xref: /openbmc/linux/include/linux/platform_data/cros_ec_commands.h (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Host communication command constants for ChromeOS EC
4  *
5  * Copyright (C) 2012 Google, Inc
6  *
7  * NOTE: This file is auto-generated from ChromeOS EC Open Source code from
8  * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h
9  */
10 
11 /* Host communication command constants for Chrome EC */
12 
13 #ifndef __CROS_EC_COMMANDS_H
14 #define __CROS_EC_COMMANDS_H
15 
16 #include <linux/bits.h>
17 #include <linux/types.h>
18 
19 #define BUILD_ASSERT(_cond)
20 
21 /*
22  * Current version of this protocol
23  *
24  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
25  * determined in other ways.  Remove this once the kernel code no longer
26  * depends on it.
27  */
28 #define EC_PROTO_VERSION          0x00000002
29 
30 /* Command version mask */
31 #define EC_VER_MASK(version) BIT(version)
32 
33 /* I/O addresses for ACPI commands */
34 #define EC_LPC_ADDR_ACPI_DATA  0x62
35 #define EC_LPC_ADDR_ACPI_CMD   0x66
36 
37 /* I/O addresses for host command */
38 #define EC_LPC_ADDR_HOST_DATA  0x200
39 #define EC_LPC_ADDR_HOST_CMD   0x204
40 
41 /* I/O addresses for host command args and params */
42 /* Protocol version 2 */
43 #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
44 #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
45 					 * EC_PROTO2_MAX_PARAM_SIZE
46 					 */
47 /* Protocol version 3 */
48 #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
49 #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
50 
51 /*
52  * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
53  * and they tell the kernel that so we have to think of it as two parts.
54  *
55  * Other BIOSes report only the I/O port region spanned by the Microchip
56  * MEC series EC; an attempt to address a larger region may fail.
57  */
58 #define EC_HOST_CMD_REGION0       0x800
59 #define EC_HOST_CMD_REGION1       0x880
60 #define EC_HOST_CMD_REGION_SIZE    0x80
61 #define EC_HOST_CMD_MEC_REGION_SIZE 0x8
62 
63 /* EC command register bit functions */
64 #define EC_LPC_CMDR_DATA	BIT(0)  /* Data ready for host to read */
65 #define EC_LPC_CMDR_PENDING	BIT(1)  /* Write pending to EC */
66 #define EC_LPC_CMDR_BUSY	BIT(2)  /* EC is busy processing a command */
67 #define EC_LPC_CMDR_CMD		BIT(3)  /* Last host write was a command */
68 #define EC_LPC_CMDR_ACPI_BRST	BIT(4)  /* Burst mode (not used) */
69 #define EC_LPC_CMDR_SCI		BIT(5)  /* SCI event is pending */
70 #define EC_LPC_CMDR_SMI		BIT(6)  /* SMI event is pending */
71 
72 #define EC_LPC_ADDR_MEMMAP       0x900
73 #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
74 #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
75 
76 /* The offset address of each type of data in mapped memory. */
77 #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
78 #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
79 #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
80 #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
81 #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
82 #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
83 #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
84 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
85 #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
86 #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
87 /* Unused 0x28 - 0x2f */
88 #define EC_MEMMAP_SWITCHES         0x30	/* 8 bits */
89 /* Unused 0x31 - 0x33 */
90 #define EC_MEMMAP_HOST_EVENTS      0x34 /* 64 bits */
91 /* Battery values are all 32 bits, unless otherwise noted. */
92 #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
93 #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
94 #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
95 #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, see below (8-bit) */
96 #define EC_MEMMAP_BATT_COUNT       0x4d /* Battery Count (8-bit) */
97 #define EC_MEMMAP_BATT_INDEX       0x4e /* Current Battery Data Index (8-bit) */
98 /* Unused 0x4f */
99 #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
100 #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
101 #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
102 #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
103 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
104 #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
105 #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
106 #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
107 #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
108 #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
109 /* Unused 0x84 - 0x8f */
110 #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
111 /* Unused 0x91 */
112 #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
113 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
114 /* 0x94 - 0x99: 1st Accelerometer */
115 /* 0x9a - 0x9f: 2nd Accelerometer */
116 #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
117 /* Unused 0xa6 - 0xdf */
118 
119 /*
120  * ACPI is unable to access memory mapped data at or above this offset due to
121  * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
122  * which might be needed by ACPI.
123  */
124 #define EC_MEMMAP_NO_ACPI 0xe0
125 
126 /* Define the format of the accelerometer mapped memory status byte. */
127 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
128 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        BIT(4)
129 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    BIT(7)
130 
131 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
132 #define EC_TEMP_SENSOR_ENTRIES     16
133 /*
134  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
135  *
136  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
137  */
138 #define EC_TEMP_SENSOR_B_ENTRIES      8
139 
140 /* Special values for mapped temperature sensors */
141 #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
142 #define EC_TEMP_SENSOR_ERROR          0xfe
143 #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
144 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
145 /*
146  * The offset of temperature value stored in mapped memory.  This allows
147  * reporting a temperature range of 200K to 454K = -73C to 181C.
148  */
149 #define EC_TEMP_SENSOR_OFFSET      200
150 
151 /*
152  * Number of ALS readings at EC_MEMMAP_ALS
153  */
154 #define EC_ALS_ENTRIES             2
155 
156 /*
157  * The default value a temperature sensor will return when it is present but
158  * has not been read this boot.  This is a reasonable number to avoid
159  * triggering alarms on the host.
160  */
161 #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
162 
163 #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
164 #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
165 #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
166 
167 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
168 #define EC_BATT_FLAG_AC_PRESENT   0x01
169 #define EC_BATT_FLAG_BATT_PRESENT 0x02
170 #define EC_BATT_FLAG_DISCHARGING  0x04
171 #define EC_BATT_FLAG_CHARGING     0x08
172 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
173 /* Set if some of the static/dynamic data is invalid (or outdated). */
174 #define EC_BATT_FLAG_INVALID_DATA 0x20
175 
176 /* Switch flags at EC_MEMMAP_SWITCHES */
177 #define EC_SWITCH_LID_OPEN               0x01
178 #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
179 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
180 /* Was recovery requested via keyboard; now unused. */
181 #define EC_SWITCH_IGNORE1		 0x08
182 /* Recovery requested via dedicated signal (from servo board) */
183 #define EC_SWITCH_DEDICATED_RECOVERY     0x10
184 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
185 #define EC_SWITCH_IGNORE0                0x20
186 
187 /* Host command interface flags */
188 /* Host command interface supports LPC args (LPC interface only) */
189 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
190 /* Host command interface supports version 3 protocol */
191 #define EC_HOST_CMD_FLAG_VERSION_3   0x02
192 
193 /* Wireless switch flags */
194 #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
195 #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
196 #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
197 #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
198 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
199 
200 /*****************************************************************************/
201 /*
202  * ACPI commands
203  *
204  * These are valid ONLY on the ACPI command/data port.
205  */
206 
207 /*
208  * ACPI Read Embedded Controller
209  *
210  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
211  *
212  * Use the following sequence:
213  *
214  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
215  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
216  *    - Write address to EC_LPC_ADDR_ACPI_DATA
217  *    - Wait for EC_LPC_CMDR_DATA bit to set
218  *    - Read value from EC_LPC_ADDR_ACPI_DATA
219  */
220 #define EC_CMD_ACPI_READ 0x0080
221 
222 /*
223  * ACPI Write Embedded Controller
224  *
225  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
226  *
227  * Use the following sequence:
228  *
229  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
230  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
231  *    - Write address to EC_LPC_ADDR_ACPI_DATA
232  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
233  *    - Write value to EC_LPC_ADDR_ACPI_DATA
234  */
235 #define EC_CMD_ACPI_WRITE 0x0081
236 
237 /*
238  * ACPI Burst Enable Embedded Controller
239  *
240  * This enables burst mode on the EC to allow the host to issue several
241  * commands back-to-back. While in this mode, writes to mapped multi-byte
242  * data are locked out to ensure data consistency.
243  */
244 #define EC_CMD_ACPI_BURST_ENABLE 0x0082
245 
246 /*
247  * ACPI Burst Disable Embedded Controller
248  *
249  * This disables burst mode on the EC and stops preventing EC writes to mapped
250  * multi-byte data.
251  */
252 #define EC_CMD_ACPI_BURST_DISABLE 0x0083
253 
254 /*
255  * ACPI Query Embedded Controller
256  *
257  * This clears the lowest-order bit in the currently pending host events, and
258  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
259  * event 0x80000000 = 32), or 0 if no event was pending.
260  */
261 #define EC_CMD_ACPI_QUERY_EVENT 0x0084
262 
263 /* Valid addresses in ACPI memory space, for read/write commands */
264 
265 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
266 #define EC_ACPI_MEM_VERSION            0x00
267 /*
268  * Test location; writing value here updates test compliment byte to (0xff -
269  * value).
270  */
271 #define EC_ACPI_MEM_TEST               0x01
272 /* Test compliment; writes here are ignored. */
273 #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
274 
275 /* Keyboard backlight brightness percent (0 - 100) */
276 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
277 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
278 #define EC_ACPI_MEM_FAN_DUTY           0x04
279 
280 /*
281  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
282  * independent thresholds attached to them. The current value of the ID
283  * register determines which sensor is affected by the THRESHOLD and COMMIT
284  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
285  * as the memory-mapped sensors. The COMMIT register applies those settings.
286  *
287  * The spec does not mandate any way to read back the threshold settings
288  * themselves, but when a threshold is crossed the AP needs a way to determine
289  * which sensor(s) are responsible. Each reading of the ID register clears and
290  * returns one sensor ID that has crossed one of its threshold (in either
291  * direction) since the last read. A value of 0xFF means "no new thresholds
292  * have tripped". Setting or enabling the thresholds for a sensor will clear
293  * the unread event count for that sensor.
294  */
295 #define EC_ACPI_MEM_TEMP_ID            0x05
296 #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
297 #define EC_ACPI_MEM_TEMP_COMMIT        0x07
298 /*
299  * Here are the bits for the COMMIT register:
300  *   bit 0 selects the threshold index for the chosen sensor (0/1)
301  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
302  * Each write to the commit register affects one threshold.
303  */
304 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
305 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
306 /*
307  * Example:
308  *
309  * Set the thresholds for sensor 2 to 50 C and 60 C:
310  *   write 2 to [0x05]      --  select temp sensor 2
311  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
312  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
313  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
314  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
315  *
316  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
317  *   write 2 to [0x05]      --  select temp sensor 2
318  *   write 0x1 to [0x07]    --  disable threshold 1
319  */
320 
321 /* DPTF battery charging current limit */
322 #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
323 
324 /* Charging limit is specified in 64 mA steps */
325 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
326 /* Value to disable DPTF battery charging limit */
327 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
328 
329 /*
330  * Report device orientation
331  *  Bits       Definition
332  *  3:1        Device DPTF Profile Number (DDPN)
333  *               0   = Reserved for backward compatibility (indicates no valid
334  *                     profile number. Host should fall back to using TBMD).
335  *              1..7 = DPTF Profile number to indicate to host which table needs
336  *                     to be loaded.
337  *   0         Tablet Mode Device Indicator (TBMD)
338  */
339 #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
340 #define EC_ACPI_MEM_TBMD_SHIFT         0
341 #define EC_ACPI_MEM_TBMD_MASK          0x1
342 #define EC_ACPI_MEM_DDPN_SHIFT         1
343 #define EC_ACPI_MEM_DDPN_MASK          0x7
344 
345 /*
346  * Report device features. Uses the same format as the host command, except:
347  *
348  * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
349  * of features", which is of limited interest when the system is already
350  * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
351  * these are supported, it defaults to 0.
352  * This allows detecting the presence of this field since older versions of
353  * the EC codebase would simply return 0xff to that unknown address. Check
354  * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
355  * are valid.
356  */
357 #define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
358 #define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
359 #define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
360 #define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
361 #define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
362 #define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
363 #define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
364 #define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
365 
366 #define EC_ACPI_MEM_BATTERY_INDEX    0x12
367 
368 /*
369  * USB Port Power. Each bit indicates whether the corresponding USB ports' power
370  * is enabled (1) or disabled (0).
371  *   bit 0 USB port ID 0
372  *   ...
373  *   bit 7 USB port ID 7
374  */
375 #define EC_ACPI_MEM_USB_PORT_POWER 0x13
376 
377 /*
378  * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
379  * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
380  */
381 #define EC_ACPI_MEM_MAPPED_BEGIN   0x20
382 #define EC_ACPI_MEM_MAPPED_SIZE    0xe0
383 
384 /* Current version of ACPI memory address space */
385 #define EC_ACPI_MEM_VERSION_CURRENT 2
386 
387 
388 /*
389  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
390  * is pre-processed to handle constants but the ASL compiler is unable to
391  * handle actual C code so keep it separate.
392  */
393 
394 
395 /*
396  * Attributes for EC request and response packets.  Just defining __packed
397  * results in inefficient assembly code on ARM, if the structure is actually
398  * 32-bit aligned, as it should be for all buffers.
399  *
400  * Be very careful when adding these to existing structures.  They will round
401  * up the structure size to the specified boundary.
402  *
403  * Also be very careful to make that if a structure is included in some other
404  * parent structure that the alignment will still be true given the packing of
405  * the parent structure.  This is particularly important if the sub-structure
406  * will be passed as a pointer to another function, since that function will
407  * not know about the misaligment caused by the parent structure's packing.
408  *
409  * Also be very careful using __packed - particularly when nesting non-packed
410  * structures inside packed ones.  In fact, DO NOT use __packed directly;
411  * always use one of these attributes.
412  *
413  * Once everything is annotated properly, the following search strings should
414  * not return ANY matches in this file other than right here:
415  *
416  * "__packed" - generates inefficient code; all sub-structs must also be packed
417  *
418  * "struct [^_]" - all structs should be annotated, except for structs that are
419  * members of other structs/unions (and their original declarations should be
420  * annotated).
421  */
422 
423 /*
424  * Packed structures make no assumption about alignment, so they do inefficient
425  * byte-wise reads.
426  */
427 #define __ec_align1 __packed
428 #define __ec_align2 __packed
429 #define __ec_align4 __packed
430 #define __ec_align_size1 __packed
431 #define __ec_align_offset1 __packed
432 #define __ec_align_offset2 __packed
433 #define __ec_todo_packed __packed
434 #define __ec_todo_unpacked
435 
436 
437 /* LPC command status byte masks */
438 /* EC has written a byte in the data register and host hasn't read it yet */
439 #define EC_LPC_STATUS_TO_HOST     0x01
440 /* Host has written a command/data byte and the EC hasn't read it yet */
441 #define EC_LPC_STATUS_FROM_HOST   0x02
442 /* EC is processing a command */
443 #define EC_LPC_STATUS_PROCESSING  0x04
444 /* Last write to EC was a command, not data */
445 #define EC_LPC_STATUS_LAST_CMD    0x08
446 /* EC is in burst mode */
447 #define EC_LPC_STATUS_BURST_MODE  0x10
448 /* SCI event is pending (requesting SCI query) */
449 #define EC_LPC_STATUS_SCI_PENDING 0x20
450 /* SMI event is pending (requesting SMI query) */
451 #define EC_LPC_STATUS_SMI_PENDING 0x40
452 /* (reserved) */
453 #define EC_LPC_STATUS_RESERVED    0x80
454 
455 /*
456  * EC is busy.  This covers both the EC processing a command, and the host has
457  * written a new command but the EC hasn't picked it up yet.
458  */
459 #define EC_LPC_STATUS_BUSY_MASK \
460 	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
461 
462 /*
463  * Host command response codes (16-bit).  Note that response codes should be
464  * stored in a uint16_t rather than directly in a value of this type.
465  */
466 enum ec_status {
467 	EC_RES_SUCCESS = 0,
468 	EC_RES_INVALID_COMMAND = 1,
469 	EC_RES_ERROR = 2,
470 	EC_RES_INVALID_PARAM = 3,
471 	EC_RES_ACCESS_DENIED = 4,
472 	EC_RES_INVALID_RESPONSE = 5,
473 	EC_RES_INVALID_VERSION = 6,
474 	EC_RES_INVALID_CHECKSUM = 7,
475 	EC_RES_IN_PROGRESS = 8,		/* Accepted, command in progress */
476 	EC_RES_UNAVAILABLE = 9,		/* No response available */
477 	EC_RES_TIMEOUT = 10,		/* We got a timeout */
478 	EC_RES_OVERFLOW = 11,		/* Table / data overflow */
479 	EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
480 	EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
481 	EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
482 	EC_RES_BUS_ERROR = 15,		/* Communications bus error */
483 	EC_RES_BUSY = 16,		/* Up but too busy.  Should retry */
484 	EC_RES_INVALID_HEADER_VERSION = 17,  /* Header version invalid */
485 	EC_RES_INVALID_HEADER_CRC = 18,      /* Header CRC invalid */
486 	EC_RES_INVALID_DATA_CRC = 19,        /* Data CRC invalid */
487 	EC_RES_DUP_UNAVAILABLE = 20,         /* Can't resend response */
488 };
489 
490 /*
491  * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
492  * EC command uses code 0 to mean "no event pending".  We explicitly specify
493  * each value in the enum listing so they won't change if we delete/insert an
494  * item or rearrange the list (it needs to be stable across platforms, not
495  * just within a single compiled instance).
496  */
497 enum host_event_code {
498 	EC_HOST_EVENT_LID_CLOSED = 1,
499 	EC_HOST_EVENT_LID_OPEN = 2,
500 	EC_HOST_EVENT_POWER_BUTTON = 3,
501 	EC_HOST_EVENT_AC_CONNECTED = 4,
502 	EC_HOST_EVENT_AC_DISCONNECTED = 5,
503 	EC_HOST_EVENT_BATTERY_LOW = 6,
504 	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
505 	EC_HOST_EVENT_BATTERY = 8,
506 	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
507 	/* Event generated by a device attached to the EC */
508 	EC_HOST_EVENT_DEVICE = 10,
509 	EC_HOST_EVENT_THERMAL = 11,
510 	EC_HOST_EVENT_USB_CHARGER = 12,
511 	EC_HOST_EVENT_KEY_PRESSED = 13,
512 	/*
513 	 * EC has finished initializing the host interface.  The host can check
514 	 * for this event following sending a EC_CMD_REBOOT_EC command to
515 	 * determine when the EC is ready to accept subsequent commands.
