1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/mdio.h>
56 #include <linux/phy.h>
57 #include <linux/fec.h>
58 #include <linux/of.h>
59 #include <linux/of_device.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73
74 #include <asm/cacheflush.h>
75
76 #include "fec.h"
77
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 int cpu, struct xdp_buff *xdp,
82 u32 dma_sync_len);
83
84 #define DRIVER_NAME "fec"
85
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88 /* Pause frame feild and FIFO threshold */
89 #define FEC_ENET_FCE (1 << 5)
90 #define FEC_ENET_RSEM_V 0x84
91 #define FEC_ENET_RSFL_V 16
92 #define FEC_ENET_RAEM_V 0x8
93 #define FEC_ENET_RAFL_V 0x8
94 #define FEC_ENET_OPD_V 0xFFF0
95 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
96
97 #define FEC_ENET_XDP_PASS 0
98 #define FEC_ENET_XDP_CONSUMED BIT(0)
99 #define FEC_ENET_XDP_TX BIT(1)
100 #define FEC_ENET_XDP_REDIR BIT(2)
101
102 struct fec_devinfo {
103 u32 quirks;
104 };
105
106 static const struct fec_devinfo fec_imx25_info = {
107 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109 };
110
111 static const struct fec_devinfo fec_imx27_info = {
112 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113 FEC_QUIRK_HAS_MDIO_C45,
114 };
115
116 static const struct fec_devinfo fec_imx28_info = {
117 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121 };
122
123 static const struct fec_devinfo fec_imx6q_info = {
124 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129 };
130
131 static const struct fec_devinfo fec_mvf600_info = {
132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133 FEC_QUIRK_HAS_MDIO_C45,
134 };
135
136 static const struct fec_devinfo fec_imx6x_info = {
137 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143 FEC_QUIRK_HAS_MDIO_C45,
144 };
145
146 static const struct fec_devinfo fec_imx6ul_info = {
147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152 FEC_QUIRK_HAS_MDIO_C45,
153 };
154
155 static const struct fec_devinfo fec_imx8mq_info = {
156 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163 FEC_QUIRK_HAS_MDIO_C45,
164 };
165
166 static const struct fec_devinfo fec_imx8qm_info = {
167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174 };
175
176 static const struct fec_devinfo fec_s32v234_info = {
177 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181 FEC_QUIRK_HAS_MDIO_C45,
182 };
183
184 static struct platform_device_id fec_devtype[] = {
185 {
186 /* keep it for coldfire */
187 .name = DRIVER_NAME,
188 .driver_data = 0,
189 }, {
190 .name = "imx25-fec",
191 .driver_data = (kernel_ulong_t)&fec_imx25_info,
192 }, {
193 .name = "imx27-fec",
194 .driver_data = (kernel_ulong_t)&fec_imx27_info,
195 }, {
196 .name = "imx28-fec",
197 .driver_data = (kernel_ulong_t)&fec_imx28_info,
198 }, {
199 .name = "imx6q-fec",
200 .driver_data = (kernel_ulong_t)&fec_imx6q_info,
201 }, {
202 .name = "mvf600-fec",
203 .driver_data = (kernel_ulong_t)&fec_mvf600_info,
204 }, {
205 .name = "imx6sx-fec",
206 .driver_data = (kernel_ulong_t)&fec_imx6x_info,
207 }, {
208 .name = "imx6ul-fec",
209 .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
210 }, {
211 .name = "imx8mq-fec",
212 .driver_data = (kernel_ulong_t)&fec_imx8mq_info,
213 }, {
214 .name = "imx8qm-fec",
215 .driver_data = (kernel_ulong_t)&fec_imx8qm_info,
216 }, {
217 .name = "s32v234-fec",
218 .driver_data = (kernel_ulong_t)&fec_s32v234_info,
219 }, {
220 /* sentinel */
221 }
222 };
223 MODULE_DEVICE_TABLE(platform, fec_devtype);
224
225 enum imx_fec_type {
226 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
227 IMX27_FEC, /* runs on i.mx27/35/51 */
228 IMX28_FEC,
229 IMX6Q_FEC,
230 MVF600_FEC,
231 IMX6SX_FEC,
232 IMX6UL_FEC,
233 IMX8MQ_FEC,
234 IMX8QM_FEC,
235 S32V234_FEC,
236 };
237
238 static const struct of_device_id fec_dt_ids[] = {
239 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
240 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
241 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
242 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
243 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
244 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
245 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
246 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
247 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
248 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
249 { /* sentinel */ }
250 };
251 MODULE_DEVICE_TABLE(of, fec_dt_ids);
252
253 static unsigned char macaddr[ETH_ALEN];
254 module_param_array(macaddr, byte, NULL, 0);
255 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
256
257 #if defined(CONFIG_M5272)
258 /*
259 * Some hardware gets it MAC address out of local flash memory.
260 * if this is non-zero then assume it is the address to get MAC from.
261 */
262 #if defined(CONFIG_NETtel)
263 #define FEC_FLASHMAC 0xf0006006
264 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
265 #define FEC_FLASHMAC 0xf0006000
266 #elif defined(CONFIG_CANCam)
267 #define FEC_FLASHMAC 0xf0020000
268 #elif defined (CONFIG_M5272C3)
269 #define FEC_FLASHMAC (0xffe04000 + 4)
270 #elif defined(CONFIG_MOD5272)
271 #define FEC_FLASHMAC 0xffc0406b
272 #else
273 #define FEC_FLASHMAC 0
274 #endif
275 #endif /* CONFIG_M5272 */
276
277 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
278 *
279 * 2048 byte skbufs are allocated. However, alignment requirements
280 * varies between FEC variants. Worst case is 64, so round down by 64.
281 */
282 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
283 #define PKT_MINBUF_SIZE 64
284
285 /* FEC receive acceleration */
286 #define FEC_RACC_IPDIS BIT(1)
287 #define FEC_RACC_PRODIS BIT(2)
288 #define FEC_RACC_SHIFT16 BIT(7)
289 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
290
291 /* MIB Control Register */
292 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
293
294 /*
295 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
296 * size bits. Other FEC hardware does not, so we need to take that into
297 * account when setting it.
298 */
299 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
300 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
301 defined(CONFIG_ARM64)
302 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
303 #else
304 #define OPT_FRAME_SIZE 0
305 #endif
306
307 /* FEC MII MMFR bits definition */
308 #define FEC_MMFR_ST (1 << 30)
309 #define FEC_MMFR_ST_C45 (0)
310 #define FEC_MMFR_OP_READ (2 << 28)
311 #define FEC_MMFR_OP_READ_C45 (3 << 28)
312 #define FEC_MMFR_OP_WRITE (1 << 28)
313 #define FEC_MMFR_OP_ADDR_WRITE (0)
314 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
315 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
316 #define FEC_MMFR_TA (2 << 16)
317 #define FEC_MMFR_DATA(v) (v & 0xffff)
318 /* FEC ECR bits definition */
319 #define FEC_ECR_RESET BIT(0)
320 #define FEC_ECR_ETHEREN BIT(1)
321 #define FEC_ECR_MAGICEN BIT(2)
322 #define FEC_ECR_SLEEP BIT(3)
323 #define FEC_ECR_EN1588 BIT(4)
324 #define FEC_ECR_BYTESWP BIT(8)
325 /* FEC RCR bits definition */
326 #define FEC_RCR_LOOP BIT(0)
327 #define FEC_RCR_HALFDPX BIT(1)
328 #define FEC_RCR_MII BIT(2)
329 #define FEC_RCR_PROMISC BIT(3)
330 #define FEC_RCR_BC_REJ BIT(4)
331 #define FEC_RCR_FLOWCTL BIT(5)
332 #define FEC_RCR_RMII BIT(8)
333 #define FEC_RCR_10BASET BIT(9)
334 /* TX WMARK bits */
335 #define FEC_TXWMRK_STRFWD BIT(8)
336
337 #define FEC_MII_TIMEOUT 30000 /* us */
338
339 /* Transmitter timeout */
340 #define TX_TIMEOUT (2 * HZ)
341
342 #define FEC_PAUSE_FLAG_AUTONEG 0x1
343 #define FEC_PAUSE_FLAG_ENABLE 0x2
344 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
345 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
346 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
347
348 /* Max number of allowed TCP segments for software TSO */
349 #define FEC_MAX_TSO_SEGS 100
350 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
351
352 #define IS_TSO_HEADER(txq, addr) \
353 ((addr >= txq->tso_hdrs_dma) && \
354 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
355
356 static int mii_cnt;
357
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)358 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
359 struct bufdesc_prop *bd)
360 {
361 return (bdp >= bd->last) ? bd->base
362 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
363 }
364
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)365 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
366 struct bufdesc_prop *bd)
367 {
368 return (bdp <= bd->base) ? bd->last
369 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
370 }
371
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)372 static int fec_enet_get_bd_index(struct bufdesc *bdp,
373 struct bufdesc_prop *bd)
374 {
375 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
376 }
377
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)378 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
379 {
380 int entries;
381
382 entries = (((const char *)txq->dirty_tx -
383 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
384
385 return entries >= 0 ? entries : entries + txq->bd.ring_size;
386 }
387
swap_buffer(void * bufaddr,int len)388 static void swap_buffer(void *bufaddr, int len)
389 {
390 int i;
391 unsigned int *buf = bufaddr;
392
393 for (i = 0; i < len; i += 4, buf++)
394 swab32s(buf);
395 }
396
fec_dump(struct net_device * ndev)397 static void fec_dump(struct net_device *ndev)
398 {
399 struct fec_enet_private *fep = netdev_priv(ndev);
400 struct bufdesc *bdp;
401 struct fec_enet_priv_tx_q *txq;
402 int index = 0;
403
404 netdev_info(ndev, "TX ring dump\n");
405 pr_info("Nr SC addr len SKB\n");
406
407 txq = fep->tx_queue[0];
408 bdp = txq->bd.base;
409
410 do {
411 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
412 index,
413 bdp == txq->bd.cur ? 'S' : ' ',
414 bdp == txq->dirty_tx ? 'H' : ' ',
415 fec16_to_cpu(bdp->cbd_sc),
416 fec32_to_cpu(bdp->cbd_bufaddr),
417 fec16_to_cpu(bdp->cbd_datlen),
418 txq->tx_buf[index].buf_p);
419 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
420 index++;
421 } while (bdp != txq->bd.base);
422 }
423
is_ipv4_pkt(struct sk_buff * skb)424 static inline bool is_ipv4_pkt(struct sk_buff *skb)
425 {
426 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
427 }
428
429 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)430 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
431 {
432 /* Only run for packets requiring a checksum. */
433 if (skb->ip_summed != CHECKSUM_PARTIAL)
434 return 0;
435
436 if (unlikely(skb_cow_head(skb, 0)))
437 return -1;
438
439 if (is_ipv4_pkt(skb))
440 ip_hdr(skb)->check = 0;
441 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
442
443 return 0;
444 }
445
446 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)447 fec_enet_create_page_pool(struct fec_enet_private *fep,
448 struct fec_enet_priv_rx_q *rxq, int size)
449 {
450 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
451 struct page_pool_params pp_params = {
452 .order = 0,
453 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
454 .pool_size = size,
455 .nid = dev_to_node(&fep->pdev->dev),
456 .dev = &fep->pdev->dev,
457 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
458 .offset = FEC_ENET_XDP_HEADROOM,
459 .max_len = FEC_ENET_RX_FRSIZE,
460 };
461 int err;
462
463 rxq->page_pool = page_pool_create(&pp_params);
464 if (IS_ERR(rxq->page_pool)) {
465 err = PTR_ERR(rxq->page_pool);
466 rxq->page_pool = NULL;
467 return err;
468 }
469
470 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
471 if (err < 0)
472 goto err_free_pp;
473
474 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
475 rxq->page_pool);
476 if (err)
477 goto err_unregister_rxq;
478
479 return 0;
480
481 err_unregister_rxq:
482 xdp_rxq_info_unreg(&rxq->xdp_rxq);
483 err_free_pp:
484 page_pool_destroy(rxq->page_pool);
485 rxq->page_pool = NULL;
486 return err;
487 }
488
489 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)490 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
491 struct sk_buff *skb,
492 struct net_device *ndev)
493 {
494 struct fec_enet_private *fep = netdev_priv(ndev);
495 struct bufdesc *bdp = txq->bd.cur;
496 struct bufdesc_ex *ebdp;
497 int nr_frags = skb_shinfo(skb)->nr_frags;
498 int frag, frag_len;
499 unsigned short status;
500 unsigned int estatus = 0;
501 skb_frag_t *this_frag;
502 unsigned int index;
503 void *bufaddr;
504 dma_addr_t addr;
505 int i;
506
507 for (frag = 0; frag < nr_frags; frag++) {
508 this_frag = &skb_shinfo(skb)->frags[frag];
509 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
510 ebdp = (struct bufdesc_ex *)bdp;
511
512 status = fec16_to_cpu(bdp->cbd_sc);
513 status &= ~BD_ENET_TX_STATS;
514 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
515 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
516
517 /* Handle the last BD specially */
518 if (frag == nr_frags - 1) {
519 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
520 if (fep->bufdesc_ex) {
521 estatus |= BD_ENET_TX_INT;
522 if (unlikely(skb_shinfo(skb)->tx_flags &
523 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
524 estatus |= BD_ENET_TX_TS;
525 }
526 }
527
528 if (fep->bufdesc_ex) {
529 if (fep->quirks & FEC_QUIRK_HAS_AVB)
530 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
531 if (skb->ip_summed == CHECKSUM_PARTIAL)
532 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
533
534 ebdp->cbd_bdu = 0;
535 ebdp->cbd_esc = cpu_to_fec32(estatus);
536 }
537
538 bufaddr = skb_frag_address(this_frag);
539
540 index = fec_enet_get_bd_index(bdp, &txq->bd);
541 if (((unsigned long) bufaddr) & fep->tx_align ||
542 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
543 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
544 bufaddr = txq->tx_bounce[index];
545
546 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
547 swap_buffer(bufaddr, frag_len);
548 }
549
550 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
551 DMA_TO_DEVICE);
552 if (dma_mapping_error(&fep->pdev->dev, addr)) {
553 if (net_ratelimit())
554 netdev_err(ndev, "Tx DMA memory map failed\n");
555 goto dma_mapping_error;
556 }
557
558 bdp->cbd_bufaddr = cpu_to_fec32(addr);
559 bdp->cbd_datlen = cpu_to_fec16(frag_len);
560 /* Make sure the updates to rest of the descriptor are
561 * performed before transferring ownership.
562 */
563 wmb();
564 bdp->cbd_sc = cpu_to_fec16(status);
565 }
566
567 return bdp;
568 dma_mapping_error:
569 bdp = txq->bd.cur;
570 for (i = 0; i < frag; i++) {
571 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
572 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
573 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
574 }
575 return ERR_PTR(-ENOMEM);
576 }
577
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)578 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
579 struct sk_buff *skb, struct net_device *ndev)
580 {
581 struct fec_enet_private *fep = netdev_priv(ndev);
582 int nr_frags = skb_shinfo(skb)->nr_frags;
583 struct bufdesc *bdp, *last_bdp;
584 void *bufaddr;
585 dma_addr_t addr;
586 unsigned short status;
587 unsigned short buflen;
588 unsigned int estatus = 0;
589 unsigned int index;
590 int entries_free;
591
592 entries_free = fec_enet_get_free_txdesc_num(txq);
593 if (entries_free < MAX_SKB_FRAGS + 1) {
594 dev_kfree_skb_any(skb);
595 if (net_ratelimit())
596 netdev_err(ndev, "NOT enough BD for SG!\n");
597 return NETDEV_TX_OK;
598 }
599
600 /* Protocol checksum off-load for TCP and UDP. */
601 if (fec_enet_clear_csum(skb, ndev)) {
602 dev_kfree_skb_any(skb);
603 return NETDEV_TX_OK;
604 }
605
606 /* Fill in a Tx ring entry */
607 bdp = txq->bd.cur;
608 last_bdp = bdp;
609 status = fec16_to_cpu(bdp->cbd_sc);
610 status &= ~BD_ENET_TX_STATS;
611
612 /* Set buffer length and buffer pointer */
613 bufaddr = skb->data;
614 buflen = skb_headlen(skb);
615
616 index = fec_enet_get_bd_index(bdp, &txq->bd);
617 if (((unsigned long) bufaddr) & fep->tx_align ||
618 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
619 memcpy(txq->tx_bounce[index], skb->data, buflen);
620 bufaddr = txq->tx_bounce[index];
621
622 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
623 swap_buffer(bufaddr, buflen);
624 }
625
626 /* Push the data cache so the CPM does not get stale memory data. */
627 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
628 if (dma_mapping_error(&fep->pdev->dev, addr)) {
629 dev_kfree_skb_any(skb);
630 if (net_ratelimit())
631 netdev_err(ndev, "Tx DMA memory map failed\n");
632 return NETDEV_TX_OK;
633 }
634
635 if (nr_frags) {
636 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
637 if (IS_ERR(last_bdp)) {
638 dma_unmap_single(&fep->pdev->dev, addr,
639 buflen, DMA_TO_DEVICE);
640 dev_kfree_skb_any(skb);
641 return NETDEV_TX_OK;
642 }
643 } else {
644 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
645 if (fep->bufdesc_ex) {
646 estatus = BD_ENET_TX_INT;
647 if (unlikely(skb_shinfo(skb)->tx_flags &
648 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
649 estatus |= BD_ENET_TX_TS;
650 }
651 }
652 bdp->cbd_bufaddr = cpu_to_fec32(addr);
653 bdp->cbd_datlen = cpu_to_fec16(buflen);
654
655 if (fep->bufdesc_ex) {
656
657 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
658
659 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
660 fep->hwts_tx_en))
661 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
662
663 if (fep->quirks & FEC_QUIRK_HAS_AVB)
664 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
665
666 if (skb->ip_summed == CHECKSUM_PARTIAL)
667 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
668
669 ebdp->cbd_bdu = 0;
670 ebdp->cbd_esc = cpu_to_fec32(estatus);
671 }
672
673 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
674 /* Save skb pointer */
675 txq->tx_buf[index].buf_p = skb;
676
677 /* Make sure the updates to rest of the descriptor are performed before
678 * transferring ownership.
