulls_node *pos;
5480 
5481 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5482 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5483 restart:
5484 	op = 0;
5485 	memcg = NULL;
5486 
5487 	rcu_read_lock();
5488 
5489 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5490 		if (op) {
5491 			lru_gen_rotate_memcg(lruvec, op);
5492 			op = 0;
5493 		}
5494 
5495 		mem_cgroup_put(memcg);
5496 		memcg = NULL;
5497 
5498 		if (gen != READ_ONCE(lrugen->gen))
5499 			continue;
5500 
5501 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5502 		memcg = lruvec_memcg(lruvec);
5503 
5504 		if (!mem_cgroup_tryget(memcg)) {
5505 			lru_gen_release_memcg(memcg);
5506 			memcg = NULL;
5507 			continue;
5508 		}
5509 
5510 		rcu_read_unlock();
5511 
5512 		op = shrink_one(lruvec, sc);
5513 
5514 		rcu_read_lock();
5515 
5516 		if (should_abort_scan(lruvec, sc))
5517 			break;
5518 	}
5519 
5520 	rcu_read_unlock();
5521 
5522 	if (op)
5523 		lru_gen_rotate_memcg(lruvec, op);
5524 
5525 	mem_cgroup_put(memcg);
5526 
5527 	if (!is_a_nulls(pos))
5528 		return;
5529 
5530 	/* restart if raced with lru_gen_rotate_memcg() */
5531 	if (gen != get_nulls_value(pos))
5532 		goto restart;
5533 
5534 	/* try the rest of the bins of the current generation */
5535 	bin = get_memcg_bin(bin + 1);
5536 	if (bin != first_bin)
5537 		goto restart;
5538 }
5539 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5540 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5541 {
5542 	struct blk_plug plug;
5543 
5544 	VM_WARN_ON_ONCE(root_reclaim(sc));
5545 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5546 
5547 	lru_add_drain();
5548 
5549 	blk_start_plug(&plug);
5550 
5551 	set_mm_walk(NULL, sc->proactive);
5552 
5553 	if (try_to_shrink_lruvec(lruvec, sc))
5554 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5555 
5556 	clear_mm_walk();
5557 
5558 	blk_finish_plug(&plug);
5559 }
5560 
5561 #else /* !CONFIG_MEMCG */
5562 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)5563 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5564 {
5565 	BUILD_BUG();
5566 }
5567 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5568 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5569 {
5570 	BUILD_BUG();
5571 }
5572 
5573 #endif
5574 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5575 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5576 {
5577 	struct blk_plug plug;
5578 	unsigned long reclaimed = sc->nr_reclaimed;
5579 
5580 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5581 
5582 	/*
5583 	 * Unmapped clean folios are already prioritized. Scanning for more of
5584 	 * them is likely futile and can cause high reclaim latency when there
5585 	 * is a large number of memcgs.
5586 	 */
5587 	if (!sc->may_writepage || !sc->may_unmap)
5588 		goto done;
5589 
5590 	lru_add_drain();
5591 
5592 	blk_start_plug(&plug);
5593 
5594 	set_mm_walk(pgdat, sc->proactive);
5595 
5596 	set_initial_priority(pgdat, sc);
5597 
5598 	if (current_is_kswapd())
5599 		sc->nr_reclaimed = 0;
5600 
5601 	if (mem_cgroup_disabled())
5602 		shrink_one(&pgdat->__lruvec, sc);
5603 	else
5604 		shrink_many(pgdat, sc);
5605 
5606 	if (current_is_kswapd())
5607 		sc->nr_reclaimed += reclaimed;
5608 
5609 	clear_mm_walk();
5610 
5611 	blk_finish_plug(&plug);
5612 done:
5613 	if (sc->nr_reclaimed > reclaimed)
5614 		pgdat->kswapd_failures = 0;
5615 }
5616 
5617 /******************************************************************************
5618  *                          state change
5619  ******************************************************************************/
5620 
state_is_valid(struct lruvec * lruvec)5621 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5622 {
5623 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5624 
5625 	if (lrugen->enabled) {
5626 		enum lru_list lru;
5627 
5628 		for_each_evictable_lru(lru) {
5629 			if (!list_empty(&lruvec->lists[lru]))
5630 				return false;
5631 		}
5632 	} else {
5633 		int gen, type, zone;
5634 
5635 		for_each_gen_type_zone(gen, type, zone) {
5636 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5637 				return false;
5638 		}
5639 	}
5640 
5641 	return true;
5642 }
5643 
fill_evictable(struct lruvec * lruvec)5644 static bool fill_evictable(struct lruvec *lruvec)
5645 {
5646 	enum lru_list lru;
5647 	int remaining = MAX_LRU_BATCH;
5648 
5649 	for_each_evictable_lru(lru) {
5650 		int type = is_file_lru(lru);
5651 		bool active = is_active_lru(lru);
5652 		struct list_head *head = &lruvec->lists[lru];
5653 
5654 		while (!list_empty(head)) {
5655 			bool success;
5656 			struct folio *folio = lru_to_folio(head);
5657 
5658 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5659 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5660 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5661 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5662 
5663 			lruvec_del_folio(lruvec, folio);
5664 			success = lru_gen_add_folio(lruvec, folio, false);
5665 			VM_WARN_ON_ONCE(!success);
5666 
5667 			if (!--remaining)
5668 				return false;
5669 		}
5670 	}
5671 
5672 	return true;
5673 }
5674 
drain_evictable(struct lruvec * lruvec)5675 static bool drain_evictable(struct lruvec *lruvec)
5676 {
5677 	int gen, type, zone;
5678 	int remaining = MAX_LRU_BATCH;
5679 
5680 	for_each_gen_type_zone(gen, type, zone) {
5681 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5682 
5683 		while (!list_empty(head)) {
5684 			bool success;
5685 			struct folio *folio = lru_to_folio(head);
5686 
5687 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5688 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5689 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5690 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5691 
5692 			success = lru_gen_del_folio(lruvec, folio, false);
5693 			VM_WARN_ON_ONCE(!success);
5694 			lruvec_add_folio(lruvec, folio);
5695 
5696 			if (!--remaining)
5697 				return false;
5698 		}
5699 	}
5700 
5701 	return true;
5702 }
5703 
lru_gen_change_state(bool enabled)5704 static void lru_gen_change_state(bool enabled)
5705 {
5706 	static DEFINE_MUTEX(state_mutex);
5707 
5708 	struct mem_cgroup *memcg;
5709 
5710 	cgroup_lock();
5711 	cpus_read_lock();
5712 	get_online_mems();
5713 	mutex_lock(&state_mutex);
5714 
5715 	if (enabled == lru_gen_enabled())
5716 		goto unlock;
5717 
5718 	if (enabled)
5719 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5720 	else
5721 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5722 
5723 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5724 	do {
5725 		int nid;
5726 
5727 		for_each_node(nid) {
5728 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5729 
5730 			spin_lock_irq(&lruvec->lru_lock);
5731 
5732 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5733 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5734 
5735 			lruvec->lrugen.enabled = enabled;
5736 
5737 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5738 				spin_unlock_irq(&lruvec->lru_lock);
5739 				cond_resched();
5740 				spin_lock_irq(&lruvec->lru_lock);
5741 			}
5742 
5743 			spin_unlock_irq(&lruvec->lru_lock);
5744 		}
5745 
5746 		cond_resched();
5747 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5748 unlock:
5749 	mutex_unlock(&state_mutex);
5750 	put_online_mems();
5751 	cpus_read_unlock();
5752 	cgroup_unlock();
5753 }
5754 
5755 /******************************************************************************
5756  *                          sysfs interface
5757  ******************************************************************************/
5758 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5759 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5760 {
5761 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5762 }
5763 
5764 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5765 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5766 				const char *buf, size_t len)
5767 {
5768 	unsigned int msecs;
5769 
5770 	if (kstrtouint(buf, 0, &msecs))
5771 		return -EINVAL;
5772 
5773 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5774 
5775 	return len;
5776 }
5777 
5778 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5779 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5780 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5781 {
5782 	unsigned int caps = 0;
5783 
5784 	if (get_cap(LRU_GEN_CORE))
5785 		caps |= BIT(LRU_GEN_CORE);
5786 
5787 	if (should_walk_mmu())
5788 		caps |= BIT(LRU_GEN_MM_WALK);
5789 
5790 	if (should_clear_pmd_young())
5791 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5792 
5793 	return sysfs_emit(buf, "0x%04x\n", caps);
5794 }
5795 
5796 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5797 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5798 			     const char *buf, size_t len)
5799 {
5800 	int i;
5801 	unsigned int caps;
5802 
5803 	if (tolower(*buf) == 'n')
5804 		caps = 0;
5805 	else if (tolower(*buf) == 'y')
5806 		caps = -1;
5807 	else if (kstrtouint(buf, 0, &caps))
5808 		return -EINVAL;
5809 
5810 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5811 		bool enabled = caps & BIT(i);
5812 
5813 		if (i == LRU_GEN_CORE)
5814 			lru_gen_change_state(enabled);
5815 		else if (enabled)
5816 			static_branch_enable(&lru_gen_caps[i]);
5817 		else
5818 			static_branch_disable(&lru_gen_caps[i]);
5819 	}
5820 
5821 	return len;
5822 }
5823 
5824 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5825 
5826 static struct attribute *lru_gen_attrs[] = {
5827 	&lru_gen_min_ttl_attr.attr,
5828 	&lru_gen_enabled_attr.attr,
5829 	NULL
5830 };
5831 
5832 static const struct attribute_group lru_gen_attr_group = {
5833 	.name = "lru_gen",
5834 	.attrs = lru_gen_attrs,
5835 };
5836 
5837 /******************************************************************************
5838  *                          debugfs interface
5839  ******************************************************************************/
5840 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5841 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5842 {
5843 	struct mem_cgroup *memcg;
5844 	loff_t nr_to_skip = *pos;
5845 
5846 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5847 	if (!m->private)
5848 		return ERR_PTR(-ENOMEM);
5849 
5850 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5851 	do {
5852 		int nid;
5853 
5854 		for_each_node_state(nid, N_MEMORY) {
5855 			if (!nr_to_skip--)
5856 				return get_lruvec(memcg, nid);
5857 		}
5858 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5859 
5860 	return NULL;
5861 }
5862 
lru_gen_seq_stop(struct seq_file * m,void * v)5863 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5864 {
5865 	if (!IS_ERR_OR_NULL(v))
5866 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5867 
5868 	kvfree(m->private);
5869 	m->private = NULL;
5870 }
5871 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5872 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5873 {
5874 	int nid = lruvec_pgdat(v)->node_id;
5875 	struct mem_cgroup *memcg = lruvec_memcg(v);
5876 
5877 	++*pos;
5878 
5879 	nid = next_memory_node(nid);
5880 	if (nid == MAX_NUMNODES) {
5881 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5882 		if (!memcg)
5883 			return NULL;
5884 
5885 		nid = first_memory_node;
5886 	}
5887 
5888 	return get_lruvec(memcg, nid);
5889 }
5890 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5891 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5892 				  unsigned long max_seq, unsigned long *min_seq,
5893 				  unsigned long seq)
5894 {
5895 	int i;
5896 	int type, tier;
5897 	int hist = lru_hist_from_seq(seq);
5898 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5899 
5900 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5901 		seq_printf(m, "            %10d", tier);