516 	 */
517 	EC_HOST_EVENT_INTERFACE_READY = 14,
518 	/* Keyboard recovery combo has been pressed */
519 	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
520 
521 	/* Shutdown due to thermal overload */
522 	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
523 	/* Shutdown due to battery level too low */
524 	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
525 
526 	/* Suggest that the AP throttle itself */
527 	EC_HOST_EVENT_THROTTLE_START = 18,
528 	/* Suggest that the AP resume normal speed */
529 	EC_HOST_EVENT_THROTTLE_STOP = 19,
530 
531 	/* Hang detect logic detected a hang and host event timeout expired */
532 	EC_HOST_EVENT_HANG_DETECT = 20,
533 	/* Hang detect logic detected a hang and warm rebooted the AP */
534 	EC_HOST_EVENT_HANG_REBOOT = 21,
535 
536 	/* PD MCU triggering host event */
537 	EC_HOST_EVENT_PD_MCU = 22,
538 
539 	/* Battery Status flags have changed */
540 	EC_HOST_EVENT_BATTERY_STATUS = 23,
541 
542 	/* EC encountered a panic, triggering a reset */
543 	EC_HOST_EVENT_PANIC = 24,
544 
545 	/* Keyboard fastboot combo has been pressed */
546 	EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
547 
548 	/* EC RTC event occurred */
549 	EC_HOST_EVENT_RTC = 26,
550 
551 	/* Emulate MKBP event */
552 	EC_HOST_EVENT_MKBP = 27,
553 
554 	/* EC desires to change state of host-controlled USB mux */
555 	EC_HOST_EVENT_USB_MUX = 28,
556 
557 	/* TABLET/LAPTOP mode or detachable base attach/detach event */
558 	EC_HOST_EVENT_MODE_CHANGE = 29,
559 
560 	/* Keyboard recovery combo with hardware reinitialization */
561 	EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
562 
563 	/* WoV */
564 	EC_HOST_EVENT_WOV = 31,
565 
566 	/*
567 	 * The high bit of the event mask is not used as a host event code.  If
568 	 * it reads back as set, then the entire event mask should be
569 	 * considered invalid by the host.  This can happen when reading the
570 	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
571 	 * not initialized on the EC, or improperly configured on the host.
572 	 */
573 	EC_HOST_EVENT_INVALID = 32
574 };
575 /* Host event mask */
576 #define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1)
577 
578 /**
579  * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
580  * @flags: The host argument flags.
581  * @command_version: Command version.
582  * @data_size: The length of data.
583  * @checksum: Checksum; sum of command + flags + command_version + data_size +
584  *            all params/response data bytes.
585  */
586 struct ec_lpc_host_args {
587 	uint8_t flags;
588 	uint8_t command_version;
589 	uint8_t data_size;
590 	uint8_t checksum;
591 } __ec_align4;
592 
593 /* Flags for ec_lpc_host_args.flags */
594 /*
595  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
596  * params.
597  *
598  * If EC gets a command and this flag is not set, this is an old-style command.
599  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
600  * unknown length.  EC must respond with an old-style response (that is,
601  * without setting EC_HOST_ARGS_FLAG_TO_HOST).
602  */
603 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
604 /*
605  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
606  *
607  * If EC responds to a command and this flag is not set, this is an old-style
608  * response.  Command version is 0 and response data from EC is at
609  * EC_LPC_ADDR_OLD_PARAM with unknown length.
610  */
611 #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
612 
613 /*****************************************************************************/
614 /*
615  * Byte codes returned by EC over SPI interface.
616  *
617  * These can be used by the AP to debug the EC interface, and to determine
618  * when the EC is not in a state where it will ever get around to responding
619  * to the AP.
620  *
621  * Example of sequence of bytes read from EC for a current good transfer:
622  *   1. -                  - AP asserts chip select (CS#)
623  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
624  *   3. -                  - EC starts handling CS# interrupt
625  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
626  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
627  *                           bytes looking for EC_SPI_FRAME_START
628  *   6. -                  - EC finishes processing and sets up response
629  *   7. EC_SPI_FRAME_START - AP reads frame byte
630  *   8. (response packet)  - AP reads response packet
631  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
632  *   10 -                  - AP deasserts chip select
633  *   11 -                  - EC processes CS# interrupt and sets up DMA for
634  *                           next request
635  *
636  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
637  * the following byte values:
638  *   EC_SPI_OLD_READY
639  *   EC_SPI_RX_READY
640  *   EC_SPI_RECEIVING
641  *   EC_SPI_PROCESSING
642  *
643  * Then the EC found an error in the request, or was not ready for the request
644  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
645  * because the EC is unable to tell when the AP is done sending its request.
646  */
647 
648 /*
649  * Framing byte which precedes a response packet from the EC.  After sending a
650  * request, the AP will clock in bytes until it sees the framing byte, then
651  * clock in the response packet.
652  */
653 #define EC_SPI_FRAME_START    0xec
654 
655 /*
656  * Padding bytes which are clocked out after the end of a response packet.
657  */
658 #define EC_SPI_PAST_END       0xed
659 
660 /*
661  * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
662  * that the AP will send a valid packet header (starting with
663  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
664  */
665 #define EC_SPI_RX_READY       0xf8
666 
667 /*
668  * EC has started receiving the request from the AP, but hasn't started
669  * processing it yet.
670  */
671 #define EC_SPI_RECEIVING      0xf9
672 
673 /* EC has received the entire request from the AP and is processing it. */
674 #define EC_SPI_PROCESSING     0xfa
675 
676 /*
677  * EC received bad data from the AP, such as a packet header with an invalid
678  * length.  EC will ignore all data until chip select deasserts.
679  */
680 #define EC_SPI_RX_BAD_DATA    0xfb
681 
682 /*
683  * EC received data from the AP before it was ready.  That is, the AP asserted
684  * chip select and started clocking data before the EC was ready to receive it.
685  * EC will ignore all data until chip select deasserts.
686  */
687 #define EC_SPI_NOT_READY      0xfc
688 
689 /*
690  * EC was ready to receive a request from the AP.  EC has treated the byte sent
691  * by the AP as part of a request packet, or (for old-style ECs) is processing
692  * a fully received packet but is not ready to respond yet.
693  */
694 #define EC_SPI_OLD_READY      0xfd
695 
696 /*****************************************************************************/
697 
698 /*
699  * Protocol version 2 for I2C and SPI send a request this way:
700  *
701  *	0	EC_CMD_VERSION0 + (command version)
702  *	1	Command number
703  *	2	Length of params = N
704  *	3..N+2	Params, if any
705  *	N+3	8-bit checksum of bytes 0..N+2
706  *
707  * The corresponding response is:
708  *
709  *	0	Result code (EC_RES_*)
710  *	1	Length of params = M
711  *	2..M+1	Params, if any
712  *	M+2	8-bit checksum of bytes 0..M+1
713  */
714 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
715 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
716 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +	\
717 				    EC_PROTO2_REQUEST_TRAILER_BYTES)
718 
719 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
720 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
721 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +	\
722 				     EC_PROTO2_RESPONSE_TRAILER_BYTES)
723 
724 /* Parameter length was limited by the LPC interface */
725 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
726 
727 /* Maximum request and response packet sizes for protocol version 2 */
728 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +	\
729 				    EC_PROTO2_MAX_PARAM_SIZE)
730 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +	\
731 				     EC_PROTO2_MAX_PARAM_SIZE)
732 
733 /*****************************************************************************/
734 
735 /*
736  * Value written to legacy command port / prefix byte to indicate protocol
737  * 3+ structs are being used.  Usage is bus-dependent.
738  */
739 #define EC_COMMAND_PROTOCOL_3 0xda
740 
741 #define EC_HOST_REQUEST_VERSION 3
742 
743 /**
744  * struct ec_host_request - Version 3 request from host.
745  * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
746  *                  receives a header with a version it doesn't know how to
747  *                  parse.
748  * @checksum: Checksum of request and data; sum of all bytes including checksum
749  *            should total to 0.
750  * @command: Command to send (EC_CMD_...)
751  * @command_version: Command version.
752  * @reserved: Unused byte in current protocol version; set to 0.
753  * @data_len: Length of data which follows this header.
754  */
755 struct ec_host_request {
756 	uint8_t struct_version;
757 	uint8_t checksum;
758 	uint16_t command;
759 	uint8_t command_version;
760 	uint8_t reserved;
761 	uint16_t data_len;
762 } __ec_align4;
763 
764 #define EC_HOST_RESPONSE_VERSION 3
765 
766 /**
767  * struct ec_host_response - Version 3 response from EC.
768  * @struct_version: Struct version (=3).
769  * @checksum: Checksum of response and data; sum of all bytes including
770  *            checksum should total to 0.
771  * @result: EC's response to the command (separate from communication failure)
772  * @data_len: Length of data which follows this header.
773  * @reserved: Unused bytes in current protocol version; set to 0.
774  */
775 struct ec_host_response {
776 	uint8_t struct_version;
777 	uint8_t checksum;
778 	uint16_t result;
779 	uint16_t data_len;
780 	uint16_t reserved;
781 } __ec_align4;
782 
783 /*****************************************************************************/
784 
785 /*
786  * Host command protocol V4.
787  *
788  * Packets always start with a request or response header.  They are followed
789  * by data_len bytes of data.  If the data_crc_present flag is set, the data
790  * bytes are followed by a CRC-8 of that data, using x^8 + x^2 + x + 1
791  * polynomial.
792  *
793  * Host algorithm when sending a request q:
794  *
795  * 101) tries_left=(some value, e.g. 3);
796  * 102) q.seq_num++
797  * 103) q.seq_dup=0
798  * 104) Calculate q.header_crc.
799  * 105) Send request q to EC.
800  * 106) Wait for response r.  Go to 201 if received or 301 if timeout.
801  *
802  * 201) If r.struct_version != 4, go to 301.
803  * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
804  * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
805  * 204) If r.seq_num != q.seq_num, go to 301.
806  * 205) If r.seq_dup == q.seq_dup, return success.
807  * 207) If r.seq_dup == 1, go to 301.
808  * 208) Return error.
809  *
810  * 301) If --tries_left <= 0, return error.
811  * 302) If q.seq_dup == 1, go to 105.
812  * 303) q.seq_dup = 1
813  * 304) Go to 104.
814  *
815  * EC algorithm when receiving a request q.
816  * EC has response buffer r, error buffer e.
817  *
818  * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
819  *      and go to 301
820  * 102) If q.header_crc mismatches calculated CRC, set e.result =
821  *      EC_RES_INVALID_HEADER_CRC and go to 301
822  * 103) If q.data_crc_present, calculate data CRC.  If that mismatches the CRC
823  *      byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
824  *      and go to 301.
825  * 104) If q.seq_dup == 0, go to 201.
826  * 105) If q.seq_num != r.seq_num, go to 201.
827  * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
828  *
829  * 201) Process request q into response r.
830  * 202) r.seq_num = q.seq_num
831  * 203) r.seq_dup = q.seq_dup
832  * 204) Calculate r.header_crc
833  * 205) If r.data_len > 0 and data is no longer available, set e.result =
834  *      EC_RES_DUP_UNAVAILABLE and go to 301.
835  * 206) Send response r.
836  *
837  * 301) e.seq_num = q.seq_num
838  * 302) e.seq_dup = q.seq_dup
839  * 303) Calculate e.header_crc.
840  * 304) Send error response e.
841  */
842 
843 /* Version 4 request from host */
844 struct ec_host_request4 {
845 	/*
846 	 * bits 0-3: struct_version: Structure version (=4)
847 	 * bit    4: is_response: Is response (=0)
848 	 * bits 5-6: seq_num: Sequence number
849 	 * bit    7: seq_dup: Sequence duplicate flag
850 	 */
851 	uint8_t fields0;
852 
853 	/*
854 	 * bits 0-4: command_version: Command version
855 	 * bits 5-6: Reserved (set 0, ignore on read)
856 	 * bit    7: data_crc_present: Is data CRC present after data
857 	 */
858 	uint8_t fields1;
859 
860 	/* Command code (EC_CMD_*) */
861 	uint16_t command;
862 
863 	/* Length of data which follows this header (not including data CRC) */
864 	uint16_t data_len;
865 
866 	/* Reserved (set 0, ignore on read) */
867 	uint8_t reserved;
868 
869 	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
870 	uint8_t header_crc;
871 } __ec_align4;
872 
873 /* Version 4 response from EC */
874 struct ec_host_response4 {
875 	/*
876 	 * bits 0-3: struct_version: Structure version (=4)
877 	 * bit    4: is_response: Is response (=1)
878 	 * bits 5-6: seq_num: Sequence number
879 	 * bit    7: seq_dup: Sequence duplicate flag
880 	 */
881 	uint8_t fields0;
882 
883 	/*
884 	 * bits 0-6: Reserved (set 0, ignore on read)
885 	 * bit    7: data_crc_present: Is data CRC present after data
886 	 */
887 	uint8_t fields1;
888 
889 	/* Result code (EC_RES_*) */
890 	uint16_t result;
891 
892 	/* Length of data which follows this header (not including data CRC) */
893 	uint16_t data_len;
894 
895 	/* Reserved (set 0, ignore on read) */
896 	uint8_t reserved;
897 
898 	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
899 	uint8_t header_crc;
900 } __ec_align4;
901 
902 /* Fields in fields0 byte */
903 #define EC_PACKET4_0_STRUCT_VERSION_MASK	0x0f
904 #define EC_PACKET4_0_IS_RESPONSE_MASK		0x10
905 #define EC_PACKET4_0_SEQ_NUM_SHIFT		5
906 #define EC_PACKET4_0_SEQ_NUM_MASK		0x60
907 #define EC_PACKET4_0_SEQ_DUP_MASK		0x80
908 
909 /* Fields in fields1 byte */
910 #define EC_PACKET4_1_COMMAND_VERSION_MASK	0x1f  /* (request only) */
911 #define EC_PACKET4_1_DATA_CRC_PRESENT_MASK	0x80
912 
913 /*****************************************************************************/
914 /*
915  * Notes on commands:
916  *
917  * Each command is an 16-bit command value.  Commands which take params or
918  * return response data specify structures for that data.  If no structure is
919  * specified, the command does not input or output data, respectively.
920  * Parameter/response length is implicit in the structs.  Some underlying
921  * communication protocols (I2C, SPI) may add length or checksum headers, but
922  * those are implementation-dependent and not defined here.
923  *
924  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
925  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
926  */
927 
928 /*****************************************************************************/
929 /* General / test commands */
930 
931 /*
932  * Get protocol version, used to deal with non-backward compatible protocol
933  * changes.
934  */
935 #define EC_CMD_PROTO_VERSION 0x0000
936 
937 /**
938  * struct ec_response_proto_version - Response to the proto version command.
939  * @version: The protocol version.
940  */
941 struct ec_response_proto_version {
942 	uint32_t version;
943 } __ec_align4;
944 
945 /*
946  * Hello.  This is a simple command to test the EC is responsive to
947  * commands.
948  */
949 #define EC_CMD_HELLO 0x0001
950 
951 /**
952  * struct ec_params_hello - Parameters to the hello command.
953  * @in_data: Pass anything here.
954  */
955 struct ec_params_hello {
956 	uint32_t in_data;
957 } __ec_align4;
958 
959 /**
960  * struct ec_response_hello - Response to the hello command.
961  * @out_data: Output will be in_data + 0x01020304.
962  */
963 struct ec_response_hello {
964 	uint32_t out_data;
965 } __ec_align4;
966 
967 /* Get version number */
968 #define EC_CMD_GET_VERSION 0x0002
969 
970 enum ec_current_image {
971 	EC_IMAGE_UNKNOWN = 0,
972 	EC_IMAGE_RO,
973 	EC_IMAGE_RW
974 };
975 
976 /**
977  * struct ec_response_get_version - Response to the get version command.
978  * @version_string_ro: Null-terminated RO firmware version string.
979  * @version_string_rw: Null-terminated RW firmware version string.
980  * @reserved: Unused bytes; was previously RW-B firmware version string.
981  * @current_image: One of ec_current_image.
982  */
983 struct ec_response_get_version {
984 	char version_string_ro[32];
985 	char version_string_rw[32];
986 	char reserved[32];
987 	uint32_t current_image;
988 } __ec_align4;
989 
990 /* Read test */
991 #define EC_CMD_READ_TEST 0x0003
992 
993 /**
994  * struct ec_params_read_test - Parameters for the read test command.
995  * @offset: Starting value for read buffer.
996  * @size: Size to read in bytes.
997  */
998 struct ec_params_read_test {
999 	uint32_t offset;
1000 	uint32_t size;
1001 } __ec_align4;
1002 
1003 /**
1004  * struct ec_response_read_test - Response to the read test command.
1005  * @data: Data returned by the read test command.
1006  */
1007 struct ec_response_read_test {
1008 	uint32_t data[32];
1009 } __ec_align4;
1010 
1011 /*
1012  * Get build information
1013  *
1014  * Response is null-terminated string.
1015  */
1016 #define EC_CMD_GET_BUILD_INFO 0x0004
1017 
1018 /* Get chip info */
1019 #define EC_CMD_GET_CHIP_INFO 0x0005
1020 
1021 /**
1022  * struct ec_response_get_chip_info - Response to the get chip info command.
1023  * @vendor: Null-terminated string for chip vendor.
1024  * @name: Null-terminated string for chip name.
1025  * @revision: Null-terminated string for chip mask version.
1026  */
1027 struct ec_response_get_chip_info {
1028 	char vendor[32];
1029 	char name[32];
1030 	char revision[32];
1031 } __ec_align4;
1032 
1033 /* Get board HW version */
1034 #define EC_CMD_GET_BOARD_VERSION 0x0006
1035 
1036 /**
1037  * struct ec_response_board_version - Response to the board version command.
1038  * @board_version: A monotonously incrementing number.
1039  */
1040 struct ec_response_board_version {
1041 	uint16_t board_version;
1042 } __ec_align2;
1043 
1044 /*
1045  * Read memory-mapped data.
1046  *
1047  * This is an alternate interface to memory-mapped data for bus protocols
1048  * which don't support direct-mapped memory - I2C, SPI, etc.
1049  *
1050  * Response is params.size bytes of data.
1051  */
1052 #define EC_CMD_READ_MEMMAP 0x0007
1053 
1054 /**
1055  * struct ec_params_read_memmap - Parameters for the read memory map command.
1056  * @offset: Offset in memmap (EC_MEMMAP_*).
1057  * @size: Size to read in bytes.
1058  */
1059 struct ec_params_read_memmap {
1060 	uint8_t offset;
1061 	uint8_t size;
1062 } __ec_align1;
1063 
1064 /* Read versions supported for a command */
1065 #define EC_CMD_GET_CMD_VERSIONS 0x0008
1066 
1067 /**
1068  * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1069  * @cmd: Command to check.
1070  */
1071 struct ec_params_get_cmd_versions {
1072 	uint8_t cmd;
1073 } __ec_align1;
1074 
1075 /**
1076  * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1077  *         versions (v1)
1078  * @cmd: Command to check.
1079  */
1080 struct ec_params_get_cmd_versions_v1 {
1081 	uint16_t cmd;
1082 } __ec_align2;
1083 
1084 /**
1085  * struct ec_response_get_cmd_versions - Response to the get command versions.
1086  * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1087  *                a desired version.
1088  */
1089 struct ec_response_get_cmd_versions {
1090 	uint32_t version_mask;
1091 } __ec_align4;
1092 
1093 /*
1094  * Check EC communications status (busy). This is needed on i2c/spi but not
1095  * on lpc since it has its own out-of-band busy indicator.
1096  *
1097  * lpc must read the status from the command register. Attempting this on
1098  * lpc will overwrite the args/parameter space and corrupt its data.
1099  */
1100 #define EC_CMD_GET_COMMS_STATUS		0x0009
1101 
1102 /* Avoid using ec_status which is for return values */
1103 enum ec_comms_status {
1104 	EC_COMMS_STATUS_PROCESSING	= BIT(0),	/* Processing cmd */
1105 };
1106 
1107 /**
1108  * struct ec_response_get_comms_status - Response to the get comms status
1109  *         command.
