xref: /openbmc/linux/arch/arm/mach-ep93xx/timer-ep93xx.c (revision 2612e3bbc0386368a850140a6c9b990cd496a5ec)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/clocksource.h>
5 #include <linux/clockchips.h>
6 #include <linux/sched_clock.h>
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/io.h>
10 #include <asm/mach/time.h>
11 #include "soc.h"
12 #include "platform.h"
13 
14 /*************************************************************************
15  * Timer handling for EP93xx
16  *************************************************************************
17  * The ep93xx has four internal timers.  Timers 1, 2 (both 16 bit) and
18  * 3 (32 bit) count down at 508 kHz, are self-reloading, and can generate
19  * an interrupt on underflow.  Timer 4 (40 bit) counts down at 983.04 kHz,
20  * is free-running, and can't generate interrupts.
21  *
22  * The 508 kHz timers are ideal for use for the timer interrupt, as the
23  * most common values of HZ divide 508 kHz nicely.  We pick the 32 bit
24  * timer (timer 3) to get as long sleep intervals as possible when using
25  * CONFIG_NO_HZ.
26  *
27  * The higher clock rate of timer 4 makes it a better choice than the
28  * other timers for use as clock source and for sched_clock(), providing
29  * a stable 40 bit time base.
30  *************************************************************************
31  */
32 #define EP93XX_TIMER_REG(x)		(EP93XX_TIMER_BASE + (x))
33 #define EP93XX_TIMER1_LOAD		EP93XX_TIMER_REG(0x00)
34 #define EP93XX_TIMER1_VALUE		EP93XX_TIMER_REG(0x04)
35 #define EP93XX_TIMER1_CONTROL		EP93XX_TIMER_REG(0x08)
36 #define EP93XX_TIMER123_CONTROL_ENABLE	(1 << 7)
37 #define EP93XX_TIMER123_CONTROL_MODE	(1 << 6)
38 #define EP93XX_TIMER123_CONTROL_CLKSEL	(1 << 3)
39 #define EP93XX_TIMER1_CLEAR		EP93XX_TIMER_REG(0x0c)
40 #define EP93XX_TIMER2_LOAD		EP93XX_TIMER_REG(0x20)
41 #define EP93XX_TIMER2_VALUE		EP93XX_TIMER_REG(0x24)
42 #define EP93XX_TIMER2_CONTROL		EP93XX_TIMER_REG(0x28)
43 #define EP93XX_TIMER2_CLEAR		EP93XX_TIMER_REG(0x2c)
44 #define EP93XX_TIMER4_VALUE_LOW		EP93XX_TIMER_REG(0x60)
45 #define EP93XX_TIMER4_VALUE_HIGH	EP93XX_TIMER_REG(0x64)
46 #define EP93XX_TIMER4_VALUE_HIGH_ENABLE	(1 << 8)
47 #define EP93XX_TIMER3_LOAD		EP93XX_TIMER_REG(0x80)
48 #define EP93XX_TIMER3_VALUE		EP93XX_TIMER_REG(0x84)
49 #define EP93XX_TIMER3_CONTROL		EP93XX_TIMER_REG(0x88)
50 #define EP93XX_TIMER3_CLEAR		EP93XX_TIMER_REG(0x8c)
51 
52 #define EP93XX_TIMER123_RATE		508469
53 #define EP93XX_TIMER4_RATE		983040
54 
ep93xx_read_sched_clock(void)55 static u64 notrace ep93xx_read_sched_clock(void)
56 {
57 	u64 ret;
58 
59 	ret = readl(EP93XX_TIMER4_VALUE_LOW);
60 	ret |= ((u64) (readl(EP93XX_TIMER4_VALUE_HIGH) & 0xff) << 32);
61 	return ret;
62 }
63 
ep93xx_clocksource_read(struct clocksource * c)64 static u64 ep93xx_clocksource_read(struct clocksource *c)
65 {
66 	u64 ret;
67 
68 	ret = readl(EP93XX_TIMER4_VALUE_LOW);
69 	ret |= ((u64) (readl(EP93XX_TIMER4_VALUE_HIGH) & 0xff) << 32);
70 	return (u64) ret;
71 }
72 
ep93xx_clkevt_set_next_event(unsigned long next,struct clock_event_device * evt)73 static int ep93xx_clkevt_set_next_event(unsigned long next,
74 					struct clock_event_device *evt)
75 {
76 	/* Default mode: periodic, off, 508 kHz */
77 	u32 tmode = EP93XX_TIMER123_CONTROL_MODE |
78 		    EP93XX_TIMER123_CONTROL_CLKSEL;
79 
80 	/* Clear timer */
81 	writel(tmode, EP93XX_TIMER3_CONTROL);
82 
83 	/* Set next event */
84 	writel(next, EP93XX_TIMER3_LOAD);
85 	writel(tmode | EP93XX_TIMER123_CONTROL_ENABLE,
86 	       EP93XX_TIMER3_CONTROL);
87         return 0;
88 }
89 
90 
ep93xx_clkevt_shutdown(struct clock_event_device * evt)91 static int ep93xx_clkevt_shutdown(struct clock_event_device *evt)
92 {
93 	/* Disable timer */
94 	writel(0, EP93XX_TIMER3_CONTROL);
95 
96 	return 0;
97 }
98 
99 static struct clock_event_device ep93xx_clockevent = {
100 	.name			= "timer1",
101 	.features		= CLOCK_EVT_FEAT_ONESHOT,
102 	.set_state_shutdown	= ep93xx_clkevt_shutdown,
103 	.set_state_oneshot	= ep93xx_clkevt_shutdown,
104 	.tick_resume		= ep93xx_clkevt_shutdown,
105 	.set_next_event		= ep93xx_clkevt_set_next_event,
106 	.rating			= 300,
107 };
108 
ep93xx_timer_interrupt(int irq,void * dev_id)109 static irqreturn_t ep93xx_timer_interrupt(int irq, void *dev_id)
110 {
111 	struct clock_event_device *evt = dev_id;
112 
113 	/* Writing any value clears the timer interrupt */
114 	writel(1, EP93XX_TIMER3_CLEAR);
115 
116 	evt->event_handler(evt);
117 
118 	return IRQ_HANDLED;
119 }
120 
ep93xx_timer_init(void)121 void __init ep93xx_timer_init(void)
122 {
123 	int irq = IRQ_EP93XX_TIMER3;
124 	unsigned long flags = IRQF_TIMER | IRQF_IRQPOLL;
125 
126 	/* Enable and register clocksource and sched_clock on timer 4 */
127 	writel(EP93XX_TIMER4_VALUE_HIGH_ENABLE,
128 	       EP93XX_TIMER4_VALUE_HIGH);
129 	clocksource_mmio_init(NULL, "timer4",
130 			      EP93XX_TIMER4_RATE, 200, 40,
131 			      ep93xx_clocksource_read);
132 	sched_clock_register(ep93xx_read_sched_clock, 40,
133 			     EP93XX_TIMER4_RATE);
134 
135 	/* Set up clockevent on timer 3 */
136 	if (request_irq(irq, ep93xx_timer_interrupt, flags, "ep93xx timer",
137 			&ep93xx_clockevent))
138 		pr_err("Failed to request irq %d (ep93xx timer)\n", irq);
139 	clockevents_config_and_register(&ep93xx_clockevent,
140 					EP93XX_TIMER123_RATE,
141 					1,
142 					0xffffffffU);
143 }
144