5902 		for (type = 0; type < ANON_AND_FILE; type++) {
5903 			const char *s = "   ";
5904 			unsigned long n[3] = {};
5905 
5906 			if (seq == max_seq) {
5907 				s = "RT ";
5908 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5909 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5910 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5911 				s = "rep";
5912 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5913 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5914 				if (tier)
5915 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5916 			}
5917 
5918 			for (i = 0; i < 3; i++)
5919 				seq_printf(m, " %10lu%c", n[i], s[i]);
5920 		}
5921 		seq_putc(m, '\n');
5922 	}
5923 
5924 	seq_puts(m, "                      ");
5925 	for (i = 0; i < NR_MM_STATS; i++) {
5926 		const char *s = "      ";
5927 		unsigned long n = 0;
5928 
5929 		if (seq == max_seq && NR_HIST_GENS == 1) {
5930 			s = "LOYNFA";
5931 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5932 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5933 			s = "loynfa";
5934 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5935 		}
5936 
5937 		seq_printf(m, " %10lu%c", n, s[i]);
5938 	}
5939 	seq_putc(m, '\n');
5940 }
5941 
5942 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5943 static int lru_gen_seq_show(struct seq_file *m, void *v)
5944 {
5945 	unsigned long seq;
5946 	bool full = !debugfs_real_fops(m->file)->write;
5947 	struct lruvec *lruvec = v;
5948 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5949 	int nid = lruvec_pgdat(lruvec)->node_id;
5950 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5951 	DEFINE_MAX_SEQ(lruvec);
5952 	DEFINE_MIN_SEQ(lruvec);
5953 
5954 	if (nid == first_memory_node) {
5955 		const char *path = memcg ? m->private : "";
5956 
5957 #ifdef CONFIG_MEMCG
5958 		if (memcg)
5959 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5960 #endif
5961 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5962 	}
5963 
5964 	seq_printf(m, " node %5d\n", nid);
5965 
5966 	if (!full)
5967 		seq = min_seq[LRU_GEN_ANON];
5968 	else if (max_seq >= MAX_NR_GENS)
5969 		seq = max_seq - MAX_NR_GENS + 1;
5970 	else
5971 		seq = 0;
5972 
5973 	for (; seq <= max_seq; seq++) {
5974 		int type, zone;
5975 		int gen = lru_gen_from_seq(seq);
5976 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5977 
5978 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5979 
5980 		for (type = 0; type < ANON_AND_FILE; type++) {
5981 			unsigned long size = 0;
5982 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5983 
5984 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5985 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5986 
5987 			seq_printf(m, " %10lu%c", size, mark);
5988 		}
5989 
5990 		seq_putc(m, '\n');
5991 
5992 		if (full)
5993 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5994 	}
5995 
5996 	return 0;
5997 }
5998 
5999 static const struct seq_operations lru_gen_seq_ops = {
6000 	.start = lru_gen_seq_start,
6001 	.stop = lru_gen_seq_stop,
6002 	.next = lru_gen_seq_next,
6003 	.show = lru_gen_seq_show,
6004 };
6005 
run_aging(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,bool can_swap,bool force_scan)6006 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
6007 		     bool can_swap, bool force_scan)
6008 {
6009 	DEFINE_MAX_SEQ(lruvec);
6010 	DEFINE_MIN_SEQ(lruvec);
6011 
6012 	if (seq < max_seq)
6013 		return 0;
6014 
6015 	if (seq > max_seq)
6016 		return -EINVAL;
6017 
6018 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
6019 		return -ERANGE;
6020 
6021 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
6022 
6023 	return 0;
6024 }
6025 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)6026 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
6027 			int swappiness, unsigned long nr_to_reclaim)
6028 {
6029 	DEFINE_MAX_SEQ(lruvec);
6030 
6031 	if (seq + MIN_NR_GENS > max_seq)
6032 		return -EINVAL;
6033 
6034 	sc->nr_reclaimed = 0;
6035 
6036 	while (!signal_pending(current)) {
6037 		DEFINE_MIN_SEQ(lruvec);
6038 
6039 		if (seq < min_seq[!swappiness])
6040 			return 0;
6041 
6042 		if (sc->nr_reclaimed >= nr_to_reclaim)
6043 			return 0;
6044 
6045 		if (!evict_folios(lruvec, sc, swappiness))
6046 			return 0;
6047 
6048 		cond_resched();
6049 	}
6050 
6051 	return -EINTR;
6052 }
6053 
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)6054 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
6055 		   struct scan_control *sc, int swappiness, unsigned long opt)
6056 {
6057 	struct lruvec *lruvec;
6058 	int err = -EINVAL;
6059 	struct mem_cgroup *memcg = NULL;
6060 
6061 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6062 		return -EINVAL;
6063 
6064 	if (!mem_cgroup_disabled()) {
6065 		rcu_read_lock();
6066 
6067 		memcg = mem_cgroup_from_id(memcg_id);
6068 		if (!mem_cgroup_tryget(memcg))
6069 			memcg = NULL;
6070 
6071 		rcu_read_unlock();
6072 
6073 		if (!memcg)
6074 			return -EINVAL;
6075 	}
6076 
6077 	if (memcg_id != mem_cgroup_id(memcg))
6078 		goto done;
6079 
6080 	lruvec = get_lruvec(memcg, nid);
6081 
6082 	if (swappiness < 0)
6083 		swappiness = get_swappiness(lruvec, sc);
6084 	else if (swappiness > 200)
6085 		goto done;
6086 
6087 	switch (cmd) {
6088 	case '+':
6089 		err = run_aging(lruvec, seq, sc, swappiness, opt);
6090 		break;
6091 	case '-':
6092 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
6093 		break;
6094 	}
6095 done:
6096 	mem_cgroup_put(memcg);
6097 
6098 	return err;
6099 }
6100 
6101 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)6102 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6103 				 size_t len, loff_t *pos)
6104 {
6105 	void *buf;
6106 	char *cur, *next;
6107 	unsigned int flags;
6108 	struct blk_plug plug;
6109 	int err = -EINVAL;
6110 	struct scan_control sc = {
6111 		.may_writepage = true,
6112 		.may_unmap = true,
6113 		.may_swap = true,
6114 		.reclaim_idx = MAX_NR_ZONES - 1,
6115 		.gfp_mask = GFP_KERNEL,
6116 	};
6117 
6118 	buf = kvmalloc(len + 1, GFP_KERNEL);
6119 	if (!buf)
6120 		return -ENOMEM;
6121 
6122 	if (copy_from_user(buf, src, len)) {
6123 		kvfree(buf);
6124 		return -EFAULT;
6125 	}
6126 
6127 	set_task_reclaim_state(current, &sc.reclaim_state);
6128 	flags = memalloc_noreclaim_save();
6129 	blk_start_plug(&plug);
6130 	if (!set_mm_walk(NULL, true)) {
6131 		err = -ENOMEM;
6132 		goto done;
6133 	}
6134 
6135 	next = buf;
6136 	next[len] = '\0';
6137 
6138 	while ((cur = strsep(&next, ",;\n"))) {
6139 		int n;
6140 		int end;
6141 		char cmd;
6142 		unsigned int memcg_id;
6143 		unsigned int nid;
6144 		unsigned long seq;
6145 		unsigned int swappiness = -1;
6146 		unsigned long opt = -1;
6147 
6148 		cur = skip_spaces(cur);
6149 		if (!*cur)
6150 			continue;
6151 
6152 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6153 			   &seq, &end, &swappiness, &end, &opt, &end);
6154 		if (n < 4 || cur[end]) {
6155 			err = -EINVAL;
6156 			break;
6157 		}
6158 
6159 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6160 		if (err)
6161 			break;
6162 	}
6163 done:
6164 	clear_mm_walk();
6165 	blk_finish_plug(&plug);
6166 	memalloc_noreclaim_restore(flags);
6167 	set_task_reclaim_state(current, NULL);
6168 
6169 	kvfree(buf);
6170 
6171 	return err ? : len;
6172 }
6173 
lru_gen_seq_open(struct inode * inode,struct file * file)6174 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6175 {
6176 	return seq_open(file, &lru_gen_seq_ops);
6177 }
6178 
6179 static const struct file_operations lru_gen_rw_fops = {
6180 	.open = lru_gen_seq_open,
6181 	.read = seq_read,
6182 	.write = lru_gen_seq_write,
6183 	.llseek = seq_lseek,
6184 	.release = seq_release,
6185 };
6186 
6187 static const struct file_operations lru_gen_ro_fops = {
6188 	.open = lru_gen_seq_open,
6189 	.read = seq_read,
6190 	.llseek = seq_lseek,
6191 	.release = seq_release,
6192 };
6193 
6194 /******************************************************************************
6195  *                          initialization
6196  ******************************************************************************/
6197 
lru_gen_init_lruvec(struct lruvec * lruvec)6198 void lru_gen_init_lruvec(struct lruvec *lruvec)
6199 {
6200 	int i;
6201 	int gen, type, zone;
6202 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6203 
6204 	lrugen->max_seq = MIN_NR_GENS + 1;
6205 	lrugen->enabled = lru_gen_enabled();
6206 
6207 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6208 		lrugen->timestamps[i] = jiffies;
6209 
6210 	for_each_gen_type_zone(gen, type, zone)
6211 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6212 
6213 	lruvec->mm_state.seq = MIN_NR_GENS;
6214 }
6215 
6216 #ifdef CONFIG_MEMCG
6217 
lru_gen_init_pgdat(struct pglist_data * pgdat)6218 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6219 {
6220 	int i, j;
6221 
6222 	spin_lock_init(&pgdat->memcg_lru.lock);
6223 
6224 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6225 		for (j = 0; j < MEMCG_NR_BINS; j++)
6226 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6227 	}
6228 }
6229 
lru_gen_init_memcg(struct mem_cgroup * memcg)6230 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6231 {
6232 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6233 	spin_lock_init(&memcg->mm_list.lock);
6234 }
6235 
lru_gen_exit_memcg(struct mem_cgroup * memcg)6236 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6237 {
6238 	int i;
6239 	int nid;
6240 
6241 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6242 
6243 	for_each_node(nid) {
6244 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6245 
6246 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6247 					   sizeof(lruvec->lrugen.nr_pages)));
6248 
6249 		lruvec->lrugen.list.next = LIST_POISON1;
6250 
6251 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6252 			bitmap_free(lruvec->mm_state.filters[i]);
6253 			lruvec->mm_state.filters[i] = NULL;
6254 		}
6255 	}
6256 }
6257 
6258 #endif /* CONFIG_MEMCG */
6259 
init_lru_gen(void)6260 static int __init init_lru_gen(void)
6261 {
6262 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6263 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6264 
6265 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6266 		pr_err("lru_gen: failed to create sysfs group\n");
6267 
6268 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6269 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6270 
6271 	return 0;
6272 };
6273 late_initcall(init_lru_gen);
6274 
6275 #else /* !CONFIG_LRU_GEN */
6276 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)6277 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6278 {
6279 }
6280 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)6281 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6282 {
6283 }
6284 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)6285 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6286 {
6287 }
6288 
6289 #endif /* CONFIG_LRU_GEN */
6290 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)6291 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6292 {
6293 	unsigned long nr[NR_LRU_LISTS];
6294 	unsigned long targets[NR_LRU_LISTS];
6295 	unsigned long nr_to_scan;
6296 	enum lru_list lru;
6297 	unsigned long nr_reclaimed = 0;
6298 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6299 	bool proportional_reclaim;
6300 	struct blk_plug plug;
6301 
6302 	if (lru_gen_enabled() && !root_reclaim(sc)) {
6303 		lru_gen_shrink_lruvec(lruvec, sc);
6304 		return;
6305 	}
6306 
6307 	get_scan_count(lruvec, sc, nr);
6308 
6309 	/* Record the original scan target for proportional adjustments later */
6310 	memcpy(targets, nr, sizeof(nr));
6311 
6312 	/*
6313 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6314 	 * event that can occur when there is little memory pressure e.g.