1110  * @flags: Mask of enum ec_comms_status.
1111  */
1112 struct ec_response_get_comms_status {
1113 	uint32_t flags;		/* Mask of enum ec_comms_status */
1114 } __ec_align4;
1115 
1116 /* Fake a variety of responses, purely for testing purposes. */
1117 #define EC_CMD_TEST_PROTOCOL		0x000A
1118 
1119 /* Tell the EC what to send back to us. */
1120 struct ec_params_test_protocol {
1121 	uint32_t ec_result;
1122 	uint32_t ret_len;
1123 	uint8_t buf[32];
1124 } __ec_align4;
1125 
1126 /* Here it comes... */
1127 struct ec_response_test_protocol {
1128 	uint8_t buf[32];
1129 } __ec_align4;
1130 
1131 /* Get protocol information */
1132 #define EC_CMD_GET_PROTOCOL_INFO	0x000B
1133 
1134 /* Flags for ec_response_get_protocol_info.flags */
1135 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
1136 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1137 
1138 /**
1139  * struct ec_response_get_protocol_info - Response to the get protocol info.
1140  * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1141  *                     version n).
1142  * @max_request_packet_size: Maximum request packet size in bytes.
1143  * @max_response_packet_size: Maximum response packet size in bytes.
1144  * @flags: see EC_PROTOCOL_INFO_*
1145  */
1146 struct ec_response_get_protocol_info {
1147 	/* Fields which exist if at least protocol version 3 supported */
1148 	uint32_t protocol_versions;
1149 	uint16_t max_request_packet_size;
1150 	uint16_t max_response_packet_size;
1151 	uint32_t flags;
1152 } __ec_align4;
1153 
1154 
1155 /*****************************************************************************/
1156 /* Get/Set miscellaneous values */
1157 
1158 /* The upper byte of .flags tells what to do (nothing means "get") */
1159 #define EC_GSV_SET        0x80000000
1160 
1161 /*
1162  * The lower three bytes of .flags identifies the parameter, if that has
1163  * meaning for an individual command.
1164  */
1165 #define EC_GSV_PARAM_MASK 0x00ffffff
1166 
1167 struct ec_params_get_set_value {
1168 	uint32_t flags;
1169 	uint32_t value;
1170 } __ec_align4;
1171 
1172 struct ec_response_get_set_value {
1173 	uint32_t flags;
1174 	uint32_t value;
1175 } __ec_align4;
1176 
1177 /* More than one command can use these structs to get/set parameters. */
1178 #define EC_CMD_GSV_PAUSE_IN_S5	0x000C
1179 
1180 /*****************************************************************************/
1181 /* List the features supported by the firmware */
1182 #define EC_CMD_GET_FEATURES  0x000D
1183 
1184 /* Supported features */
1185 enum ec_feature_code {
1186 	/*
1187 	 * This image contains a limited set of features. Another image
1188 	 * in RW partition may support more features.
1189 	 */
1190 	EC_FEATURE_LIMITED = 0,
1191 	/*
1192 	 * Commands for probing/reading/writing/erasing the flash in the
1193 	 * EC are present.
1194 	 */
1195 	EC_FEATURE_FLASH = 1,
1196 	/*
1197 	 * Can control the fan speed directly.
1198 	 */
1199 	EC_FEATURE_PWM_FAN = 2,
1200 	/*
1201 	 * Can control the intensity of the keyboard backlight.
1202 	 */
1203 	EC_FEATURE_PWM_KEYB = 3,
1204 	/*
1205 	 * Support Google lightbar, introduced on Pixel.
1206 	 */
1207 	EC_FEATURE_LIGHTBAR = 4,
1208 	/* Control of LEDs  */
1209 	EC_FEATURE_LED = 5,
1210 	/* Exposes an interface to control gyro and sensors.
1211 	 * The host goes through the EC to access these sensors.
1212 	 * In addition, the EC may provide composite sensors, like lid angle.
1213 	 */
1214 	EC_FEATURE_MOTION_SENSE = 6,
1215 	/* The keyboard is controlled by the EC */
1216 	EC_FEATURE_KEYB = 7,
1217 	/* The AP can use part of the EC flash as persistent storage. */
1218 	EC_FEATURE_PSTORE = 8,
1219 	/* The EC monitors BIOS port 80h, and can return POST codes. */
1220 	EC_FEATURE_PORT80 = 9,
1221 	/*
1222 	 * Thermal management: include TMP specific commands.
1223 	 * Higher level than direct fan control.
1224 	 */
1225 	EC_FEATURE_THERMAL = 10,
1226 	/* Can switch the screen backlight on/off */
1227 	EC_FEATURE_BKLIGHT_SWITCH = 11,
1228 	/* Can switch the wifi module on/off */
1229 	EC_FEATURE_WIFI_SWITCH = 12,
1230 	/* Monitor host events, through for example SMI or SCI */
1231 	EC_FEATURE_HOST_EVENTS = 13,
1232 	/* The EC exposes GPIO commands to control/monitor connected devices. */
1233 	EC_FEATURE_GPIO = 14,
1234 	/* The EC can send i2c messages to downstream devices. */
1235 	EC_FEATURE_I2C = 15,
1236 	/* Command to control charger are included */
1237 	EC_FEATURE_CHARGER = 16,
1238 	/* Simple battery support. */
1239 	EC_FEATURE_BATTERY = 17,
1240 	/*
1241 	 * Support Smart battery protocol
1242 	 * (Common Smart Battery System Interface Specification)
1243 	 */
1244 	EC_FEATURE_SMART_BATTERY = 18,
1245 	/* EC can detect when the host hangs. */
1246 	EC_FEATURE_HANG_DETECT = 19,
1247 	/* Report power information, for pit only */
1248 	EC_FEATURE_PMU = 20,
1249 	/* Another Cros EC device is present downstream of this one */
1250 	EC_FEATURE_SUB_MCU = 21,
1251 	/* Support USB Power delivery (PD) commands */
1252 	EC_FEATURE_USB_PD = 22,
1253 	/* Control USB multiplexer, for audio through USB port for instance. */
1254 	EC_FEATURE_USB_MUX = 23,
1255 	/* Motion Sensor code has an internal software FIFO */
1256 	EC_FEATURE_MOTION_SENSE_FIFO = 24,
1257 	/* Support temporary secure vstore */
1258 	EC_FEATURE_VSTORE = 25,
1259 	/* EC decides on USB-C SS mux state, muxes configured by host */
1260 	EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1261 	/* EC has RTC feature that can be controlled by host commands */
1262 	EC_FEATURE_RTC = 27,
1263 	/* The MCU exposes a Fingerprint sensor */
1264 	EC_FEATURE_FINGERPRINT = 28,
1265 	/* The MCU exposes a Touchpad */
1266 	EC_FEATURE_TOUCHPAD = 29,
1267 	/* The MCU has RWSIG task enabled */
1268 	EC_FEATURE_RWSIG = 30,
1269 	/* EC has device events support */
1270 	EC_FEATURE_DEVICE_EVENT = 31,
1271 	/* EC supports the unified wake masks for LPC/eSPI systems */
1272 	EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1273 	/* EC supports 64-bit host events */
1274 	EC_FEATURE_HOST_EVENT64 = 33,
1275 	/* EC runs code in RAM (not in place, a.k.a. XIP) */
1276 	EC_FEATURE_EXEC_IN_RAM = 34,
1277 	/* EC supports CEC commands */
1278 	EC_FEATURE_CEC = 35,
1279 	/* EC supports tight sensor timestamping. */
1280 	EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1281 	/*
1282 	 * EC supports tablet mode detection aligned to Chrome and allows
1283 	 * setting of threshold by host command using
1284 	 * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1285 	 */
1286 	EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1287 	/* The MCU is a System Companion Processor (SCP). */
1288 	EC_FEATURE_SCP = 39,
1289 	/* The MCU is an Integrated Sensor Hub */
1290 	EC_FEATURE_ISH = 40,
1291 	/* New TCPMv2 TYPEC_ prefaced commands supported */
1292 	EC_FEATURE_TYPEC_CMD = 41,
1293 	/*
1294 	 * The EC will wait for direction from the AP to enter Type-C alternate
1295 	 * modes or USB4.
1296 	 */
1297 	EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42,
1298 	/*
1299 	 * The EC will wait for an acknowledge from the AP after setting the
1300 	 * mux.
1301 	 */
1302 	EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43,
1303 	/*
1304 	 * The EC supports entering and residing in S4.
1305 	 */
1306 	EC_FEATURE_S4_RESIDENCY = 44,
1307 	/*
1308 	 * The EC supports the AP directing mux sets for the board.
1309 	 */
1310 	EC_FEATURE_TYPEC_AP_MUX_SET = 45,
1311 	/*
1312 	 * The EC supports the AP composing VDMs for us to send.
1313 	 */
1314 	EC_FEATURE_TYPEC_AP_VDM_SEND = 46,
1315 };
1316 
1317 #define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1318 #define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1319 
1320 struct ec_response_get_features {
1321 	uint32_t flags[2];
1322 } __ec_align4;
1323 
1324 /*****************************************************************************/
1325 /* Get the board's SKU ID from EC */
1326 #define EC_CMD_GET_SKU_ID 0x000E
1327 
1328 /* Set SKU ID from AP */
1329 #define EC_CMD_SET_SKU_ID 0x000F
1330 
1331 struct ec_sku_id_info {
1332 	uint32_t sku_id;
1333 } __ec_align4;
1334 
1335 /*****************************************************************************/
1336 /* Flash commands */
1337 
1338 /* Get flash info */
1339 #define EC_CMD_FLASH_INFO 0x0010
1340 #define EC_VER_FLASH_INFO 2
1341 
1342 /**
1343  * struct ec_response_flash_info - Response to the flash info command.
1344  * @flash_size: Usable flash size in bytes.
1345  * @write_block_size: Write block size. Write offset and size must be a
1346  *                    multiple of this.
1347  * @erase_block_size: Erase block size. Erase offset and size must be a
1348  *                    multiple of this.
1349  * @protect_block_size: Protection block size. Protection offset and size
1350  *                      must be a multiple of this.
1351  *
1352  * Version 0 returns these fields.
1353  */
1354 struct ec_response_flash_info {
1355 	uint32_t flash_size;
1356 	uint32_t write_block_size;
1357 	uint32_t erase_block_size;
1358 	uint32_t protect_block_size;
1359 } __ec_align4;
1360 
1361 /*
1362  * Flags for version 1+ flash info command
1363  * EC flash erases bits to 0 instead of 1.
1364  */
1365 #define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1366 
1367 /*
1368  * Flash must be selected for read/write/erase operations to succeed.  This may
1369  * be necessary on a chip where write/erase can be corrupted by other board
1370  * activity, or where the chip needs to enable some sort of programming voltage,
1371  * or where the read/write/erase operations require cleanly suspending other
1372  * chip functionality.
1373  */
1374 #define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1375 
1376 /**
1377  * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1378  * @flash_size: Usable flash size in bytes.
1379  * @write_block_size: Write block size. Write offset and size must be a
1380  *                    multiple of this.
1381  * @erase_block_size: Erase block size. Erase offset and size must be a
1382  *                    multiple of this.
1383  * @protect_block_size: Protection block size. Protection offset and size
1384  *                      must be a multiple of this.
1385  * @write_ideal_size: Ideal write size in bytes.  Writes will be fastest if
1386  *                    size is exactly this and offset is a multiple of this.
1387  *                    For example, an EC may have a write buffer which can do
1388  *                    half-page operations if data is aligned, and a slower
1389  *                    word-at-a-time write mode.
1390  * @flags: Flags; see EC_FLASH_INFO_*
1391  *
1392  * Version 1 returns the same initial fields as version 0, with additional
1393  * fields following.
1394  *
1395  * gcc anonymous structs don't seem to get along with the __packed directive;
1396  * if they did we'd define the version 0 structure as a sub-structure of this
1397  * one.
1398  *
1399  * Version 2 supports flash banks of different sizes:
1400  * The caller specified the number of banks it has preallocated
1401  * (num_banks_desc)
1402  * The EC returns the number of banks describing the flash memory.
1403  * It adds banks descriptions up to num_banks_desc.
1404  */
1405 struct ec_response_flash_info_1 {
1406 	/* Version 0 fields; see above for description */
1407 	uint32_t flash_size;
1408 	uint32_t write_block_size;
1409 	uint32_t erase_block_size;
1410 	uint32_t protect_block_size;
1411 
1412 	/* Version 1 adds these fields: */
1413 	uint32_t write_ideal_size;
1414 	uint32_t flags;
1415 } __ec_align4;
1416 
1417 struct ec_params_flash_info_2 {
1418 	/* Number of banks to describe */
1419 	uint16_t num_banks_desc;
1420 	/* Reserved; set 0; ignore on read */
1421 	uint8_t reserved[2];
1422 } __ec_align4;
1423 
1424 struct ec_flash_bank {
1425 	/* Number of sector is in this bank. */
1426 	uint16_t count;
1427 	/* Size in power of 2 of each sector (8 --> 256 bytes) */
1428 	uint8_t size_exp;
1429 	/* Minimal write size for the sectors in this bank */
1430 	uint8_t write_size_exp;
1431 	/* Erase size for the sectors in this bank */
1432 	uint8_t erase_size_exp;
1433 	/* Size for write protection, usually identical to erase size. */
1434 	uint8_t protect_size_exp;
1435 	/* Reserved; set 0; ignore on read */
1436 	uint8_t reserved[2];
1437 };
1438 
1439 struct ec_response_flash_info_2 {
1440 	/* Total flash in the EC. */
1441 	uint32_t flash_size;
1442 	/* Flags; see EC_FLASH_INFO_* */
1443 	uint32_t flags;
1444 	/* Maximum size to use to send data to write to the EC. */
1445 	uint32_t write_ideal_size;
1446 	/* Number of banks present in the EC. */
1447 	uint16_t num_banks_total;
1448 	/* Number of banks described in banks array. */
1449 	uint16_t num_banks_desc;
1450 	struct ec_flash_bank banks[];
1451 } __ec_align4;
1452 
1453 /*
1454  * Read flash
1455  *
1456  * Response is params.size bytes of data.
1457  */
1458 #define EC_CMD_FLASH_READ 0x0011
1459 
1460 /**
1461  * struct ec_params_flash_read - Parameters for the flash read command.
1462  * @offset: Byte offset to read.
1463  * @size: Size to read in bytes.
1464  */
1465 struct ec_params_flash_read {
1466 	uint32_t offset;
1467 	uint32_t size;
1468 } __ec_align4;
1469 
1470 /* Write flash */
1471 #define EC_CMD_FLASH_WRITE 0x0012
1472 #define EC_VER_FLASH_WRITE 1
1473 
1474 /* Version 0 of the flash command supported only 64 bytes of data */
1475 #define EC_FLASH_WRITE_VER0_SIZE 64
1476 
1477 /**
1478  * struct ec_params_flash_write - Parameters for the flash write command.
1479  * @offset: Byte offset to write.
1480  * @size: Size to write in bytes.
1481  */
1482 struct ec_params_flash_write {
1483 	uint32_t offset;
1484 	uint32_t size;
1485 	/* Followed by data to write */
1486 } __ec_align4;
1487 
1488 /* Erase flash */
1489 #define EC_CMD_FLASH_ERASE 0x0013
1490 
1491 /**
1492  * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1493  * @offset: Byte offset to erase.
1494  * @size: Size to erase in bytes.
1495  */
1496 struct ec_params_flash_erase {
1497 	uint32_t offset;
1498 	uint32_t size;
1499 } __ec_align4;
1500 
1501 /*
1502  * v1 add async erase:
1503  * subcommands can returns:
1504  * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1505  * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1506  * EC_RES_ERROR : other errors.
1507  * EC_RES_BUSY : an existing erase operation is in progress.
1508  * EC_RES_ACCESS_DENIED: Trying to erase running image.
1509  *
1510  * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1511  * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1512  * the proper result.
1513  * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1514  * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1515  * ERASE_GET_RESULT command may timeout on EC where flash access is not
1516  * permitted while erasing. (For instance, STM32F4).
1517  */
1518 enum ec_flash_erase_cmd {
1519 	FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1520 	FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1521 	FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1522 };
1523 
1524 /**
1525  * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1526  * @cmd: One of ec_flash_erase_cmd.
1527  * @reserved: Pad byte; currently always contains 0.
1528  * @flag: No flags defined yet; set to 0.
1529  * @params: Same as v0 parameters.
1530  */
1531 struct ec_params_flash_erase_v1 {
1532 	uint8_t  cmd;
1533 	uint8_t  reserved;
1534 	uint16_t flag;
1535 	struct ec_params_flash_erase params;
1536 } __ec_align4;
1537 
1538 /*
1539  * Get/set flash protection.
1540  *
1541  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1542  * firmware write protect GPIO, not all flags will take effect immediately;
1543  * some flags require a subsequent hard reset to take effect.  Check the
1544  * returned flags bits to see what actually happened.
1545  *
1546  * If mask=0, simply returns the current flags state.
1547  */
1548 #define EC_CMD_FLASH_PROTECT 0x0015
1549 #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1550 
1551 /* Flags for flash protection */
1552 /* RO flash code protected when the EC boots */
1553 #define EC_FLASH_PROTECT_RO_AT_BOOT         BIT(0)
1554 /*
1555  * RO flash code protected now.  If this bit is set, at-boot status cannot
1556  * be changed.
1557  */
1558 #define EC_FLASH_PROTECT_RO_NOW             BIT(1)
1559 /* Entire flash code protected now, until reboot. */
1560 #define EC_FLASH_PROTECT_ALL_NOW            BIT(2)
1561 /* Flash write protect GPIO is asserted now */
1562 #define EC_FLASH_PROTECT_GPIO_ASSERTED      BIT(3)
1563 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1564 #define EC_FLASH_PROTECT_ERROR_STUCK        BIT(4)
1565 /*
1566  * Error - flash protection is in inconsistent state.  At least one bank of
1567  * flash which should be protected is not protected.  Usually fixed by
1568  * re-requesting the desired flags, or by a hard reset if that fails.
1569  */
1570 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1571 /* Entire flash code protected when the EC boots */
1572 #define EC_FLASH_PROTECT_ALL_AT_BOOT        BIT(6)
1573 /* RW flash code protected when the EC boots */
1574 #define EC_FLASH_PROTECT_RW_AT_BOOT         BIT(7)
1575 /* RW flash code protected now. */
1576 #define EC_FLASH_PROTECT_RW_NOW             BIT(8)
1577 /* Rollback information flash region protected when the EC boots */
1578 #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   BIT(9)
1579 /* Rollback information flash region protected now */
1580 #define EC_FLASH_PROTECT_ROLLBACK_NOW       BIT(10)
1581 
1582 
1583 /**
1584  * struct ec_params_flash_protect - Parameters for the flash protect command.
1585  * @mask: Bits in flags to apply.
1586  * @flags: New flags to apply.
1587  */
1588 struct ec_params_flash_protect {
1589 	uint32_t mask;
1590 	uint32_t flags;
1591 } __ec_align4;
1592 
1593 /**
1594  * struct ec_response_flash_protect - Response to the flash protect command.