679 */
680 wmb();
681
682 /* Send it on its way. Tell FEC it's ready, interrupt when done,
683 * it's the last BD of the frame, and to put the CRC on the end.
684 */
685 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
686 bdp->cbd_sc = cpu_to_fec16(status);
687
688 /* If this was the last BD in the ring, start at the beginning again. */
689 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
690
691 skb_tx_timestamp(skb);
692
693 /* Make sure the update to bdp is performed before txq->bd.cur. */
694 wmb();
695 txq->bd.cur = bdp;
696
697 /* Trigger transmission start */
698 writel(0, txq->bd.reg_desc_active);
699
700 return 0;
701 }
702
703 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)704 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
705 struct net_device *ndev,
706 struct bufdesc *bdp, int index, char *data,
707 int size, bool last_tcp, bool is_last)
708 {
709 struct fec_enet_private *fep = netdev_priv(ndev);
710 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
711 unsigned short status;
712 unsigned int estatus = 0;
713 dma_addr_t addr;
714
715 status = fec16_to_cpu(bdp->cbd_sc);
716 status &= ~BD_ENET_TX_STATS;
717
718 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
719
720 if (((unsigned long) data) & fep->tx_align ||
721 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
722 memcpy(txq->tx_bounce[index], data, size);
723 data = txq->tx_bounce[index];
724
725 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
726 swap_buffer(data, size);
727 }
728
729 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
730 if (dma_mapping_error(&fep->pdev->dev, addr)) {
731 dev_kfree_skb_any(skb);
732 if (net_ratelimit())
733 netdev_err(ndev, "Tx DMA memory map failed\n");
734 return NETDEV_TX_OK;
735 }
736
737 bdp->cbd_datlen = cpu_to_fec16(size);
738 bdp->cbd_bufaddr = cpu_to_fec32(addr);
739
740 if (fep->bufdesc_ex) {
741 if (fep->quirks & FEC_QUIRK_HAS_AVB)
742 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
743 if (skb->ip_summed == CHECKSUM_PARTIAL)
744 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
745 ebdp->cbd_bdu = 0;
746 ebdp->cbd_esc = cpu_to_fec32(estatus);
747 }
748
749 /* Handle the last BD specially */
750 if (last_tcp)
751 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
752 if (is_last) {
753 status |= BD_ENET_TX_INTR;
754 if (fep->bufdesc_ex)
755 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
756 }
757
758 bdp->cbd_sc = cpu_to_fec16(status);
759
760 return 0;
761 }
762
763 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)764 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
765 struct sk_buff *skb, struct net_device *ndev,
766 struct bufdesc *bdp, int index)
767 {
768 struct fec_enet_private *fep = netdev_priv(ndev);
769 int hdr_len = skb_tcp_all_headers(skb);
770 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
771 void *bufaddr;
772 unsigned long dmabuf;
773 unsigned short status;
774 unsigned int estatus = 0;
775
776 status = fec16_to_cpu(bdp->cbd_sc);
777 status &= ~BD_ENET_TX_STATS;
778 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
779
780 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
781 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
782 if (((unsigned long)bufaddr) & fep->tx_align ||
783 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
784 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
785 bufaddr = txq->tx_bounce[index];
786
787 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
788 swap_buffer(bufaddr, hdr_len);
789
790 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
791 hdr_len, DMA_TO_DEVICE);
792 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
793 dev_kfree_skb_any(skb);
794 if (net_ratelimit())
795 netdev_err(ndev, "Tx DMA memory map failed\n");
796 return NETDEV_TX_OK;
797 }
798 }
799
800 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
801 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
802
803 if (fep->bufdesc_ex) {
804 if (fep->quirks & FEC_QUIRK_HAS_AVB)
805 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
806 if (skb->ip_summed == CHECKSUM_PARTIAL)
807 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
808 ebdp->cbd_bdu = 0;
809 ebdp->cbd_esc = cpu_to_fec32(estatus);
810 }
811
812 bdp->cbd_sc = cpu_to_fec16(status);
813
814 return 0;
815 }
816
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)817 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
818 struct sk_buff *skb,
819 struct net_device *ndev)
820 {
821 struct fec_enet_private *fep = netdev_priv(ndev);
822 int hdr_len, total_len, data_left;
823 struct bufdesc *bdp = txq->bd.cur;
824 struct tso_t tso;
825 unsigned int index = 0;
826 int ret;
827
828 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
829 dev_kfree_skb_any(skb);
830 if (net_ratelimit())
831 netdev_err(ndev, "NOT enough BD for TSO!\n");
832 return NETDEV_TX_OK;
833 }
834
835 /* Protocol checksum off-load for TCP and UDP. */
836 if (fec_enet_clear_csum(skb, ndev)) {
837 dev_kfree_skb_any(skb);
838 return NETDEV_TX_OK;
839 }
840
841 /* Initialize the TSO handler, and prepare the first payload */
842 hdr_len = tso_start(skb, &tso);
843
844 total_len = skb->len - hdr_len;
845 while (total_len > 0) {
846 char *hdr;
847
848 index = fec_enet_get_bd_index(bdp, &txq->bd);
849 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
850 total_len -= data_left;
851
852 /* prepare packet headers: MAC + IP + TCP */
853 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
854 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
855 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
856 if (ret)
857 goto err_release;
858
859 while (data_left > 0) {
860 int size;
861
862 size = min_t(int, tso.size, data_left);
863 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
864 index = fec_enet_get_bd_index(bdp, &txq->bd);
865 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
866 bdp, index,
867 tso.data, size,
868 size == data_left,
869 total_len == 0);
870 if (ret)
871 goto err_release;
872
873 data_left -= size;
874 tso_build_data(skb, &tso, size);
875 }
876
877 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
878 }
879
880 /* Save skb pointer */
881 txq->tx_buf[index].buf_p = skb;
882
883 skb_tx_timestamp(skb);
884 txq->bd.cur = bdp;
885
886 /* Trigger transmission start */
887 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
888 !readl(txq->bd.reg_desc_active) ||
889 !readl(txq->bd.reg_desc_active) ||
890 !readl(txq->bd.reg_desc_active) ||
891 !readl(txq->bd.reg_desc_active))
892 writel(0, txq->bd.reg_desc_active);
893
894 return 0;
895
896 err_release:
897 /* TODO: Release all used data descriptors for TSO */
898 return ret;
899 }
900
901 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)902 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
903 {
904 struct fec_enet_private *fep = netdev_priv(ndev);
905 int entries_free;
906 unsigned short queue;
907 struct fec_enet_priv_tx_q *txq;
908 struct netdev_queue *nq;
909 int ret;
910
911 queue = skb_get_queue_mapping(skb);
912 txq = fep->tx_queue[queue];
913 nq = netdev_get_tx_queue(ndev, queue);
914
915 if (skb_is_gso(skb))
916 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
917 else
918 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
919 if (ret)
920 return ret;
921
922 entries_free = fec_enet_get_free_txdesc_num(txq);
923 if (entries_free <= txq->tx_stop_threshold)
924 netif_tx_stop_queue(nq);
925
926 return NETDEV_TX_OK;
927 }
928
929 /* Init RX & TX buffer descriptors
930 */
fec_enet_bd_init(struct net_device * dev)931 static void fec_enet_bd_init(struct net_device *dev)
932 {
933 struct fec_enet_private *fep = netdev_priv(dev);
934 struct fec_enet_priv_tx_q *txq;
935 struct fec_enet_priv_rx_q *rxq;
936 struct bufdesc *bdp;
937 unsigned int i;
938 unsigned int q;
939
940 for (q = 0; q < fep->num_rx_queues; q++) {
941 /* Initialize the receive buffer descriptors. */
942 rxq = fep->rx_queue[q];
943 bdp = rxq->bd.base;
944
945 for (i = 0; i < rxq->bd.ring_size; i++) {
946
947 /* Initialize the BD for every fragment in the page. */
948 if (bdp->cbd_bufaddr)
949 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
950 else
951 bdp->cbd_sc = cpu_to_fec16(0);
952 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
953 }
954
955 /* Set the last buffer to wrap */
956 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
957 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
958
959 rxq->bd.cur = rxq->bd.base;
960 }
961
962 for (q = 0; q < fep->num_tx_queues; q++) {
963 /* ...and the same for transmit */
964 txq = fep->tx_queue[q];
965 bdp = txq->bd.base;
966 txq->bd.cur = bdp;
967
968 for (i = 0; i < txq->bd.ring_size; i++) {
969 /* Initialize the BD for every fragment in the page. */
970 bdp->cbd_sc = cpu_to_fec16(0);
971 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
972 if (bdp->cbd_bufaddr &&
973 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
974 dma_unmap_single(&fep->pdev->dev,
975 fec32_to_cpu(bdp->cbd_bufaddr),
976 fec16_to_cpu(bdp->cbd_datlen),
977 DMA_TO_DEVICE);
978 if (txq->tx_buf[i].buf_p)
979 dev_kfree_skb_any(txq->tx_buf[i].buf_p);
980 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
981 if (bdp->cbd_bufaddr)
982 dma_unmap_single(&fep->pdev->dev,
983 fec32_to_cpu(bdp->cbd_bufaddr),
984 fec16_to_cpu(bdp->cbd_datlen),
985 DMA_TO_DEVICE);
986
987 if (txq->tx_buf[i].buf_p)
988 xdp_return_frame(txq->tx_buf[i].buf_p);
989 } else {
990 struct page *page = txq->tx_buf[i].buf_p;
991
992 if (page)
993 page_pool_put_page(page->pp, page, 0, false);
994 }
995
996 txq->tx_buf[i].buf_p = NULL;
997 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
998 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
999 bdp->cbd_bufaddr = cpu_to_fec32(0);
1000 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1001 }
1002
1003 /* Set the last buffer to wrap */
1004 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1005 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1006 txq->dirty_tx = bdp;
1007 }
1008 }
1009
fec_enet_active_rxring(struct net_device * ndev)1010 static void fec_enet_active_rxring(struct net_device *ndev)
1011 {
1012 struct fec_enet_private *fep = netdev_priv(ndev);
1013 int i;
1014
1015 for (i = 0; i < fep->num_rx_queues; i++)
1016 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1017 }
1018
fec_enet_enable_ring(struct net_device * ndev)1019 static void fec_enet_enable_ring(struct net_device *ndev)
1020 {
1021 struct fec_enet_private *fep = netdev_priv(ndev);
1022 struct fec_enet_priv_tx_q *txq;
1023 struct fec_enet_priv_rx_q *rxq;
1024 int i;
1025
1026 for (i = 0; i < fep->num_rx_queues; i++) {
1027 rxq = fep->rx_queue[i];
1028 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1029 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1030
1031 /* enable DMA1/2 */
1032 if (i)
1033 writel(RCMR_MATCHEN | RCMR_CMP(i),
1034 fep->hwp + FEC_RCMR(i));
1035 }
1036
1037 for (i = 0; i < fep->num_tx_queues; i++) {
1038 txq = fep->tx_queue[i];
1039 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1040
1041 /* enable DMA1/2 */
1042 if (i)
1043 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1044 fep->hwp + FEC_DMA_CFG(i));
1045 }
1046 }
1047
1048 /*
1049 * This function is called to start or restart the FEC during a link
1050 * change, transmit timeout, or to reconfigure the FEC. The network
1051 * packet processing for this device must be stopped before this call.
1052 */
1053 static void
fec_restart(struct net_device * ndev)1054 fec_restart(struct net_device *ndev)
1055 {
1056 struct fec_enet_private *fep = netdev_priv(ndev);
1057 u32 temp_mac[2];
1058 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1059 u32 ecntl = FEC_ECR_ETHEREN;
1060
1061 if (fep->bufdesc_ex)
1062 fec_ptp_save_state(fep);
1063
1064 /* Whack a reset. We should wait for this.
1065 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1066 * instead of reset MAC itself.
1067 */
1068 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1069 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1070 writel(0, fep->hwp + FEC_ECNTRL);
1071 } else {
1072 writel(1, fep->hwp + FEC_ECNTRL);
1073 udelay(10);
1074 }
1075
1076 /*
1077 * enet-mac reset will reset mac address registers too,
1078 * so need to reconfigure it.
1079 */
1080 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1081 writel((__force u32)cpu_to_be32(temp_mac[0]),
1082 fep->hwp + FEC_ADDR_LOW);
1083 writel((__force u32)cpu_to_be32(temp_mac[1]),
1084 fep->hwp + FEC_ADDR_HIGH);
1085
1086 /* Clear any outstanding interrupt, except MDIO. */
1087 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1088
1089 fec_enet_bd_init(ndev);
1090
1091 fec_enet_enable_ring(ndev);
1092
1093 /* Enable MII mode */
1094 if (fep->full_duplex == DUPLEX_FULL) {
1095 /* FD enable */
1096 writel(0x04, fep->hwp + FEC_X_CNTRL);
1097 } else {
1098 /* No Rcv on Xmit */
1099 rcntl |= 0x02;
1100 writel(0x0, fep->hwp + FEC_X_CNTRL);
1101 }
1102
1103 /* Set MII speed */
1104 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1105
1106 #if !defined(CONFIG_M5272)
1107 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1108 u32 val = readl(fep->hwp + FEC_RACC);
1109
1110 /* align IP header */
1111 val |= FEC_RACC_SHIFT16;
1112 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1113 /* set RX checksum */
1114 val |= FEC_RACC_OPTIONS;
1115 else
1116 val &= ~FEC_RACC_OPTIONS;
1117 writel(val, fep->hwp + FEC_RACC);
1118 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1119 }
1120 #endif
1121
1122 /*
1123 * The phy interface and speed need to get configured
1124 * differently on enet-mac.
1125 */
1126 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1127 /* Enable flow control and length check */
1128 rcntl |= 0x40000000 | 0x00000020;
1129
1130 /* RGMII, RMII or MII */
1131 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1132 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1133 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1134 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1135 rcntl |= (1 << 6);
1136 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1137 rcntl |= FEC_RCR_RMII;
1138 else
1139 rcntl &= ~FEC_RCR_RMII;
1140
1141 /* 1G, 100M or 10M */
1142 if (ndev->phydev) {
1143 if (ndev->phydev->speed == SPEED_1000)
1144 ecntl |= (1 << 5);
1145 else if (ndev->phydev->speed == SPEED_100)
1146 rcntl &= ~FEC_RCR_10BASET;
1147 else
1148 rcntl |= FEC_RCR_10BASET;
1149 }
1150 } else {
1151 #ifdef FEC_MIIGSK_ENR
1152 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1153 u32 cfgr;
1154 /* disable the gasket and wait */
1155 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1156 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1157 udelay(1);
1158
1159 /*
1160 * configure the gasket:
1161 * RMII, 50 MHz, no loopback, no echo
1162 * MII, 25 MHz, no loopback, no echo
1163 */
1164 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1165 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1166 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1167 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1168 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1169
1170 /* re-enable the gasket */
1171 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1172 }
1173 #endif
1174 }
1175
1176 #if !defined(CONFIG_M5272)
1177 /* enable pause frame*/
1178 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1179 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1180 ndev->phydev && ndev->phydev->pause)) {
1181 rcntl |= FEC_ENET_FCE;
1182
1183 /* set FIFO threshold parameter to reduce overrun */
1184 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1185 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1186 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1187 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1188
1189 /* OPD */
1190 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1191 } else {
1192 rcntl &= ~FEC_ENET_FCE;
1193 }
1194 #endif /* !defined(CONFIG_M5272) */
1195
1196 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1197
1198 /* Setup multicast filter. */
1199 set_multicast_list(ndev);
1200 #ifndef CONFIG_M5272
1201 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1202 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1203 #endif
1204
1205 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1206 /* enable ENET endian swap */
1207 ecntl |= FEC_ECR_BYTESWP;
1208 /* enable ENET store and forward mode */
1209 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1210 }
1211
1212 if (fep->bufdesc_ex)
1213 ecntl |= FEC_ECR_EN1588;
1214
1215 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1216 fep->rgmii_txc_dly)
1217 ecntl |= FEC_ENET_TXC_DLY;
1218 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1219 fep->rgmii_rxc_dly)
1220 ecntl |= FEC_ENET_RXC_DLY;
1221
1222 #ifndef CONFIG_M5272
1223 /* Enable the MIB statistic event counters */
1224 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1225 #endif
1226
1227 /* And last, enable the transmit and receive processing */
1228 writel(ecntl, fep->hwp + FEC_ECNTRL);
1229 fec_enet_active_rxring(ndev);
1230
1231 if (fep->bufdesc_ex) {
1232 fec_ptp_start_cyclecounter(ndev);
1233 fec_ptp_restore_state(fep);
1234 }
1235
1236 /* Enable interrupts we wish to service */
1237 if (fep->link)
1238 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1239 else
1240 writel(0, fep->hwp + FEC_IMASK);
1241
1242 /* Init the interrupt coalescing */
1243 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1244 fec_enet_itr_coal_set(ndev);
1245 }
1246
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1247 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1248 {
1249 if (!(of_machine_is_compatible("fsl,imx8qm") ||
1250 of_machine_is_compatible("fsl,imx8qxp") ||
1251 of_machine_is_compatible("fsl,imx8dxl")))
1252 return 0;
1253
1254 return imx_scu_get_handle(&fep->ipc_handle);
1255 }
1256
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1257 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1258 {
1259 struct device_node *np = fep->pdev->dev.of_node;
1260 u32 rsrc_id, val;
1261 int idx;
1262
1263 if (!np || !fep->ipc_handle)
1264 return;
1265
1266 idx = of_alias_get_id(np, "ethernet");
1267 if (idx < 0)
1268 idx = 0;
1269 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1270
1271 val = enabled ? 1 : 0;
1272 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1273 }
1274
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1275 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1276 {
1277 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1278 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1279
1280 if (stop_gpr->gpr) {
1281 if (enabled)
1282 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1283 BIT(stop_gpr->bit),
1284 BIT(stop_gpr->bit));
1285 else
1286 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1287 BIT(stop_gpr->bit), 0);
1288 } else if (pdata && pdata->sleep_mode_enable) {
1289 pdata->sleep_mode_enable(enabled);
1290 } else {
1291 fec_enet_ipg_stop_set(fep, enabled);
1292 }
1293 }
1294
fec_irqs_disable(struct net_device * ndev)1295 static void fec_irqs_disable(struct net_device *ndev)
1296 {
1297 struct fec_enet_private *fep = netdev_priv(ndev);
1298
1299 writel(0, fep->hwp + FEC_IMASK);
1300 }
1301
fec_irqs_disable_except_wakeup(struct net_device * ndev)1302 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1303 {
1304 struct fec_enet_private *fep = netdev_priv(ndev);
1305
1306 writel(0, fep->hwp + FEC_IMASK);
1307 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1308 }
1309
1310 static void
fec_stop(struct net_device * ndev)1311 fec_stop(struct net_device *ndev)
1312 {
1313 struct fec_enet_private *fep = netdev_priv(ndev);
1314 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1315 u32 val;
1316
1317 /* We cannot expect a graceful transmit stop without link !!! */
1318 if (fep->link) {
1319 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1320 udelay(10);
1321 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1322 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1323 }
1324
1325 if (fep->bufdesc_ex)
1326 fec_ptp_save_state(fep);
1327
1328 /* Whack a reset. We should wait for this.