6315 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6316 	 * when the requested number of pages are reclaimed when scanning at
6317 	 * DEF_PRIORITY on the assumption that the fact we are direct
6318 	 * reclaiming implies that kswapd is not keeping up and it is best to
6319 	 * do a batch of work at once. For memcg reclaim one check is made to
6320 	 * abort proportional reclaim if either the file or anon lru has already
6321 	 * dropped to zero at the first pass.
6322 	 */
6323 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6324 				sc->priority == DEF_PRIORITY);
6325 
6326 	blk_start_plug(&plug);
6327 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6328 					nr[LRU_INACTIVE_FILE]) {
6329 		unsigned long nr_anon, nr_file, percentage;
6330 		unsigned long nr_scanned;
6331 
6332 		for_each_evictable_lru(lru) {
6333 			if (nr[lru]) {
6334 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6335 				nr[lru] -= nr_to_scan;
6336 
6337 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6338 							    lruvec, sc);
6339 			}
6340 		}
6341 
6342 		cond_resched();
6343 
6344 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6345 			continue;
6346 
6347 		/*
6348 		 * For kswapd and memcg, reclaim at least the number of pages
6349 		 * requested. Ensure that the anon and file LRUs are scanned
6350 		 * proportionally what was requested by get_scan_count(). We
6351 		 * stop reclaiming one LRU and reduce the amount scanning
6352 		 * proportional to the original scan target.
6353 		 */
6354 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6355 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6356 
6357 		/*
6358 		 * It's just vindictive to attack the larger once the smaller
6359 		 * has gone to zero.  And given the way we stop scanning the
6360 		 * smaller below, this makes sure that we only make one nudge
6361 		 * towards proportionality once we've got nr_to_reclaim.
6362 		 */
6363 		if (!nr_file || !nr_anon)
6364 			break;
6365 
6366 		if (nr_file > nr_anon) {
6367 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6368 						targets[LRU_ACTIVE_ANON] + 1;
6369 			lru = LRU_BASE;
6370 			percentage = nr_anon * 100 / scan_target;
6371 		} else {
6372 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6373 						targets[LRU_ACTIVE_FILE] + 1;
6374 			lru = LRU_FILE;
6375 			percentage = nr_file * 100 / scan_target;
6376 		}
6377 
6378 		/* Stop scanning the smaller of the LRU */
6379 		nr[lru] = 0;
6380 		nr[lru + LRU_ACTIVE] = 0;
6381 
6382 		/*
6383 		 * Recalculate the other LRU scan count based on its original
6384 		 * scan target and the percentage scanning already complete
6385 		 */
6386 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6387 		nr_scanned = targets[lru] - nr[lru];
6388 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6389 		nr[lru] -= min(nr[lru], nr_scanned);
6390 
6391 		lru += LRU_ACTIVE;
6392 		nr_scanned = targets[lru] - nr[lru];
6393 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6394 		nr[lru] -= min(nr[lru], nr_scanned);
6395 	}
6396 	blk_finish_plug(&plug);
6397 	sc->nr_reclaimed += nr_reclaimed;
6398 
6399 	/*
6400 	 * Even if we did not try to evict anon pages at all, we want to
6401 	 * rebalance the anon lru active/inactive ratio.
6402 	 */
6403 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6404 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6405 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6406 				   sc, LRU_ACTIVE_ANON);
6407 }
6408 
6409 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)6410 static bool in_reclaim_compaction(struct scan_control *sc)
6411 {
6412 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
6413 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6414 			 sc->priority < DEF_PRIORITY - 2))
6415 		return true;
6416 
6417 	return false;
6418 }
6419 
6420 /*
6421  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6422  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6423  * true if more pages should be reclaimed such that when the page allocator
6424  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6425  * It will give up earlier than that if there is difficulty reclaiming pages.
6426  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)6427 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6428 					unsigned long nr_reclaimed,
6429 					struct scan_control *sc)
6430 {
6431 	unsigned long pages_for_compaction;
6432 	unsigned long inactive_lru_pages;
6433 	int z;
6434 
6435 	/* If not in reclaim/compaction mode, stop */
6436 	if (!in_reclaim_compaction(sc))
6437 		return false;
6438 
6439 	/*
6440 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6441 	 * number of pages that were scanned. This will return to the caller
6442 	 * with the risk reclaim/compaction and the resulting allocation attempt
6443 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6444 	 * allocations through requiring that the full LRU list has been scanned
6445 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6446 	 * scan, but that approximation was wrong, and there were corner cases
6447 	 * where always a non-zero amount of pages were scanned.
6448 	 */
6449 	if (!nr_reclaimed)
6450 		return false;
6451 
6452 	/* If compaction would go ahead or the allocation would succeed, stop */
6453 	for (z = 0; z <= sc->reclaim_idx; z++) {
6454 		struct zone *zone = &pgdat->node_zones[z];
6455 		if (!managed_zone(zone))
6456 			continue;
6457 
6458 		/* Allocation can already succeed, nothing to do */
6459 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6460 				      sc->reclaim_idx, 0))
6461 			return false;
6462 
6463 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
6464 			return false;
6465 	}
6466 
6467 	/*
6468 	 * If we have not reclaimed enough pages for compaction and the
6469 	 * inactive lists are large enough, continue reclaiming
6470 	 */
6471 	pages_for_compaction = compact_gap(sc->order);
6472 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6473 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6474 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6475 
6476 	return inactive_lru_pages > pages_for_compaction;
6477 }
6478 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)6479 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6480 {
6481 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6482 	struct mem_cgroup *memcg;
6483 
6484 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6485 	do {
6486 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6487 		unsigned long reclaimed;
6488 		unsigned long scanned;
6489 
6490 		/*
6491 		 * This loop can become CPU-bound when target memcgs
6492 		 * aren't eligible for reclaim - either because they
6493 		 * don't have any reclaimable pages, or because their
6494 		 * memory is explicitly protected. Avoid soft lockups.
6495 		 */
6496 		cond_resched();
6497 
6498 		mem_cgroup_calculate_protection(target_memcg, memcg);
6499 
6500 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6501 			/*
6502 			 * Hard protection.
6503 			 * If there is no reclaimable memory, OOM.
6504 			 */
6505 			continue;
6506 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6507 			/*
6508 			 * Soft protection.
6509 			 * Respect the protection only as long as
6510 			 * there is an unprotected supply
6511 			 * of reclaimable memory from other cgroups.
6512 			 */
6513 			if (!sc->memcg_low_reclaim) {
6514 				sc->memcg_low_skipped = 1;
6515 				continue;
6516 			}
6517 			memcg_memory_event(memcg, MEMCG_LOW);
6518 		}
6519 
6520 		reclaimed = sc->nr_reclaimed;
6521 		scanned = sc->nr_scanned;
6522 
6523 		shrink_lruvec(lruvec, sc);
6524 
6525 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6526 			    sc->priority);
6527 
6528 		/* Record the group's reclaim efficiency */
6529 		if (!sc->proactive)
6530 			vmpressure(sc->gfp_mask, memcg, false,
6531 				   sc->nr_scanned - scanned,
6532 				   sc->nr_reclaimed - reclaimed);
6533 
6534 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6535 }
6536 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6537 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6538 {
6539 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6540 	struct lruvec *target_lruvec;
6541 	bool reclaimable = false;
6542 
6543 	if (lru_gen_enabled() && root_reclaim(sc)) {
6544 		lru_gen_shrink_node(pgdat, sc);
6545 		return;
6546 	}
6547 
6548 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6549 
6550 again:
6551 	memset(&sc->nr, 0, sizeof(sc->nr));
6552 
6553 	nr_reclaimed = sc->nr_reclaimed;
6554 	nr_scanned = sc->nr_scanned;
6555 
6556 	prepare_scan_count(pgdat, sc);
6557 
6558 	shrink_node_memcgs(pgdat, sc);
6559 
6560 	flush_reclaim_state(sc);
6561 
6562 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6563 
6564 	/* Record the subtree's reclaim efficiency */
6565 	if (!sc->proactive)
6566 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6567 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6568 
6569 	if (nr_node_reclaimed)
6570 		reclaimable = true;
6571 
6572 	if (current_is_kswapd()) {
6573 		/*
6574 		 * If reclaim is isolating dirty pages under writeback,
6575 		 * it implies that the long-lived page allocation rate
6576 		 * is exceeding the page laundering rate. Either the
6577 		 * global limits are not being effective at throttling
6578 		 * processes due to the page distribution throughout
6579 		 * zones or there is heavy usage of a slow backing
6580 		 * device. The only option is to throttle from reclaim
6581 		 * context which is not ideal as there is no guarantee
6582 		 * the dirtying process is throttled in the same way
6583 		 * balance_dirty_pages() manages.