1595  * @flags: Current value of flash protect flags.
1596  * @valid_flags: Flags which are valid on this platform. This allows the
1597  *               caller to distinguish between flags which aren't set vs. flags
1598  *               which can't be set on this platform.
1599  * @writable_flags: Flags which can be changed given the current protection
1600  *                  state.
1601  */
1602 struct ec_response_flash_protect {
1603 	uint32_t flags;
1604 	uint32_t valid_flags;
1605 	uint32_t writable_flags;
1606 } __ec_align4;
1607 
1608 /*
1609  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1610  * write protect.  These commands may be reused with version > 0.
1611  */
1612 
1613 /* Get the region offset/size */
1614 #define EC_CMD_FLASH_REGION_INFO 0x0016
1615 #define EC_VER_FLASH_REGION_INFO 1
1616 
1617 enum ec_flash_region {
1618 	/* Region which holds read-only EC image */
1619 	EC_FLASH_REGION_RO = 0,
1620 	/*
1621 	 * Region which holds active RW image. 'Active' is different from
1622 	 * 'running'. Active means 'scheduled-to-run'. Since RO image always
1623 	 * scheduled to run, active/non-active applies only to RW images (for
1624 	 * the same reason 'update' applies only to RW images. It's a state of
1625 	 * an image on a flash. Running image can be RO, RW_A, RW_B but active
1626 	 * image can only be RW_A or RW_B. In recovery mode, an active RW image
1627 	 * doesn't enter 'running' state but it's still active on a flash.
1628 	 */
1629 	EC_FLASH_REGION_ACTIVE,
1630 	/*
1631 	 * Region which should be write-protected in the factory (a superset of
1632 	 * EC_FLASH_REGION_RO)
1633 	 */
1634 	EC_FLASH_REGION_WP_RO,
1635 	/* Region which holds updatable (non-active) RW image */
1636 	EC_FLASH_REGION_UPDATE,
1637 	/* Number of regions */
1638 	EC_FLASH_REGION_COUNT,
1639 };
1640 /*
1641  * 'RW' is vague if there are multiple RW images; we mean the active one,
1642  * so the old constant is deprecated.
1643  */
1644 #define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
1645 
1646 /**
1647  * struct ec_params_flash_region_info - Parameters for the flash region info
1648  *         command.
1649  * @region: Flash region; see EC_FLASH_REGION_*
1650  */
1651 struct ec_params_flash_region_info {
1652 	uint32_t region;
1653 } __ec_align4;
1654 
1655 struct ec_response_flash_region_info {
1656 	uint32_t offset;
1657 	uint32_t size;
1658 } __ec_align4;
1659 
1660 /* Read/write VbNvContext */
1661 #define EC_CMD_VBNV_CONTEXT 0x0017
1662 #define EC_VER_VBNV_CONTEXT 1
1663 #define EC_VBNV_BLOCK_SIZE 16
1664 
1665 enum ec_vbnvcontext_op {
1666 	EC_VBNV_CONTEXT_OP_READ,
1667 	EC_VBNV_CONTEXT_OP_WRITE,
1668 };
1669 
1670 struct ec_params_vbnvcontext {
1671 	uint32_t op;
1672 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1673 } __ec_align4;
1674 
1675 struct ec_response_vbnvcontext {
1676 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1677 } __ec_align4;
1678 
1679 
1680 /* Get SPI flash information */
1681 #define EC_CMD_FLASH_SPI_INFO 0x0018
1682 
1683 struct ec_response_flash_spi_info {
1684 	/* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1685 	uint8_t jedec[3];
1686 
1687 	/* Pad byte; currently always contains 0 */
1688 	uint8_t reserved0;
1689 
1690 	/* Manufacturer / device ID from command 0x90 */
1691 	uint8_t mfr_dev_id[2];
1692 
1693 	/* Status registers from command 0x05 and 0x35 */
1694 	uint8_t sr1, sr2;
1695 } __ec_align1;
1696 
1697 
1698 /* Select flash during flash operations */
1699 #define EC_CMD_FLASH_SELECT 0x0019
1700 
1701 /**
1702  * struct ec_params_flash_select - Parameters for the flash select command.
1703  * @select: 1 to select flash, 0 to deselect flash
1704  */
1705 struct ec_params_flash_select {
1706 	uint8_t select;
1707 } __ec_align4;
1708 
1709 
1710 /*****************************************************************************/
1711 /* PWM commands */
1712 
1713 /* Get fan target RPM */
1714 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1715 
1716 struct ec_response_pwm_get_fan_rpm {
1717 	uint32_t rpm;
1718 } __ec_align4;
1719 
1720 /* Set target fan RPM */
1721 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1722 
1723 /* Version 0 of input params */
1724 struct ec_params_pwm_set_fan_target_rpm_v0 {
1725 	uint32_t rpm;
1726 } __ec_align4;
1727 
1728 /* Version 1 of input params */
1729 struct ec_params_pwm_set_fan_target_rpm_v1 {
1730 	uint32_t rpm;
1731 	uint8_t fan_idx;
1732 } __ec_align_size1;
1733 
1734 /* Get keyboard backlight */
1735 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1736 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1737 
1738 struct ec_response_pwm_get_keyboard_backlight {
1739 	uint8_t percent;
1740 	uint8_t enabled;
1741 } __ec_align1;
1742 
1743 /* Set keyboard backlight */
1744 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1745 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1746 
1747 struct ec_params_pwm_set_keyboard_backlight {
1748 	uint8_t percent;
1749 } __ec_align1;
1750 
1751 /* Set target fan PWM duty cycle */
1752 #define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1753 
1754 /* Version 0 of input params */
1755 struct ec_params_pwm_set_fan_duty_v0 {
1756 	uint32_t percent;
1757 } __ec_align4;
1758 
1759 /* Version 1 of input params */
1760 struct ec_params_pwm_set_fan_duty_v1 {
1761 	uint32_t percent;
1762 	uint8_t fan_idx;
1763 } __ec_align_size1;
1764 
1765 #define EC_CMD_PWM_SET_DUTY 0x0025
1766 /* 16 bit duty cycle, 0xffff = 100% */
1767 #define EC_PWM_MAX_DUTY 0xffff
1768 
1769 enum ec_pwm_type {
1770 	/* All types, indexed by board-specific enum pwm_channel */
1771 	EC_PWM_TYPE_GENERIC = 0,
1772 	/* Keyboard backlight */
1773 	EC_PWM_TYPE_KB_LIGHT,
1774 	/* Display backlight */
1775 	EC_PWM_TYPE_DISPLAY_LIGHT,
1776 	EC_PWM_TYPE_COUNT,
1777 };
1778 
1779 struct ec_params_pwm_set_duty {
1780 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1781 	uint8_t pwm_type;  /* ec_pwm_type */
1782 	uint8_t index;     /* Type-specific index, or 0 if unique */
1783 } __ec_align4;
1784 
1785 #define EC_CMD_PWM_GET_DUTY 0x0026
1786 
1787 struct ec_params_pwm_get_duty {
1788 	uint8_t pwm_type;  /* ec_pwm_type */
1789 	uint8_t index;     /* Type-specific index, or 0 if unique */
1790 } __ec_align1;
1791 
1792 struct ec_response_pwm_get_duty {
1793 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1794 } __ec_align2;
1795 
1796 /*****************************************************************************/
1797 /*
1798  * Lightbar commands. This looks worse than it is. Since we only use one HOST
1799  * command to say "talk to the lightbar", we put the "and tell it to do X" part
1800  * into a subcommand. We'll make separate structs for subcommands with
1801  * different input args, so that we know how much to expect.
1802  */
1803 #define EC_CMD_LIGHTBAR_CMD 0x0028
1804 
1805 struct rgb_s {
1806 	uint8_t r, g, b;
1807 } __ec_todo_unpacked;
1808 
1809 #define LB_BATTERY_LEVELS 4
1810 
1811 /*
1812  * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1813  * host command, but the alignment is the same regardless. Keep it that way.
1814  */
1815 struct lightbar_params_v0 {
1816 	/* Timing */
1817 	int32_t google_ramp_up;
1818 	int32_t google_ramp_down;
1819 	int32_t s3s0_ramp_up;
1820 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1821 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1822 	int32_t s0s3_ramp_down;
1823 	int32_t s3_sleep_for;
1824 	int32_t s3_ramp_up;
1825 	int32_t s3_ramp_down;
1826 
1827 	/* Oscillation */
1828 	uint8_t new_s0;
1829 	uint8_t osc_min[2];			/* AC=0/1 */
1830 	uint8_t osc_max[2];			/* AC=0/1 */
1831 	uint8_t w_ofs[2];			/* AC=0/1 */
1832 
1833 	/* Brightness limits based on the backlight and AC. */
1834 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1835 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1836 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1837 
1838 	/* Battery level thresholds */
1839 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1840 
1841 	/* Map [AC][battery_level] to color index */
1842 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1843 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1844 
1845 	/* Color palette */
1846 	struct rgb_s color[8];			/* 0-3 are Google colors */
1847 } __ec_todo_packed;
1848 
1849 struct lightbar_params_v1 {
1850 	/* Timing */
1851 	int32_t google_ramp_up;
1852 	int32_t google_ramp_down;
1853 	int32_t s3s0_ramp_up;
1854 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1855 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1856 	int32_t s0s3_ramp_down;
1857 	int32_t s3_sleep_for;
1858 	int32_t s3_ramp_up;
1859 	int32_t s3_ramp_down;
1860 	int32_t s5_ramp_up;
1861 	int32_t s5_ramp_down;
1862 	int32_t tap_tick_delay;
1863 	int32_t tap_gate_delay;
1864 	int32_t tap_display_time;
1865 
1866 	/* Tap-for-battery params */
1867 	uint8_t tap_pct_red;
1868 	uint8_t tap_pct_green;
1869 	uint8_t tap_seg_min_on;
1870 	uint8_t tap_seg_max_on;
1871 	uint8_t tap_seg_osc;
1872 	uint8_t tap_idx[3];
1873 
1874 	/* Oscillation */
1875 	uint8_t osc_min[2];			/* AC=0/1 */
1876 	uint8_t osc_max[2];			/* AC=0/1 */
1877 	uint8_t w_ofs[2];			/* AC=0/1 */
1878 
1879 	/* Brightness limits based on the backlight and AC. */
1880 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1881 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1882 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1883 
1884 	/* Battery level thresholds */
1885 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1886 
1887 	/* Map [AC][battery_level] to color index */
1888 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1889 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1890 
1891 	/* s5: single color pulse on inhibited power-up */
1892 	uint8_t s5_idx;
1893 
1894 	/* Color palette */
1895 	struct rgb_s color[8];			/* 0-3 are Google colors */
1896 } __ec_todo_packed;
1897 
1898 /* Lightbar command params v2
1899  * crbug.com/467716
1900  *
1901  * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1902  * logical groups to make it more manageable ( < 120 bytes).
1903  *
1904  * NOTE: Each of these groups must be less than 120 bytes.
1905  */
1906 
1907 struct lightbar_params_v2_timing {
1908 	/* Timing */
1909 	int32_t google_ramp_up;
1910 	int32_t google_ramp_down;
1911 	int32_t s3s0_ramp_up;
1912 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1913 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1914 	int32_t s0s3_ramp_down;
1915 	int32_t s3_sleep_for;
1916 	int32_t s3_ramp_up;
1917 	int32_t s3_ramp_down;
1918 	int32_t s5_ramp_up;
1919 	int32_t s5_ramp_down;
1920 	int32_t tap_tick_delay;
1921 	int32_t tap_gate_delay;
1922 	int32_t tap_display_time;
1923 } __ec_todo_packed;
1924 
1925 struct lightbar_params_v2_tap {
1926 	/* Tap-for-battery params */
1927 	uint8_t tap_pct_red;
1928 	uint8_t tap_pct_green;
1929 	uint8_t tap_seg_min_on;
1930 	uint8_t tap_seg_max_on;
1931 	uint8_t tap_seg_osc;
1932 	uint8_t tap_idx[3];
1933 } __ec_todo_packed;
1934 
1935 struct lightbar_params_v2_oscillation {
1936 	/* Oscillation */
1937 	uint8_t osc_min[2];			/* AC=0/1 */
1938 	uint8_t osc_max[2];			/* AC=0/1 */
1939 	uint8_t w_ofs[2];			/* AC=0/1 */
1940 } __ec_todo_packed;
1941 
1942 struct lightbar_params_v2_brightness {
1943 	/* Brightness limits based on the backlight and AC. */
1944 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1945 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1946 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1947 } __ec_todo_packed;
1948 
1949 struct lightbar_params_v2_thresholds {
1950 	/* Battery level thresholds */
1951 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1952 } __ec_todo_packed;
1953 
1954 struct lightbar_params_v2_colors {
1955 	/* Map [AC][battery_level] to color index */
1956 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1957 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1958 
1959 	/* s5: single color pulse on inhibited power-up */
1960 	uint8_t s5_idx;
1961 
1962 	/* Color palette */
1963 	struct rgb_s color[8];			/* 0-3 are Google colors */
1964 } __ec_todo_packed;
1965 
1966 /* Lightbar program. */
1967 #define EC_LB_PROG_LEN 192
1968 struct lightbar_program {
1969 	uint8_t size;
1970 	uint8_t data[EC_LB_PROG_LEN];
1971 } __ec_todo_unpacked;
1972 
1973 struct ec_params_lightbar {
1974 	uint8_t cmd;		      /* Command (see enum lightbar_command) */
1975 	union {
1976 		/*
1977 		 * The following commands have no args:
1978 		 *
1979 		 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1980 		 * version, get_brightness, get_demo, suspend, resume,
1981 		 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
1982 		 * get_params_v2_bright, get_params_v2_thlds,
1983 		 * get_params_v2_colors
1984 		 *
1985 		 * Don't use an empty struct, because C++ hates that.
1986 		 */
1987 
1988 		struct __ec_todo_unpacked {
1989 			uint8_t num;
1990 		} set_brightness, seq, demo;
1991 
1992 		struct __ec_todo_unpacked {
1993 			uint8_t ctrl, reg, value;
1994 		} reg;
1995 
1996 		struct __ec_todo_unpacked {
1997 			uint8_t led, red, green, blue;
1998 		} set_rgb;
1999 
2000 		struct __ec_todo_unpacked {
2001 			uint8_t led;
2002 		} get_rgb;
2003 
2004 		struct __ec_todo_unpacked {
2005 			uint8_t enable;
2006 		} manual_suspend_ctrl;
2007 
2008 		struct lightbar_params_v0 set_params_v0;
2009 		struct lightbar_params_v1 set_params_v1;
2010 
2011 		struct lightbar_params_v2_timing set_v2par_timing;
2012 		struct lightbar_params_v2_tap set_v2par_tap;
2013 		struct lightbar_params_v2_oscillation set_v2par_osc;
2014 		struct lightbar_params_v2_brightness set_v2par_bright;
2015 		struct lightbar_params_v2_thresholds set_v2par_thlds;
2016 		struct lightbar_params_v2_colors set_v2par_colors;
2017 
2018 		struct lightbar_program set_program;
2019 	};
2020 } __ec_todo_packed;
2021 
2022 struct ec_response_lightbar {
2023 	union {
2024 		struct __ec_todo_unpacked {
2025 			struct __ec_todo_unpacked {
2026 				uint8_t reg;
2027 				uint8_t ic0;
2028 				uint8_t ic1;
2029 			} vals[23];
2030 		} dump;
2031 
2032 		struct __ec_todo_unpacked {
2033 			uint8_t num;
2034 		} get_seq, get_brightness, get_demo;
2035 
2036 		struct lightbar_params_v0 get_params_v0;
2037 		struct lightbar_params_v1 get_params_v1;
2038 
2039 
2040 		struct lightbar_params_v2_timing get_params_v2_timing;
2041 		struct lightbar_params_v2_tap get_params_v2_tap;
2042 		struct lightbar_params_v2_oscillation get_params_v2_osc;
2043 		struct lightbar_params_v2_brightness get_params_v2_bright;
2044 		struct lightbar_params_v2_thresholds get_params_v2_thlds;
2045 		struct lightbar_params_v2_colors get_params_v2_colors;
2046 
2047 		struct __ec_todo_unpacked {
2048 			uint32_t num;
2049 			uint32_t flags;
2050 		} version;
2051 
2052 		struct __ec_todo_unpacked {
2053 			uint8_t red, green, blue;
2054 		} get_rgb;
2055 
2056 		/*
2057 		 * The following commands have no response:
2058 		 *
2059 		 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2060 		 * set_params_v0, set_params_v1, set_program,
2061 		 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2062 		 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2063 		 * set_v2par_thlds, set_v2par_colors
2064 		 */
2065 	};
2066 } __ec_todo_packed;
2067 
2068 /* Lightbar commands */
2069 enum lightbar_command {
2070 	LIGHTBAR_CMD_DUMP = 0,
2071 	LIGHTBAR_CMD_OFF = 1,
2072 	LIGHTBAR_CMD_ON = 2,
2073 	LIGHTBAR_CMD_INIT = 3,
2074 	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2075 	LIGHTBAR_CMD_SEQ = 5,
2076 	LIGHTBAR_CMD_REG = 6,
2077 	LIGHTBAR_CMD_SET_RGB = 7,
2078 	LIGHTBAR_CMD_GET_SEQ = 8,
2079 	LIGHTBAR_CMD_DEMO = 9,
2080 	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2081 	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2082 	LIGHTBAR_CMD_VERSION = 12,
2083 	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2084 	LIGHTBAR_CMD_GET_RGB = 14,
2085 	LIGHTBAR_CMD_GET_DEMO = 15,
2086 	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2087 	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2088 	LIGHTBAR_CMD_SET_PROGRAM = 18,
2089 	LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2090 	LIGHTBAR_CMD_SUSPEND = 20,
2091 	LIGHTBAR_CMD_RESUME = 21,
2092 	LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2093 	LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2094 	LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2095 	LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2096 	LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2097 	LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2098 	LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2099 	LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2100 	LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2101 	LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2102 	LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2103 	LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2104 	LIGHTBAR_NUM_CMDS
2105 };
2106 
2107 /*****************************************************************************/
2108 /* LED control commands */
2109 
2110 #define EC_CMD_LED_CONTROL 0x0029
2111 
2112 enum ec_led_id {
2113 	/* LED to indicate battery state of charge */
2114 	EC_LED_ID_BATTERY_LED = 0,
2115 	/*
2116 	 * LED to indicate system power state (on or in suspend).
2117 	 * May be on power button or on C-panel.