1329 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1330 * instead of reset MAC itself.
1331 */
1332 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1333 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1334 writel(0, fep->hwp + FEC_ECNTRL);
1335 } else {
1336 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1337 udelay(10);
1338 }
1339 } else {
1340 val = readl(fep->hwp + FEC_ECNTRL);
1341 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1342 writel(val, fep->hwp + FEC_ECNTRL);
1343 }
1344 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1345 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1346
1347 /* We have to keep ENET enabled to have MII interrupt stay working */
1348 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1349 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1350 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1351 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1352 }
1353
1354 if (fep->bufdesc_ex) {
1355 val = readl(fep->hwp + FEC_ECNTRL);
1356 val |= FEC_ECR_EN1588;
1357 writel(val, fep->hwp + FEC_ECNTRL);
1358
1359 fec_ptp_start_cyclecounter(ndev);
1360 fec_ptp_restore_state(fep);
1361 }
1362 }
1363
1364 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1365 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1366 {
1367 struct fec_enet_private *fep = netdev_priv(ndev);
1368
1369 fec_dump(ndev);
1370
1371 ndev->stats.tx_errors++;
1372
1373 schedule_work(&fep->tx_timeout_work);
1374 }
1375
fec_enet_timeout_work(struct work_struct * work)1376 static void fec_enet_timeout_work(struct work_struct *work)
1377 {
1378 struct fec_enet_private *fep =
1379 container_of(work, struct fec_enet_private, tx_timeout_work);
1380 struct net_device *ndev = fep->netdev;
1381
1382 rtnl_lock();
1383 if (netif_device_present(ndev) || netif_running(ndev)) {
1384 napi_disable(&fep->napi);
1385 netif_tx_lock_bh(ndev);
1386 fec_restart(ndev);
1387 netif_tx_wake_all_queues(ndev);
1388 netif_tx_unlock_bh(ndev);
1389 napi_enable(&fep->napi);
1390 }
1391 rtnl_unlock();
1392 }
1393
1394 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1395 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1396 struct skb_shared_hwtstamps *hwtstamps)
1397 {
1398 unsigned long flags;
1399 u64 ns;
1400
1401 spin_lock_irqsave(&fep->tmreg_lock, flags);
1402 ns = timecounter_cyc2time(&fep->tc, ts);
1403 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1404
1405 memset(hwtstamps, 0, sizeof(*hwtstamps));
1406 hwtstamps->hwtstamp = ns_to_ktime(ns);
1407 }
1408
1409 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1410 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1411 {
1412 struct fec_enet_private *fep;
1413 struct xdp_frame *xdpf;
1414 struct bufdesc *bdp;
1415 unsigned short status;
1416 struct sk_buff *skb;
1417 struct fec_enet_priv_tx_q *txq;
1418 struct netdev_queue *nq;
1419 int index = 0;
1420 int entries_free;
1421 struct page *page;
1422 int frame_len;
1423
1424 fep = netdev_priv(ndev);
1425
1426 txq = fep->tx_queue[queue_id];
1427 /* get next bdp of dirty_tx */
1428 nq = netdev_get_tx_queue(ndev, queue_id);
1429 bdp = txq->dirty_tx;
1430
1431 /* get next bdp of dirty_tx */
1432 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1433
1434 while (bdp != READ_ONCE(txq->bd.cur)) {
1435 /* Order the load of bd.cur and cbd_sc */
1436 rmb();
1437 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1438 if (status & BD_ENET_TX_READY)
1439 break;
1440
1441 index = fec_enet_get_bd_index(bdp, &txq->bd);
1442
1443 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1444 skb = txq->tx_buf[index].buf_p;
1445 if (bdp->cbd_bufaddr &&
1446 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1447 dma_unmap_single(&fep->pdev->dev,
1448 fec32_to_cpu(bdp->cbd_bufaddr),
1449 fec16_to_cpu(bdp->cbd_datlen),
1450 DMA_TO_DEVICE);
1451 bdp->cbd_bufaddr = cpu_to_fec32(0);
1452 if (!skb)
1453 goto tx_buf_done;
1454 } else {
1455 /* Tx processing cannot call any XDP (or page pool) APIs if
1456 * the "budget" is 0. Because NAPI is called with budget of
1457 * 0 (such as netpoll) indicates we may be in an IRQ context,
1458 * however, we can't use the page pool from IRQ context.
1459 */
1460 if (unlikely(!budget))
1461 break;
1462
1463 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1464 xdpf = txq->tx_buf[index].buf_p;
1465 if (bdp->cbd_bufaddr)
1466 dma_unmap_single(&fep->pdev->dev,
1467 fec32_to_cpu(bdp->cbd_bufaddr),
1468 fec16_to_cpu(bdp->cbd_datlen),
1469 DMA_TO_DEVICE);
1470 } else {
1471 page = txq->tx_buf[index].buf_p;
1472 }
1473
1474 bdp->cbd_bufaddr = cpu_to_fec32(0);
1475 if (unlikely(!txq->tx_buf[index].buf_p)) {
1476 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1477 goto tx_buf_done;
1478 }
1479
1480 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1481 }
1482
1483 /* Check for errors. */
1484 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1485 BD_ENET_TX_RL | BD_ENET_TX_UN |
1486 BD_ENET_TX_CSL)) {
1487 ndev->stats.tx_errors++;
1488 if (status & BD_ENET_TX_HB) /* No heartbeat */
1489 ndev->stats.tx_heartbeat_errors++;
1490 if (status & BD_ENET_TX_LC) /* Late collision */
1491 ndev->stats.tx_window_errors++;
1492 if (status & BD_ENET_TX_RL) /* Retrans limit */
1493 ndev->stats.tx_aborted_errors++;
1494 if (status & BD_ENET_TX_UN) /* Underrun */
1495 ndev->stats.tx_fifo_errors++;
1496 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1497 ndev->stats.tx_carrier_errors++;
1498 } else {
1499 ndev->stats.tx_packets++;
1500
1501 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1502 ndev->stats.tx_bytes += skb->len;
1503 else
1504 ndev->stats.tx_bytes += frame_len;
1505 }
1506
1507 /* Deferred means some collisions occurred during transmit,
1508 * but we eventually sent the packet OK.
1509 */
1510 if (status & BD_ENET_TX_DEF)
1511 ndev->stats.collisions++;
1512
1513 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1514 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1515 * are to time stamp the packet, so we still need to check time
1516 * stamping enabled flag.
1517 */
1518 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1519 fep->hwts_tx_en) && fep->bufdesc_ex) {
1520 struct skb_shared_hwtstamps shhwtstamps;
1521 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1522
1523 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1524 skb_tstamp_tx(skb, &shhwtstamps);
1525 }
1526
1527 /* Free the sk buffer associated with this last transmit */
1528 napi_consume_skb(skb, budget);
1529 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1530 xdp_return_frame_rx_napi(xdpf);
1531 } else { /* recycle pages of XDP_TX frames */
1532 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1533 page_pool_put_page(page->pp, page, 0, true);
1534 }
1535
1536 txq->tx_buf[index].buf_p = NULL;
1537 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1538 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1539
1540 tx_buf_done:
1541 /* Make sure the update to bdp and tx_buf are performed
1542 * before dirty_tx
1543 */
1544 wmb();
1545 txq->dirty_tx = bdp;
1546
1547 /* Update pointer to next buffer descriptor to be transmitted */
1548 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1549
1550 /* Since we have freed up a buffer, the ring is no longer full
1551 */
1552 if (netif_tx_queue_stopped(nq)) {
1553 entries_free = fec_enet_get_free_txdesc_num(txq);
1554 if (entries_free >= txq->tx_wake_threshold)
1555 netif_tx_wake_queue(nq);
1556 }
1557 }
1558
1559 /* ERR006358: Keep the transmitter going */
1560 if (bdp != txq->bd.cur &&
1561 readl(txq->bd.reg_desc_active) == 0)
1562 writel(0, txq->bd.reg_desc_active);
1563 }
1564
fec_enet_tx(struct net_device * ndev,int budget)1565 static void fec_enet_tx(struct net_device *ndev, int budget)
1566 {
1567 struct fec_enet_private *fep = netdev_priv(ndev);
1568 int i;
1569
1570 /* Make sure that AVB queues are processed first. */
1571 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1572 fec_enet_tx_queue(ndev, i, budget);
1573 }
1574
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1575 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1576 struct bufdesc *bdp, int index)
1577 {
1578 struct page *new_page;
1579 dma_addr_t phys_addr;
1580
1581 new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1582 if (unlikely(!new_page))
1583 return -ENOMEM;
1584
1585 rxq->rx_skb_info[index].page = new_page;
1586 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1587 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1588 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1589
1590 return 0;
1591 }
1592
1593 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1594 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1595 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1596 {
1597 unsigned int sync, len = xdp->data_end - xdp->data;
1598 u32 ret = FEC_ENET_XDP_PASS;
1599 struct page *page;
1600 int err;
1601 u32 act;
1602
1603 act = bpf_prog_run_xdp(prog, xdp);
1604
1605 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1606 * max len CPU touch
1607 */
1608 sync = xdp->data_end - xdp->data;
1609 sync = max(sync, len);
1610
1611 switch (act) {
1612 case XDP_PASS:
1613 rxq->stats[RX_XDP_PASS]++;
1614 ret = FEC_ENET_XDP_PASS;
1615 break;
1616
1617 case XDP_REDIRECT:
1618 rxq->stats[RX_XDP_REDIRECT]++;
1619 err = xdp_do_redirect(fep->netdev, xdp, prog);
1620 if (unlikely(err))
1621 goto xdp_err;
1622
1623 ret = FEC_ENET_XDP_REDIR;
1624 break;
1625
1626 case XDP_TX:
1627 rxq->stats[RX_XDP_TX]++;
1628 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1629 if (unlikely(err)) {
1630 rxq->stats[RX_XDP_TX_ERRORS]++;
1631 goto xdp_err;
1632 }
1633
1634 ret = FEC_ENET_XDP_TX;
1635 break;
1636
1637 default:
1638 bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1639 fallthrough;
1640
1641 case XDP_ABORTED:
1642 fallthrough; /* handle aborts by dropping packet */
1643
1644 case XDP_DROP:
1645 rxq->stats[RX_XDP_DROP]++;
1646 xdp_err:
1647 ret = FEC_ENET_XDP_CONSUMED;
1648 page = virt_to_head_page(xdp->data);
1649 page_pool_put_page(rxq->page_pool, page, sync, true);
1650 if (act != XDP_DROP)
1651 trace_xdp_exception(fep->netdev, prog, act);
1652 break;
1653 }
1654
1655 return ret;
1656 }
1657
1658 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1659 * When we update through the ring, if the next incoming buffer has
1660 * not been given to the system, we just set the empty indicator,
1661 * effectively tossing the packet.
1662 */
1663 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1664 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1665 {
1666 struct fec_enet_private *fep = netdev_priv(ndev);
1667 struct fec_enet_priv_rx_q *rxq;
1668 struct bufdesc *bdp;
1669 unsigned short status;
1670 struct sk_buff *skb;
1671 ushort pkt_len;
1672 __u8 *data;
1673 int pkt_received = 0;
1674 struct bufdesc_ex *ebdp = NULL;
1675 bool vlan_packet_rcvd = false;
1676 u16 vlan_tag;
1677 int index = 0;
1678 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1679 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1680 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1681 u32 data_start = FEC_ENET_XDP_HEADROOM;
1682 int cpu = smp_processor_id();
1683 struct xdp_buff xdp;
1684 struct page *page;
1685 __fec32 cbd_bufaddr;
1686 u32 sub_len = 4;
1687
1688 #if !defined(CONFIG_M5272)
1689 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1690 * FEC_RACC_SHIFT16 is set by default in the probe function.
1691 */
1692 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1693 data_start += 2;
1694 sub_len += 2;
1695 }
1696 #endif
1697
1698 #ifdef CONFIG_M532x
1699 flush_cache_all();
1700 #endif
1701 rxq = fep->rx_queue[queue_id];
1702
1703 /* First, grab all of the stats for the incoming packet.
1704 * These get messed up if we get called due to a busy condition.
1705 */
1706 bdp = rxq->bd.cur;
1707 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1708
1709 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1710
1711 if (pkt_received >= budget)
1712 break;
1713 pkt_received++;
1714
1715 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1716
1717 /* Check for errors. */
1718 status ^= BD_ENET_RX_LAST;
1719 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1720 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1721 BD_ENET_RX_CL)) {
1722 ndev->stats.rx_errors++;
1723 if (status & BD_ENET_RX_OV) {
1724 /* FIFO overrun */
1725 ndev->stats.rx_fifo_errors++;
1726 goto rx_processing_done;
1727 }
1728 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1729 | BD_ENET_RX_LAST)) {
1730 /* Frame too long or too short. */
1731 ndev->stats.rx_length_errors++;
1732 if (status & BD_ENET_RX_LAST)
1733 netdev_err(ndev, "rcv is not +last\n");
1734 }
1735 if (status & BD_ENET_RX_CR) /* CRC Error */
1736 ndev->stats.rx_crc_errors++;
1737 /* Report late collisions as a frame error. */
1738 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1739 ndev->stats.rx_frame_errors++;
1740 goto rx_processing_done;
1741 }
1742
1743 /* Process the incoming frame. */
1744 ndev->stats.rx_packets++;
1745 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1746 ndev->stats.rx_bytes += pkt_len;
1747
1748 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1749 page = rxq->rx_skb_info[index].page;
1750 cbd_bufaddr = bdp->cbd_bufaddr;
1751 if (fec_enet_update_cbd(rxq, bdp, index)) {
1752 ndev->stats.rx_dropped++;
1753 goto rx_processing_done;
1754 }
1755
1756 dma_sync_single_for_cpu(&fep->pdev->dev,
1757 fec32_to_cpu(cbd_bufaddr),
1758 pkt_len,
1759 DMA_FROM_DEVICE);
1760 prefetch(page_address(page));
1761
1762 if (xdp_prog) {
1763 xdp_buff_clear_frags_flag(&xdp);
1764 /* subtract 16bit shift and FCS */
1765 xdp_prepare_buff(&xdp, page_address(page),
1766 data_start, pkt_len - sub_len, false);
1767 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1768 xdp_result |= ret;
1769 if (ret != FEC_ENET_XDP_PASS)
1770 goto rx_processing_done;
1771 }
1772
1773 /* The packet length includes FCS, but we don't want to
1774 * include that when passing upstream as it messes up
1775 * bridging applications.
1776 */
1777 skb = build_skb(page_address(page), PAGE_SIZE);
1778 if (unlikely(!skb)) {
1779 page_pool_recycle_direct(rxq->page_pool, page);
1780 ndev->stats.rx_dropped++;
1781
1782 netdev_err_once(ndev, "build_skb failed!\n");
1783 goto rx_processing_done;
1784 }
1785
1786 skb_reserve(skb, data_start);
1787 skb_put(skb, pkt_len - sub_len);
1788 skb_mark_for_recycle(skb);
1789
1790 if (unlikely(need_swap)) {
1791 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1792 swap_buffer(data, pkt_len);
1793 }
1794 data = skb->data;
1795
1796 /* Extract the enhanced buffer descriptor */
1797 ebdp = NULL;
1798 if (fep->bufdesc_ex)
1799 ebdp = (struct bufdesc_ex *)bdp;
1800
1801 /* If this is a VLAN packet remove the VLAN Tag */
1802 vlan_packet_rcvd = false;
1803 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1804 fep->bufdesc_ex &&
1805 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1806 /* Push and remove the vlan tag */
1807 struct vlan_hdr *vlan_header =
1808 (struct vlan_hdr *) (data + ETH_HLEN);
1809 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1810
1811 vlan_packet_rcvd = true;
1812
1813 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1814 skb_pull(skb, VLAN_HLEN);
1815 }
1816
1817 skb->protocol = eth_type_trans(skb, ndev);
1818
1819 /* Get receive timestamp from the skb */
1820 if (fep->hwts_rx_en && fep->bufdesc_ex)
1821 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1822 skb_hwtstamps(skb));
1823
1824 if (fep->bufdesc_ex &&
1825 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1826 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1827 /* don't check it */
1828 skb->ip_summed = CHECKSUM_UNNECESSARY;
1829 } else {
1830 skb_checksum_none_assert(skb);
1831 }
1832 }
1833
1834 /* Handle received VLAN packets */
1835 if (vlan_packet_rcvd)
1836 __vlan_hwaccel_put_tag(skb,
1837 htons(ETH_P_8021Q),
1838 vlan_tag);
1839
1840 skb_record_rx_queue(skb, queue_id);
1841 napi_gro_receive(&fep->napi, skb);
1842
1843 rx_processing_done:
1844 /* Clear the status flags for this buffer */
1845 status &= ~BD_ENET_RX_STATS;
1846
1847 /* Mark the buffer empty */
1848 status |= BD_ENET_RX_EMPTY;
1849
1850 if (fep->bufdesc_ex) {
1851 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1852
1853 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1854 ebdp->cbd_prot = 0;
1855 ebdp->cbd_bdu = 0;
1856 }
1857 /* Make sure the updates to rest of the descriptor are
1858 * performed before transferring ownership.