6584 		 *
6585 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6586 		 * count the number of pages under pages flagged for
6587 		 * immediate reclaim and stall if any are encountered
6588 		 * in the nr_immediate check below.
6589 		 */
6590 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6591 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6592 
6593 		/* Allow kswapd to start writing pages during reclaim.*/
6594 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6595 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6596 
6597 		/*
6598 		 * If kswapd scans pages marked for immediate
6599 		 * reclaim and under writeback (nr_immediate), it
6600 		 * implies that pages are cycling through the LRU
6601 		 * faster than they are written so forcibly stall
6602 		 * until some pages complete writeback.
6603 		 */
6604 		if (sc->nr.immediate)
6605 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6606 	}
6607 
6608 	/*
6609 	 * Tag a node/memcg as congested if all the dirty pages were marked
6610 	 * for writeback and immediate reclaim (counted in nr.congested).
6611 	 *
6612 	 * Legacy memcg will stall in page writeback so avoid forcibly
6613 	 * stalling in reclaim_throttle().
6614 	 */
6615 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6616 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6617 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6618 
6619 		if (current_is_kswapd())
6620 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6621 	}
6622 
6623 	/*
6624 	 * Stall direct reclaim for IO completions if the lruvec is
6625 	 * node is congested. Allow kswapd to continue until it
6626 	 * starts encountering unqueued dirty pages or cycling through
6627 	 * the LRU too quickly.
6628 	 */
6629 	if (!current_is_kswapd() && current_may_throttle() &&
6630 	    !sc->hibernation_mode &&
6631 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6632 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6633 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6634 
6635 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6636 		goto again;
6637 
6638 	/*
6639 	 * Kswapd gives up on balancing particular nodes after too
6640 	 * many failures to reclaim anything from them and goes to
6641 	 * sleep. On reclaim progress, reset the failure counter. A
6642 	 * successful direct reclaim run will revive a dormant kswapd.
6643 	 */
6644 	if (reclaimable)
6645 		pgdat->kswapd_failures = 0;
6646 }
6647 
6648 /*
6649  * Returns true if compaction should go ahead for a costly-order request, or
6650  * the allocation would already succeed without compaction. Return false if we
6651  * should reclaim first.
6652  */
compaction_ready(struct zone * zone,struct scan_control * sc)6653 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6654 {
6655 	unsigned long watermark;
6656 
6657 	if (!gfp_compaction_allowed(sc->gfp_mask))
6658 		return false;
6659 
6660 	/* Allocation can already succeed, nothing to do */
6661 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6662 			      sc->reclaim_idx, 0))
6663 		return true;
6664 
6665 	/* Compaction cannot yet proceed. Do reclaim. */
6666 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6667 		return false;
6668 
6669 	/*
6670 	 * Compaction is already possible, but it takes time to run and there
6671 	 * are potentially other callers using the pages just freed. So proceed
6672 	 * with reclaim to make a buffer of free pages available to give
6673 	 * compaction a reasonable chance of completing and allocating the page.
6674 	 * Note that we won't actually reclaim the whole buffer in one attempt
6675 	 * as the target watermark in should_continue_reclaim() is lower. But if
6676 	 * we are already above the high+gap watermark, don't reclaim at all.
6677 	 */
6678 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6679 
6680 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6681 }
6682 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6683 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6684 {
6685 	/*
6686 	 * If reclaim is making progress greater than 12% efficiency then
6687 	 * wake all the NOPROGRESS throttled tasks.
6688 	 */
6689 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6690 		wait_queue_head_t *wqh;
6691 
6692 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6693 		if (waitqueue_active(wqh))
6694 			wake_up(wqh);
6695 
6696 		return;
6697 	}
6698 
6699 	/*
6700 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6701 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6702 	 * under writeback and marked for immediate reclaim at the tail of the
6703 	 * LRU.
6704 	 */
6705 	if (current_is_kswapd() || cgroup_reclaim(sc))
6706 		return;
6707 
6708 	/* Throttle if making no progress at high prioities. */
6709 	if (sc->priority == 1 && !sc->nr_reclaimed)
6710 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6711 }
6712 
6713 /*
6714  * This is the direct reclaim path, for page-allocating processes.  We only
6715  * try to reclaim pages from zones which will satisfy the caller's allocation
6716  * request.
6717  *
6718  * If a zone is deemed to be full of pinned pages then just give it a light
6719  * scan then give up on it.
6720  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6721 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6722 {
6723 	struct zoneref *z;
6724 	struct zone *zone;
6725 	unsigned long nr_soft_reclaimed;
6726 	unsigned long nr_soft_scanned;
6727 	gfp_t orig_mask;
6728 	pg_data_t *last_pgdat = NULL;
6729 	pg_data_t *first_pgdat = NULL;
6730 
6731 	/*
6732 	 * If the number of buffer_heads in the machine exceeds the maximum
6733 	 * allowed level, force direct reclaim to scan the highmem zone as
6734 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6735 	 */
6736 	orig_mask = sc->gfp_mask;
6737 	if (buffer_heads_over_limit) {
6738 		sc->gfp_mask |= __GFP_HIGHMEM;
6739 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6740 	}
6741 
6742 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6743 					sc->reclaim_idx, sc->nodemask) {
6744 		/*
6745 		 * Take care memory controller reclaiming has small influence
6746 		 * to global LRU.
6747 		 */
6748 		if (!cgroup_reclaim(sc)) {
6749 			if (!cpuset_zone_allowed(zone,
6750 						 GFP_KERNEL | __GFP_HARDWALL))
6751 				continue;
6752 
6753 			/*
6754 			 * If we already have plenty of memory free for
6755 			 * compaction in this zone, don't free any more.
6756 			 * Even though compaction is invoked for any
6757 			 * non-zero order, only frequent costly order
6758 			 * reclamation is disruptive enough to become a
6759 			 * noticeable problem, like transparent huge
6760 			 * page allocations.
6761 			 */
6762 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6763 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6764 			    compaction_ready(zone, sc)) {
6765 				sc->compaction_ready = true;
6766 				continue;
6767 			}
6768 
6769 			/*
6770 			 * Shrink each node in the zonelist once. If the
6771 			 * zonelist is ordered by zone (not the default) then a
6772 			 * node may be shrunk multiple times but in that case
6773 			 * the user prefers lower zones being preserved.
6774 			 */
6775 			if (zone->zone_pgdat == last_pgdat)
6776 				continue;
6777 
6778 			/*
6779 			 * This steals pages from memory cgroups over softlimit
6780 			 * and returns the number of reclaimed pages and
6781 			 * scanned pages. This works for global memory pressure
6782 			 * and balancing, not for a memcg's limit.
6783 			 */
6784 			nr_soft_scanned = 0;
6785 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6786 						sc->order, sc->gfp_mask,
6787 						&nr_soft_scanned);
6788 			sc->nr_reclaimed += nr_soft_reclaimed;
6789 			sc->nr_scanned += nr_soft_scanned;
6790 			/* need some check for avoid more shrink_zone() */
6791 		}
6792 
6793 		if (!first_pgdat)
6794 			first_pgdat = zone->zone_pgdat;
6795 
6796 		/* See comment about same check for global reclaim above */
6797 		if (zone->zone_pgdat == last_pgdat)
6798 			continue;
6799 		last_pgdat = zone->zone_pgdat;
6800 		shrink_node(zone->zone_pgdat, sc);
6801 	}
6802 
6803 	if (first_pgdat)
6804 		consider_reclaim_throttle(first_pgdat, sc);
6805 
6806 	/*
6807 	 * Restore to original mask to avoid the impact on the caller if we
6808 	 * promoted it to __GFP_HIGHMEM.
6809 	 */
6810 	sc->gfp_mask = orig_mask;
6811 }
6812 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6813 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6814 {
6815 	struct lruvec *target_lruvec;
6816 	unsigned long refaults;
6817 
6818 	if (lru_gen_enabled())
6819 		return;
6820 
6821 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6822 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6823 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6824 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6825 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6826 }
6827 
6828 /*
6829  * This is the main entry point to direct page reclaim.
6830  *
6831  * If a full scan of the inactive list fails to free enough memory then we
6832  * are "out of memory" and something needs to be killed.
6833  *
6834  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6835  * high - the zone may be full of dirty or under-writeback pages, which this
6836  * caller can't do much about.  We kick the writeback threads and take explicit
6837  * naps in the hope that some of these pages can be written.  But if the
6838  * allocating task holds filesystem locks which prevent writeout this might not
6839  * work, and the allocation attempt will fail.
6840  *
6841  * returns:	0, if no pages reclaimed
6842  * 		else, the number of pages reclaimed
6843  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6844 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6845 					  struct scan_control *sc)
6846 {
6847 	int initial_priority = sc->priority;
6848 	pg_data_t *last_pgdat;
6849 	struct zoneref *z;
6850 	struct zone *zone;
6851 retry:
6852 	delayacct_freepages_start();
6853 
6854 	if (!cgroup_reclaim(sc))
6855 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6856 
6857 	do {
6858 		if (!sc->proactive)
6859 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6860 					sc->priority);
6861 		sc->nr_scanned = 0;
6862 		shrink_zones(zonelist, sc);
6863 
6864 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6865 			break;
6866 
6867 		if (sc->compaction_ready)
6868 			break;
6869 
6870 		/*
6871 		 * If we're getting trouble reclaiming, start doing
6872 		 * writepage even in laptop mode.