2118 	 */
2119 	EC_LED_ID_POWER_LED,
2120 	/* LED on power adapter or its plug */
2121 	EC_LED_ID_ADAPTER_LED,
2122 	/* LED to indicate left side */
2123 	EC_LED_ID_LEFT_LED,
2124 	/* LED to indicate right side */
2125 	EC_LED_ID_RIGHT_LED,
2126 	/* LED to indicate recovery mode with HW_REINIT */
2127 	EC_LED_ID_RECOVERY_HW_REINIT_LED,
2128 	/* LED to indicate sysrq debug mode. */
2129 	EC_LED_ID_SYSRQ_DEBUG_LED,
2130 
2131 	EC_LED_ID_COUNT
2132 };
2133 
2134 /* LED control flags */
2135 #define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2136 #define EC_LED_FLAGS_AUTO  BIT(1) /* Switch LED back to automatic control */
2137 
2138 enum ec_led_colors {
2139 	EC_LED_COLOR_RED = 0,
2140 	EC_LED_COLOR_GREEN,
2141 	EC_LED_COLOR_BLUE,
2142 	EC_LED_COLOR_YELLOW,
2143 	EC_LED_COLOR_WHITE,
2144 	EC_LED_COLOR_AMBER,
2145 
2146 	EC_LED_COLOR_COUNT
2147 };
2148 
2149 struct ec_params_led_control {
2150 	uint8_t led_id;     /* Which LED to control */
2151 	uint8_t flags;      /* Control flags */
2152 
2153 	uint8_t brightness[EC_LED_COLOR_COUNT];
2154 } __ec_align1;
2155 
2156 struct ec_response_led_control {
2157 	/*
2158 	 * Available brightness value range.
2159 	 *
2160 	 * Range 0 means color channel not present.
2161 	 * Range 1 means on/off control.
2162 	 * Other values means the LED is control by PWM.
2163 	 */
2164 	uint8_t brightness_range[EC_LED_COLOR_COUNT];
2165 } __ec_align1;
2166 
2167 /*****************************************************************************/
2168 /* Verified boot commands */
2169 
2170 /*
2171  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2172  * reused for other purposes with version > 0.
2173  */
2174 
2175 /* Verified boot hash command */
2176 #define EC_CMD_VBOOT_HASH 0x002A
2177 
2178 struct ec_params_vboot_hash {
2179 	uint8_t cmd;             /* enum ec_vboot_hash_cmd */
2180 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
2181 	uint8_t nonce_size;      /* Nonce size; may be 0 */
2182 	uint8_t reserved0;       /* Reserved; set 0 */
2183 	uint32_t offset;         /* Offset in flash to hash */
2184 	uint32_t size;           /* Number of bytes to hash */
2185 	uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
2186 } __ec_align4;
2187 
2188 struct ec_response_vboot_hash {
2189 	uint8_t status;          /* enum ec_vboot_hash_status */
2190 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
2191 	uint8_t digest_size;     /* Size of hash digest in bytes */
2192 	uint8_t reserved0;       /* Ignore; will be 0 */
2193 	uint32_t offset;         /* Offset in flash which was hashed */
2194 	uint32_t size;           /* Number of bytes hashed */
2195 	uint8_t hash_digest[64]; /* Hash digest data */
2196 } __ec_align4;
2197 
2198 enum ec_vboot_hash_cmd {
2199 	EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
2200 	EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
2201 	EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
2202 	EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
2203 };
2204 
2205 enum ec_vboot_hash_type {
2206 	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2207 };
2208 
2209 enum ec_vboot_hash_status {
2210 	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2211 	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2212 	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2213 };
2214 
2215 /*
2216  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2217  * If one of these is specified, the EC will automatically update offset and
2218  * size to the correct values for the specified image (RO or RW).
2219  */
2220 #define EC_VBOOT_HASH_OFFSET_RO		0xfffffffe
2221 #define EC_VBOOT_HASH_OFFSET_ACTIVE	0xfffffffd
2222 #define EC_VBOOT_HASH_OFFSET_UPDATE	0xfffffffc
2223 
2224 /*
2225  * 'RW' is vague if there are multiple RW images; we mean the active one,
2226  * so the old constant is deprecated.
2227  */
2228 #define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2229 
2230 /*****************************************************************************/
2231 /*
2232  * Motion sense commands. We'll make separate structs for sub-commands with
2233  * different input args, so that we know how much to expect.
2234  */
2235 #define EC_CMD_MOTION_SENSE_CMD 0x002B
2236 
2237 /* Motion sense commands */
2238 enum motionsense_command {
2239 	/*
2240 	 * Dump command returns all motion sensor data including motion sense
2241 	 * module flags and individual sensor flags.
2242 	 */
2243 	MOTIONSENSE_CMD_DUMP = 0,
2244 
2245 	/*
2246 	 * Info command returns data describing the details of a given sensor,
2247 	 * including enum motionsensor_type, enum motionsensor_location, and
2248 	 * enum motionsensor_chip.
2249 	 */
2250 	MOTIONSENSE_CMD_INFO = 1,
2251 
2252 	/*
2253 	 * EC Rate command is a setter/getter command for the EC sampling rate
2254 	 * in milliseconds.
2255 	 * It is per sensor, the EC run sample task  at the minimum of all
2256 	 * sensors EC_RATE.
2257 	 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2258 	 * to collect all the sensor samples.
2259 	 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2260 	 * to process of all motion sensors in milliseconds.
2261 	 */
2262 	MOTIONSENSE_CMD_EC_RATE = 2,
2263 
2264 	/*
2265 	 * Sensor ODR command is a setter/getter command for the output data
2266 	 * rate of a specific motion sensor in millihertz.
2267 	 */
2268 	MOTIONSENSE_CMD_SENSOR_ODR = 3,
2269 
2270 	/*
2271 	 * Sensor range command is a setter/getter command for the range of
2272 	 * a specified motion sensor in +/-G's or +/- deg/s.
2273 	 */
2274 	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2275 
2276 	/*
2277 	 * Setter/getter command for the keyboard wake angle. When the lid
2278 	 * angle is greater than this value, keyboard wake is disabled in S3,
2279 	 * and when the lid angle goes less than this value, keyboard wake is
2280 	 * enabled. Note, the lid angle measurement is an approximate,
2281 	 * un-calibrated value, hence the wake angle isn't exact.
2282 	 */
2283 	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2284 
2285 	/*
2286 	 * Returns a single sensor data.
2287 	 */
2288 	MOTIONSENSE_CMD_DATA = 6,
2289 
2290 	/*
2291 	 * Return sensor fifo info.
2292 	 */
2293 	MOTIONSENSE_CMD_FIFO_INFO = 7,
2294 
2295 	/*
2296 	 * Insert a flush element in the fifo and return sensor fifo info.
2297 	 * The host can use that element to synchronize its operation.
2298 	 */
2299 	MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2300 
2301 	/*
2302 	 * Return a portion of the fifo.
2303 	 */
2304 	MOTIONSENSE_CMD_FIFO_READ = 9,
2305 
2306 	/*
2307 	 * Perform low level calibration.
2308 	 * On sensors that support it, ask to do offset calibration.
2309 	 */
2310 	MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2311 
2312 	/*
2313 	 * Sensor Offset command is a setter/getter command for the offset
2314 	 * used for calibration.
2315 	 * The offsets can be calculated by the host, or via
2316 	 * PERFORM_CALIB command.
2317 	 */
2318 	MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2319 
2320 	/*
2321 	 * List available activities for a MOTION sensor.
2322 	 * Indicates if they are enabled or disabled.
2323 	 */
2324 	MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2325 
2326 	/*
2327 	 * Activity management
2328 	 * Enable/Disable activity recognition.
2329 	 */
2330 	MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2331 
2332 	/*
2333 	 * Lid Angle
2334 	 */
2335 	MOTIONSENSE_CMD_LID_ANGLE = 14,
2336 
2337 	/*
2338 	 * Allow the FIFO to trigger interrupt via MKBP events.
2339 	 * By default the FIFO does not send interrupt to process the FIFO
2340 	 * until the AP is ready or it is coming from a wakeup sensor.
2341 	 */
2342 	MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2343 
2344 	/*
2345 	 * Spoof the readings of the sensors.  The spoofed readings can be set
2346 	 * to arbitrary values, or will lock to the last read actual values.
2347 	 */
2348 	MOTIONSENSE_CMD_SPOOF = 16,
2349 
2350 	/* Set lid angle for tablet mode detection. */
2351 	MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2352 
2353 	/*
2354 	 * Sensor Scale command is a setter/getter command for the calibration
2355 	 * scale.
2356 	 */
2357 	MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2358 
2359 	/* Number of motionsense sub-commands. */
2360 	MOTIONSENSE_NUM_CMDS
2361 };
2362 
2363 /* List of motion sensor types. */
2364 enum motionsensor_type {
2365 	MOTIONSENSE_TYPE_ACCEL = 0,
2366 	MOTIONSENSE_TYPE_GYRO = 1,
2367 	MOTIONSENSE_TYPE_MAG = 2,
2368 	MOTIONSENSE_TYPE_PROX = 3,
2369 	MOTIONSENSE_TYPE_LIGHT = 4,
2370 	MOTIONSENSE_TYPE_ACTIVITY = 5,
2371 	MOTIONSENSE_TYPE_BARO = 6,
2372 	MOTIONSENSE_TYPE_SYNC = 7,
2373 	MOTIONSENSE_TYPE_MAX,
2374 };
2375 
2376 /* List of motion sensor locations. */
2377 enum motionsensor_location {
2378 	MOTIONSENSE_LOC_BASE = 0,
2379 	MOTIONSENSE_LOC_LID = 1,
2380 	MOTIONSENSE_LOC_CAMERA = 2,
2381 	MOTIONSENSE_LOC_MAX,
2382 };
2383 
2384 /* List of motion sensor chips. */
2385 enum motionsensor_chip {
2386 	MOTIONSENSE_CHIP_KXCJ9 = 0,
2387 	MOTIONSENSE_CHIP_LSM6DS0 = 1,
2388 	MOTIONSENSE_CHIP_BMI160 = 2,
2389 	MOTIONSENSE_CHIP_SI1141 = 3,
2390 	MOTIONSENSE_CHIP_SI1142 = 4,
2391 	MOTIONSENSE_CHIP_SI1143 = 5,
2392 	MOTIONSENSE_CHIP_KX022 = 6,
2393 	MOTIONSENSE_CHIP_L3GD20H = 7,
2394 	MOTIONSENSE_CHIP_BMA255 = 8,
2395 	MOTIONSENSE_CHIP_BMP280 = 9,
2396 	MOTIONSENSE_CHIP_OPT3001 = 10,
2397 	MOTIONSENSE_CHIP_BH1730 = 11,
2398 	MOTIONSENSE_CHIP_GPIO = 12,
2399 	MOTIONSENSE_CHIP_LIS2DH = 13,
2400 	MOTIONSENSE_CHIP_LSM6DSM = 14,
2401 	MOTIONSENSE_CHIP_LIS2DE = 15,
2402 	MOTIONSENSE_CHIP_LIS2MDL = 16,
2403 	MOTIONSENSE_CHIP_LSM6DS3 = 17,
2404 	MOTIONSENSE_CHIP_LSM6DSO = 18,
2405 	MOTIONSENSE_CHIP_LNG2DM = 19,
2406 	MOTIONSENSE_CHIP_MAX,
2407 };
2408 
2409 /* List of orientation positions */
2410 enum motionsensor_orientation {
2411 	MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2412 	MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2413 	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2414 	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2415 	MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2416 };
2417 
2418 struct ec_response_motion_sensor_data {
2419 	/* Flags for each sensor. */
2420 	uint8_t flags;
2421 	/* Sensor number the data comes from. */
2422 	uint8_t sensor_num;
2423 	/* Each sensor is up to 3-axis. */
2424 	union {
2425 		int16_t             data[3];
2426 		struct __ec_todo_packed {
2427 			uint16_t    reserved;
2428 			uint32_t    timestamp;
2429 		};
2430 		struct __ec_todo_unpacked {
2431 			uint8_t     activity; /* motionsensor_activity */
2432 			uint8_t     state;
2433 			int16_t     add_info[2];
2434 		};
2435 	};
2436 } __ec_todo_packed;
2437 
2438 /* Note: used in ec_response_get_next_data */
2439 struct ec_response_motion_sense_fifo_info {
2440 	/* Size of the fifo */
2441 	uint16_t size;
2442 	/* Amount of space used in the fifo */
2443 	uint16_t count;
2444 	/* Timestamp recorded in us.
2445 	 * aka accurate timestamp when host event was triggered.
2446 	 */
2447 	uint32_t timestamp;
2448 	/* Total amount of vector lost */
2449 	uint16_t total_lost;
2450 	/* Lost events since the last fifo_info, per sensors */
2451 	uint16_t lost[];
2452 } __ec_todo_packed;
2453 
2454 struct ec_response_motion_sense_fifo_data {
2455 	uint32_t number_data;
2456 	struct ec_response_motion_sensor_data data[];
2457 } __ec_todo_packed;
2458 
2459 /* List supported activity recognition */
2460 enum motionsensor_activity {
2461 	MOTIONSENSE_ACTIVITY_RESERVED = 0,
2462 	MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2463 	MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2464 	MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2465 };
2466 
2467 struct ec_motion_sense_activity {
2468 	uint8_t sensor_num;
2469 	uint8_t activity; /* one of enum motionsensor_activity */
2470 	uint8_t enable;   /* 1: enable, 0: disable */
2471 	uint8_t reserved;
2472 	uint16_t parameters[3]; /* activity dependent parameters */
2473 } __ec_todo_unpacked;
2474 
2475 /* Module flag masks used for the dump sub-command. */
2476 #define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2477 
2478 /* Sensor flag masks used for the dump sub-command. */
2479 #define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2480 
2481 /*
2482  * Flush entry for synchronization.
2483  * data contains time stamp
2484  */
2485 #define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
2486 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
2487 #define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
2488 #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
2489 #define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
2490 
2491 /*
2492  * Send this value for the data element to only perform a read. If you
2493  * send any other value, the EC will interpret it as data to set and will
2494  * return the actual value set.
2495  */
2496 #define EC_MOTION_SENSE_NO_VALUE -1
2497 
2498 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2499 
2500 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2501 /* Set Calibration information */
2502 #define MOTION_SENSE_SET_OFFSET BIT(0)
2503 
2504 /* Default Scale value, factor 1. */
2505 #define MOTION_SENSE_DEFAULT_SCALE BIT(15)
2506 
2507 #define LID_ANGLE_UNRELIABLE 500
2508 
2509 enum motionsense_spoof_mode {
2510 	/* Disable spoof mode. */
2511 	MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2512 
2513 	/* Enable spoof mode, but use provided component values. */
2514 	MOTIONSENSE_SPOOF_MODE_CUSTOM,
2515 
2516 	/* Enable spoof mode, but use the current sensor values. */
2517 	MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2518 
2519 	/* Query the current spoof mode status for the sensor. */
2520 	MOTIONSENSE_SPOOF_MODE_QUERY,
2521 };
2522 
2523 struct ec_params_motion_sense {
2524 	uint8_t cmd;
2525 	union {
2526 		/* Used for MOTIONSENSE_CMD_DUMP. */
2527 		struct __ec_todo_unpacked {
2528 			/*
2529 			 * Maximal number of sensor the host is expecting.
2530 			 * 0 means the host is only interested in the number
2531 			 * of sensors controlled by the EC.
2532 			 */
2533 			uint8_t max_sensor_count;
2534 		} dump;
2535 
2536 		/*
2537 		 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2538 		 */
2539 		struct __ec_todo_unpacked {
2540 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2541 			 * kb_wake_angle: angle to wakup AP.
2542 			 */
2543 			int16_t data;
2544 		} kb_wake_angle;
2545 
2546 		/*
2547 		 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2548 		 * and MOTIONSENSE_CMD_PERFORM_CALIB.
2549 		 */
2550 		struct __ec_todo_unpacked {
2551 			uint8_t sensor_num;
2552 		} info, info_3, data, fifo_flush, perform_calib,
2553 				list_activities;
2554 
2555 		/*
2556 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2557 		 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2558 		 */
2559 		struct __ec_todo_unpacked {
2560 			uint8_t sensor_num;
2561 
2562 			/* Rounding flag, true for round-up, false for down. */
2563 			uint8_t roundup;
2564 
2565 			uint16_t reserved;
2566 
2567 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2568 			int32_t data;
2569 		} ec_rate, sensor_odr, sensor_range;
2570 
2571 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2572 		struct __ec_todo_packed {
2573 			uint8_t sensor_num;
2574 
2575 			/*
2576 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2577 			 * the calibration information in the EC.
2578 			 * If unset, just retrieve calibration information.
2579 			 */
2580 			uint16_t flags;
2581 
2582 			/*
2583 			 * Temperature at calibration, in units of 0.01 C
2584 			 * 0x8000: invalid / unknown.
2585 			 * 0x0: 0C
2586 			 * 0x7fff: +327.67C
2587 			 */
2588 			int16_t temp;
2589 
2590 			/*
2591 			 * Offset for calibration.
2592 			 * Unit:
2593 			 * Accelerometer: 1/1024 g
2594 			 * Gyro:          1/1024 deg/s
2595 			 * Compass:       1/16 uT
2596 			 */
2597 			int16_t offset[3];
2598 		} sensor_offset;
2599 
2600 		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2601 		struct __ec_todo_packed {
2602 			uint8_t sensor_num;
2603 
2604 			/*
2605 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2606 			 * the calibration information in the EC.
2607 			 * If unset, just retrieve calibration information.
2608 			 */
2609 			uint16_t flags;
2610 
2611 			/*
2612 			 * Temperature at calibration, in units of 0.01 C
2613 			 * 0x8000: invalid / unknown.
2614 			 * 0x0: 0C
2615 			 * 0x7fff: +327.67C
2616 			 */
2617 			int16_t temp;
2618 
2619 			/*
2620 			 * Scale for calibration:
2621 			 * By default scale is 1, it is encoded on 16bits:
2622 			 * 1 = BIT(15)
2623 			 * ~2 = 0xFFFF
2624 			 * ~0 = 0.
2625 			 */
2626 			uint16_t scale[3];
2627 		} sensor_scale;
2628 
2629 
2630 		/* Used for MOTIONSENSE_CMD_FIFO_INFO */
2631 		/* (no params) */
2632 
2633 		/* Used for MOTIONSENSE_CMD_FIFO_READ */
2634 		struct __ec_todo_unpacked {
2635 			/*
2636 			 * Number of expected vector to return.
2637 			 * EC may return less or 0 if none available.
2638 			 */
2639 			uint32_t max_data_vector;
2640 		} fifo_read;
2641 
2642 		struct ec_motion_sense_activity set_activity;
2643 
2644 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2645 		/* (no params) */
2646 
2647 		/* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2648 		struct __ec_todo_unpacked {
2649 			/*
2650 			 * 1: enable, 0 disable fifo,
2651 			 * EC_MOTION_SENSE_NO_VALUE return value.
2652 			 */
2653 			int8_t enable;
2654 		} fifo_int_enable;
2655 
2656 		/* Used for MOTIONSENSE_CMD_SPOOF */
2657 		struct __ec_todo_packed {
2658 			uint8_t sensor_id;
2659 
2660 			/* See enum motionsense_spoof_mode. */
2661 			uint8_t spoof_enable;
2662 
2663 			/* Ignored, used for alignment. */
2664 			uint8_t reserved;
2665 
2666 			/* Individual component values to spoof. */
2667 			int16_t components[3];
2668 		} spoof;
2669 
2670 		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2671 		struct __ec_todo_unpacked {
2672 			/*
2673 			 * Lid angle threshold for switching between tablet and
2674 			 * clamshell mode.
2675 			 */
2676 			int16_t lid_angle;
2677 
2678 			/*
2679 			 * Hysteresis degree to prevent fluctuations between
2680 			 * clamshell and tablet mode if lid angle keeps
2681 			 * changing around the threshold. Lid motion driver will
2682 			 * use lid_angle + hys_degree to trigger tablet mode and
2683 			 * lid_angle - hys_degree to trigger clamshell mode.