1859 */
1860 wmb();
1861 bdp->cbd_sc = cpu_to_fec16(status);
1862
1863 /* Update BD pointer to next entry */
1864 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1865
1866 /* Doing this here will keep the FEC running while we process
1867 * incoming frames. On a heavily loaded network, we should be
1868 * able to keep up at the expense of system resources.
1869 */
1870 writel(0, rxq->bd.reg_desc_active);
1871 }
1872 rxq->bd.cur = bdp;
1873
1874 if (xdp_result & FEC_ENET_XDP_REDIR)
1875 xdp_do_flush_map();
1876
1877 return pkt_received;
1878 }
1879
fec_enet_rx(struct net_device * ndev,int budget)1880 static int fec_enet_rx(struct net_device *ndev, int budget)
1881 {
1882 struct fec_enet_private *fep = netdev_priv(ndev);
1883 int i, done = 0;
1884
1885 /* Make sure that AVB queues are processed first. */
1886 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1887 done += fec_enet_rx_queue(ndev, budget - done, i);
1888
1889 return done;
1890 }
1891
fec_enet_collect_events(struct fec_enet_private * fep)1892 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1893 {
1894 uint int_events;
1895
1896 int_events = readl(fep->hwp + FEC_IEVENT);
1897
1898 /* Don't clear MDIO events, we poll for those */
1899 int_events &= ~FEC_ENET_MII;
1900
1901 writel(int_events, fep->hwp + FEC_IEVENT);
1902
1903 return int_events != 0;
1904 }
1905
1906 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1907 fec_enet_interrupt(int irq, void *dev_id)
1908 {
1909 struct net_device *ndev = dev_id;
1910 struct fec_enet_private *fep = netdev_priv(ndev);
1911 irqreturn_t ret = IRQ_NONE;
1912
1913 if (fec_enet_collect_events(fep) && fep->link) {
1914 ret = IRQ_HANDLED;
1915
1916 if (napi_schedule_prep(&fep->napi)) {
1917 /* Disable interrupts */
1918 writel(0, fep->hwp + FEC_IMASK);
1919 __napi_schedule(&fep->napi);
1920 }
1921 }
1922
1923 return ret;
1924 }
1925
fec_enet_rx_napi(struct napi_struct * napi,int budget)1926 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1927 {
1928 struct net_device *ndev = napi->dev;
1929 struct fec_enet_private *fep = netdev_priv(ndev);
1930 int done = 0;
1931
1932 do {
1933 done += fec_enet_rx(ndev, budget - done);
1934 fec_enet_tx(ndev, budget);
1935 } while ((done < budget) && fec_enet_collect_events(fep));
1936
1937 if (done < budget) {
1938 napi_complete_done(napi, done);
1939 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1940 }
1941
1942 return done;
1943 }
1944
1945 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1946 static int fec_get_mac(struct net_device *ndev)
1947 {
1948 struct fec_enet_private *fep = netdev_priv(ndev);
1949 unsigned char *iap, tmpaddr[ETH_ALEN];
1950 int ret;
1951
1952 /*
1953 * try to get mac address in following order:
1954 *
1955 * 1) module parameter via kernel command line in form
1956 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1957 */
1958 iap = macaddr;
1959
1960 /*
1961 * 2) from device tree data
1962 */
1963 if (!is_valid_ether_addr(iap)) {
1964 struct device_node *np = fep->pdev->dev.of_node;
1965 if (np) {
1966 ret = of_get_mac_address(np, tmpaddr);
1967 if (!ret)
1968 iap = tmpaddr;
1969 else if (ret == -EPROBE_DEFER)
1970 return ret;
1971 }
1972 }
1973
1974 /*
1975 * 3) from flash or fuse (via platform data)
1976 */
1977 if (!is_valid_ether_addr(iap)) {
1978 #ifdef CONFIG_M5272
1979 if (FEC_FLASHMAC)
1980 iap = (unsigned char *)FEC_FLASHMAC;
1981 #else
1982 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1983
1984 if (pdata)
1985 iap = (unsigned char *)&pdata->mac;
1986 #endif
1987 }
1988
1989 /*
1990 * 4) FEC mac registers set by bootloader
1991 */
1992 if (!is_valid_ether_addr(iap)) {
1993 *((__be32 *) &tmpaddr[0]) =
1994 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1995 *((__be16 *) &tmpaddr[4]) =
1996 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1997 iap = &tmpaddr[0];
1998 }
1999
2000 /*
2001 * 5) random mac address
2002 */
2003 if (!is_valid_ether_addr(iap)) {
2004 /* Report it and use a random ethernet address instead */
2005 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2006 eth_hw_addr_random(ndev);
2007 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2008 ndev->dev_addr);
2009 return 0;
2010 }
2011
2012 /* Adjust MAC if using macaddr */
2013 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2014
2015 return 0;
2016 }
2017
2018 /* ------------------------------------------------------------------------- */
2019
2020 /*
2021 * Phy section
2022 */
fec_enet_adjust_link(struct net_device * ndev)2023 static void fec_enet_adjust_link(struct net_device *ndev)
2024 {
2025 struct fec_enet_private *fep = netdev_priv(ndev);
2026 struct phy_device *phy_dev = ndev->phydev;
2027 int status_change = 0;
2028
2029 /*
2030 * If the netdev is down, or is going down, we're not interested
2031 * in link state events, so just mark our idea of the link as down
2032 * and ignore the event.
2033 */
2034 if (!netif_running(ndev) || !netif_device_present(ndev)) {
2035 fep->link = 0;
2036 } else if (phy_dev->link) {
2037 if (!fep->link) {
2038 fep->link = phy_dev->link;
2039 status_change = 1;
2040 }
2041
2042 if (fep->full_duplex != phy_dev->duplex) {
2043 fep->full_duplex = phy_dev->duplex;
2044 status_change = 1;
2045 }
2046
2047 if (phy_dev->speed != fep->speed) {
2048 fep->speed = phy_dev->speed;
2049 status_change = 1;
2050 }
2051
2052 /* if any of the above changed restart the FEC */
2053 if (status_change) {
2054 netif_stop_queue(ndev);
2055 napi_disable(&fep->napi);
2056 netif_tx_lock_bh(ndev);
2057 fec_restart(ndev);
2058 netif_tx_wake_all_queues(ndev);
2059 netif_tx_unlock_bh(ndev);
2060 napi_enable(&fep->napi);
2061 }
2062 } else {
2063 if (fep->link) {
2064 netif_stop_queue(ndev);
2065 napi_disable(&fep->napi);
2066 netif_tx_lock_bh(ndev);
2067 fec_stop(ndev);
2068 netif_tx_unlock_bh(ndev);
2069 napi_enable(&fep->napi);
2070 fep->link = phy_dev->link;
2071 status_change = 1;
2072 }
2073 }
2074
2075 if (status_change)
2076 phy_print_status(phy_dev);
2077 }
2078
fec_enet_mdio_wait(struct fec_enet_private * fep)2079 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2080 {
2081 uint ievent;
2082 int ret;
2083
2084 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2085 ievent & FEC_ENET_MII, 2, 30000);
2086
2087 if (!ret)
2088 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2089
2090 return ret;
2091 }
2092
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2093 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2094 {
2095 struct fec_enet_private *fep = bus->priv;
2096 struct device *dev = &fep->pdev->dev;
2097 int ret = 0, frame_start, frame_addr, frame_op;
2098
2099 ret = pm_runtime_resume_and_get(dev);
2100 if (ret < 0)
2101 return ret;
2102
2103 /* C22 read */
2104 frame_op = FEC_MMFR_OP_READ;
2105 frame_start = FEC_MMFR_ST;
2106 frame_addr = regnum;
2107
2108 /* start a read op */
2109 writel(frame_start | frame_op |
2110 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2111 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2112
2113 /* wait for end of transfer */
2114 ret = fec_enet_mdio_wait(fep);
2115 if (ret) {
2116 netdev_err(fep->netdev, "MDIO read timeout\n");
2117 goto out;
2118 }
2119
2120 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2121
2122 out:
2123 pm_runtime_mark_last_busy(dev);
2124 pm_runtime_put_autosuspend(dev);
2125
2126 return ret;
2127 }
2128
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2129 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2130 int devad, int regnum)
2131 {
2132 struct fec_enet_private *fep = bus->priv;
2133 struct device *dev = &fep->pdev->dev;
2134 int ret = 0, frame_start, frame_op;
2135
2136 ret = pm_runtime_resume_and_get(dev);
2137 if (ret < 0)
2138 return ret;
2139
2140 frame_start = FEC_MMFR_ST_C45;
2141
2142 /* write address */
2143 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2144 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2145 FEC_MMFR_TA | (regnum & 0xFFFF),
2146 fep->hwp + FEC_MII_DATA);
2147
2148 /* wait for end of transfer */
2149 ret = fec_enet_mdio_wait(fep);
2150 if (ret) {
2151 netdev_err(fep->netdev, "MDIO address write timeout\n");
2152 goto out;
2153 }
2154
2155 frame_op = FEC_MMFR_OP_READ_C45;
2156
2157 /* start a read op */
2158 writel(frame_start | frame_op |
2159 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2160 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2161
2162 /* wait for end of transfer */
2163 ret = fec_enet_mdio_wait(fep);
2164 if (ret) {
2165 netdev_err(fep->netdev, "MDIO read timeout\n");
2166 goto out;
2167 }
2168
2169 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2170
2171 out:
2172 pm_runtime_mark_last_busy(dev);
2173 pm_runtime_put_autosuspend(dev);
2174
2175 return ret;
2176 }
2177
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2178 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2179 u16 value)
2180 {
2181 struct fec_enet_private *fep = bus->priv;
2182 struct device *dev = &fep->pdev->dev;
2183 int ret, frame_start, frame_addr;
2184
2185 ret = pm_runtime_resume_and_get(dev);
2186 if (ret < 0)
2187 return ret;
2188
2189 /* C22 write */
2190 frame_start = FEC_MMFR_ST;
2191 frame_addr = regnum;
2192
2193 /* start a write op */
2194 writel(frame_start | FEC_MMFR_OP_WRITE |
2195 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2196 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2197 fep->hwp + FEC_MII_DATA);
2198
2199 /* wait for end of transfer */
2200 ret = fec_enet_mdio_wait(fep);
2201 if (ret)
2202 netdev_err(fep->netdev, "MDIO write timeout\n");
2203
2204 pm_runtime_mark_last_busy(dev);
2205 pm_runtime_put_autosuspend(dev);
2206
2207 return ret;
2208 }
2209
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2210 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2211 int devad, int regnum, u16 value)
2212 {
2213 struct fec_enet_private *fep = bus->priv;
2214 struct device *dev = &fep->pdev->dev;
2215 int ret, frame_start;
2216
2217 ret = pm_runtime_resume_and_get(dev);
2218 if (ret < 0)
2219 return ret;
2220
2221 frame_start = FEC_MMFR_ST_C45;
2222
2223 /* write address */
2224 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2225 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2226 FEC_MMFR_TA | (regnum & 0xFFFF),
2227 fep->hwp + FEC_MII_DATA);
2228
2229 /* wait for end of transfer */
2230 ret = fec_enet_mdio_wait(fep);
2231 if (ret) {
2232 netdev_err(fep->netdev, "MDIO address write timeout\n");
2233 goto out;
2234 }
2235
2236 /* start a write op */
2237 writel(frame_start | FEC_MMFR_OP_WRITE |
2238 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2239 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2240 fep->hwp + FEC_MII_DATA);
2241
2242 /* wait for end of transfer */
2243 ret = fec_enet_mdio_wait(fep);
2244 if (ret)
2245 netdev_err(fep->netdev, "MDIO write timeout\n");
2246
2247 out:
2248 pm_runtime_mark_last_busy(dev);
2249 pm_runtime_put_autosuspend(dev);
2250
2251 return ret;
2252 }
2253
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2254 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2255 {
2256 struct fec_enet_private *fep = netdev_priv(ndev);
2257 struct phy_device *phy_dev = ndev->phydev;
2258
2259 if (phy_dev) {
2260 phy_reset_after_clk_enable(phy_dev);
2261 } else if (fep->phy_node) {
2262 /*
2263 * If the PHY still is not bound to the MAC, but there is
2264 * OF PHY node and a matching PHY device instance already,
2265 * use the OF PHY node to obtain the PHY device instance,
2266 * and then use that PHY device instance when triggering
2267 * the PHY reset.
2268 */
2269 phy_dev = of_phy_find_device(fep->phy_node);
2270 phy_reset_after_clk_enable(phy_dev);
2271 put_device(&phy_dev->mdio.dev);
2272 }
2273 }
2274
fec_enet_clk_enable(struct net_device * ndev,bool enable)2275 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2276 {
2277 struct fec_enet_private *fep = netdev_priv(ndev);
2278 int ret;
2279
2280 if (enable) {
2281 ret = clk_prepare_enable(fep->clk_enet_out);
2282 if (ret)
2283 return ret;
2284
2285 if (fep->clk_ptp) {
2286 mutex_lock(&fep->ptp_clk_mutex);
2287 ret = clk_prepare_enable(fep->clk_ptp);
2288 if (ret) {
2289 mutex_unlock(&fep->ptp_clk_mutex);
2290 goto failed_clk_ptp;
2291 } else {
2292 fep->ptp_clk_on = true;
2293 }
2294 mutex_unlock(&fep->ptp_clk_mutex);
2295 }
2296
2297 ret = clk_prepare_enable(fep->clk_ref);
2298 if (ret)
2299 goto failed_clk_ref;
2300
2301 ret = clk_prepare_enable(fep->clk_2x_txclk);
2302 if (ret)
2303 goto failed_clk_2x_txclk;
2304
2305 fec_enet_phy_reset_after_clk_enable(ndev);
2306 } else {
2307 clk_disable_unprepare(fep->clk_enet_out);
2308 if (fep->clk_ptp) {
2309 mutex_lock(&fep->ptp_clk_mutex);
2310 clk_disable_unprepare(fep->clk_ptp);
2311 fep->ptp_clk_on = false;
2312 mutex_unlock(&fep->ptp_clk_mutex);
2313 }
2314 clk_disable_unprepare(fep->clk_ref);
2315 clk_disable_unprepare(fep->clk_2x_txclk);
2316 }
2317
2318 return 0;
2319
2320 failed_clk_2x_txclk:
2321 if (fep->clk_ref)
2322 clk_disable_unprepare(fep->clk_ref);
2323 failed_clk_ref:
2324 if (fep->clk_ptp) {
2325 mutex_lock(&fep->ptp_clk_mutex);
2326 clk_disable_unprepare(fep->clk_ptp);
2327 fep->ptp_clk_on = false;
2328 mutex_unlock(&fep->ptp_clk_mutex);
2329 }
2330 failed_clk_ptp:
2331 clk_disable_unprepare(fep->clk_enet_out);
2332
2333 return ret;
2334 }
2335
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2336 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2337 struct device_node *np)
2338 {
2339 u32 rgmii_tx_delay, rgmii_rx_delay;
2340
2341 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2342 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2343 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2344 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2345 return -EINVAL;
2346 } else if (rgmii_tx_delay == 2000) {
2347 fep->rgmii_txc_dly = true;
2348 }
2349 }
2350
2351 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2352 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2353 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2354 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2355 return -EINVAL;
2356 } else if (rgmii_rx_delay == 2000) {
2357 fep->rgmii_rxc_dly = true;
2358 }
2359 }
2360
2361 return 0;
2362 }
2363
fec_enet_mii_probe(struct net_device * ndev)2364 static int fec_enet_mii_probe(struct net_device *ndev)
2365 {
2366 struct fec_enet_private *fep = netdev_priv(ndev);
2367 struct phy_device *phy_dev = NULL;
2368 char mdio_bus_id[MII_BUS_ID_SIZE];
2369 char phy_name[MII_BUS_ID_SIZE + 3];
2370 int phy_id;
2371 int dev_id = fep->dev_id;
2372
2373 if (fep->phy_node) {
2374 phy_dev = of_phy_connect(ndev, fep->phy_node,
2375 &fec_enet_adjust_link, 0,
2376 fep->phy_interface);
2377 if (!phy_dev) {
2378 netdev_err(ndev, "Unable to connect to phy\n");
2379 return -ENODEV;
2380 }
2381 } else {
2382 /* check for attached phy */
2383 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2384 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2385 continue;
2386 if (dev_id--)
2387 continue;
2388 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2389 break;
2390 }
2391
2392 if (phy_id >= PHY_MAX_ADDR) {
2393 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2394 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2395 phy_id = 0;
2396 }
2397
2398 snprintf(phy_name, sizeof(phy_name),
2399 PHY_ID_FMT, mdio_bus_id, phy_id);
2400 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2401 fep->phy_interface);
2402 }
2403
2404 if (IS_ERR(phy_dev)) {
2405 netdev_err(ndev, "could not attach to PHY\n");
2406 return PTR_ERR(phy_dev);
2407 }
2408
2409 /* mask with MAC supported features */
2410 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2411 phy_set_max_speed(phy_dev, 1000);
2412 phy_remove_link_mode(phy_dev,
2413 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2414 #if !defined(CONFIG_M5272)
2415 phy_support_sym_pause(phy_dev);
2416 #endif
2417 }
2418 else
2419 phy_set_max_speed(phy_dev, 100);
2420
2421 fep->link = 0;
2422 fep->full_duplex = 0;
2423
2424 phy_attached_info(phy_dev);
2425
2426 return 0;
2427 }
2428
fec_enet_mii_init(struct platform_device * pdev)2429 static int fec_enet_mii_init(struct platform_device *pdev)
2430 {
2431 static struct mii_bus *fec0_mii_bus;
2432 struct net_device *ndev = platform_get_drvdata(pdev);
2433 struct fec_enet_private *fep = netdev_priv(ndev);
2434 bool suppress_preamble = false;
2435 struct phy_device *phydev;
2436 struct device_node *node;
2437 int err = -ENXIO;
2438 u32 mii_speed, holdtime;
2439 u32 bus_freq;
2440 int addr;
2441
2442 /*
2443 * The i.MX28 dual fec interfaces are not equal.