6873 		 */
6874 		if (sc->priority < DEF_PRIORITY - 2)
6875 			sc->may_writepage = 1;
6876 	} while (--sc->priority >= 0);
6877 
6878 	last_pgdat = NULL;
6879 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6880 					sc->nodemask) {
6881 		if (zone->zone_pgdat == last_pgdat)
6882 			continue;
6883 		last_pgdat = zone->zone_pgdat;
6884 
6885 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6886 
6887 		if (cgroup_reclaim(sc)) {
6888 			struct lruvec *lruvec;
6889 
6890 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6891 						   zone->zone_pgdat);
6892 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6893 		}
6894 	}
6895 
6896 	delayacct_freepages_end();
6897 
6898 	if (sc->nr_reclaimed)
6899 		return sc->nr_reclaimed;
6900 
6901 	/* Aborted reclaim to try compaction? don't OOM, then */
6902 	if (sc->compaction_ready)
6903 		return 1;
6904 
6905 	/*
6906 	 * We make inactive:active ratio decisions based on the node's
6907 	 * composition of memory, but a restrictive reclaim_idx or a
6908 	 * memory.low cgroup setting can exempt large amounts of
6909 	 * memory from reclaim. Neither of which are very common, so
6910 	 * instead of doing costly eligibility calculations of the
6911 	 * entire cgroup subtree up front, we assume the estimates are
6912 	 * good, and retry with forcible deactivation if that fails.
6913 	 */
6914 	if (sc->skipped_deactivate) {
6915 		sc->priority = initial_priority;
6916 		sc->force_deactivate = 1;
6917 		sc->skipped_deactivate = 0;
6918 		goto retry;
6919 	}
6920 
6921 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6922 	if (sc->memcg_low_skipped) {
6923 		sc->priority = initial_priority;
6924 		sc->force_deactivate = 0;
6925 		sc->memcg_low_reclaim = 1;
6926 		sc->memcg_low_skipped = 0;
6927 		goto retry;
6928 	}
6929 
6930 	return 0;
6931 }
6932 
allow_direct_reclaim(pg_data_t * pgdat)6933 static bool allow_direct_reclaim(pg_data_t *pgdat)
6934 {
6935 	struct zone *zone;
6936 	unsigned long pfmemalloc_reserve = 0;
6937 	unsigned long free_pages = 0;
6938 	int i;
6939 	bool wmark_ok;
6940 
6941 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6942 		return true;
6943 
6944 	for (i = 0; i <= ZONE_NORMAL; i++) {
6945 		zone = &pgdat->node_zones[i];
6946 		if (!managed_zone(zone))
6947 			continue;
6948 
6949 		if (!zone_reclaimable_pages(zone))
6950 			continue;
6951 
6952 		pfmemalloc_reserve += min_wmark_pages(zone);
6953 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6954 	}
6955 
6956 	/* If there are no reserves (unexpected config) then do not throttle */
6957 	if (!pfmemalloc_reserve)
6958 		return true;
6959 
6960 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6961 
6962 	/* kswapd must be awake if processes are being throttled */
6963 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6964 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6965 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6966 
6967 		wake_up_interruptible(&pgdat->kswapd_wait);
6968 	}
6969 
6970 	return wmark_ok;
6971 }
6972 
6973 /*
6974  * Throttle direct reclaimers if backing storage is backed by the network
6975  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6976  * depleted. kswapd will continue to make progress and wake the processes
6977  * when the low watermark is reached.
6978  *
6979  * Returns true if a fatal signal was delivered during throttling. If this
6980  * happens, the page allocator should not consider triggering the OOM killer.
6981  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6982 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6983 					nodemask_t *nodemask)
6984 {
6985 	struct zoneref *z;
6986 	struct zone *zone;
6987 	pg_data_t *pgdat = NULL;
6988 
6989 	/*
6990 	 * Kernel threads should not be throttled as they may be indirectly
6991 	 * responsible for cleaning pages necessary for reclaim to make forward
6992 	 * progress. kjournald for example may enter direct reclaim while
6993 	 * committing a transaction where throttling it could forcing other
6994 	 * processes to block on log_wait_commit().
6995 	 */
6996 	if (current->flags & PF_KTHREAD)
6997 		goto out;
6998 
6999 	/*
7000 	 * If a fatal signal is pending, this process should not throttle.
7001 	 * It should return quickly so it can exit and free its memory
7002 	 */
7003 	if (fatal_signal_pending(current))
7004 		goto out;
7005 
7006 	/*
7007 	 * Check if the pfmemalloc reserves are ok by finding the first node
7008 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
7009 	 * GFP_KERNEL will be required for allocating network buffers when
7010 	 * swapping over the network so ZONE_HIGHMEM is unusable.
7011 	 *
7012 	 * Throttling is based on the first usable node and throttled processes
7013 	 * wait on a queue until kswapd makes progress and wakes them. There
7014 	 * is an affinity then between processes waking up and where reclaim
7015 	 * progress has been made assuming the process wakes on the same node.
7016 	 * More importantly, processes running on remote nodes will not compete
7017 	 * for remote pfmemalloc reserves and processes on different nodes
7018 	 * should make reasonable progress.
7019 	 */
7020 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
7021 					gfp_zone(gfp_mask), nodemask) {
7022 		if (zone_idx(zone) > ZONE_NORMAL)
7023 			continue;
7024 
7025 		/* Throttle based on the first usable node */
7026 		pgdat = zone->zone_pgdat;
7027 		if (allow_direct_reclaim(pgdat))
7028 			goto out;
7029 		break;
7030 	}
7031 
7032 	/* If no zone was usable by the allocation flags then do not throttle */
7033 	if (!pgdat)
7034 		goto out;
7035 
7036 	/* Account for the throttling */
7037 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
7038 
7039 	/*
7040 	 * If the caller cannot enter the filesystem, it's possible that it
7041 	 * is due to the caller holding an FS lock or performing a journal
7042 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
7043 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
7044 	 * blocked waiting on the same lock. Instead, throttle for up to a
7045 	 * second before continuing.
7046 	 */
7047 	if (!(gfp_mask & __GFP_FS))
7048 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
7049 			allow_direct_reclaim(pgdat), HZ);
7050 	else
7051 		/* Throttle until kswapd wakes the process */
7052 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
7053 			allow_direct_reclaim(pgdat));
7054 
7055 	if (fatal_signal_pending(current))
7056 		return true;
7057 
7058 out:
7059 	return false;
7060 }
7061 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)7062 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7063 				gfp_t gfp_mask, nodemask_t *nodemask)
7064 {
7065 	unsigned long nr_reclaimed;
7066 	struct scan_control sc = {
7067 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7068 		.gfp_mask = current_gfp_context(gfp_mask),
7069 		.reclaim_idx = gfp_zone(gfp_mask),
7070 		.order = order,
7071 		.nodemask = nodemask,
7072 		.priority = DEF_PRIORITY,
7073 		.may_writepage = !laptop_mode,
7074 		.may_unmap = 1,
7075 		.may_swap = 1,
7076 	};
7077 
7078 	/*
7079 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7080 	 * Confirm they are large enough for max values.
7081 	 */
7082 	BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7083 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7084 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7085 
7086 	/*
7087 	 * Do not enter reclaim if fatal signal was delivered while throttled.
7088 	 * 1 is returned so that the page allocator does not OOM kill at this
7089 	 * point.
7090 	 */
7091 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7092 		return 1;
7093 
7094 	set_task_reclaim_state(current, &sc.reclaim_state);
7095 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7096 
7097 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7098 
7099 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7100 	set_task_reclaim_state(current, NULL);
7101 
7102 	return nr_reclaimed;
7103 }
7104 
7105 #ifdef CONFIG_MEMCG
7106 
7107 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)7108 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7109 						gfp_t gfp_mask, bool noswap,
7110 						pg_data_t *pgdat,
7111 						unsigned long *nr_scanned)
7112 {
7113 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7114 	struct scan_control sc = {
7115 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7116 		.target_mem_cgroup = memcg,
7117 		.may_writepage = !laptop_mode,
7118 		.may_unmap = 1,
7119 		.reclaim_idx = MAX_NR_ZONES - 1,
7120 		.may_swap = !noswap,
7121 	};
7122 
7123 	WARN_ON_ONCE(!current->reclaim_state);
7124 
7125 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7126 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7127 
7128 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7129 						      sc.gfp_mask);
7130 
7131 	/*
7132 	 * NOTE: Although we can get the priority field, using it
7133 	 * here is not a good idea, since it limits the pages we can scan.
7134 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7135 	 * will pick up pages from other mem cgroup's as well. We hack
7136 	 * the priority and make it zero.
7137 	 */
7138 	shrink_lruvec(lruvec, &sc);
7139 
7140 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7141 
7142 	*nr_scanned = sc.nr_scanned;
7143 
7144 	return sc.nr_reclaimed;
7145 }
7146 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options)7147 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7148 					   unsigned long nr_pages,
7149 					   gfp_t gfp_mask,
7150 					   unsigned int reclaim_options)
7151 {
7152 	unsigned long nr_reclaimed;
7153 	unsigned int noreclaim_flag;
7154 	struct scan_control sc = {
7155 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7156 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7157 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7158 		.reclaim_idx = MAX_NR_ZONES - 1,
7159 		.target_mem_cgroup = memcg,
7160 		.priority = DEF_PRIORITY,
7161 		.may_writepage = !laptop_mode,
7162 		.may_unmap = 1,
7163 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7164 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7165 	};
7166 	/*
7167 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7168 	 * equal pressure on all the nodes. This is based on the assumption that
7169 	 * the reclaim does not bail out early.
7170 	 */
7171 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7172 
7173 	set_task_reclaim_state(current, &sc.reclaim_state);
7174 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7175 	noreclaim_flag = memalloc_noreclaim_save();
7176 
7177 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7178 
7179 	memalloc_noreclaim_restore(noreclaim_flag);
7180 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7181 	set_task_reclaim_state(current, NULL);
7182 
7183 	return nr_reclaimed;
7184 }
7185 #endif
7186 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)7187 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7188 {
7189 	struct mem_cgroup *memcg;
7190 	struct lruvec *lruvec;
7191 
7192 	if (lru_gen_enabled()) {
7193 		lru_gen_age_node(pgdat, sc);
7194 		return;
7195 	}
7196 
7197 	if (!can_age_anon_pages(pgdat, sc))
7198 		return;
7199 
7200 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7201 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7202 		return;
7203 
7204 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7205 	do {
7206 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7207 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7208 				   sc, LRU_ACTIVE_ANON);
7209 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7210 	} while (memcg);
7211 }
7212 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)7213 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7214 {
7215 	int i;
7216 	struct zone *zone;
7217 
7218 	/*
7219 	 * Check for watermark boosts top-down as the higher zones
7220 	 * are more likely to be boosted. Both watermarks and boosts
7221 	 * should not be checked at the same time as reclaim would
7222 	 * start prematurely when there is no boosting and a lower
7223 	 * zone is balanced.