2684 			 */
2685 			int16_t hys_degree;
2686 		} tablet_mode_threshold;
2687 	};
2688 } __ec_todo_packed;
2689 
2690 struct ec_response_motion_sense {
2691 	union {
2692 		/* Used for MOTIONSENSE_CMD_DUMP */
2693 		struct __ec_todo_unpacked {
2694 			/* Flags representing the motion sensor module. */
2695 			uint8_t module_flags;
2696 
2697 			/* Number of sensors managed directly by the EC. */
2698 			uint8_t sensor_count;
2699 
2700 			/*
2701 			 * Sensor data is truncated if response_max is too small
2702 			 * for holding all the data.
2703 			 */
2704 			DECLARE_FLEX_ARRAY(struct ec_response_motion_sensor_data, sensor);
2705 		} dump;
2706 
2707 		/* Used for MOTIONSENSE_CMD_INFO. */
2708 		struct __ec_todo_unpacked {
2709 			/* Should be element of enum motionsensor_type. */
2710 			uint8_t type;
2711 
2712 			/* Should be element of enum motionsensor_location. */
2713 			uint8_t location;
2714 
2715 			/* Should be element of enum motionsensor_chip. */
2716 			uint8_t chip;
2717 		} info;
2718 
2719 		/* Used for MOTIONSENSE_CMD_INFO version 3 */
2720 		struct __ec_todo_unpacked {
2721 			/* Should be element of enum motionsensor_type. */
2722 			uint8_t type;
2723 
2724 			/* Should be element of enum motionsensor_location. */
2725 			uint8_t location;
2726 
2727 			/* Should be element of enum motionsensor_chip. */
2728 			uint8_t chip;
2729 
2730 			/* Minimum sensor sampling frequency */
2731 			uint32_t min_frequency;
2732 
2733 			/* Maximum sensor sampling frequency */
2734 			uint32_t max_frequency;
2735 
2736 			/* Max number of sensor events that could be in fifo */
2737 			uint32_t fifo_max_event_count;
2738 		} info_3;
2739 
2740 		/* Used for MOTIONSENSE_CMD_DATA */
2741 		struct ec_response_motion_sensor_data data;
2742 
2743 		/*
2744 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2745 		 * MOTIONSENSE_CMD_SENSOR_RANGE,
2746 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2747 		 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2748 		 * MOTIONSENSE_CMD_SPOOF.
2749 		 */
2750 		struct __ec_todo_unpacked {
2751 			/* Current value of the parameter queried. */
2752 			int32_t ret;
2753 		} ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2754 		  fifo_int_enable, spoof;
2755 
2756 		/*
2757 		 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
2758 		 * PERFORM_CALIB.
2759 		 */
2760 		struct __ec_todo_unpacked  {
2761 			int16_t temp;
2762 			int16_t offset[3];
2763 		} sensor_offset, perform_calib;
2764 
2765 		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2766 		struct __ec_todo_unpacked  {
2767 			int16_t temp;
2768 			uint16_t scale[3];
2769 		} sensor_scale;
2770 
2771 		struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2772 
2773 		struct ec_response_motion_sense_fifo_data fifo_read;
2774 
2775 		struct __ec_todo_packed {
2776 			uint16_t reserved;
2777 			uint32_t enabled;
2778 			uint32_t disabled;
2779 		} list_activities;
2780 
2781 		/* No params for set activity */
2782 
2783 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2784 		struct __ec_todo_unpacked {
2785 			/*
2786 			 * Angle between 0 and 360 degree if available,
2787 			 * LID_ANGLE_UNRELIABLE otherwise.
2788 			 */
2789 			uint16_t value;
2790 		} lid_angle;
2791 
2792 		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2793 		struct __ec_todo_unpacked {
2794 			/*
2795 			 * Lid angle threshold for switching between tablet and
2796 			 * clamshell mode.
2797 			 */
2798 			uint16_t lid_angle;
2799 
2800 			/* Hysteresis degree. */
2801 			uint16_t hys_degree;
2802 		} tablet_mode_threshold;
2803 
2804 	};
2805 } __ec_todo_packed;
2806 
2807 /*****************************************************************************/
2808 /* Force lid open command */
2809 
2810 /* Make lid event always open */
2811 #define EC_CMD_FORCE_LID_OPEN 0x002C
2812 
2813 struct ec_params_force_lid_open {
2814 	uint8_t enabled;
2815 } __ec_align1;
2816 
2817 /*****************************************************************************/
2818 /* Configure the behavior of the power button */
2819 #define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2820 
2821 enum ec_config_power_button_flags {
2822 	/* Enable/Disable power button pulses for x86 devices */
2823 	EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
2824 };
2825 
2826 struct ec_params_config_power_button {
2827 	/* See enum ec_config_power_button_flags */
2828 	uint8_t flags;
2829 } __ec_align1;
2830 
2831 /*****************************************************************************/
2832 /* USB charging control commands */
2833 
2834 /* Set USB port charging mode */
2835 #define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2836 
2837 struct ec_params_usb_charge_set_mode {
2838 	uint8_t usb_port_id;
2839 	uint8_t mode:7;
2840 	uint8_t inhibit_charge:1;
2841 } __ec_align1;
2842 
2843 /*****************************************************************************/
2844 /* Persistent storage for host */
2845 
2846 /* Maximum bytes that can be read/written in a single command */
2847 #define EC_PSTORE_SIZE_MAX 64
2848 
2849 /* Get persistent storage info */
2850 #define EC_CMD_PSTORE_INFO 0x0040
2851 
2852 struct ec_response_pstore_info {
2853 	/* Persistent storage size, in bytes */
2854 	uint32_t pstore_size;
2855 	/* Access size; read/write offset and size must be a multiple of this */
2856 	uint32_t access_size;
2857 } __ec_align4;
2858 
2859 /*
2860  * Read persistent storage
2861  *
2862  * Response is params.size bytes of data.
2863  */
2864 #define EC_CMD_PSTORE_READ 0x0041
2865 
2866 struct ec_params_pstore_read {
2867 	uint32_t offset;   /* Byte offset to read */
2868 	uint32_t size;     /* Size to read in bytes */
2869 } __ec_align4;
2870 
2871 /* Write persistent storage */
2872 #define EC_CMD_PSTORE_WRITE 0x0042
2873 
2874 struct ec_params_pstore_write {
2875 	uint32_t offset;   /* Byte offset to write */
2876 	uint32_t size;     /* Size to write in bytes */
2877 	uint8_t data[EC_PSTORE_SIZE_MAX];
2878 } __ec_align4;
2879 
2880 /*****************************************************************************/
2881 /* Real-time clock */
2882 
2883 /* RTC params and response structures */
2884 struct ec_params_rtc {
2885 	uint32_t time;
2886 } __ec_align4;
2887 
2888 struct ec_response_rtc {
2889 	uint32_t time;
2890 } __ec_align4;
2891 
2892 /* These use ec_response_rtc */
2893 #define EC_CMD_RTC_GET_VALUE 0x0044
2894 #define EC_CMD_RTC_GET_ALARM 0x0045
2895 
2896 /* These all use ec_params_rtc */
2897 #define EC_CMD_RTC_SET_VALUE 0x0046
2898 #define EC_CMD_RTC_SET_ALARM 0x0047
2899 
2900 /* Pass as time param to SET_ALARM to clear the current alarm */
2901 #define EC_RTC_ALARM_CLEAR 0
2902 
2903 /*****************************************************************************/
2904 /* Port80 log access */
2905 
2906 /* Maximum entries that can be read/written in a single command */
2907 #define EC_PORT80_SIZE_MAX 32
2908 
2909 /* Get last port80 code from previous boot */
2910 #define EC_CMD_PORT80_LAST_BOOT 0x0048
2911 #define EC_CMD_PORT80_READ 0x0048
2912 
2913 enum ec_port80_subcmd {
2914 	EC_PORT80_GET_INFO = 0,
2915 	EC_PORT80_READ_BUFFER,
2916 };
2917 
2918 struct ec_params_port80_read {
2919 	uint16_t subcmd;
2920 	union {
2921 		struct __ec_todo_unpacked {
2922 			uint32_t offset;
2923 			uint32_t num_entries;
2924 		} read_buffer;
2925 	};
2926 } __ec_todo_packed;
2927 
2928 struct ec_response_port80_read {
2929 	union {
2930 		struct __ec_todo_unpacked {
2931 			uint32_t writes;
2932 			uint32_t history_size;
2933 			uint32_t last_boot;
2934 		} get_info;
2935 		struct __ec_todo_unpacked {
2936 			uint16_t codes[EC_PORT80_SIZE_MAX];
2937 		} data;
2938 	};
2939 } __ec_todo_packed;
2940 
2941 struct ec_response_port80_last_boot {
2942 	uint16_t code;
2943 } __ec_align2;
2944 
2945 /*****************************************************************************/
2946 /* Temporary secure storage for host verified boot use */
2947 
2948 /* Number of bytes in a vstore slot */
2949 #define EC_VSTORE_SLOT_SIZE 64
2950 
2951 /* Maximum number of vstore slots */
2952 #define EC_VSTORE_SLOT_MAX 32
2953 
2954 /* Get persistent storage info */
2955 #define EC_CMD_VSTORE_INFO 0x0049
2956 struct ec_response_vstore_info {
2957 	/* Indicates which slots are locked */
2958 	uint32_t slot_locked;
2959 	/* Total number of slots available */
2960 	uint8_t slot_count;
2961 } __ec_align_size1;
2962 
2963 /*
2964  * Read temporary secure storage
2965  *
2966  * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2967  */
2968 #define EC_CMD_VSTORE_READ 0x004A
2969 
2970 struct ec_params_vstore_read {
2971 	uint8_t slot; /* Slot to read from */
2972 } __ec_align1;
2973 
2974 struct ec_response_vstore_read {
2975 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2976 } __ec_align1;
2977 
2978 /*
2979  * Write temporary secure storage and lock it.
2980  */
2981 #define EC_CMD_VSTORE_WRITE 0x004B
2982 
2983 struct ec_params_vstore_write {
2984 	uint8_t slot; /* Slot to write to */
2985 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2986 } __ec_align1;
2987 
2988 /*****************************************************************************/
2989 /* Thermal engine commands. Note that there are two implementations. We'll
2990  * reuse the command number, but the data and behavior is incompatible.
2991  * Version 0 is what originally shipped on Link.
2992  * Version 1 separates the CPU thermal limits from the fan control.
2993  */
2994 
2995 #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2996 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2997 
2998 /* The version 0 structs are opaque. You have to know what they are for
2999  * the get/set commands to make any sense.
3000  */
3001 
3002 /* Version 0 - set */
3003 struct ec_params_thermal_set_threshold {
3004 	uint8_t sensor_type;
3005 	uint8_t threshold_id;
3006 	uint16_t value;
3007 } __ec_align2;
3008 
3009 /* Version 0 - get */
3010 struct ec_params_thermal_get_threshold {
3011 	uint8_t sensor_type;
3012 	uint8_t threshold_id;
3013 } __ec_align1;
3014 
3015 struct ec_response_thermal_get_threshold {
3016 	uint16_t value;
3017 } __ec_align2;
3018 
3019 
3020 /* The version 1 structs are visible. */
3021 enum ec_temp_thresholds {
3022 	EC_TEMP_THRESH_WARN = 0,
3023 	EC_TEMP_THRESH_HIGH,
3024 	EC_TEMP_THRESH_HALT,
3025 
3026 	EC_TEMP_THRESH_COUNT
3027 };
3028 
3029 /*
3030  * Thermal configuration for one temperature sensor. Temps are in degrees K.
3031  * Zero values will be silently ignored by the thermal task.
3032  *
3033  * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3034  * hysteresis.
3035  * For example,
3036  *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3037  *	temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3038  * EC will throttle ap when temperature >= 301 K, and release throttling when
3039  * temperature <= 299 K.
3040  *
3041  * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3042  * For example,
3043  *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3044  *	temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3045  * EC will throttle ap when temperature >= 301 K, and release throttling when
3046  * temperature <= 294 K.
3047  *
3048  * Note that this structure is a sub-structure of
3049  * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3050  */
3051 struct ec_thermal_config {
3052 	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3053 	uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3054 	uint32_t temp_fan_off;		/* no active cooling needed */
3055 	uint32_t temp_fan_max;		/* max active cooling needed */
3056 } __ec_align4;
3057 
3058 /* Version 1 - get config for one sensor. */
3059 struct ec_params_thermal_get_threshold_v1 {
3060 	uint32_t sensor_num;
3061 } __ec_align4;
3062 /* This returns a struct ec_thermal_config */
3063 
3064 /*
3065  * Version 1 - set config for one sensor.
3066  * Use read-modify-write for best results!
3067  */
3068 struct ec_params_thermal_set_threshold_v1 {
3069 	uint32_t sensor_num;
3070 	struct ec_thermal_config cfg;
3071 } __ec_align4;
3072 /* This returns no data */
3073 
3074 /****************************************************************************/
3075 
3076 /* Toggle automatic fan control */
3077 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3078 
3079 /* Version 1 of input params */
3080 struct ec_params_auto_fan_ctrl_v1 {
3081 	uint8_t fan_idx;
3082 } __ec_align1;
3083 
3084 /* Get/Set TMP006 calibration data */
3085 #define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3086 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3087 
3088 /*
3089  * The original TMP006 calibration only needed four params, but now we need
3090  * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3091  * the params opaque. The v1 "get" response will include the algorithm number
3092  * and how many params it requires. That way we can change the EC code without
3093  * needing to update this file. We can also use a different algorithm on each
3094  * sensor.
3095  */
3096 
3097 /* This is the same struct for both v0 and v1. */
3098 struct ec_params_tmp006_get_calibration {
3099 	uint8_t index;
3100 } __ec_align1;
3101 
3102 /* Version 0 */
3103 struct ec_response_tmp006_get_calibration_v0 {
3104 	float s0;
3105 	float b0;
3106 	float b1;
3107 	float b2;
3108 } __ec_align4;
3109 
3110 struct ec_params_tmp006_set_calibration_v0 {
3111 	uint8_t index;
3112 	uint8_t reserved[3];
3113 	float s0;
3114 	float b0;
3115 	float b1;
3116 	float b2;
3117 } __ec_align4;
3118 
3119 /* Version 1 */
3120 struct ec_response_tmp006_get_calibration_v1 {
3121 	uint8_t algorithm;
3122 	uint8_t num_params;
3123 	uint8_t reserved[2];
3124 	float val[];
3125 } __ec_align4;
3126 
3127 struct ec_params_tmp006_set_calibration_v1 {
3128 	uint8_t index;
3129 	uint8_t algorithm;
3130 	uint8_t num_params;
3131 	uint8_t reserved;
3132 	float val[];
3133 } __ec_align4;
3134 
3135 
3136 /* Read raw TMP006 data */
3137 #define EC_CMD_TMP006_GET_RAW 0x0055
3138 
3139 struct ec_params_tmp006_get_raw {
3140 	uint8_t index;
3141 } __ec_align1;
3142 
3143 struct ec_response_tmp006_get_raw {
3144 	int32_t t;  /* In 1/100 K */
3145 	int32_t v;  /* In nV */
3146 } __ec_align4;
3147 
3148 /*****************************************************************************/
3149 /* MKBP - Matrix KeyBoard Protocol */
3150 
3151 /*
3152  * Read key state
3153  *
3154  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3155  * expected response size.
3156  *
3157  * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
3158  * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3159  * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3160  */
3161 #define EC_CMD_MKBP_STATE 0x0060
3162 
3163 /*
3164  * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
3165  */
3166 #define EC_CMD_MKBP_INFO 0x0061
3167 
3168 struct ec_response_mkbp_info {
3169 	uint32_t rows;
3170 	uint32_t cols;
3171 	/* Formerly "switches", which was 0. */
3172 	uint8_t reserved;
3173 } __ec_align_size1;
3174 
3175 struct ec_params_mkbp_info {
3176 	uint8_t info_type;
3177 	uint8_t event_type;
3178 } __ec_align1;
3179 
3180 enum ec_mkbp_info_type {
3181 	/*
3182 	 * Info about the keyboard matrix: number of rows and columns.
3183 	 *
3184 	 * Returns struct ec_response_mkbp_info.
3185 	 */
3186 	EC_MKBP_INFO_KBD = 0,
3187 
3188 	/*
3189 	 * For buttons and switches, info about which specifically are
3190 	 * supported.  event_type must be set to one of the values in enum
3191 	 * ec_mkbp_event.
3192 	 *
3193 	 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3194 	 * bitmask indicating which buttons or switches are present.  See the
3195 	 * bit inidices below.
3196 	 */
3197 	EC_MKBP_INFO_SUPPORTED = 1,
3198 
3199 	/*
3200 	 * Instantaneous state of buttons and switches.
3201 	 *
3202 	 * event_type must be set to one of the values in enum ec_mkbp_event.
3203 	 *
3204 	 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3205 	 * indicating the current state of the keyboard matrix.
3206 	 *
3207 	 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3208 	 * event state.
3209 	 *
3210 	 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3211 	 * state of supported buttons.
3212 	 *
3213 	 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3214 	 * state of supported switches.
3215 	 */
3216 	EC_MKBP_INFO_CURRENT = 2,
3217 };
3218 
3219 /* Simulate key press */
3220 #define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3221 
3222 struct ec_params_mkbp_simulate_key {
3223 	uint8_t col;
3224 	uint8_t row;
3225 	uint8_t pressed;
3226 } __ec_align1;
3227 
3228 #define EC_CMD_GET_KEYBOARD_ID 0x0063
3229 
3230 struct ec_response_keyboard_id {
3231 	uint32_t keyboard_id;
3232 } __ec_align4;
3233 
3234 enum keyboard_id {
3235 	KEYBOARD_ID_UNSUPPORTED = 0,
3236 	KEYBOARD_ID_UNREADABLE = 0xffffffff,
3237 };
3238 
3239 /* Configure keyboard scanning */
3240 #define EC_CMD_MKBP_SET_CONFIG 0x0064
3241 #define EC_CMD_MKBP_GET_CONFIG 0x0065
3242 
3243 /* flags */
3244 enum mkbp_config_flags {
3245 	EC_MKBP_FLAGS_ENABLE = 1,	/* Enable keyboard scanning */
3246 };
3247 
3248 enum mkbp_config_valid {
3249 	EC_MKBP_VALID_SCAN_PERIOD		= BIT(0),
3250 	EC_MKBP_VALID_POLL_TIMEOUT		= BIT(1),
3251 	EC_MKBP_VALID_MIN_POST_SCAN_DELAY	= BIT(3),
3252 	EC_MKBP_VALID_OUTPUT_SETTLE		= BIT(4),
3253 	EC_MKBP_VALID_DEBOUNCE_DOWN		= BIT(5),
3254 	EC_MKBP_VALID_DEBOUNCE_UP		= BIT(6),
3255 	EC_MKBP_VALID_FIFO_MAX_DEPTH		= BIT(7),
3256 };
3257 
3258 /*
3259  * Configuration for our key scanning algorithm.