2444 * Here are the differences:
2445 *
2446 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2447 * - fec0 acts as the 1588 time master while fec1 is slave
2448 * - external phys can only be configured by fec0
2449 *
2450 * That is to say fec1 can not work independently. It only works
2451 * when fec0 is working. The reason behind this design is that the
2452 * second interface is added primarily for Switch mode.
2453 *
2454 * Because of the last point above, both phys are attached on fec0
2455 * mdio interface in board design, and need to be configured by
2456 * fec0 mii_bus.
2457 */
2458 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2459 /* fec1 uses fec0 mii_bus */
2460 if (mii_cnt && fec0_mii_bus) {
2461 fep->mii_bus = fec0_mii_bus;
2462 mii_cnt++;
2463 return 0;
2464 }
2465 return -ENOENT;
2466 }
2467
2468 bus_freq = 2500000; /* 2.5MHz by default */
2469 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2470 if (node) {
2471 of_property_read_u32(node, "clock-frequency", &bus_freq);
2472 suppress_preamble = of_property_read_bool(node,
2473 "suppress-preamble");
2474 }
2475
2476 /*
2477 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2478 *
2479 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2480 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2481 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2482 * document.
2483 */
2484 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2485 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2486 mii_speed--;
2487 if (mii_speed > 63) {
2488 dev_err(&pdev->dev,
2489 "fec clock (%lu) too fast to get right mii speed\n",
2490 clk_get_rate(fep->clk_ipg));
2491 err = -EINVAL;
2492 goto err_out;
2493 }
2494
2495 /*
2496 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2497 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2498 * versions are RAZ there, so just ignore the difference and write the
2499 * register always.
2500 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2501 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2502 * output.
2503 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2504 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2505 * holdtime cannot result in a value greater than 3.
2506 */
2507 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2508
2509 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2510
2511 if (suppress_preamble)
2512 fep->phy_speed |= BIT(7);
2513
2514 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2515 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2516 * MII event generation condition:
2517 * - writing MSCR:
2518 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2519 * mscr_reg_data_in[7:0] != 0
2520 * - writing MMFR:
2521 * - mscr[7:0]_not_zero
2522 */
2523 writel(0, fep->hwp + FEC_MII_DATA);
2524 }
2525
2526 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2527
2528 /* Clear any pending transaction complete indication */
2529 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2530
2531 fep->mii_bus = mdiobus_alloc();
2532 if (fep->mii_bus == NULL) {
2533 err = -ENOMEM;
2534 goto err_out;
2535 }
2536
2537 fep->mii_bus->name = "fec_enet_mii_bus";
2538 fep->mii_bus->read = fec_enet_mdio_read_c22;
2539 fep->mii_bus->write = fec_enet_mdio_write_c22;
2540 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2541 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2542 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2543 }
2544 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2545 pdev->name, fep->dev_id + 1);
2546 fep->mii_bus->priv = fep;
2547 fep->mii_bus->parent = &pdev->dev;
2548
2549 err = of_mdiobus_register(fep->mii_bus, node);
2550 if (err)
2551 goto err_out_free_mdiobus;
2552 of_node_put(node);
2553
2554 /* find all the PHY devices on the bus and set mac_managed_pm to true */
2555 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2556 phydev = mdiobus_get_phy(fep->mii_bus, addr);
2557 if (phydev)
2558 phydev->mac_managed_pm = true;
2559 }
2560
2561 mii_cnt++;
2562
2563 /* save fec0 mii_bus */
2564 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2565 fec0_mii_bus = fep->mii_bus;
2566
2567 return 0;
2568
2569 err_out_free_mdiobus:
2570 mdiobus_free(fep->mii_bus);
2571 err_out:
2572 of_node_put(node);
2573 return err;
2574 }
2575
fec_enet_mii_remove(struct fec_enet_private * fep)2576 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2577 {
2578 if (--mii_cnt == 0) {
2579 mdiobus_unregister(fep->mii_bus);
2580 mdiobus_free(fep->mii_bus);
2581 }
2582 }
2583
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2584 static void fec_enet_get_drvinfo(struct net_device *ndev,
2585 struct ethtool_drvinfo *info)
2586 {
2587 struct fec_enet_private *fep = netdev_priv(ndev);
2588
2589 strscpy(info->driver, fep->pdev->dev.driver->name,
2590 sizeof(info->driver));
2591 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2592 }
2593
fec_enet_get_regs_len(struct net_device * ndev)2594 static int fec_enet_get_regs_len(struct net_device *ndev)
2595 {
2596 struct fec_enet_private *fep = netdev_priv(ndev);
2597 struct resource *r;
2598 int s = 0;
2599
2600 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2601 if (r)
2602 s = resource_size(r);
2603
2604 return s;
2605 }
2606
2607 /* List of registers that can be safety be read to dump them with ethtool */
2608 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2609 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2610 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2611 static __u32 fec_enet_register_version = 2;
2612 static u32 fec_enet_register_offset[] = {
2613 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2614 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2615 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2616 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2617 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2618 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2619 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2620 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2621 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2622 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2623 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2624 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2625 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2626 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2627 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2628 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2629 RMON_T_P_GTE2048, RMON_T_OCTETS,
2630 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2631 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2632 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2633 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2634 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2635 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2636 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2637 RMON_R_P_GTE2048, RMON_R_OCTETS,
2638 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2639 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2640 };
2641 /* for i.MX6ul */
2642 static u32 fec_enet_register_offset_6ul[] = {
2643 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2644 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2645 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2646 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2647 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2648 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2649 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2650 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2651 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2652 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2653 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2654 RMON_T_P_GTE2048, RMON_T_OCTETS,
2655 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2656 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2657 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2658 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2659 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2660 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2661 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2662 RMON_R_P_GTE2048, RMON_R_OCTETS,
2663 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2664 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2665 };
2666 #else
2667 static __u32 fec_enet_register_version = 1;
2668 static u32 fec_enet_register_offset[] = {
2669 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2670 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2671 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2672 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2673 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2674 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2675 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2676 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2677 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2678 };
2679 #endif
2680
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2681 static void fec_enet_get_regs(struct net_device *ndev,
2682 struct ethtool_regs *regs, void *regbuf)
2683 {
2684 struct fec_enet_private *fep = netdev_priv(ndev);
2685 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2686 struct device *dev = &fep->pdev->dev;
2687 u32 *buf = (u32 *)regbuf;
2688 u32 i, off;
2689 int ret;
2690 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2691 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2692 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2693 u32 *reg_list;
2694 u32 reg_cnt;
2695
2696 if (!of_machine_is_compatible("fsl,imx6ul")) {
2697 reg_list = fec_enet_register_offset;
2698 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2699 } else {
2700 reg_list = fec_enet_register_offset_6ul;
2701 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2702 }
2703 #else
2704 /* coldfire */
2705 static u32 *reg_list = fec_enet_register_offset;
2706 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2707 #endif
2708 ret = pm_runtime_resume_and_get(dev);
2709 if (ret < 0)
2710 return;
2711
2712 regs->version = fec_enet_register_version;
2713
2714 memset(buf, 0, regs->len);
2715
2716 for (i = 0; i < reg_cnt; i++) {
2717 off = reg_list[i];
2718
2719 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2720 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2721 continue;
2722
2723 off >>= 2;
2724 buf[off] = readl(&theregs[off]);
2725 }
2726
2727 pm_runtime_mark_last_busy(dev);
2728 pm_runtime_put_autosuspend(dev);
2729 }
2730
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2731 static int fec_enet_get_ts_info(struct net_device *ndev,
2732 struct ethtool_ts_info *info)
2733 {
2734 struct fec_enet_private *fep = netdev_priv(ndev);
2735
2736 if (fep->bufdesc_ex) {
2737
2738 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2739 SOF_TIMESTAMPING_RX_SOFTWARE |
2740 SOF_TIMESTAMPING_SOFTWARE |
2741 SOF_TIMESTAMPING_TX_HARDWARE |
2742 SOF_TIMESTAMPING_RX_HARDWARE |
2743 SOF_TIMESTAMPING_RAW_HARDWARE;
2744 if (fep->ptp_clock)
2745 info->phc_index = ptp_clock_index(fep->ptp_clock);
2746 else
2747 info->phc_index = -1;
2748
2749 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2750 (1 << HWTSTAMP_TX_ON);
2751
2752 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2753 (1 << HWTSTAMP_FILTER_ALL);
2754 return 0;
2755 } else {
2756 return ethtool_op_get_ts_info(ndev, info);
2757 }
2758 }
2759
2760 #if !defined(CONFIG_M5272)
2761
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2762 static void fec_enet_get_pauseparam(struct net_device *ndev,
2763 struct ethtool_pauseparam *pause)
2764 {
2765 struct fec_enet_private *fep = netdev_priv(ndev);
2766
2767 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2768 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2769 pause->rx_pause = pause->tx_pause;
2770 }
2771
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2772 static int fec_enet_set_pauseparam(struct net_device *ndev,
2773 struct ethtool_pauseparam *pause)
2774 {
2775 struct fec_enet_private *fep = netdev_priv(ndev);
2776
2777 if (!ndev->phydev)
2778 return -ENODEV;
2779
2780 if (pause->tx_pause != pause->rx_pause) {
2781 netdev_info(ndev,
2782 "hardware only support enable/disable both tx and rx");
2783 return -EINVAL;
2784 }
2785
2786 fep->pause_flag = 0;
2787
2788 /* tx pause must be same as rx pause */
2789 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2790 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2791
2792 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2793 pause->autoneg);
2794
2795 if (pause->autoneg) {
2796 if (netif_running(ndev))
2797 fec_stop(ndev);
2798 phy_start_aneg(ndev->phydev);
2799 }
2800 if (netif_running(ndev)) {
2801 napi_disable(&fep->napi);
2802 netif_tx_lock_bh(ndev);
2803 fec_restart(ndev);
2804 netif_tx_wake_all_queues(ndev);
2805 netif_tx_unlock_bh(ndev);
2806 napi_enable(&fep->napi);
2807 }
2808
2809 return 0;
2810 }
2811
2812 static const struct fec_stat {
2813 char name[ETH_GSTRING_LEN];
2814 u16 offset;
2815 } fec_stats[] = {
2816 /* RMON TX */
2817 { "tx_dropped", RMON_T_DROP },
2818 { "tx_packets", RMON_T_PACKETS },
2819 { "tx_broadcast", RMON_T_BC_PKT },
2820 { "tx_multicast", RMON_T_MC_PKT },
2821 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2822 { "tx_undersize", RMON_T_UNDERSIZE },
2823 { "tx_oversize", RMON_T_OVERSIZE },
2824 { "tx_fragment", RMON_T_FRAG },
2825 { "tx_jabber", RMON_T_JAB },
2826 { "tx_collision", RMON_T_COL },
2827 { "tx_64byte", RMON_T_P64 },
2828 { "tx_65to127byte", RMON_T_P65TO127 },
2829 { "tx_128to255byte", RMON_T_P128TO255 },
2830 { "tx_256to511byte", RMON_T_P256TO511 },
2831 { "tx_512to1023byte", RMON_T_P512TO1023 },
2832 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2833 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2834 { "tx_octets", RMON_T_OCTETS },
2835
2836 /* IEEE TX */
2837 { "IEEE_tx_drop", IEEE_T_DROP },
2838 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2839 { "IEEE_tx_1col", IEEE_T_1COL },
2840 { "IEEE_tx_mcol", IEEE_T_MCOL },
2841 { "IEEE_tx_def", IEEE_T_DEF },
2842 { "IEEE_tx_lcol", IEEE_T_LCOL },
2843 { "IEEE_tx_excol", IEEE_T_EXCOL },
2844 { "IEEE_tx_macerr", IEEE_T_MACERR },
2845 { "IEEE_tx_cserr", IEEE_T_CSERR },
2846 { "IEEE_tx_sqe", IEEE_T_SQE },
2847 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2848 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2849
2850 /* RMON RX */
2851 { "rx_packets", RMON_R_PACKETS },
2852 { "rx_broadcast", RMON_R_BC_PKT },
2853 { "rx_multicast", RMON_R_MC_PKT },
2854 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2855 { "rx_undersize", RMON_R_UNDERSIZE },
2856 { "rx_oversize", RMON_R_OVERSIZE },
2857 { "rx_fragment", RMON_R_FRAG },
2858 { "rx_jabber", RMON_R_JAB },
2859 { "rx_64byte", RMON_R_P64 },
2860 { "rx_65to127byte", RMON_R_P65TO127 },
2861 { "rx_128to255byte", RMON_R_P128TO255 },
2862 { "rx_256to511byte", RMON_R_P256TO511 },
2863 { "rx_512to1023byte", RMON_R_P512TO1023 },
2864 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2865 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2866 { "rx_octets", RMON_R_OCTETS },
2867
2868 /* IEEE RX */
2869 { "IEEE_rx_drop", IEEE_R_DROP },
2870 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2871 { "IEEE_rx_crc", IEEE_R_CRC },
2872 { "IEEE_rx_align", IEEE_R_ALIGN },
2873 { "IEEE_rx_macerr", IEEE_R_MACERR },
2874 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2875 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2876 };
2877
2878 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2879
2880 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2881 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2882 "rx_xdp_pass", /* RX_XDP_PASS, */
2883 "rx_xdp_drop", /* RX_XDP_DROP, */
2884 "rx_xdp_tx", /* RX_XDP_TX, */
2885 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2886 "tx_xdp_xmit", /* TX_XDP_XMIT, */
2887 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
2888 };
2889
fec_enet_update_ethtool_stats(struct net_device * dev)2890 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2891 {
2892 struct fec_enet_private *fep = netdev_priv(dev);
2893 int i;
2894
2895 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2896 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2897 }
2898
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2899 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2900 {
2901 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2902 struct fec_enet_priv_rx_q *rxq;
2903 int i, j;
2904
2905 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2906 rxq = fep->rx_queue[i];
2907
2908 for (j = 0; j < XDP_STATS_TOTAL; j++)
2909 xdp_stats[j] += rxq->stats[j];
2910 }
2911
2912 memcpy(data, xdp_stats, sizeof(xdp_stats));
2913 }
2914
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)2915 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2916 {
2917 #ifdef CONFIG_PAGE_POOL_STATS
2918 struct page_pool_stats stats = {};
2919 struct fec_enet_priv_rx_q *rxq;
2920 int i;
2921
2922 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2923 rxq = fep->rx_queue[i];
2924
2925 if (!rxq->page_pool)
2926 continue;
2927
2928 page_pool_get_stats(rxq->page_pool, &stats);
2929 }
2930
2931 page_pool_ethtool_stats_get(data, &stats);
2932 #endif
2933 }
2934
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2935 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2936 struct ethtool_stats *stats, u64 *data)
2937 {
2938 struct fec_enet_private *fep = netdev_priv(dev);
2939
2940 if (netif_running(dev))
2941 fec_enet_update_ethtool_stats(dev);
2942
2943 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2944 data += FEC_STATS_SIZE / sizeof(u64);
2945
2946 fec_enet_get_xdp_stats(fep, data);
2947 data += XDP_STATS_TOTAL;
2948
2949 fec_enet_page_pool_stats(fep, data);
2950 }
2951
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2952 static void fec_enet_get_strings(struct net_device *netdev,
2953 u32 stringset, u8 *data)
2954 {
2955 int i;
2956 switch (stringset) {
2957 case ETH_SS_STATS:
2958 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2959 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2960 data += ETH_GSTRING_LEN;
2961 }
2962 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2963 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2964 data += ETH_GSTRING_LEN;
2965 }
2966 page_pool_ethtool_stats_get_strings(data);
2967
2968 break;
2969 case ETH_SS_TEST:
2970 net_selftest_get_strings(data);
2971 break;
2972 }
2973 }
2974
fec_enet_get_sset_count(struct net_device * dev,int sset)2975 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2976 {
2977 int count;
2978
2979 switch (sset) {
2980 case ETH_SS_STATS:
2981 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2982 count += page_pool_ethtool_stats_get_count();
2983 return count;
2984
2985 case ETH_SS_TEST:
2986 return net_selftest_get_count();
2987 default:
2988 return -EOPNOTSUPP;
2989 }
2990 }
2991
fec_enet_clear_ethtool_stats(struct net_device * dev)2992 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2993 {
2994 struct fec_enet_private *fep = netdev_priv(dev);
2995 struct fec_enet_priv_rx_q *rxq;
2996 int i, j;
2997
2998 /* Disable MIB statistics counters */
2999 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3000
3001 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3002 writel(0, fep->hwp + fec_stats[i].offset);
3003
3004 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3005 rxq = fep->rx_queue[i];
3006 for (j = 0; j < XDP_STATS_TOTAL; j++)
3007 rxq->stats[j] = 0;
3008 }
3009
3010 /* Don't disable MIB statistics counters */
3011 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3012 }
3013
3014 #else /* !defined(CONFIG_M5272) */
3015 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)3016 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3017 {
3018 }
3019
fec_enet_clear_ethtool_stats(struct net_device * dev)3020 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3021 {
3022 }
3023 #endif /* !defined(CONFIG_M5272) */
3024
3025 /* ITR clock source is enet system clock (clk_ahb).