7224 	 */
7225 	for (i = highest_zoneidx; i >= 0; i--) {
7226 		zone = pgdat->node_zones + i;
7227 		if (!managed_zone(zone))
7228 			continue;
7229 
7230 		if (zone->watermark_boost)
7231 			return true;
7232 	}
7233 
7234 	return false;
7235 }
7236 
7237 /*
7238  * Returns true if there is an eligible zone balanced for the request order
7239  * and highest_zoneidx
7240  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)7241 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7242 {
7243 	int i;
7244 	unsigned long mark = -1;
7245 	struct zone *zone;
7246 
7247 	/*
7248 	 * Check watermarks bottom-up as lower zones are more likely to
7249 	 * meet watermarks.
7250 	 */
7251 	for (i = 0; i <= highest_zoneidx; i++) {
7252 		zone = pgdat->node_zones + i;
7253 
7254 		if (!managed_zone(zone))
7255 			continue;
7256 
7257 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7258 			mark = wmark_pages(zone, WMARK_PROMO);
7259 		else
7260 			mark = high_wmark_pages(zone);
7261 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7262 			return true;
7263 	}
7264 
7265 	/*
7266 	 * If a node has no managed zone within highest_zoneidx, it does not
7267 	 * need balancing by definition. This can happen if a zone-restricted
7268 	 * allocation tries to wake a remote kswapd.
7269 	 */
7270 	if (mark == -1)
7271 		return true;
7272 
7273 	return false;
7274 }
7275 
7276 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)7277 static void clear_pgdat_congested(pg_data_t *pgdat)
7278 {
7279 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7280 
7281 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
7282 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
7283 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7284 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7285 }
7286 
7287 /*
7288  * Prepare kswapd for sleeping. This verifies that there are no processes
7289  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7290  *
7291  * Returns true if kswapd is ready to sleep
7292  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)7293 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7294 				int highest_zoneidx)
7295 {
7296 	/*
7297 	 * The throttled processes are normally woken up in balance_pgdat() as
7298 	 * soon as allow_direct_reclaim() is true. But there is a potential
7299 	 * race between when kswapd checks the watermarks and a process gets
7300 	 * throttled. There is also a potential race if processes get
7301 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7302 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7303 	 * the wake up checks. If kswapd is going to sleep, no process should
7304 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7305 	 * the wake up is premature, processes will wake kswapd and get
7306 	 * throttled again. The difference from wake ups in balance_pgdat() is
7307 	 * that here we are under prepare_to_wait().
7308 	 */
7309 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7310 		wake_up_all(&pgdat->pfmemalloc_wait);
7311 
7312 	/* Hopeless node, leave it to direct reclaim */
7313 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7314 		return true;
7315 
7316 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7317 		clear_pgdat_congested(pgdat);
7318 		return true;
7319 	}
7320 
7321 	return false;
7322 }
7323 
7324 /*
7325  * kswapd shrinks a node of pages that are at or below the highest usable
7326  * zone that is currently unbalanced.
7327  *
7328  * Returns true if kswapd scanned at least the requested number of pages to
7329  * reclaim or if the lack of progress was due to pages under writeback.
7330  * This is used to determine if the scanning priority needs to be raised.
7331  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)7332 static bool kswapd_shrink_node(pg_data_t *pgdat,
7333 			       struct scan_control *sc)
7334 {
7335 	struct zone *zone;
7336 	int z;
7337 	unsigned long nr_reclaimed = sc->nr_reclaimed;
7338 
7339 	/* Reclaim a number of pages proportional to the number of zones */
7340 	sc->nr_to_reclaim = 0;
7341 	for (z = 0; z <= sc->reclaim_idx; z++) {
7342 		zone = pgdat->node_zones + z;
7343 		if (!managed_zone(zone))
7344 			continue;
7345 
7346 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7347 	}
7348 
7349 	/*
7350 	 * Historically care was taken to put equal pressure on all zones but
7351 	 * now pressure is applied based on node LRU order.
7352 	 */
7353 	shrink_node(pgdat, sc);
7354 
7355 	/*
7356 	 * Fragmentation may mean that the system cannot be rebalanced for
7357 	 * high-order allocations. If twice the allocation size has been
7358 	 * reclaimed then recheck watermarks only at order-0 to prevent
7359 	 * excessive reclaim. Assume that a process requested a high-order
7360 	 * can direct reclaim/compact.
7361 	 */
7362 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7363 		sc->order = 0;
7364 
7365 	/* account for progress from mm_account_reclaimed_pages() */
7366 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
7367 }
7368 
7369 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7370 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)7371 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7372 {
7373 	int i;
7374 	struct zone *zone;
7375 
7376 	for (i = 0; i <= highest_zoneidx; i++) {
7377 		zone = pgdat->node_zones + i;
7378 
7379 		if (!managed_zone(zone))
7380 			continue;
7381 
7382 		if (active)
7383 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7384 		else
7385 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7386 	}
7387 }
7388 
7389 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7390 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7391 {
7392 	update_reclaim_active(pgdat, highest_zoneidx, true);
7393 }
7394 
7395 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7396 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7397 {
7398 	update_reclaim_active(pgdat, highest_zoneidx, false);
7399 }
7400 
7401 /*
7402  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7403  * that are eligible for use by the caller until at least one zone is
7404  * balanced.
7405  *
7406  * Returns the order kswapd finished reclaiming at.
7407  *
7408  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7409  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7410  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7411  * or lower is eligible for reclaim until at least one usable zone is
7412  * balanced.
7413  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)7414 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7415 {
7416 	int i;
7417 	unsigned long nr_soft_reclaimed;
7418 	unsigned long nr_soft_scanned;
7419 	unsigned long pflags;
7420 	unsigned long nr_boost_reclaim;
7421 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7422 	bool boosted;
7423 	struct zone *zone;
7424 	struct scan_control sc = {
7425 		.gfp_mask = GFP_KERNEL,
7426 		.order = order,
7427 		.may_unmap = 1,
7428 	};
7429 
7430 	set_task_reclaim_state(current, &sc.reclaim_state);
7431 	psi_memstall_enter(&pflags);
7432 	__fs_reclaim_acquire(_THIS_IP_);
7433 
7434 	count_vm_event(PAGEOUTRUN);
7435 
7436 	/*
7437 	 * Account for the reclaim boost. Note that the zone boost is left in
7438 	 * place so that parallel allocations that are near the watermark will
7439 	 * stall or direct reclaim until kswapd is finished.
7440 	 */
7441 	nr_boost_reclaim = 0;
7442 	for (i = 0; i <= highest_zoneidx; i++) {
7443 		zone = pgdat->node_zones + i;
7444 		if (!managed_zone(zone))
7445 			continue;
7446 
7447 		nr_boost_reclaim += zone->watermark_boost;
7448 		zone_boosts[i] = zone->watermark_boost;
7449 	}
7450 	boosted = nr_boost_reclaim;
7451 
7452 restart:
7453 	set_reclaim_active(pgdat, highest_zoneidx);
7454 	sc.priority = DEF_PRIORITY;
7455 	do {
7456 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7457 		bool raise_priority = true;
7458 		bool balanced;
7459 		bool ret;
7460 
7461 		sc.reclaim_idx = highest_zoneidx;
7462 
7463 		/*
7464 		 * If the number of buffer_heads exceeds the maximum allowed
7465 		 * then consider reclaiming from all zones. This has a dual
7466 		 * purpose -- on 64-bit systems it is expected that
7467 		 * buffer_heads are stripped during active rotation. On 32-bit
7468 		 * systems, highmem pages can pin lowmem memory and shrinking
7469 		 * buffers can relieve lowmem pressure. Reclaim may still not
7470 		 * go ahead if all eligible zones for the original allocation
7471 		 * request are balanced to avoid excessive reclaim from kswapd.
7472 		 */
7473 		if (buffer_heads_over_limit) {
7474 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7475 				zone = pgdat->node_zones + i;
7476 				if (!managed_zone(zone))
7477 					continue;
7478 
7479 				sc.reclaim_idx = i;
7480 				break;
7481 			}
7482 		}
7483 
7484 		/*
7485 		 * If the pgdat is imbalanced then ignore boosting and preserve
7486 		 * the watermarks for a later time and restart. Note that the
7487 		 * zone watermarks will be still reset at the end of balancing
7488 		 * on the grounds that the normal reclaim should be enough to
7489 		 * re-evaluate if boosting is required when kswapd next wakes.
7490 		 */
7491 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7492 		if (!balanced && nr_boost_reclaim) {
7493 			nr_boost_reclaim = 0;
7494 			goto restart;
7495 		}
7496 
7497 		/*
7498 		 * If boosting is not active then only reclaim if there are no
7499 		 * eligible zones. Note that sc.reclaim_idx is not used as
7500 		 * buffer_heads_over_limit may have adjusted it.
7501 		 */
7502 		if (!nr_boost_reclaim && balanced)
7503 			goto out;
7504 
7505 		/* Limit the priority of boosting to avoid reclaim writeback */
7506 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7507 			raise_priority = false;
7508 
7509 		/*
7510 		 * Do not writeback or swap pages for boosted reclaim. The
7511 		 * intent is to relieve pressure not issue sub-optimal IO
7512 		 * from reclaim context. If no pages are reclaimed, the
7513 		 * reclaim will be aborted.
7514 		 */
7515 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7516 		sc.may_swap = !nr_boost_reclaim;
7517 
7518 		/*
7519 		 * Do some background aging, to give pages a chance to be
7520 		 * referenced before reclaiming. All pages are rotated
7521 		 * regardless of classzone as this is about consistent aging.
7522 		 */
7523 		kswapd_age_node(pgdat, &sc);
7524 
7525 		/*
7526 		 * If we're getting trouble reclaiming, start doing writepage
7527 		 * even in laptop mode.