3260  *
3261  * Note that this is used as a sub-structure of
3262  * ec_{params/response}_mkbp_get_config.
3263  */
3264 struct ec_mkbp_config {
3265 	uint32_t valid_mask;		/* valid fields */
3266 	uint8_t flags;		/* some flags (enum mkbp_config_flags) */
3267 	uint8_t valid_flags;		/* which flags are valid */
3268 	uint16_t scan_period_us;	/* period between start of scans */
3269 	/* revert to interrupt mode after no activity for this long */
3270 	uint32_t poll_timeout_us;
3271 	/*
3272 	 * minimum post-scan relax time. Once we finish a scan we check
3273 	 * the time until we are due to start the next one. If this time is
3274 	 * shorter this field, we use this instead.
3275 	 */
3276 	uint16_t min_post_scan_delay_us;
3277 	/* delay between setting up output and waiting for it to settle */
3278 	uint16_t output_settle_us;
3279 	uint16_t debounce_down_us;	/* time for debounce on key down */
3280 	uint16_t debounce_up_us;	/* time for debounce on key up */
3281 	/* maximum depth to allow for fifo (0 = no keyscan output) */
3282 	uint8_t fifo_max_depth;
3283 } __ec_align_size1;
3284 
3285 struct ec_params_mkbp_set_config {
3286 	struct ec_mkbp_config config;
3287 } __ec_align_size1;
3288 
3289 struct ec_response_mkbp_get_config {
3290 	struct ec_mkbp_config config;
3291 } __ec_align_size1;
3292 
3293 /* Run the key scan emulation */
3294 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3295 
3296 enum ec_keyscan_seq_cmd {
3297 	EC_KEYSCAN_SEQ_STATUS = 0,	/* Get status information */
3298 	EC_KEYSCAN_SEQ_CLEAR = 1,	/* Clear sequence */
3299 	EC_KEYSCAN_SEQ_ADD = 2,		/* Add item to sequence */
3300 	EC_KEYSCAN_SEQ_START = 3,	/* Start running sequence */
3301 	EC_KEYSCAN_SEQ_COLLECT = 4,	/* Collect sequence summary data */
3302 };
3303 
3304 enum ec_collect_flags {
3305 	/*
3306 	 * Indicates this scan was processed by the EC. Due to timing, some
3307 	 * scans may be skipped.
3308 	 */
3309 	EC_KEYSCAN_SEQ_FLAG_DONE	= BIT(0),
3310 };
3311 
3312 struct ec_collect_item {
3313 	uint8_t flags;		/* some flags (enum ec_collect_flags) */
3314 } __ec_align1;
3315 
3316 struct ec_params_keyscan_seq_ctrl {
3317 	uint8_t cmd;	/* Command to send (enum ec_keyscan_seq_cmd) */
3318 	union {
3319 		struct __ec_align1 {
3320 			uint8_t active;		/* still active */
3321 			uint8_t num_items;	/* number of items */
3322 			/* Current item being presented */
3323 			uint8_t cur_item;
3324 		} status;
3325 		struct __ec_todo_unpacked {
3326 			/*
3327 			 * Absolute time for this scan, measured from the
3328 			 * start of the sequence.
3329 			 */
3330 			uint32_t time_us;
3331 			uint8_t scan[0];	/* keyscan data */
3332 		} add;
3333 		struct __ec_align1 {
3334 			uint8_t start_item;	/* First item to return */
3335 			uint8_t num_items;	/* Number of items to return */
3336 		} collect;
3337 	};
3338 } __ec_todo_packed;
3339 
3340 struct ec_result_keyscan_seq_ctrl {
3341 	union {
3342 		struct __ec_todo_unpacked {
3343 			uint8_t num_items;	/* Number of items */
3344 			/* Data for each item */
3345 			struct ec_collect_item item[0];
3346 		} collect;
3347 	};
3348 } __ec_todo_packed;
3349 
3350 /*
3351  * Get the next pending MKBP event.
3352  *
3353  * Returns EC_RES_UNAVAILABLE if there is no event pending.
3354  */
3355 #define EC_CMD_GET_NEXT_EVENT 0x0067
3356 
3357 #define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3358 
3359 /*
3360  * We use the most significant bit of the event type to indicate to the host
3361  * that the EC has more MKBP events available to provide.
3362  */
3363 #define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3364 
3365 /* The mask to apply to get the raw event type */
3366 #define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3367 
3368 enum ec_mkbp_event {
3369 	/* Keyboard matrix changed. The event data is the new matrix state. */
3370 	EC_MKBP_EVENT_KEY_MATRIX = 0,
3371 
3372 	/* New host event. The event data is 4 bytes of host event flags. */
3373 	EC_MKBP_EVENT_HOST_EVENT = 1,
3374 
3375 	/* New Sensor FIFO data. The event data is fifo_info structure. */
3376 	EC_MKBP_EVENT_SENSOR_FIFO = 2,
3377 
3378 	/* The state of the non-matrixed buttons have changed. */
3379 	EC_MKBP_EVENT_BUTTON = 3,
3380 
3381 	/* The state of the switches have changed. */
3382 	EC_MKBP_EVENT_SWITCH = 4,
3383 
3384 	/* New Fingerprint sensor event, the event data is fp_events bitmap. */
3385 	EC_MKBP_EVENT_FINGERPRINT = 5,
3386 
3387 	/*
3388 	 * Sysrq event: send emulated sysrq. The event data is sysrq,
3389 	 * corresponding to the key to be pressed.
3390 	 */
3391 	EC_MKBP_EVENT_SYSRQ = 6,
3392 
3393 	/*
3394 	 * New 64-bit host event.
3395 	 * The event data is 8 bytes of host event flags.
3396 	 */
3397 	EC_MKBP_EVENT_HOST_EVENT64 = 7,
3398 
3399 	/* Notify the AP that something happened on CEC */
3400 	EC_MKBP_EVENT_CEC_EVENT = 8,
3401 
3402 	/* Send an incoming CEC message to the AP */
3403 	EC_MKBP_EVENT_CEC_MESSAGE = 9,
3404 
3405 	/* Peripheral device charger event */
3406 	EC_MKBP_EVENT_PCHG = 12,
3407 
3408 	/* Number of MKBP events */
3409 	EC_MKBP_EVENT_COUNT,
3410 };
3411 BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
3412 
3413 union __ec_align_offset1 ec_response_get_next_data {
3414 	uint8_t key_matrix[13];
3415 
3416 	/* Unaligned */
3417 	uint32_t host_event;
3418 	uint64_t host_event64;
3419 
3420 	struct __ec_todo_unpacked {
3421 		/* For aligning the fifo_info */
3422 		uint8_t reserved[3];
3423 		struct ec_response_motion_sense_fifo_info info;
3424 	} sensor_fifo;
3425 
3426 	uint32_t buttons;
3427 
3428 	uint32_t switches;
3429 
3430 	uint32_t fp_events;
3431 
3432 	uint32_t sysrq;
3433 
3434 	/* CEC events from enum mkbp_cec_event */
3435 	uint32_t cec_events;
3436 };
3437 
3438 union __ec_align_offset1 ec_response_get_next_data_v1 {
3439 	uint8_t key_matrix[16];
3440 
3441 	/* Unaligned */
3442 	uint32_t host_event;
3443 	uint64_t host_event64;
3444 
3445 	struct __ec_todo_unpacked {
3446 		/* For aligning the fifo_info */
3447 		uint8_t reserved[3];
3448 		struct ec_response_motion_sense_fifo_info info;
3449 	} sensor_fifo;
3450 
3451 	uint32_t buttons;
3452 
3453 	uint32_t switches;
3454 
3455 	uint32_t fp_events;
3456 
3457 	uint32_t sysrq;
3458 
3459 	/* CEC events from enum mkbp_cec_event */
3460 	uint32_t cec_events;
3461 
3462 	uint8_t cec_message[16];
3463 };
3464 BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
3465 
3466 struct ec_response_get_next_event {
3467 	uint8_t event_type;
3468 	/* Followed by event data if any */
3469 	union ec_response_get_next_data data;
3470 } __ec_align1;
3471 
3472 struct ec_response_get_next_event_v1 {
3473 	uint8_t event_type;
3474 	/* Followed by event data if any */
3475 	union ec_response_get_next_data_v1 data;
3476 } __ec_align1;
3477 
3478 /* Bit indices for buttons and switches.*/
3479 /* Buttons */
3480 #define EC_MKBP_POWER_BUTTON	0
3481 #define EC_MKBP_VOL_UP		1
3482 #define EC_MKBP_VOL_DOWN	2
3483 #define EC_MKBP_RECOVERY	3
3484 #define EC_MKBP_BRI_UP		4
3485 #define EC_MKBP_BRI_DOWN	5
3486 #define EC_MKBP_SCREEN_LOCK	6
3487 
3488 /* Switches */
3489 #define EC_MKBP_LID_OPEN	0
3490 #define EC_MKBP_TABLET_MODE	1
3491 #define EC_MKBP_BASE_ATTACHED	2
3492 #define EC_MKBP_FRONT_PROXIMITY	3
3493 
3494 /* Run keyboard factory test scanning */
3495 #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3496 
3497 struct ec_response_keyboard_factory_test {
3498 	uint16_t shorted;	/* Keyboard pins are shorted */
3499 } __ec_align2;
3500 
3501 /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3502 #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3503 #define EC_MKBP_FP_ERRCODE(fp_events)   ((fp_events) & 0x0000000F)
3504 #define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
3505 #define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \
3506 					 >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
3507 #define EC_MKBP_FP_MATCH_IDX_OFFSET 12
3508 #define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
3509 #define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \
3510 					 >> EC_MKBP_FP_MATCH_IDX_OFFSET)
3511 #define EC_MKBP_FP_ENROLL               BIT(27)
3512 #define EC_MKBP_FP_MATCH                BIT(28)
3513 #define EC_MKBP_FP_FINGER_DOWN          BIT(29)
3514 #define EC_MKBP_FP_FINGER_UP            BIT(30)
3515 #define EC_MKBP_FP_IMAGE_READY          BIT(31)
3516 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
3517 #define EC_MKBP_FP_ERR_ENROLL_OK               0
3518 #define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY      1
3519 #define EC_MKBP_FP_ERR_ENROLL_IMMOBILE         2
3520 #define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE     3
3521 #define EC_MKBP_FP_ERR_ENROLL_INTERNAL         5
3522 /* Can be used to detect if image was usable for enrollment or not. */
3523 #define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK     1
3524 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
3525 #define EC_MKBP_FP_ERR_MATCH_NO                0
3526 #define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL       6
3527 #define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES      7
3528 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY    2
3529 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE   4
3530 #define EC_MKBP_FP_ERR_MATCH_YES               1
3531 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATED       3
3532 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
3533 
3534 
3535 /*****************************************************************************/
3536 /* Temperature sensor commands */
3537 
3538 /* Read temperature sensor info */
3539 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3540 
3541 struct ec_params_temp_sensor_get_info {
3542 	uint8_t id;
3543 } __ec_align1;
3544 
3545 struct ec_response_temp_sensor_get_info {
3546 	char sensor_name[32];
3547 	uint8_t sensor_type;
3548 } __ec_align1;
3549 
3550 /*****************************************************************************/
3551 
3552 /*
3553  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3554  * commands accidentally sent to the wrong interface.  See the ACPI section
3555  * below.
3556  */
3557 
3558 /*****************************************************************************/
3559 /* Host event commands */
3560 
3561 
3562 /* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
3563 /*
3564  * Host event mask params and response structures, shared by all of the host
3565  * event commands below.
3566  */
3567 struct ec_params_host_event_mask {
3568 	uint32_t mask;
3569 } __ec_align4;
3570 
3571 struct ec_response_host_event_mask {
3572 	uint32_t mask;
3573 } __ec_align4;
3574 
3575 /* These all use ec_response_host_event_mask */
3576 #define EC_CMD_HOST_EVENT_GET_B         0x0087
3577 #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3578 #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3579 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3580 
3581 /* These all use ec_params_host_event_mask */
3582 #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3583 #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3584 #define EC_CMD_HOST_EVENT_CLEAR         0x008C
3585 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3586 #define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3587 
3588 /*
3589  * Unified host event programming interface - Should be used by newer versions
3590  * of BIOS/OS to program host events and masks
3591  */
3592 
3593 struct ec_params_host_event {
3594 
3595 	/* Action requested by host - one of enum ec_host_event_action. */
3596 	uint8_t action;
3597 
3598 	/*
3599 	 * Mask type that the host requested the action on - one of
3600 	 * enum ec_host_event_mask_type.
3601 	 */
3602 	uint8_t mask_type;
3603 
3604 	/* Set to 0, ignore on read */
3605 	uint16_t reserved;
3606 
3607 	/* Value to be used in case of set operations. */
3608 	uint64_t value;
3609 } __ec_align4;
3610 
3611 /*
3612  * Response structure returned by EC_CMD_HOST_EVENT.
3613  * Update the value on a GET request. Set to 0 on GET/CLEAR
3614  */
3615 
3616 struct ec_response_host_event {
3617 
3618 	/* Mask value in case of get operation */
3619 	uint64_t value;
3620 } __ec_align4;
3621 
3622 enum ec_host_event_action {
3623 	/*
3624 	 * params.value is ignored. Value of mask_type populated
3625 	 * in response.value
3626 	 */
3627 	EC_HOST_EVENT_GET,
3628 
3629 	/* Bits in params.value are set */
3630 	EC_HOST_EVENT_SET,
3631 
3632 	/* Bits in params.value are cleared */
3633 	EC_HOST_EVENT_CLEAR,
3634 };
3635 
3636 enum ec_host_event_mask_type {
3637 
3638 	/* Main host event copy */
3639 	EC_HOST_EVENT_MAIN,
3640 
3641 	/* Copy B of host events */
3642 	EC_HOST_EVENT_B,
3643 
3644 	/* SCI Mask */
3645 	EC_HOST_EVENT_SCI_MASK,
3646 
3647 	/* SMI Mask */
3648 	EC_HOST_EVENT_SMI_MASK,
3649 
3650 	/* Mask of events that should be always reported in hostevents */
3651 	EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3652 
3653 	/* Active wake mask */
3654 	EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3655 
3656 	/* Lazy wake mask for S0ix */
3657 	EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3658 
3659 	/* Lazy wake mask for S3 */
3660 	EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3661 
3662 	/* Lazy wake mask for S5 */
3663 	EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3664 };
3665 
3666 #define EC_CMD_HOST_EVENT       0x00A4
3667 
3668 /*****************************************************************************/
3669 /* Switch commands */
3670 
3671 /* Enable/disable LCD backlight */
3672 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3673 
3674 struct ec_params_switch_enable_backlight {
3675 	uint8_t enabled;
3676 } __ec_align1;
3677 
3678 /* Enable/disable WLAN/Bluetooth */
3679 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3680 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
3681 
3682 /* Version 0 params; no response */
3683 struct ec_params_switch_enable_wireless_v0 {
3684 	uint8_t enabled;
3685 } __ec_align1;
3686 
3687 /* Version 1 params */
3688 struct ec_params_switch_enable_wireless_v1 {
3689 	/* Flags to enable now */
3690 	uint8_t now_flags;
3691 
3692 	/* Which flags to copy from now_flags */
3693 	uint8_t now_mask;
3694 
3695 	/*
3696 	 * Flags to leave enabled in S3, if they're on at the S0->S3
3697 	 * transition.  (Other flags will be disabled by the S0->S3
3698 	 * transition.)
3699 	 */
3700 	uint8_t suspend_flags;
3701 
3702 	/* Which flags to copy from suspend_flags */
3703 	uint8_t suspend_mask;
3704 } __ec_align1;
3705 
3706 /* Version 1 response */
3707 struct ec_response_switch_enable_wireless_v1 {
3708 	/* Flags to enable now */
3709 	uint8_t now_flags;
3710 
3711 	/* Flags to leave enabled in S3 */
3712 	uint8_t suspend_flags;
3713 } __ec_align1;
3714 
3715 /*****************************************************************************/
3716 /* GPIO commands. Only available on EC if write protect has been disabled. */
3717 
3718 /* Set GPIO output value */
3719 #define EC_CMD_GPIO_SET 0x0092
3720 
3721 struct ec_params_gpio_set {
3722 	char name[32];
3723 	uint8_t val;
3724 } __ec_align1;
3725 
3726 /* Get GPIO value */
3727 #define EC_CMD_GPIO_GET 0x0093
3728 
3729 /* Version 0 of input params and response */
3730 struct ec_params_gpio_get {
3731 	char name[32];
3732 } __ec_align1;
3733 
3734 struct ec_response_gpio_get {
3735 	uint8_t val;
3736 } __ec_align1;
3737 
3738 /* Version 1 of input params and response */
3739 struct ec_params_gpio_get_v1 {
3740 	uint8_t subcmd;
3741 	union {
3742 		struct __ec_align1 {
3743 			char name[32];
3744 		} get_value_by_name;
3745 		struct __ec_align1 {
3746 			uint8_t index;
3747 		} get_info;
3748 	};
3749 } __ec_align1;
3750 
3751 struct ec_response_gpio_get_v1 {
3752 	union {
3753 		struct __ec_align1 {
3754 			uint8_t val;
3755 		} get_value_by_name, get_count;
3756 		struct __ec_todo_unpacked {
3757 			uint8_t val;
3758 			char name[32];
3759 			uint32_t flags;
3760 		} get_info;
3761 	};
3762 } __ec_todo_packed;
3763 
3764 enum gpio_get_subcmd {
3765 	EC_GPIO_GET_BY_NAME = 0,
3766 	EC_GPIO_GET_COUNT = 1,
3767 	EC_GPIO_GET_INFO = 2,
3768 };
3769 
3770 /*****************************************************************************/
3771 /* I2C commands. Only available when flash write protect is unlocked. */
3772 
3773 /*
3774  * CAUTION: These commands are deprecated, and are not supported anymore in EC
3775  * builds >= 8398.0.0 (see crosbug.com/p/23570).
3776  *
3777  * Use EC_CMD_I2C_PASSTHRU instead.
3778  */
3779 
3780 /* Read I2C bus */
3781 #define EC_CMD_I2C_READ 0x0094
3782 
3783 struct ec_params_i2c_read {
3784 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3785 	uint8_t read_size; /* Either 8 or 16. */
3786 	uint8_t port;
3787 	uint8_t offset;
3788 } __ec_align_size1;
3789 
3790 struct ec_response_i2c_read {
3791 	uint16_t data;
3792 } __ec_align2;
3793 
3794 /* Write I2C bus */
3795 #define EC_CMD_I2C_WRITE 0x0095
3796 
3797 struct ec_params_i2c_write {
3798 	uint16_t data;
3799 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3800 	uint8_t write_size; /* Either 8 or 16. */
3801 	uint8_t port;
3802 	uint8_t offset;
3803 } __ec_align_size1;
3804 
3805 /*****************************************************************************/
3806 /* Charge state commands. Only available when flash write protect unlocked. */
3807 
3808 /* Force charge state machine to stop charging the battery or force it to
3809  * discharge the battery.