3026 * TCTT unit is cycle_ns * 64 cycle
3027 * So, the ICTT value = X us / (cycle_ns * 64)
3028 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3029 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3030 {
3031 struct fec_enet_private *fep = netdev_priv(ndev);
3032
3033 return us * (fep->itr_clk_rate / 64000) / 1000;
3034 }
3035
3036 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3037 static void fec_enet_itr_coal_set(struct net_device *ndev)
3038 {
3039 struct fec_enet_private *fep = netdev_priv(ndev);
3040 int rx_itr, tx_itr;
3041
3042 /* Must be greater than zero to avoid unpredictable behavior */
3043 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3044 !fep->tx_time_itr || !fep->tx_pkts_itr)
3045 return;
3046
3047 /* Select enet system clock as Interrupt Coalescing
3048 * timer Clock Source
3049 */
3050 rx_itr = FEC_ITR_CLK_SEL;
3051 tx_itr = FEC_ITR_CLK_SEL;
3052
3053 /* set ICFT and ICTT */
3054 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3055 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3056 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3057 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3058
3059 rx_itr |= FEC_ITR_EN;
3060 tx_itr |= FEC_ITR_EN;
3061
3062 writel(tx_itr, fep->hwp + FEC_TXIC0);
3063 writel(rx_itr, fep->hwp + FEC_RXIC0);
3064 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3065 writel(tx_itr, fep->hwp + FEC_TXIC1);
3066 writel(rx_itr, fep->hwp + FEC_RXIC1);
3067 writel(tx_itr, fep->hwp + FEC_TXIC2);
3068 writel(rx_itr, fep->hwp + FEC_RXIC2);
3069 }
3070 }
3071
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3072 static int fec_enet_get_coalesce(struct net_device *ndev,
3073 struct ethtool_coalesce *ec,
3074 struct kernel_ethtool_coalesce *kernel_coal,
3075 struct netlink_ext_ack *extack)
3076 {
3077 struct fec_enet_private *fep = netdev_priv(ndev);
3078
3079 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3080 return -EOPNOTSUPP;
3081
3082 ec->rx_coalesce_usecs = fep->rx_time_itr;
3083 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3084
3085 ec->tx_coalesce_usecs = fep->tx_time_itr;
3086 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3087
3088 return 0;
3089 }
3090
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3091 static int fec_enet_set_coalesce(struct net_device *ndev,
3092 struct ethtool_coalesce *ec,
3093 struct kernel_ethtool_coalesce *kernel_coal,
3094 struct netlink_ext_ack *extack)
3095 {
3096 struct fec_enet_private *fep = netdev_priv(ndev);
3097 struct device *dev = &fep->pdev->dev;
3098 unsigned int cycle;
3099
3100 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3101 return -EOPNOTSUPP;
3102
3103 if (ec->rx_max_coalesced_frames > 255) {
3104 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3105 return -EINVAL;
3106 }
3107
3108 if (ec->tx_max_coalesced_frames > 255) {
3109 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3110 return -EINVAL;
3111 }
3112
3113 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3114 if (cycle > 0xFFFF) {
3115 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3116 return -EINVAL;
3117 }
3118
3119 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3120 if (cycle > 0xFFFF) {
3121 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3122 return -EINVAL;
3123 }
3124
3125 fep->rx_time_itr = ec->rx_coalesce_usecs;
3126 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3127
3128 fep->tx_time_itr = ec->tx_coalesce_usecs;
3129 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3130
3131 fec_enet_itr_coal_set(ndev);
3132
3133 return 0;
3134 }
3135
3136 /* LPI Sleep Ts count base on tx clk (clk_ref).
3137 * The lpi sleep cnt value = X us / (cycle_ns).
3138 */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)3139 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3140 {
3141 struct fec_enet_private *fep = netdev_priv(ndev);
3142
3143 return us * (fep->clk_ref_rate / 1000) / 1000;
3144 }
3145
fec_enet_eee_mode_set(struct net_device * ndev,bool enable)3146 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3147 {
3148 struct fec_enet_private *fep = netdev_priv(ndev);
3149 struct ethtool_eee *p = &fep->eee;
3150 unsigned int sleep_cycle, wake_cycle;
3151 int ret = 0;
3152
3153 if (enable) {
3154 ret = phy_init_eee(ndev->phydev, false);
3155 if (ret)
3156 return ret;
3157
3158 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3159 wake_cycle = sleep_cycle;
3160 } else {
3161 sleep_cycle = 0;
3162 wake_cycle = 0;
3163 }
3164
3165 p->tx_lpi_enabled = enable;
3166 p->eee_enabled = enable;
3167 p->eee_active = enable;
3168
3169 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3170 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3171
3172 return 0;
3173 }
3174
3175 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_eee * edata)3176 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3177 {
3178 struct fec_enet_private *fep = netdev_priv(ndev);
3179 struct ethtool_eee *p = &fep->eee;
3180
3181 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3182 return -EOPNOTSUPP;
3183
3184 if (!netif_running(ndev))
3185 return -ENETDOWN;
3186
3187 edata->eee_enabled = p->eee_enabled;
3188 edata->eee_active = p->eee_active;
3189 edata->tx_lpi_timer = p->tx_lpi_timer;
3190 edata->tx_lpi_enabled = p->tx_lpi_enabled;
3191
3192 return phy_ethtool_get_eee(ndev->phydev, edata);
3193 }
3194
3195 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_eee * edata)3196 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3197 {
3198 struct fec_enet_private *fep = netdev_priv(ndev);
3199 struct ethtool_eee *p = &fep->eee;
3200 int ret = 0;
3201
3202 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3203 return -EOPNOTSUPP;
3204
3205 if (!netif_running(ndev))
3206 return -ENETDOWN;
3207
3208 p->tx_lpi_timer = edata->tx_lpi_timer;
3209
3210 if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3211 !edata->tx_lpi_timer)
3212 ret = fec_enet_eee_mode_set(ndev, false);
3213 else
3214 ret = fec_enet_eee_mode_set(ndev, true);
3215
3216 if (ret)
3217 return ret;
3218
3219 return phy_ethtool_set_eee(ndev->phydev, edata);
3220 }
3221
3222 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3223 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3224 {
3225 struct fec_enet_private *fep = netdev_priv(ndev);
3226
3227 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3228 wol->supported = WAKE_MAGIC;
3229 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3230 } else {
3231 wol->supported = wol->wolopts = 0;
3232 }
3233 }
3234
3235 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3236 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3237 {
3238 struct fec_enet_private *fep = netdev_priv(ndev);
3239
3240 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3241 return -EINVAL;
3242
3243 if (wol->wolopts & ~WAKE_MAGIC)
3244 return -EINVAL;
3245
3246 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3247 if (device_may_wakeup(&ndev->dev))
3248 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3249 else
3250 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3251
3252 return 0;
3253 }
3254
3255 static const struct ethtool_ops fec_enet_ethtool_ops = {
3256 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3257 ETHTOOL_COALESCE_MAX_FRAMES,
3258 .get_drvinfo = fec_enet_get_drvinfo,
3259 .get_regs_len = fec_enet_get_regs_len,
3260 .get_regs = fec_enet_get_regs,
3261 .nway_reset = phy_ethtool_nway_reset,
3262 .get_link = ethtool_op_get_link,
3263 .get_coalesce = fec_enet_get_coalesce,
3264 .set_coalesce = fec_enet_set_coalesce,
3265 #ifndef CONFIG_M5272
3266 .get_pauseparam = fec_enet_get_pauseparam,
3267 .set_pauseparam = fec_enet_set_pauseparam,
3268 .get_strings = fec_enet_get_strings,
3269 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3270 .get_sset_count = fec_enet_get_sset_count,
3271 #endif
3272 .get_ts_info = fec_enet_get_ts_info,
3273 .get_wol = fec_enet_get_wol,
3274 .set_wol = fec_enet_set_wol,
3275 .get_eee = fec_enet_get_eee,
3276 .set_eee = fec_enet_set_eee,
3277 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3278 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3279 .self_test = net_selftest,
3280 };
3281
fec_enet_free_buffers(struct net_device * ndev)3282 static void fec_enet_free_buffers(struct net_device *ndev)
3283 {
3284 struct fec_enet_private *fep = netdev_priv(ndev);
3285 unsigned int i;
3286 struct fec_enet_priv_tx_q *txq;
3287 struct fec_enet_priv_rx_q *rxq;
3288 unsigned int q;
3289
3290 for (q = 0; q < fep->num_rx_queues; q++) {
3291 rxq = fep->rx_queue[q];
3292 for (i = 0; i < rxq->bd.ring_size; i++)
3293 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3294
3295 for (i = 0; i < XDP_STATS_TOTAL; i++)
3296 rxq->stats[i] = 0;
3297
3298 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3299 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3300 page_pool_destroy(rxq->page_pool);
3301 rxq->page_pool = NULL;
3302 }
3303
3304 for (q = 0; q < fep->num_tx_queues; q++) {
3305 txq = fep->tx_queue[q];
3306 for (i = 0; i < txq->bd.ring_size; i++) {
3307 kfree(txq->tx_bounce[i]);
3308 txq->tx_bounce[i] = NULL;
3309
3310 if (!txq->tx_buf[i].buf_p) {
3311 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3312 continue;
3313 }
3314
3315 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3316 dev_kfree_skb(txq->tx_buf[i].buf_p);
3317 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3318 xdp_return_frame(txq->tx_buf[i].buf_p);
3319 } else {
3320 struct page *page = txq->tx_buf[i].buf_p;
3321
3322 page_pool_put_page(page->pp, page, 0, false);
3323 }
3324
3325 txq->tx_buf[i].buf_p = NULL;
3326 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3327 }
3328 }
3329 }
3330
fec_enet_free_queue(struct net_device * ndev)3331 static void fec_enet_free_queue(struct net_device *ndev)
3332 {
3333 struct fec_enet_private *fep = netdev_priv(ndev);
3334 int i;
3335 struct fec_enet_priv_tx_q *txq;
3336
3337 for (i = 0; i < fep->num_tx_queues; i++)
3338 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3339 txq = fep->tx_queue[i];
3340 dma_free_coherent(&fep->pdev->dev,
3341 txq->bd.ring_size * TSO_HEADER_SIZE,
3342 txq->tso_hdrs,
3343 txq->tso_hdrs_dma);
3344 }
3345
3346 for (i = 0; i < fep->num_rx_queues; i++)
3347 kfree(fep->rx_queue[i]);
3348 for (i = 0; i < fep->num_tx_queues; i++)
3349 kfree(fep->tx_queue[i]);
3350 }
3351
fec_enet_alloc_queue(struct net_device * ndev)3352 static int fec_enet_alloc_queue(struct net_device *ndev)
3353 {
3354 struct fec_enet_private *fep = netdev_priv(ndev);
3355 int i;
3356 int ret = 0;
3357 struct fec_enet_priv_tx_q *txq;
3358
3359 for (i = 0; i < fep->num_tx_queues; i++) {
3360 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3361 if (!txq) {
3362 ret = -ENOMEM;
3363 goto alloc_failed;
3364 }
3365
3366 fep->tx_queue[i] = txq;
3367 txq->bd.ring_size = TX_RING_SIZE;
3368 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3369
3370 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3371 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3372
3373 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3374 txq->bd.ring_size * TSO_HEADER_SIZE,
3375 &txq->tso_hdrs_dma,
3376 GFP_KERNEL);
3377 if (!txq->tso_hdrs) {
3378 ret = -ENOMEM;
3379 goto alloc_failed;
3380 }
3381 }
3382
3383 for (i = 0; i < fep->num_rx_queues; i++) {
3384 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3385 GFP_KERNEL);
3386 if (!fep->rx_queue[i]) {
3387 ret = -ENOMEM;
3388 goto alloc_failed;
3389 }
3390
3391 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3392 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3393 }
3394 return ret;
3395
3396 alloc_failed:
3397 fec_enet_free_queue(ndev);
3398 return ret;
3399 }
3400
3401 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3402 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3403 {
3404 struct fec_enet_private *fep = netdev_priv(ndev);
3405 struct fec_enet_priv_rx_q *rxq;
3406 dma_addr_t phys_addr;
3407 struct bufdesc *bdp;
3408 struct page *page;
3409 int i, err;
3410
3411 rxq = fep->rx_queue[queue];
3412 bdp = rxq->bd.base;
3413
3414 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3415 if (err < 0) {
3416 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3417 return err;
3418 }
3419
3420 for (i = 0; i < rxq->bd.ring_size; i++) {
3421 page = page_pool_dev_alloc_pages(rxq->page_pool);
3422 if (!page)
3423 goto err_alloc;
3424
3425 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3426 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3427
3428 rxq->rx_skb_info[i].page = page;
3429 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3430 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3431
3432 if (fep->bufdesc_ex) {
3433 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3434 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3435 }
3436
3437 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3438 }
3439
3440 /* Set the last buffer to wrap. */
3441 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3442 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3443 return 0;
3444
3445 err_alloc:
3446 fec_enet_free_buffers(ndev);
3447 return -ENOMEM;
3448 }
3449
3450 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3451 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3452 {
3453 struct fec_enet_private *fep = netdev_priv(ndev);
3454 unsigned int i;
3455 struct bufdesc *bdp;
3456 struct fec_enet_priv_tx_q *txq;
3457
3458 txq = fep->tx_queue[queue];
3459 bdp = txq->bd.base;
3460 for (i = 0; i < txq->bd.ring_size; i++) {
3461 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3462 if (!txq->tx_bounce[i])
3463 goto err_alloc;
3464
3465 bdp->cbd_sc = cpu_to_fec16(0);
3466 bdp->cbd_bufaddr = cpu_to_fec32(0);
3467
3468 if (fep->bufdesc_ex) {
3469 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3470 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3471 }
3472
3473 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3474 }
3475
3476 /* Set the last buffer to wrap. */
3477 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3478 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3479
3480 return 0;
3481
3482 err_alloc:
3483 fec_enet_free_buffers(ndev);
3484 return -ENOMEM;
3485 }
3486
fec_enet_alloc_buffers(struct net_device * ndev)3487 static int fec_enet_alloc_buffers(struct net_device *ndev)
3488 {
3489 struct fec_enet_private *fep = netdev_priv(ndev);
3490 unsigned int i;
3491
3492 for (i = 0; i < fep->num_rx_queues; i++)
3493 if (fec_enet_alloc_rxq_buffers(ndev, i))
3494 return -ENOMEM;
3495
3496 for (i = 0; i < fep->num_tx_queues; i++)
3497 if (fec_enet_alloc_txq_buffers(ndev, i))
3498 return -ENOMEM;
3499 return 0;
3500 }
3501
3502 static int
fec_enet_open(struct net_device * ndev)3503 fec_enet_open(struct net_device *ndev)
3504 {
3505 struct fec_enet_private *fep = netdev_priv(ndev);
3506 int ret;
3507 bool reset_again;
3508
3509 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3510 if (ret < 0)
3511 return ret;
3512
3513 pinctrl_pm_select_default_state(&fep->pdev->dev);
3514 ret = fec_enet_clk_enable(ndev, true);
3515 if (ret)
3516 goto clk_enable;
3517
3518 /* During the first fec_enet_open call the PHY isn't probed at this
3519 * point. Therefore the phy_reset_after_clk_enable() call within
3520 * fec_enet_clk_enable() fails. As we need this reset in order to be
3521 * sure the PHY is working correctly we check if we need to reset again
3522 * later when the PHY is probed
3523 */
3524 if (ndev->phydev && ndev->phydev->drv)
3525 reset_again = false;
3526 else
3527 reset_again = true;
3528
3529 /* I should reset the ring buffers here, but I don't yet know
3530 * a simple way to do that.
3531 */
3532
3533 ret = fec_enet_alloc_buffers(ndev);
3534 if (ret)
3535 goto err_enet_alloc;
3536
3537 /* Init MAC prior to mii bus probe */
3538 fec_restart(ndev);
3539
3540 /* Call phy_reset_after_clk_enable() again if it failed during
3541 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3542 */
3543 if (reset_again)
3544 fec_enet_phy_reset_after_clk_enable(ndev);
3545
3546 /* Probe and connect to PHY when open the interface */
3547 ret = fec_enet_mii_probe(ndev);
3548 if (ret)
3549 goto err_enet_mii_probe;
3550
3551 if (fep->quirks & FEC_QUIRK_ERR006687)
3552 imx6q_cpuidle_fec_irqs_used();
3553
3554 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3555 cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3556
3557 napi_enable(&fep->napi);
3558 phy_start(ndev->phydev);
3559 netif_tx_start_all_queues(ndev);
3560
3561 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3562 FEC_WOL_FLAG_ENABLE);
3563
3564 return 0;
3565
3566 err_enet_mii_probe:
3567 fec_enet_free_buffers(ndev);
3568 err_enet_alloc:
3569 fec_enet_clk_enable(ndev, false);
3570 clk_enable:
3571 pm_runtime_mark_last_busy(&fep->pdev->dev);
3572 pm_runtime_put_autosuspend(&fep->pdev->dev);
3573 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3574 return ret;
3575 }
3576
3577 static int
fec_enet_close(struct net_device * ndev)3578 fec_enet_close(struct net_device *ndev)
3579 {
3580 struct fec_enet_private *fep = netdev_priv(ndev);
3581
3582 phy_stop(ndev->phydev);
3583
3584 if (netif_device_present(ndev)) {
3585 napi_disable(&fep->napi);
3586 netif_tx_disable(ndev);
3587 fec_stop(ndev);
3588 }
3589
3590 phy_disconnect(ndev->phydev);
3591
3592 if (fep->quirks & FEC_QUIRK_ERR006687)
3593 imx6q_cpuidle_fec_irqs_unused();
3594
3595 fec_enet_update_ethtool_stats(ndev);
3596
3597 fec_enet_clk_enable(ndev, false);
3598 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3599 cpu_latency_qos_remove_request(&fep->pm_qos_req);
3600
3601 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3602 pm_runtime_mark_last_busy(&fep->pdev->dev);
3603 pm_runtime_put_autosuspend(&fep->pdev->dev);
3604
3605 fec_enet_free_buffers(ndev);
3606
3607 return 0;
3608 }
3609
3610 /* Set or clear the multicast filter for this adaptor.
3611 * Skeleton taken from sunlance driver.