7528 		 */
7529 		if (sc.priority < DEF_PRIORITY - 2)
7530 			sc.may_writepage = 1;
7531 
7532 		/* Call soft limit reclaim before calling shrink_node. */
7533 		sc.nr_scanned = 0;
7534 		nr_soft_scanned = 0;
7535 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7536 						sc.gfp_mask, &nr_soft_scanned);
7537 		sc.nr_reclaimed += nr_soft_reclaimed;
7538 
7539 		/*
7540 		 * There should be no need to raise the scanning priority if
7541 		 * enough pages are already being scanned that that high
7542 		 * watermark would be met at 100% efficiency.
7543 		 */
7544 		if (kswapd_shrink_node(pgdat, &sc))
7545 			raise_priority = false;
7546 
7547 		/*
7548 		 * If the low watermark is met there is no need for processes
7549 		 * to be throttled on pfmemalloc_wait as they should not be
7550 		 * able to safely make forward progress. Wake them
7551 		 */
7552 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7553 				allow_direct_reclaim(pgdat))
7554 			wake_up_all(&pgdat->pfmemalloc_wait);
7555 
7556 		/* Check if kswapd should be suspending */
7557 		__fs_reclaim_release(_THIS_IP_);
7558 		ret = try_to_freeze();
7559 		__fs_reclaim_acquire(_THIS_IP_);
7560 		if (ret || kthread_should_stop())
7561 			break;
7562 
7563 		/*
7564 		 * Raise priority if scanning rate is too low or there was no
7565 		 * progress in reclaiming pages
7566 		 */
7567 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7568 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7569 
7570 		/*
7571 		 * If reclaim made no progress for a boost, stop reclaim as
7572 		 * IO cannot be queued and it could be an infinite loop in
7573 		 * extreme circumstances.
7574 		 */
7575 		if (nr_boost_reclaim && !nr_reclaimed)
7576 			break;
7577 
7578 		if (raise_priority || !nr_reclaimed)
7579 			sc.priority--;
7580 	} while (sc.priority >= 1);
7581 
7582 	if (!sc.nr_reclaimed)
7583 		pgdat->kswapd_failures++;
7584 
7585 out:
7586 	clear_reclaim_active(pgdat, highest_zoneidx);
7587 
7588 	/* If reclaim was boosted, account for the reclaim done in this pass */
7589 	if (boosted) {
7590 		unsigned long flags;
7591 
7592 		for (i = 0; i <= highest_zoneidx; i++) {
7593 			if (!zone_boosts[i])
7594 				continue;
7595 
7596 			/* Increments are under the zone lock */
7597 			zone = pgdat->node_zones + i;
7598 			spin_lock_irqsave(&zone->lock, flags);
7599 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7600 			spin_unlock_irqrestore(&zone->lock, flags);
7601 		}
7602 
7603 		/*
7604 		 * As there is now likely space, wakeup kcompact to defragment
7605 		 * pageblocks.
7606 		 */
7607 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7608 	}
7609 
7610 	snapshot_refaults(NULL, pgdat);
7611 	__fs_reclaim_release(_THIS_IP_);
7612 	psi_memstall_leave(&pflags);
7613 	set_task_reclaim_state(current, NULL);
7614 
7615 	/*
7616 	 * Return the order kswapd stopped reclaiming at as
7617 	 * prepare_kswapd_sleep() takes it into account. If another caller
7618 	 * entered the allocator slow path while kswapd was awake, order will
7619 	 * remain at the higher level.
7620 	 */
7621 	return sc.order;
7622 }
7623 
7624 /*
7625  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7626  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7627  * not a valid index then either kswapd runs for first time or kswapd couldn't
7628  * sleep after previous reclaim attempt (node is still unbalanced). In that
7629  * case return the zone index of the previous kswapd reclaim cycle.
7630  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7631 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7632 					   enum zone_type prev_highest_zoneidx)
7633 {
7634 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7635 
7636 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7637 }
7638 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7639 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7640 				unsigned int highest_zoneidx)
7641 {
7642 	long remaining = 0;
7643 	DEFINE_WAIT(wait);
7644 
7645 	if (freezing(current) || kthread_should_stop())
7646 		return;
7647 
7648 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7649 
7650 	/*
7651 	 * Try to sleep for a short interval. Note that kcompactd will only be
7652 	 * woken if it is possible to sleep for a short interval. This is
7653 	 * deliberate on the assumption that if reclaim cannot keep an
7654 	 * eligible zone balanced that it's also unlikely that compaction will
7655 	 * succeed.
7656 	 */
7657 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7658 		/*
7659 		 * Compaction records what page blocks it recently failed to
7660 		 * isolate pages from and skips them in the future scanning.
7661 		 * When kswapd is going to sleep, it is reasonable to assume
7662 		 * that pages and compaction may succeed so reset the cache.
7663 		 */
7664 		reset_isolation_suitable(pgdat);
7665 
7666 		/*
7667 		 * We have freed the memory, now we should compact it to make
7668 		 * allocation of the requested order possible.
7669 		 */
7670 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7671 
7672 		remaining = schedule_timeout(HZ/10);
7673 
7674 		/*
7675 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7676 		 * order. The values will either be from a wakeup request or
7677 		 * the previous request that slept prematurely.
7678 		 */
7679 		if (remaining) {
7680 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7681 					kswapd_highest_zoneidx(pgdat,
7682 							highest_zoneidx));
7683 
7684 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7685 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7686 		}
7687 
7688 		finish_wait(&pgdat->kswapd_wait, &wait);
7689 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7690 	}
7691 
7692 	/*
7693 	 * After a short sleep, check if it was a premature sleep. If not, then
7694 	 * go fully to sleep until explicitly woken up.
7695 	 */
7696 	if (!remaining &&
7697 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7698 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7699 
7700 		/*
7701 		 * vmstat counters are not perfectly accurate and the estimated
7702 		 * value for counters such as NR_FREE_PAGES can deviate from the
7703 		 * true value by nr_online_cpus * threshold. To avoid the zone
7704 		 * watermarks being breached while under pressure, we reduce the
7705 		 * per-cpu vmstat threshold while kswapd is awake and restore
7706 		 * them before going back to sleep.
7707 		 */
7708 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7709 
7710 		if (!kthread_should_stop())
7711 			schedule();
7712 
7713 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7714 	} else {
7715 		if (remaining)
7716 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7717 		else
7718 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7719 	}
7720 	finish_wait(&pgdat->kswapd_wait, &wait);
7721 }
7722 
7723 /*
7724  * The background pageout daemon, started as a kernel thread
7725  * from the init process.
7726  *
7727  * This basically trickles out pages so that we have _some_
7728  * free memory available even if there is no other activity
7729  * that frees anything up. This is needed for things like routing
7730  * etc, where we otherwise might have all activity going on in
7731  * asynchronous contexts that cannot page things out.
7732  *
7733  * If there are applications that are active memory-allocators
7734  * (most normal use), this basically shouldn't matter.
7735  */
kswapd(void * p)7736 static int kswapd(void *p)
7737 {
7738 	unsigned int alloc_order, reclaim_order;
7739 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7740 	pg_data_t *pgdat = (pg_data_t *)p;
7741 	struct task_struct *tsk = current;
7742 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7743 
7744 	if (!cpumask_empty(cpumask))
7745 		set_cpus_allowed_ptr(tsk, cpumask);
7746 
7747 	/*
7748 	 * Tell the memory management that we're a "memory allocator",
7749 	 * and that if we need more memory we should get access to it
7750 	 * regardless (see "__alloc_pages()"). "kswapd" should
7751 	 * never get caught in the normal page freeing logic.
7752 	 *
7753 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7754 	 * you need a small amount of memory in order to be able to
7755 	 * page out something else, and this flag essentially protects
7756 	 * us from recursively trying to free more memory as we're
7757 	 * trying to free the first piece of memory in the first place).
7758 	 */
7759 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7760 	set_freezable();
7761 
7762 	WRITE_ONCE(pgdat->kswapd_order, 0);
7763 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7764 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7765 	for ( ; ; ) {
7766 		bool ret;
7767 
7768 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7769 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7770 							highest_zoneidx);
7771 
7772 kswapd_try_sleep:
7773 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7774 					highest_zoneidx);
7775 
7776 		/* Read the new order and highest_zoneidx */
7777 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7778 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7779 							highest_zoneidx);
7780 		WRITE_ONCE(pgdat->kswapd_order, 0);
7781 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7782 
7783 		ret = try_to_freeze();
7784 		if (kthread_should_stop())
7785 			break;
7786 
7787 		/*
7788 		 * We can speed up thawing tasks if we don't call balance_pgdat
7789 		 * after returning from the refrigerator
7790 		 */
7791 		if (ret)
7792 			continue;
7793 
7794 		/*
7795 		 * Reclaim begins at the requested order but if a high-order
7796 		 * reclaim fails then kswapd falls back to reclaiming for
7797 		 * order-0. If that happens, kswapd will consider sleeping
7798 		 * for the order it finished reclaiming at (reclaim_order)
7799 		 * but kcompactd is woken to compact for the original
7800 		 * request (alloc_order).
7801 		 */
7802 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7803 						alloc_order);
7804 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7805 						highest_zoneidx);
7806 		if (reclaim_order < alloc_order)
7807 			goto kswapd_try_sleep;
7808 	}
7809 
7810 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7811 
7812 	return 0;
7813 }
7814 
7815 /*
7816  * A zone is low on free memory or too fragmented for high-order memory.  If
7817  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7818  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7819  * has failed or is not needed, still wake up kcompactd if only compaction is
7820  * needed.
7821  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7822 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7823 		   enum zone_type highest_zoneidx)
7824 {
7825 	pg_data_t *pgdat;
7826 	enum zone_type curr_idx;
7827 
7828 	if (!managed_zone(zone))
7829 		return;
7830 
7831 	if (!cpuset_zone_allowed(zone, gfp_flags))
7832 		return;
7833 
7834 	pgdat = zone->zone_pgdat;
7835 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7836 
7837 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7838 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7839 
7840 	if (READ_ONCE(pgdat->kswapd_order) < order)
7841 		WRITE_ONCE(pgdat->kswapd_order, order);
7842 
7843 	if (!waitqueue_active(&pgdat->kswapd_wait))
7844 		return;
7845 
7846 	/* Hopeless node, leave it to direct reclaim if possible */
7847 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7848 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7849 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7850 		/*
7851 		 * There may be plenty of free memory available, but it's too
7852 		 * fragmented for high-order allocations.  Wake up kcompactd
7853 		 * and rely on compaction_suitable() to determine if it's
7854 		 * needed.  If it fails, it will defer subsequent attempts to
7855 		 * ratelimit its work.
7856 		 */
7857 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7858 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7859 		return;
7860 	}
7861 
7862 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7863 				      gfp_flags);
7864 	wake_up_interruptible(&pgdat->kswapd_wait);
7865 }
7866 
7867 #ifdef CONFIG_HIBERNATION
7868 /*
7869  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7870  * freed pages.
7871  *
7872  * Rather than trying to age LRUs the aim is to preserve the overall
7873  * LRU order by reclaiming preferentially
7874  * inactive > active > active referenced > active mapped
7875  */
shrink_all_memory(unsigned long nr_to_reclaim)7876 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7877 {
7878 	struct scan_control sc = {
7879 		.nr_to_reclaim = nr_to_reclaim,
7880 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7881 		.reclaim_idx = MAX_NR_ZONES - 1,
7882 		.priority = DEF_PRIORITY,
7883 		.may_writepage = 1,
7884 		.may_unmap = 1,
7885 		.may_swap = 1,
7886 		.hibernation_mode = 1,
7887 	};
7888 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7889 	unsigned long nr_reclaimed;
7890 	unsigned int noreclaim_flag;
7891 
7892 	fs_reclaim_acquire(sc.gfp_mask);
7893 	noreclaim_flag = memalloc_noreclaim_save();
7894 	set_task_reclaim_state(current, &sc.reclaim_state);
7895 
7896 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7897 
7898 	set_task_reclaim_state(current, NULL);
7899 	memalloc_noreclaim_restore(noreclaim_flag);
7900 	fs_reclaim_release(sc.gfp_mask);
7901 
7902 	return nr_reclaimed;
7903 }
7904 #endif /* CONFIG_HIBERNATION */
7905 
7906 /*
7907  * This kswapd start function will be called by init and node-hot-add.
7908  */
kswapd_run(int nid)7909 void __meminit kswapd_run(int nid)
7910 {
7911 	pg_data_t *pgdat = NODE_DATA(nid);
7912 
7913 	pgdat_kswapd_lock(pgdat);
7914 	if (!pgdat->kswapd) {
7915 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7916 		if (IS_ERR(pgdat->kswapd)) {
7917 			/* failure at boot is fatal */
7918 			BUG_ON(system_state < SYSTEM_RUNNING);
7919 			pr_err("Failed to start kswapd on node %d\n", nid);
7920 			pgdat->kswapd = NULL;
7921 		}
7922 	}
7923 	pgdat_kswapd_unlock(pgdat);
7924 }
7925 
7926 /*
7927  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7928  * be holding mem_hotplug_begin/done().
7929  */
kswapd_stop(int nid)7930 void __meminit kswapd_stop(int nid)
7931 {
7932 	pg_data_t *pgdat = NODE_DATA(nid);
7933 	struct task_struct *kswapd;
7934 
7935 	pgdat_kswapd_lock(pgdat);
7936 	kswapd = pgdat->kswapd;
7937 	if (kswapd) {
7938 		kthread_stop(kswapd);
7939 		pgdat->kswapd = NULL;
7940 	}
7941 	pgdat_kswapd_unlock(pgdat);
7942 }
7943 
kswapd_init(void)7944 static int __init kswapd_init(void)
7945 {
7946 	int nid;
7947 
7948 	swap_setup();
7949 	for_each_node_state(nid, N_MEMORY)
7950  		kswapd_run(nid);
7951 	return 0;
7952 }
7953 
7954 module_init(kswapd_init)
7955 
7956 #ifdef CONFIG_NUMA
7957 /*
7958  * Node reclaim mode
7959  *
7960  * If non-zero call node_reclaim when the number of free pages falls below
7961  * the watermarks.
7962  */
7963 int node_reclaim_mode __read_mostly;
7964 
7965 /*
7966  * Priority for NODE_RECLAIM. This determines the fraction of pages
7967  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7968  * a zone.
7969  */
7970 #define NODE_RECLAIM_PRIORITY 4
7971 
7972 /*
7973  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7974  * occur.
7975  */
7976 int sysctl_min_unmapped_ratio = 1;
7977 
7978 /*
7979  * If the number of slab pages in a zone grows beyond this percentage then
7980  * slab reclaim needs to occur.
7981  */
7982 int sysctl_min_slab_ratio = 5;
7983 
node_unmapped_file_pages(struct pglist_data * pgdat)7984 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7985 {
7986 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7987 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7988 		node_page_state(pgdat, NR_ACTIVE_FILE);
7989 
7990 	/*
7991 	 * It's possible for there to be more file mapped pages than
7992 	 * accounted for by the pages on the file LRU lists because
7993 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7994 	 */
7995 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7996 }
7997 
7998 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7999 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
8000 {
8001 	unsigned long nr_pagecache_reclaimable;
8002 	unsigned long delta = 0;
8003 
8004 	/*
8005 	 * If RECLAIM_UNMAP is set, then all file pages are considered
8006 	 * potentially reclaimable. Otherwise, we have to worry about
8007 	 * pages like swapcache and node_unmapped_file_pages() provides
8008 	 * a better estimate
8009 	 */
8010 	if (node_reclaim_mode & RECLAIM_UNMAP)
8011 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
8012 	else
8013 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
8014 
8015 	/* If we can't clean pages, remove dirty pages from consideration */
8016 	if (!(node_reclaim_mode & RECLAIM_WRITE))
8017 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
8018 
8019 	/* Watch for any possible underflows due to delta */
8020 	if (unlikely(delta > nr_pagecache_reclaimable))
8021 		delta = nr_pagecache_reclaimable;
8022 
8023 	return nr_pagecache_reclaimable - delta;
8024 }
8025 
8026 /*
8027  * Try to free up some pages from this node through reclaim.
8028  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)8029 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8030 {
8031 	/* Minimum pages needed in order to stay on node */
8032 	const unsigned long nr_pages = 1 << order;
8033 	struct task_struct *p = current;
8034 	unsigned int noreclaim_flag;
8035 	struct scan_control sc = {
8036 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
8037 		.gfp_mask = current_gfp_context(gfp_mask),
8038 		.order = order,
8039 		.priority = NODE_RECLAIM_PRIORITY,
8040 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
8041 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
8042 		.may_swap = 1,
8043 		.reclaim_idx = gfp_zone(gfp_mask),
8044 	};
8045 	unsigned long pflags;
8046 
8047 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
8048 					   sc.gfp_mask);
8049 
8050 	cond_resched();
8051 	psi_memstall_enter(&pflags);
8052 	fs_reclaim_acquire(sc.gfp_mask);
8053 	/*
8054 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
8055 	 */
8056 	noreclaim_flag = memalloc_noreclaim_save();
8057 	set_task_reclaim_state(p, &sc.reclaim_state);
8058 
8059 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
8060 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
8061 		/*
8062 		 * Free memory by calling shrink node with increasing
8063 		 * priorities until we have enough memory freed.
8064 		 */
8065 		do {
8066 			shrink_node(pgdat, &sc);
8067 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8068 	}
8069 
8070 	set_task_reclaim_state(p, NULL);
8071 	memalloc_noreclaim_restore(noreclaim_flag);
8072 	fs_reclaim_release(sc.gfp_mask);
8073 	psi_memstall_leave(&pflags);
8074 
8075 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8076 
8077 	return sc.nr_reclaimed >= nr_pages;
8078 }
8079 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)8080 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8081 {
8082 	int ret;
8083 
8084 	/*
8085 	 * Node reclaim reclaims unmapped file backed pages and
8086 	 * slab pages if we are over the defined limits.
8087 	 *
8088 	 * A small portion of unmapped file backed pages is needed for
8089 	 * file I/O otherwise pages read by file I/O will be immediately
8090 	 * thrown out if the node is overallocated. So we do not reclaim
8091 	 * if less than a specified percentage of the node is used by
8092 	 * unmapped file backed pages.
8093 	 */
8094 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8095 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8096 	    pgdat->min_slab_pages)
8097 		return NODE_RECLAIM_FULL;
8098 
8099 	/*
8100 	 * Do not scan if the allocation should not be delayed.
8101 	 */
8102 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8103 		return NODE_RECLAIM_NOSCAN;
8104 
8105 	/*
8106 	 * Only run node reclaim on the local node or on nodes that do not
8107 	 * have associated processors. This will favor the local processor
8108 	 * over remote processors and spread off node memory allocations
8109 	 * as wide as possible.
8110 	 */
8111 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8112 		return NODE_RECLAIM_NOSCAN;
8113 
8114 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8115 		return NODE_RECLAIM_NOSCAN;
8116 
8117 	ret = __node_reclaim(pgdat, gfp_mask, order);
8118 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8119 
8120 	if (!ret)
8121 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8122 
8123 	return ret;
8124 }
8125 #endif
8126 
8127 /**
8128  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8129  * lru list
8130  * @fbatch: Batch of lru folios to check.
8131  *
8132  * Checks folios for evictability, if an evictable folio is in the unevictable
8133  * lru list, moves it to the appropriate evictable lru list. This function
8134  * should be only used for lru folios.
8135  */
check_move_unevictable_folios(struct folio_batch * fbatch)8136 void check_move_unevictable_folios(struct folio_batch *fbatch)
8137 {
8138 	struct lruvec *lruvec = NULL;
8139 	int pgscanned = 0;
8140 	int pgrescued = 0;
8141 	int i;
8142 
8143 	for (i = 0; i < fbatch->nr; i++) {
8144 		struct folio *folio = fbatch->folios[i];
8145 		int nr_pages = folio_nr_pages(folio);
8146 
8147 		pgscanned += nr_pages;
8148 
8149 		/* block memcg migration while the folio moves between lrus */
8150 		if (!folio_test_clear_lru(folio))
8151 			continue;
8152 
8153 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8154 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8155 			lruvec_del_folio(lruvec, folio);
8156 			folio_clear_unevictable(folio);
8157 			lruvec_add_folio(lruvec, folio);
8158 			pgrescued += nr_pages;
8159 		}
8160 		folio_set_lru(folio);
8161 	}
8162 
8163 	if (lruvec) {
8164 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8165 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8166 		unlock_page_lruvec_irq(lruvec);
8167 	} else if (pgscanned) {
8168 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8169 	}
8170 }
8171 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8172