3612 * The CPM Ethernet implementation allows Multicast as well as individual
3613 * MAC address filtering. Some of the drivers check to make sure it is
3614 * a group multicast address, and discard those that are not. I guess I
3615 * will do the same for now, but just remove the test if you want
3616 * individual filtering as well (do the upper net layers want or support
3617 * this kind of feature?).
3618 */
3619
3620 #define FEC_HASH_BITS 6 /* #bits in hash */
3621
set_multicast_list(struct net_device * ndev)3622 static void set_multicast_list(struct net_device *ndev)
3623 {
3624 struct fec_enet_private *fep = netdev_priv(ndev);
3625 struct netdev_hw_addr *ha;
3626 unsigned int crc, tmp;
3627 unsigned char hash;
3628 unsigned int hash_high = 0, hash_low = 0;
3629
3630 if (ndev->flags & IFF_PROMISC) {
3631 tmp = readl(fep->hwp + FEC_R_CNTRL);
3632 tmp |= 0x8;
3633 writel(tmp, fep->hwp + FEC_R_CNTRL);
3634 return;
3635 }
3636
3637 tmp = readl(fep->hwp + FEC_R_CNTRL);
3638 tmp &= ~0x8;
3639 writel(tmp, fep->hwp + FEC_R_CNTRL);
3640
3641 if (ndev->flags & IFF_ALLMULTI) {
3642 /* Catch all multicast addresses, so set the
3643 * filter to all 1's
3644 */
3645 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3646 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3647
3648 return;
3649 }
3650
3651 /* Add the addresses in hash register */
3652 netdev_for_each_mc_addr(ha, ndev) {
3653 /* calculate crc32 value of mac address */
3654 crc = ether_crc_le(ndev->addr_len, ha->addr);
3655
3656 /* only upper 6 bits (FEC_HASH_BITS) are used
3657 * which point to specific bit in the hash registers
3658 */
3659 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3660
3661 if (hash > 31)
3662 hash_high |= 1 << (hash - 32);
3663 else
3664 hash_low |= 1 << hash;
3665 }
3666
3667 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3668 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3669 }
3670
3671 /* Set a MAC change in hardware. */
3672 static int
fec_set_mac_address(struct net_device * ndev,void * p)3673 fec_set_mac_address(struct net_device *ndev, void *p)
3674 {
3675 struct fec_enet_private *fep = netdev_priv(ndev);
3676 struct sockaddr *addr = p;
3677
3678 if (addr) {
3679 if (!is_valid_ether_addr(addr->sa_data))
3680 return -EADDRNOTAVAIL;
3681 eth_hw_addr_set(ndev, addr->sa_data);
3682 }
3683
3684 /* Add netif status check here to avoid system hang in below case:
3685 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3686 * After ethx down, fec all clocks are gated off and then register
3687 * access causes system hang.
3688 */
3689 if (!netif_running(ndev))
3690 return 0;
3691
3692 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3693 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3694 fep->hwp + FEC_ADDR_LOW);
3695 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3696 fep->hwp + FEC_ADDR_HIGH);
3697 return 0;
3698 }
3699
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3700 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3701 netdev_features_t features)
3702 {
3703 struct fec_enet_private *fep = netdev_priv(netdev);
3704 netdev_features_t changed = features ^ netdev->features;
3705
3706 netdev->features = features;
3707
3708 /* Receive checksum has been changed */
3709 if (changed & NETIF_F_RXCSUM) {
3710 if (features & NETIF_F_RXCSUM)
3711 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3712 else
3713 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3714 }
3715 }
3716
fec_set_features(struct net_device * netdev,netdev_features_t features)3717 static int fec_set_features(struct net_device *netdev,
3718 netdev_features_t features)
3719 {
3720 struct fec_enet_private *fep = netdev_priv(netdev);
3721 netdev_features_t changed = features ^ netdev->features;
3722
3723 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3724 napi_disable(&fep->napi);
3725 netif_tx_lock_bh(netdev);
3726 fec_stop(netdev);
3727 fec_enet_set_netdev_features(netdev, features);
3728 fec_restart(netdev);
3729 netif_tx_wake_all_queues(netdev);
3730 netif_tx_unlock_bh(netdev);
3731 napi_enable(&fep->napi);
3732 } else {
3733 fec_enet_set_netdev_features(netdev, features);
3734 }
3735
3736 return 0;
3737 }
3738
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3739 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3740 struct net_device *sb_dev)
3741 {
3742 struct fec_enet_private *fep = netdev_priv(ndev);
3743 u16 vlan_tag = 0;
3744
3745 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3746 return netdev_pick_tx(ndev, skb, NULL);
3747
3748 /* VLAN is present in the payload.*/
3749 if (eth_type_vlan(skb->protocol)) {
3750 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3751
3752 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3753 /* VLAN is present in the skb but not yet pushed in the payload.*/
3754 } else if (skb_vlan_tag_present(skb)) {
3755 vlan_tag = skb->vlan_tci;
3756 } else {
3757 return vlan_tag;
3758 }
3759
3760 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3761 }
3762
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3763 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3764 {
3765 struct fec_enet_private *fep = netdev_priv(dev);
3766 bool is_run = netif_running(dev);
3767 struct bpf_prog *old_prog;
3768
3769 switch (bpf->command) {
3770 case XDP_SETUP_PROG:
3771 /* No need to support the SoCs that require to
3772 * do the frame swap because the performance wouldn't be
3773 * better than the skb mode.
3774 */
3775 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3776 return -EOPNOTSUPP;
3777
3778 if (!bpf->prog)
3779 xdp_features_clear_redirect_target(dev);
3780
3781 if (is_run) {
3782 napi_disable(&fep->napi);
3783 netif_tx_disable(dev);
3784 }
3785
3786 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3787 if (old_prog)
3788 bpf_prog_put(old_prog);
3789
3790 fec_restart(dev);
3791
3792 if (is_run) {
3793 napi_enable(&fep->napi);
3794 netif_tx_start_all_queues(dev);
3795 }
3796
3797 if (bpf->prog)
3798 xdp_features_set_redirect_target(dev, false);
3799
3800 return 0;
3801
3802 case XDP_SETUP_XSK_POOL:
3803 return -EOPNOTSUPP;
3804
3805 default:
3806 return -EOPNOTSUPP;
3807 }
3808 }
3809
3810 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3811 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3812 {
3813 if (unlikely(index < 0))
3814 return 0;
3815
3816 return (index % fep->num_tx_queues);
3817 }
3818
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3819 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3820 struct fec_enet_priv_tx_q *txq,
3821 void *frame, u32 dma_sync_len,
3822 bool ndo_xmit)
3823 {
3824 unsigned int index, status, estatus;
3825 struct bufdesc *bdp;
3826 dma_addr_t dma_addr;
3827 int entries_free;
3828 u16 frame_len;
3829
3830 entries_free = fec_enet_get_free_txdesc_num(txq);
3831 if (entries_free < MAX_SKB_FRAGS + 1) {
3832 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3833 return -EBUSY;
3834 }
3835
3836 /* Fill in a Tx ring entry */
3837 bdp = txq->bd.cur;
3838 status = fec16_to_cpu(bdp->cbd_sc);
3839 status &= ~BD_ENET_TX_STATS;
3840
3841 index = fec_enet_get_bd_index(bdp, &txq->bd);
3842
3843 if (ndo_xmit) {
3844 struct xdp_frame *xdpf = frame;
3845
3846 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3847 xdpf->len, DMA_TO_DEVICE);
3848 if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3849 return -ENOMEM;
3850
3851 frame_len = xdpf->len;
3852 txq->tx_buf[index].buf_p = xdpf;
3853 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3854 } else {
3855 struct xdp_buff *xdpb = frame;
3856 struct page *page;
3857
3858 page = virt_to_page(xdpb->data);
3859 dma_addr = page_pool_get_dma_addr(page) +
3860 (xdpb->data - xdpb->data_hard_start);
3861 dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3862 dma_sync_len, DMA_BIDIRECTIONAL);
3863 frame_len = xdpb->data_end - xdpb->data;
3864 txq->tx_buf[index].buf_p = page;
3865 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3866 }
3867
3868 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3869 if (fep->bufdesc_ex)
3870 estatus = BD_ENET_TX_INT;
3871
3872 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3873 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3874
3875 if (fep->bufdesc_ex) {
3876 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3877
3878 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3879 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3880
3881 ebdp->cbd_bdu = 0;
3882 ebdp->cbd_esc = cpu_to_fec32(estatus);
3883 }
3884
3885 /* Make sure the updates to rest of the descriptor are performed before
3886 * transferring ownership.
3887 */
3888 dma_wmb();
3889
3890 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3891 * it's the last BD of the frame, and to put the CRC on the end.
3892 */
3893 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3894 bdp->cbd_sc = cpu_to_fec16(status);
3895
3896 /* If this was the last BD in the ring, start at the beginning again. */
3897 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3898
3899 /* Make sure the update to bdp are performed before txq->bd.cur. */
3900 dma_wmb();
3901
3902 txq->bd.cur = bdp;
3903
3904 /* Trigger transmission start */
3905 writel(0, txq->bd.reg_desc_active);
3906
3907 return 0;
3908 }
3909
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3910 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3911 int cpu, struct xdp_buff *xdp,
3912 u32 dma_sync_len)
3913 {
3914 struct fec_enet_priv_tx_q *txq;
3915 struct netdev_queue *nq;
3916 int queue, ret;
3917
3918 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3919 txq = fep->tx_queue[queue];
3920 nq = netdev_get_tx_queue(fep->netdev, queue);
3921
3922 __netif_tx_lock(nq, cpu);
3923
3924 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3925 txq_trans_cond_update(nq);
3926 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3927
3928 __netif_tx_unlock(nq);
3929
3930 return ret;
3931 }
3932
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3933 static int fec_enet_xdp_xmit(struct net_device *dev,
3934 int num_frames,
3935 struct xdp_frame **frames,
3936 u32 flags)
3937 {
3938 struct fec_enet_private *fep = netdev_priv(dev);
3939 struct fec_enet_priv_tx_q *txq;
3940 int cpu = smp_processor_id();
3941 unsigned int sent_frames = 0;
3942 struct netdev_queue *nq;
3943 unsigned int queue;
3944 int i;
3945
3946 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3947 txq = fep->tx_queue[queue];
3948 nq = netdev_get_tx_queue(fep->netdev, queue);
3949
3950 __netif_tx_lock(nq, cpu);
3951
3952 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3953 txq_trans_cond_update(nq);
3954 for (i = 0; i < num_frames; i++) {
3955 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3956 break;
3957 sent_frames++;
3958 }
3959
3960 __netif_tx_unlock(nq);
3961
3962 return sent_frames;
3963 }
3964
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3965 static int fec_hwtstamp_get(struct net_device *ndev,
3966 struct kernel_hwtstamp_config *config)
3967 {
3968 struct fec_enet_private *fep = netdev_priv(ndev);
3969
3970 if (!netif_running(ndev))
3971 return -EINVAL;
3972
3973 if (!fep->bufdesc_ex)
3974 return -EOPNOTSUPP;
3975
3976 fec_ptp_get(ndev, config);
3977
3978 return 0;
3979 }
3980
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)3981 static int fec_hwtstamp_set(struct net_device *ndev,
3982 struct kernel_hwtstamp_config *config,
3983 struct netlink_ext_ack *extack)
3984 {
3985 struct fec_enet_private *fep = netdev_priv(ndev);
3986
3987 if (!netif_running(ndev))
3988 return -EINVAL;
3989
3990 if (!fep->bufdesc_ex)
3991 return -EOPNOTSUPP;
3992
3993 return fec_ptp_set(ndev, config, extack);
3994 }
3995
3996 static const struct net_device_ops fec_netdev_ops = {
3997 .ndo_open = fec_enet_open,
3998 .ndo_stop = fec_enet_close,
3999 .ndo_start_xmit = fec_enet_start_xmit,
4000 .ndo_select_queue = fec_enet_select_queue,
4001 .ndo_set_rx_mode = set_multicast_list,
4002 .ndo_validate_addr = eth_validate_addr,
4003 .ndo_tx_timeout = fec_timeout,
4004 .ndo_set_mac_address = fec_set_mac_address,
4005 .ndo_eth_ioctl = phy_do_ioctl_running,
4006 .ndo_set_features = fec_set_features,
4007 .ndo_bpf = fec_enet_bpf,
4008 .ndo_xdp_xmit = fec_enet_xdp_xmit,
4009 .ndo_hwtstamp_get = fec_hwtstamp_get,
4010 .ndo_hwtstamp_set = fec_hwtstamp_set,
4011 };
4012
4013 static const unsigned short offset_des_active_rxq[] = {
4014 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4015 };
4016
4017 static const unsigned short offset_des_active_txq[] = {
4018 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4019 };
4020
4021 /*
4022 * XXX: We need to clean up on failure exits here.
4023 *
4024 */
fec_enet_init(struct net_device * ndev)4025 static int fec_enet_init(struct net_device *ndev)
4026 {
4027 struct fec_enet_private *fep = netdev_priv(ndev);
4028 struct bufdesc *cbd_base;
4029 dma_addr_t bd_dma;
4030 int bd_size;
4031 unsigned int i;
4032 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4033 sizeof(struct bufdesc);
4034 unsigned dsize_log2 = __fls(dsize);
4035 int ret;
4036
4037 WARN_ON(dsize != (1 << dsize_log2));
4038 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4039 fep->rx_align = 0xf;
4040 fep->tx_align = 0xf;
4041 #else
4042 fep->rx_align = 0x3;
4043 fep->tx_align = 0x3;
4044 #endif
4045 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4046 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4047 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4048 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4049
4050 /* Check mask of the streaming and coherent API */
4051 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4052 if (ret < 0) {
4053 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4054 return ret;
4055 }
4056
4057 ret = fec_enet_alloc_queue(ndev);
4058 if (ret)
4059 return ret;
4060
4061 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4062
4063 /* Allocate memory for buffer descriptors. */
4064 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4065 GFP_KERNEL);
4066 if (!cbd_base) {
4067 ret = -ENOMEM;
4068 goto free_queue_mem;
4069 }
4070
4071 /* Get the Ethernet address */
4072 ret = fec_get_mac(ndev);
4073 if (ret)
4074 goto free_queue_mem;
4075
4076 /* Set receive and transmit descriptor base. */
4077 for (i = 0; i < fep->num_rx_queues; i++) {
4078 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4079 unsigned size = dsize * rxq->bd.ring_size;
4080
4081 rxq->bd.qid = i;
4082 rxq->bd.base = cbd_base;
4083 rxq->bd.cur = cbd_base;
4084 rxq->bd.dma = bd_dma;
4085 rxq->bd.dsize = dsize;
4086 rxq->bd.dsize_log2 = dsize_log2;
4087 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4088 bd_dma += size;
4089 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4090 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4091 }
4092
4093 for (i = 0; i < fep->num_tx_queues; i++) {
4094 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4095 unsigned size = dsize * txq->bd.ring_size;
4096
4097 txq->bd.qid = i;
4098 txq->bd.base = cbd_base;
4099 txq->bd.cur = cbd_base;
4100 txq->bd.dma = bd_dma;
4101 txq->bd.dsize = dsize;
4102 txq->bd.dsize_log2 = dsize_log2;
4103 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4104 bd_dma += size;
4105 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4106 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4107 }
4108
4109
4110 /* The FEC Ethernet specific entries in the device structure */
4111 ndev->watchdog_timeo = TX_TIMEOUT;
4112 ndev->netdev_ops = &fec_netdev_ops;
4113 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4114
4115 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4116 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4117
4118 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4119 /* enable hw VLAN support */
4120 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4121
4122 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4123 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4124
4125 /* enable hw accelerator */
4126 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4127 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4128 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4129 }
4130
4131 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4132 fep->tx_align = 0;
4133 fep->rx_align = 0x3f;
4134 }
4135
4136 ndev->hw_features = ndev->features;
4137
4138 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4139 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4140 NETDEV_XDP_ACT_REDIRECT;
4141
4142 fec_restart(ndev);
4143
4144 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4145 fec_enet_clear_ethtool_stats(ndev);
4146 else
4147 fec_enet_update_ethtool_stats(ndev);
4148
4149 return 0;
4150
4151 free_queue_mem:
4152 fec_enet_free_queue(ndev);
4153 return ret;
4154 }
4155
fec_enet_deinit(struct net_device * ndev)4156 static void fec_enet_deinit(struct net_device *ndev)
4157 {
4158 struct fec_enet_private *fep = netdev_priv(ndev);
4159
4160 netif_napi_del(&fep->napi);
4161 fec_enet_free_queue(ndev);
4162 }
4163
4164 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4165 static int fec_reset_phy(struct platform_device *pdev)
4166 {
4167 struct gpio_desc *phy_reset;
4168 int msec = 1, phy_post_delay = 0;
4169 struct device_node *np = pdev->dev.of_node;
4170 int err;
4171
4172 if (!np)
4173 return 0;
4174
4175 err = of_property_read_u32(np, "phy-reset-duration", &msec);
4176 /* A sane reset duration should not be longer than 1s */
4177 if (!err && msec > 1000)
4178 msec = 1;
4179
4180 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4181 /* valid reset duration should be less than 1s */
4182 if (!err && phy_post_delay > 1000)
4183 return -EINVAL;
4184
4185 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4186 GPIOD_OUT_HIGH);
4187 if (IS_ERR(phy_reset))
4188 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4189 "failed to get phy-reset-gpios\n");
4190
4191 if (!phy_reset)
4192 return 0;
4193
4194 if (msec > 20)
4195 msleep(msec);
4196 else
4197 usleep_range(msec * 1000, msec * 1000 + 1000);
4198
4199 gpiod_set_value_cansleep(phy_reset, 0);
4200
4201 if (!phy_post_delay)
4202 return 0;
4203
4204 if (phy_post_delay > 20)
4205 msleep(phy_post_delay);
4206 else
4207 usleep_range(phy_post_delay * 1000,
4208 phy_post_delay * 1000 + 1000);
4209
4210 return 0;
4211 }
4212 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4213 static int fec_reset_phy(struct platform_device *pdev)
4214 {
4215 /*
4216 * In case of platform probe, the reset has been done
4217 * by machine code.
4218 */
4219 return 0;
4220 }
4221 #endif /* CONFIG_OF */
4222
4223 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4224 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4225 {
4226 struct device_node *np = pdev->dev.of_node;
4227
4228 *num_tx = *num_rx = 1;
4229
4230 if (!np || !of_device_is_available(np))
4231 return;
4232
4233 /* parse the num of tx and rx queues */
4234 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4235
4236 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4237
4238 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4239 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4240 *num_tx);
4241 *num_tx = 1;
4242 return;
4243 }
4244
4245 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4246 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4247 *num_rx);
4248 *num_rx = 1;
4249 return;
4250 }
4251
4252 }
4253
fec_enet_get_irq_cnt(struct platform_device * pdev)4254 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4255 {
4256 int irq_cnt = platform_irq_count(pdev);
4257
4258 if (irq_cnt > FEC_IRQ_NUM)
4259 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4260 else if (irq_cnt == 2)
4261 irq_cnt = 1; /* last for pps */
4262 else if (irq_cnt <= 0)
4263 irq_cnt = 1; /* At least 1 irq is needed */
4264 return irq_cnt;
4265 }
4266
fec_enet_get_wakeup_irq(struct platform_device * pdev)4267 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4268 {
4269 struct net_device *ndev = platform_get_drvdata(pdev);
4270 struct fec_enet_private *fep = netdev_priv(ndev);
4271
4272 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4273 fep->wake_irq = fep->irq[2];
4274 else
4275 fep->wake_irq = fep->irq[0];
4276 }
4277
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4278 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4279 struct device_node *np)
4280 {
4281 struct device_node *gpr_np;
4282 u32 out_val[3];
4283 int ret = 0;
4284
4285 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4286 if (!gpr_np)
4287 return 0;
4288
4289 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4290 ARRAY_SIZE(out_val));
4291 if (ret) {
4292 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4293 goto out;
4294 }
4295
4296 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4297 if (IS_ERR(fep->stop_gpr.gpr)) {
4298 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4299 ret = PTR_ERR(fep->stop_gpr.gpr);
4300 fep->stop_gpr.gpr = NULL;
4301 goto out;
4302 }
4303
4304 fep->stop_gpr.reg = out_val[1];
4305 fep->stop_gpr.bit = out_val[2];
4306
4307 out:
4308 of_node_put(gpr_np);
4309
4310 return ret;
4311 }
4312
4313 static int
fec_probe(struct platform_device * pdev)4314 fec_probe(struct platform_device *pdev)
4315 {
4316 struct fec_enet_private *fep;
4317 struct fec_platform_data *pdata;
4318 phy_interface_t interface;
4319 struct net_device *ndev;
4320 int i, irq, ret = 0;
4321 const struct of_device_id *of_id;
4322 static int dev_id;
4323 struct device_node *np = pdev->dev.of_node, *phy_node;
4324 int num_tx_qs;
4325 int num_rx_qs;
4326 char irq_name[8];
4327 int irq_cnt;
4328 struct fec_devinfo *dev_info;
4329
4330 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4331
4332 /* Init network device */
4333 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4334 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4335 if (!ndev)
4336 return -ENOMEM;
4337
4338 SET_NETDEV_DEV(ndev, &pdev->dev);
4339
4340 /* setup board info structure */
4341 fep = netdev_priv(ndev);
4342
4343 of_id = of_match_device(fec_dt_ids, &pdev->dev);
4344 if (of_id)
4345 pdev->id_entry = of_id->data;
4346 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4347 if (dev_info)
4348 fep->quirks = dev_info->quirks;
4349
4350 fep->netdev = ndev;
4351 fep->num_rx_queues = num_rx_qs;
4352 fep->num_tx_queues = num_tx_qs;
4353
4354 #if !defined(CONFIG_M5272)
4355 /* default enable pause frame auto negotiation */
4356 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4357 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4358 #endif
4359
4360 /* Select default pin state */
4361 pinctrl_pm_select_default_state(&pdev->dev);
4362
4363 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4364 if (IS_ERR(fep->hwp)) {
4365 ret = PTR_ERR(fep->hwp);
4366 goto failed_ioremap;
4367 }
4368
4369 fep->pdev = pdev;
4370 fep->dev_id = dev_id++;
4371
4372 platform_set_drvdata(pdev, ndev);
4373
4374 if ((of_machine_is_compatible("fsl,imx6q") ||
4375 of_machine_is_compatible("fsl,imx6dl")) &&
4376 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4377 fep->quirks |= FEC_QUIRK_ERR006687;
4378
4379 ret = fec_enet_ipc_handle_init(fep);
4380 if (ret)
4381 goto failed_ipc_init;
4382
4383 if (of_property_read_bool(np, "fsl,magic-packet"))
4384 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4385
4386 ret = fec_enet_init_stop_mode(fep, np);
4387 if (ret)
4388 goto failed_stop_mode;
4389
4390 phy_node = of_parse_phandle(np, "phy-handle", 0);
4391 if (!phy_node && of_phy_is_fixed_link(np)) {
4392 ret = of_phy_register_fixed_link(np);
4393 if (ret < 0) {
4394 dev_err(&pdev->dev,
4395 "broken fixed-link specification\n");
4396 goto failed_phy;
4397 }
4398 phy_node = of_node_get(np);
4399 }
4400 fep->phy_node = phy_node;
4401
4402 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4403 if (ret) {
4404 pdata = dev_get_platdata(&pdev->dev);
4405 if (pdata)
4406 fep->phy_interface = pdata->phy;
4407 else
4408 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4409 } else {
4410 fep->phy_interface = interface;
4411 }
4412
4413 ret = fec_enet_parse_rgmii_delay(fep, np);
4414 if (ret)
4415 goto failed_rgmii_delay;
4416
4417 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4418 if (IS_ERR(fep->clk_ipg)) {
4419 ret = PTR_ERR(fep->clk_ipg);
4420 goto failed_clk;
4421 }
4422
4423 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4424 if (IS_ERR(fep->clk_ahb)) {
4425 ret = PTR_ERR(fep->clk_ahb);
4426 goto failed_clk;
4427 }
4428
4429 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4430
4431 /* enet_out is optional, depends on board */
4432 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4433 if (IS_ERR(fep->clk_enet_out)) {
4434 ret = PTR_ERR(fep->clk_enet_out);
4435 goto failed_clk;
4436 }
4437
4438 fep->ptp_clk_on = false;
4439 mutex_init(&fep->ptp_clk_mutex);
4440
4441 /* clk_ref is optional, depends on board */
4442 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4443 if (IS_ERR(fep->clk_ref)) {
4444 ret = PTR_ERR(fep->clk_ref);
4445 goto failed_clk;
4446 }
4447 fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4448
4449 /* clk_2x_txclk is optional, depends on board */
4450 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4451 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4452 if (IS_ERR(fep->clk_2x_txclk))
4453 fep->clk_2x_txclk = NULL;
4454 }
4455
4456 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4457 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4458 if (IS_ERR(fep->clk_ptp)) {
4459 fep->clk_ptp = NULL;
4460 fep->bufdesc_ex = false;
4461 }
4462
4463 ret = fec_enet_clk_enable(ndev, true);
4464 if (ret)
4465 goto failed_clk;
4466
4467 ret = clk_prepare_enable(fep->clk_ipg);
4468 if (ret)
4469 goto failed_clk_ipg;
4470 ret = clk_prepare_enable(fep->clk_ahb);
4471 if (ret)
4472 goto failed_clk_ahb;
4473
4474 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4475 if (!IS_ERR(fep->reg_phy)) {
4476 ret = regulator_enable(fep->reg_phy);
4477 if (ret) {
4478 dev_err(&pdev->dev,
4479 "Failed to enable phy regulator: %d\n", ret);
4480 goto failed_regulator;
4481 }
4482 } else {
4483 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4484 ret = -EPROBE_DEFER;
4485 goto failed_regulator;
4486 }
4487 fep->reg_phy = NULL;
4488 }
4489
4490 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4491 pm_runtime_use_autosuspend(&pdev->dev);
4492 pm_runtime_get_noresume(&pdev->dev);
4493 pm_runtime_set_active(&pdev->dev);
4494 pm_runtime_enable(&pdev->dev);
4495
4496 ret = fec_reset_phy(pdev);
4497 if (ret)
4498 goto failed_reset;
4499
4500 irq_cnt = fec_enet_get_irq_cnt(pdev);
4501 if (fep->bufdesc_ex)
4502 fec_ptp_init(pdev, irq_cnt);
4503
4504 ret = fec_enet_init(ndev);
4505 if (ret)
4506 goto failed_init;
4507
4508 for (i = 0; i < irq_cnt; i++) {
4509 snprintf(irq_name, sizeof(irq_name), "int%d", i);
4510 irq = platform_get_irq_byname_optional(pdev, irq_name);
4511 if (irq < 0)
4512 irq = platform_get_irq(pdev, i);
4513 if (irq < 0) {
4514 ret = irq;
4515 goto failed_irq;
4516 }
4517 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4518 0, pdev->name, ndev);
4519 if (ret)
4520 goto failed_irq;
4521
4522 fep->irq[i] = irq;
4523 }
4524
4525 /* Decide which interrupt line is wakeup capable */
4526 fec_enet_get_wakeup_irq(pdev);
4527
4528 ret = fec_enet_mii_init(pdev);
4529 if (ret)
4530 goto failed_mii_init;
4531
4532 /* Carrier starts down, phylib will bring it up */
4533 netif_carrier_off(ndev);
4534 fec_enet_clk_enable(ndev, false);
4535 pinctrl_pm_select_sleep_state(&pdev->dev);
4536
4537 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4538
4539 ret = register_netdev(ndev);
4540 if (ret)
4541 goto failed_register;
4542
4543 device_init_wakeup(&ndev->dev, fep->wol_flag &
4544 FEC_WOL_HAS_MAGIC_PACKET);
4545
4546 if (fep->bufdesc_ex && fep->ptp_clock)
4547 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4548
4549 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4550
4551 pm_runtime_mark_last_busy(&pdev->dev);
4552 pm_runtime_put_autosuspend(&pdev->dev);
4553
4554 return 0;
4555
4556 failed_register:
4557 fec_enet_mii_remove(fep);
4558 failed_mii_init:
4559 failed_irq:
4560 fec_enet_deinit(ndev);
4561 failed_init:
4562 fec_ptp_stop(pdev);
4563 failed_reset:
4564 pm_runtime_put_noidle(&pdev->dev);
4565 pm_runtime_disable(&pdev->dev);
4566 if (fep->reg_phy)
4567 regulator_disable(fep->reg_phy);
4568 failed_regulator:
4569 clk_disable_unprepare(fep->clk_ahb);
4570 failed_clk_ahb:
4571 clk_disable_unprepare(fep->clk_ipg);
4572 failed_clk_ipg:
4573 fec_enet_clk_enable(ndev, false);
4574 failed_clk:
4575 failed_rgmii_delay:
4576 if (of_phy_is_fixed_link(np))
4577 of_phy_deregister_fixed_link(np);
4578 of_node_put(phy_node);
4579 failed_stop_mode:
4580 failed_ipc_init:
4581 failed_phy:
4582 dev_id--;
4583 failed_ioremap:
4584 free_netdev(ndev);
4585
4586 return ret;
4587 }
4588
4589 static void
fec_drv_remove(struct platform_device * pdev)4590 fec_drv_remove(struct platform_device *pdev)
4591 {
4592 struct net_device *ndev = platform_get_drvdata(pdev);
4593 struct fec_enet_private *fep = netdev_priv(ndev);
4594 struct device_node *np = pdev->dev.of_node;
4595 int ret;
4596
4597 ret = pm_runtime_get_sync(&pdev->dev);
4598 if (ret < 0)
4599 dev_err(&pdev->dev,
4600 "Failed to resume device in remove callback (%pe)\n",
4601 ERR_PTR(ret));
4602
4603 cancel_work_sync(&fep->tx_timeout_work);
4604 fec_ptp_stop(pdev);
4605 unregister_netdev(ndev);
4606 fec_enet_mii_remove(fep);
4607 if (fep->reg_phy)
4608 regulator_disable(fep->reg_phy);
4609
4610 if (of_phy_is_fixed_link(np))
4611 of_phy_deregister_fixed_link(np);
4612 of_node_put(fep->phy_node);
4613
4614 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4615 * disabling them again.
4616 */
4617 if (ret >= 0) {
4618 clk_disable_unprepare(fep->clk_ahb);
4619 clk_disable_unprepare(fep->clk_ipg);
4620 }
4621 pm_runtime_put_noidle(&pdev->dev);
4622 pm_runtime_disable(&pdev->dev);
4623
4624 fec_enet_deinit(ndev);
4625 free_netdev(ndev);
4626 }
4627
fec_suspend(struct device * dev)4628 static int __maybe_unused fec_suspend(struct device *dev)
4629 {
4630 struct net_device *ndev = dev_get_drvdata(dev);
4631 struct fec_enet_private *fep = netdev_priv(ndev);
4632 int ret;
4633
4634 rtnl_lock();
4635 if (netif_running(ndev)) {
4636 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4637 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4638 phy_stop(ndev->phydev);
4639 napi_disable(&fep->napi);
4640 netif_tx_lock_bh(ndev);
4641 netif_device_detach(ndev);
4642 netif_tx_unlock_bh(ndev);
4643 fec_stop(ndev);
4644 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4645 fec_irqs_disable(ndev);
4646 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4647 } else {
4648 fec_irqs_disable_except_wakeup(ndev);
4649 if (fep->wake_irq > 0) {
4650 disable_irq(fep->wake_irq);
4651 enable_irq_wake(fep->wake_irq);
4652 }
4653 fec_enet_stop_mode(fep, true);
4654 }
4655 /* It's safe to disable clocks since interrupts are masked */
4656 fec_enet_clk_enable(ndev, false);
4657
4658 fep->rpm_active = !pm_runtime_status_suspended(dev);
4659 if (fep->rpm_active) {
4660 ret = pm_runtime_force_suspend(dev);
4661 if (ret < 0) {
4662 rtnl_unlock();
4663 return ret;
4664 }
4665 }
4666 }
4667 rtnl_unlock();
4668
4669 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4670 regulator_disable(fep->reg_phy);
4671
4672 /* SOC supply clock to phy, when clock is disabled, phy link down
4673 * SOC control phy regulator, when regulator is disabled, phy link down
4674 */
4675 if (fep->clk_enet_out || fep->reg_phy)
4676 fep->link = 0;
4677
4678 return 0;
4679 }
4680
fec_resume(struct device * dev)4681 static int __maybe_unused fec_resume(struct device *dev)
4682 {
4683 struct net_device *ndev = dev_get_drvdata(dev);
4684 struct fec_enet_private *fep = netdev_priv(ndev);
4685 int ret;
4686 int val;
4687
4688 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4689 ret = regulator_enable(fep->reg_phy);
4690 if (ret)
4691 return ret;
4692 }
4693
4694 rtnl_lock();
4695 if (netif_running(ndev)) {
4696 if (fep->rpm_active)
4697 pm_runtime_force_resume(dev);
4698
4699 ret = fec_enet_clk_enable(ndev, true);
4700 if (ret) {
4701 rtnl_unlock();
4702 goto failed_clk;
4703 }
4704 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4705 fec_enet_stop_mode(fep, false);
4706 if (fep->wake_irq) {
4707 disable_irq_wake(fep->wake_irq);
4708 enable_irq(fep->wake_irq);
4709 }
4710
4711 val = readl(fep->hwp + FEC_ECNTRL);
4712 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4713 writel(val, fep->hwp + FEC_ECNTRL);
4714 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4715 } else {
4716 pinctrl_pm_select_default_state(&fep->pdev->dev);
4717 }
4718 fec_restart(ndev);
4719 netif_tx_lock_bh(ndev);
4720 netif_device_attach(ndev);
4721 netif_tx_unlock_bh(ndev);
4722 napi_enable(&fep->napi);
4723 phy_init_hw(ndev->phydev);
4724 phy_start(ndev->phydev);
4725 }
4726 rtnl_unlock();
4727
4728 return 0;
4729
4730 failed_clk:
4731 if (fep->reg_phy)
4732 regulator_disable(fep->reg_phy);
4733 return ret;
4734 }
4735
fec_runtime_suspend(struct device * dev)4736 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4737 {
4738 struct net_device *ndev = dev_get_drvdata(dev);
4739 struct fec_enet_private *fep = netdev_priv(ndev);
4740
4741 clk_disable_unprepare(fep->clk_ahb);
4742 clk_disable_unprepare(fep->clk_ipg);
4743
4744 return 0;
4745 }
4746
fec_runtime_resume(struct device * dev)4747 static int __maybe_unused fec_runtime_resume(struct device *dev)
4748 {
4749 struct net_device *ndev = dev_get_drvdata(dev);
4750 struct fec_enet_private *fep = netdev_priv(ndev);
4751 int ret;
4752
4753 ret = clk_prepare_enable(fep->clk_ahb);
4754 if (ret)
4755 return ret;
4756 ret = clk_prepare_enable(fep->clk_ipg);
4757 if (ret)
4758 goto failed_clk_ipg;
4759
4760 return 0;
4761
4762 failed_clk_ipg:
4763 clk_disable_unprepare(fep->clk_ahb);
4764 return ret;
4765 }
4766
4767 static const struct dev_pm_ops fec_pm_ops = {
4768 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4769 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4770 };
4771
4772 static struct platform_driver fec_driver = {
4773 .driver = {
4774 .name = DRIVER_NAME,
4775 .pm = &fec_pm_ops,
4776 .of_match_table = fec_dt_ids,
4777 .suppress_bind_attrs = true,
4778 },
4779 .id_table = fec_devtype,
4780 .probe = fec_probe,
4781 .remove_new = fec_drv_remove,
4782 };
4783
4784 module_platform_driver(fec_driver);
4785
4786 MODULE_LICENSE("GPL");
4787