3810  */
3811 #define EC_CMD_CHARGE_CONTROL 0x0096
3812 #define EC_VER_CHARGE_CONTROL 1
3813 
3814 enum ec_charge_control_mode {
3815 	CHARGE_CONTROL_NORMAL = 0,
3816 	CHARGE_CONTROL_IDLE,
3817 	CHARGE_CONTROL_DISCHARGE,
3818 };
3819 
3820 struct ec_params_charge_control {
3821 	uint32_t mode;  /* enum charge_control_mode */
3822 } __ec_align4;
3823 
3824 /*****************************************************************************/
3825 
3826 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3827 #define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3828 
3829 /*
3830  * Read data from the saved snapshot. If the subcmd parameter is
3831  * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3832  * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3833  * end of the previous snapshot.
3834  *
3835  * The params are only looked at in version >= 1 of this command. Prior
3836  * versions will just default to CONSOLE_READ_NEXT behavior.
3837  *
3838  * Response is null-terminated string.  Empty string, if there is no more
3839  * remaining output.
3840  */
3841 #define EC_CMD_CONSOLE_READ 0x0098
3842 
3843 enum ec_console_read_subcmd {
3844 	CONSOLE_READ_NEXT = 0,
3845 	CONSOLE_READ_RECENT
3846 };
3847 
3848 struct ec_params_console_read_v1 {
3849 	uint8_t subcmd; /* enum ec_console_read_subcmd */
3850 } __ec_align1;
3851 
3852 /*****************************************************************************/
3853 
3854 /*
3855  * Cut off battery power immediately or after the host has shut down.
3856  *
3857  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3858  *	  EC_RES_SUCCESS if the command was successful.
3859  *	  EC_RES_ERROR if the cut off command failed.
3860  */
3861 #define EC_CMD_BATTERY_CUT_OFF 0x0099
3862 
3863 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN	BIT(0)
3864 
3865 struct ec_params_battery_cutoff {
3866 	uint8_t flags;
3867 } __ec_align1;
3868 
3869 /*****************************************************************************/
3870 /* USB port mux control. */
3871 
3872 /*
3873  * Switch USB mux or return to automatic switching.
3874  */
3875 #define EC_CMD_USB_MUX 0x009A
3876 
3877 struct ec_params_usb_mux {
3878 	uint8_t mux;
3879 } __ec_align1;
3880 
3881 /*****************************************************************************/
3882 /* LDOs / FETs control. */
3883 
3884 enum ec_ldo_state {
3885 	EC_LDO_STATE_OFF = 0,	/* the LDO / FET is shut down */
3886 	EC_LDO_STATE_ON = 1,	/* the LDO / FET is ON / providing power */
3887 };
3888 
3889 /*
3890  * Switch on/off a LDO.
3891  */
3892 #define EC_CMD_LDO_SET 0x009B
3893 
3894 struct ec_params_ldo_set {
3895 	uint8_t index;
3896 	uint8_t state;
3897 } __ec_align1;
3898 
3899 /*
3900  * Get LDO state.
3901  */
3902 #define EC_CMD_LDO_GET 0x009C
3903 
3904 struct ec_params_ldo_get {
3905 	uint8_t index;
3906 } __ec_align1;
3907 
3908 struct ec_response_ldo_get {
3909 	uint8_t state;
3910 } __ec_align1;
3911 
3912 /*****************************************************************************/
3913 /* Power info. */
3914 
3915 /*
3916  * Get power info.
3917  */
3918 #define EC_CMD_POWER_INFO 0x009D
3919 
3920 struct ec_response_power_info {
3921 	uint32_t usb_dev_type;
3922 	uint16_t voltage_ac;
3923 	uint16_t voltage_system;
3924 	uint16_t current_system;
3925 	uint16_t usb_current_limit;
3926 } __ec_align4;
3927 
3928 /*****************************************************************************/
3929 /* I2C passthru command */
3930 
3931 #define EC_CMD_I2C_PASSTHRU 0x009E
3932 
3933 /* Read data; if not present, message is a write */
3934 #define EC_I2C_FLAG_READ	BIT(15)
3935 
3936 /* Mask for address */
3937 #define EC_I2C_ADDR_MASK	0x3ff
3938 
3939 #define EC_I2C_STATUS_NAK	BIT(0) /* Transfer was not acknowledged */
3940 #define EC_I2C_STATUS_TIMEOUT	BIT(1) /* Timeout during transfer */
3941 
3942 /* Any error */
3943 #define EC_I2C_STATUS_ERROR	(EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3944 
3945 struct ec_params_i2c_passthru_msg {
3946 	uint16_t addr_flags;	/* I2C slave address (7 or 10 bits) and flags */
3947 	uint16_t len;		/* Number of bytes to read or write */
3948 } __ec_align2;
3949 
3950 struct ec_params_i2c_passthru {
3951 	uint8_t port;		/* I2C port number */
3952 	uint8_t num_msgs;	/* Number of messages */
3953 	struct ec_params_i2c_passthru_msg msg[];
3954 	/* Data to write for all messages is concatenated here */
3955 } __ec_align2;
3956 
3957 struct ec_response_i2c_passthru {
3958 	uint8_t i2c_status;	/* Status flags (EC_I2C_STATUS_...) */
3959 	uint8_t num_msgs;	/* Number of messages processed */
3960 	uint8_t data[];		/* Data read by messages concatenated here */
3961 } __ec_align1;
3962 
3963 /*****************************************************************************/
3964 /* Power button hang detect */
3965 
3966 #define EC_CMD_HANG_DETECT 0x009F
3967 
3968 /* Reasons to start hang detection timer */
3969 /* Power button pressed */
3970 #define EC_HANG_START_ON_POWER_PRESS  BIT(0)
3971 
3972 /* Lid closed */
3973 #define EC_HANG_START_ON_LID_CLOSE    BIT(1)
3974 
3975  /* Lid opened */
3976 #define EC_HANG_START_ON_LID_OPEN     BIT(2)
3977 
3978 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
3979 #define EC_HANG_START_ON_RESUME       BIT(3)
3980 
3981 /* Reasons to cancel hang detection */
3982 
3983 /* Power button released */
3984 #define EC_HANG_STOP_ON_POWER_RELEASE BIT(8)
3985 
3986 /* Any host command from AP received */
3987 #define EC_HANG_STOP_ON_HOST_COMMAND  BIT(9)
3988 
3989 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3990 #define EC_HANG_STOP_ON_SUSPEND       BIT(10)
3991 
3992 /*
3993  * If this flag is set, all the other fields are ignored, and the hang detect
3994  * timer is started.  This provides the AP a way to start the hang timer
3995  * without reconfiguring any of the other hang detect settings.  Note that
3996  * you must previously have configured the timeouts.
3997  */
3998 #define EC_HANG_START_NOW             BIT(30)
3999 
4000 /*
4001  * If this flag is set, all the other fields are ignored (including
4002  * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
4003  * without reconfiguring any of the other hang detect settings.
4004  */
4005 #define EC_HANG_STOP_NOW              BIT(31)
4006 
4007 struct ec_params_hang_detect {
4008 	/* Flags; see EC_HANG_* */
4009 	uint32_t flags;
4010 
4011 	/* Timeout in msec before generating host event, if enabled */
4012 	uint16_t host_event_timeout_msec;
4013 
4014 	/* Timeout in msec before generating warm reboot, if enabled */
4015 	uint16_t warm_reboot_timeout_msec;
4016 } __ec_align4;
4017 
4018 /*****************************************************************************/
4019 /* Commands for battery charging */
4020 
4021 /*
4022  * This is the single catch-all host command to exchange data regarding the
4023  * charge state machine (v2 and up).
4024  */
4025 #define EC_CMD_CHARGE_STATE 0x00A0
4026 
4027 /* Subcommands for this host command */
4028 enum charge_state_command {
4029 	CHARGE_STATE_CMD_GET_STATE,
4030 	CHARGE_STATE_CMD_GET_PARAM,
4031 	CHARGE_STATE_CMD_SET_PARAM,
4032 	CHARGE_STATE_NUM_CMDS
4033 };
4034 
4035 /*
4036  * Known param numbers are defined here. Ranges are reserved for board-specific
4037  * params, which are handled by the particular implementations.
4038  */
4039 enum charge_state_params {
4040 	CS_PARAM_CHG_VOLTAGE,	      /* charger voltage limit */
4041 	CS_PARAM_CHG_CURRENT,	      /* charger current limit */
4042 	CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
4043 	CS_PARAM_CHG_STATUS,	      /* charger-specific status */
4044 	CS_PARAM_CHG_OPTION,	      /* charger-specific options */
4045 	CS_PARAM_LIMIT_POWER,	      /*
4046 				       * Check if power is limited due to
4047 				       * low battery and / or a weak external
4048 				       * charger. READ ONLY.
4049 				       */
4050 	/* How many so far? */
4051 	CS_NUM_BASE_PARAMS,
4052 
4053 	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4054 	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4055 	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4056 
4057 	/* Range for CONFIG_CHARGE_STATE_DEBUG params */
4058 	CS_PARAM_DEBUG_MIN = 0x20000,
4059 	CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4060 	CS_PARAM_DEBUG_MANUAL_MODE,
4061 	CS_PARAM_DEBUG_SEEMS_DEAD,
4062 	CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4063 	CS_PARAM_DEBUG_BATT_REMOVED,
4064 	CS_PARAM_DEBUG_MANUAL_CURRENT,
4065 	CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4066 	CS_PARAM_DEBUG_MAX = 0x2ffff,
4067 
4068 	/* Other custom param ranges go here... */
4069 };
4070 
4071 struct ec_params_charge_state {
4072 	uint8_t cmd;				/* enum charge_state_command */
4073 	union {
4074 		/* get_state has no args */
4075 
4076 		struct __ec_todo_unpacked {
4077 			uint32_t param;		/* enum charge_state_param */
4078 		} get_param;
4079 
4080 		struct __ec_todo_unpacked {
4081 			uint32_t param;		/* param to set */
4082 			uint32_t value;		/* value to set */
4083 		} set_param;
4084 	};
4085 } __ec_todo_packed;
4086 
4087 struct ec_response_charge_state {
4088 	union {
4089 		struct __ec_align4 {
4090 			int ac;
4091 			int chg_voltage;
4092 			int chg_current;
4093 			int chg_input_current;
4094 			int batt_state_of_charge;
4095 		} get_state;
4096 
4097 		struct __ec_align4 {
4098 			uint32_t value;
4099 		} get_param;
4100 
4101 		/* set_param returns no args */
4102 	};
4103 } __ec_align4;
4104 
4105 
4106 /*
4107  * Set maximum battery charging current.
4108  */
4109 #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4110 
4111 struct ec_params_current_limit {
4112 	uint32_t limit; /* in mA */
4113 } __ec_align4;
4114 
4115 /*
4116  * Set maximum external voltage / current.
4117  */
4118 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4119 
4120 /* Command v0 is used only on Spring and is obsolete + unsupported */
4121 struct ec_params_external_power_limit_v1 {
4122 	uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4123 	uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4124 } __ec_align2;
4125 
4126 #define EC_POWER_LIMIT_NONE 0xffff
4127 
4128 /*
4129  * Set maximum voltage & current of a dedicated charge port
4130  */
4131 #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4132 
4133 struct ec_params_dedicated_charger_limit {
4134 	uint16_t current_lim; /* in mA */
4135 	uint16_t voltage_lim; /* in mV */
4136 } __ec_align2;
4137 
4138 /*****************************************************************************/
4139 /* Hibernate/Deep Sleep Commands */
4140 
4141 /* Set the delay before going into hibernation. */
4142 #define EC_CMD_HIBERNATION_DELAY 0x00A8
4143 
4144 struct ec_params_hibernation_delay {
4145 	/*
4146 	 * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
4147 	 * current settings without changing them.
4148 	 */
4149 	uint32_t seconds;
4150 } __ec_align4;
4151 
4152 struct ec_response_hibernation_delay {
4153 	/*
4154 	 * The current time in seconds in which the system has been in the G3
4155 	 * state.  This value is reset if the EC transitions out of G3.
4156 	 */
4157 	uint32_t time_g3;
4158 
4159 	/*
4160 	 * The current time remaining in seconds until the EC should hibernate.
4161 	 * This value is also reset if the EC transitions out of G3.
4162 	 */
4163 	uint32_t time_remaining;
4164 
4165 	/*
4166 	 * The current time in seconds that the EC should wait in G3 before
4167 	 * hibernating.
4168 	 */
4169 	uint32_t hibernate_delay;
4170 } __ec_align4;
4171 
4172 /* Inform the EC when entering a sleep state */
4173 #define EC_CMD_HOST_SLEEP_EVENT 0x00A9
4174 
4175 enum host_sleep_event {
4176 	HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
4177 	HOST_SLEEP_EVENT_S3_RESUME    = 2,
4178 	HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
4179 	HOST_SLEEP_EVENT_S0IX_RESUME  = 4,
4180 	/* S3 suspend with additional enabled wake sources */
4181 	HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
4182 };
4183 
4184 struct ec_params_host_sleep_event {
4185 	uint8_t sleep_event;
4186 } __ec_align1;
4187 
4188 /*
4189  * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
4190  * transition failures
4191  */
4192 #define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
4193 
4194 /* Disable timeout detection for this sleep transition */
4195 #define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
4196 
4197 struct ec_params_host_sleep_event_v1 {
4198 	/* The type of sleep being entered or exited. */
4199 	uint8_t sleep_event;
4200 
4201 	/* Padding */
4202 	uint8_t reserved;
4203 	union {
4204 		/* Parameters that apply for suspend messages. */
4205 		struct {
4206 			/*
4207 			 * The timeout in milliseconds between when this message
4208 			 * is received and when the EC will declare sleep
4209 			 * transition failure if the sleep signal is not
4210 			 * asserted.
4211 			 */
4212 			uint16_t sleep_timeout_ms;
4213 		} suspend_params;
4214 
4215 		/* No parameters for non-suspend messages. */
4216 	};
4217 } __ec_align2;
4218 
4219 /* A timeout occurred when this bit is set */
4220 #define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
4221 
4222 /*
4223  * The mask defining which bits correspond to the number of sleep transitions,
4224  * as well as the maximum number of suspend line transitions that will be
4225  * reported back to the host.
4226  */
4227 #define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
4228 
4229 struct ec_response_host_sleep_event_v1 {
4230 	union {
4231 		/* Response fields that apply for resume messages. */
4232 		struct {
4233 			/*
4234 			 * The number of sleep power signal transitions that
4235 			 * occurred since the suspend message. The high bit
4236 			 * indicates a timeout occurred.
4237 			 */
4238 			uint32_t sleep_transitions;
4239 		} resume_response;
4240 
4241 		/* No response fields for non-resume messages. */
4242 	};
4243 } __ec_align4;
4244 
4245 /*****************************************************************************/
4246 /* Device events */
4247 #define EC_CMD_DEVICE_EVENT 0x00AA
4248 
4249 enum ec_device_event {
4250 	EC_DEVICE_EVENT_TRACKPAD,
4251 	EC_DEVICE_EVENT_DSP,
4252 	EC_DEVICE_EVENT_WIFI,
4253 	EC_DEVICE_EVENT_WLC,
4254 };
4255 
4256 enum ec_device_event_param {
4257 	/* Get and clear pending device events */
4258 	EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
4259 	/* Get device event mask */
4260 	EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
4261 	/* Set device event mask */
4262 	EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
4263 };
4264 
4265 #define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
4266 
4267 struct ec_params_device_event {
4268 	uint32_t event_mask;
4269 	uint8_t param;
4270 } __ec_align_size1;
4271 
4272 struct ec_response_device_event {
4273 	uint32_t event_mask;
4274 } __ec_align4;
4275 
4276 /*****************************************************************************/
4277 /* Smart battery pass-through */
4278 
4279 /* Get / Set 16-bit smart battery registers */
4280 #define EC_CMD_SB_READ_WORD   0x00B0
4281 #define EC_CMD_SB_WRITE_WORD  0x00B1
4282 
4283 /* Get / Set string smart battery parameters
4284  * formatted as SMBUS "block".
4285  */
4286 #define EC_CMD_SB_READ_BLOCK  0x00B2
4287 #define EC_CMD_SB_WRITE_BLOCK 0x00B3
4288 
4289 struct ec_params_sb_rd {
4290 	uint8_t reg;
4291 } __ec_align1;
4292 
4293 struct ec_response_sb_rd_word {
4294 	uint16_t value;
4295 } __ec_align2;
4296 
4297 struct ec_params_sb_wr_word {
4298 	uint8_t reg;
4299 	uint16_t value;
4300 } __ec_align1;
4301 
4302 struct ec_response_sb_rd_block {
4303 	uint8_t data[32];
4304 } __ec_align1;
4305 
4306 struct ec_params_sb_wr_block {
4307 	uint8_t reg;
4308 	uint16_t data[32];
4309 } __ec_align1;
4310 
4311 /*****************************************************************************/
4312 /* Battery vendor parameters
4313  *
4314  * Get or set vendor-specific parameters in the battery. Implementations may
4315  * differ between boards or batteries. On a set operation, the response
4316  * contains the actual value set, which may be rounded or clipped from the
4317  * requested value.
4318  */
4319 
4320 #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
4321 
4322 enum ec_battery_vendor_param_mode {
4323 	BATTERY_VENDOR_PARAM_MODE_GET = 0,
4324 	BATTERY_VENDOR_PARAM_MODE_SET,
4325 };
4326 
4327 struct ec_params_battery_vendor_param {
4328 	uint32_t param;
4329 	uint32_t value;
4330 	uint8_t mode;
4331 } __ec_align_size1;
4332 
4333 struct ec_response_battery_vendor_param {
4334 	uint32_t value;
4335 } __ec_align4;
4336 
4337 /*****************************************************************************/
4338 /*
4339  * Smart Battery Firmware Update Commands
4340  */
4341 #define EC_CMD_SB_FW_UPDATE 0x00B5
4342 
4343 enum ec_sb_fw_update_subcmd {
4344 	EC_SB_FW_UPDATE_PREPARE  = 0x0,
4345 	EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
4346 	EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
4347 	EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
4348 	EC_SB_FW_UPDATE_END      = 0x4,
4349 	EC_SB_FW_UPDATE_STATUS   = 0x5,
4350 	EC_SB_FW_UPDATE_PROTECT  = 0x6,
4351 	EC_SB_FW_UPDATE_MAX      = 0x7,
4352 };
4353 
4354 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
4355 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2
4356 #define SB_FW_UPDATE_CMD_INFO_SIZE 8
4357 
4358 struct ec_sb_fw_update_header {
4359 	uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
4360 	uint16_t fw_id;   /* firmware id */
4361 } __ec_align4;
4362 
4363 struct ec_params_sb_fw_update {
4364 	struct ec_sb_fw_update_header hdr;
4365 	union {
4366 		/* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
4367 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
4368 		/* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
4369 		/* EC_SB_FW_UPDATE_END      = 0x4 */
4370 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4371 		/* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
4372 		/* Those have no args */
4373 
4374 		/* EC_SB_FW_UPDATE_WRITE    = 0x3 */
4375 		struct __ec_align4 {
4376 			uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
4377 		} write;
4378 	};
4379 } __ec_align4;
4380 
4381 struct ec_response_sb_fw_update {
4382 	union {
4383 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
4384 		struct __ec_align1 {
4385 			uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
4386 		} info;
4387 
4388 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4389 		struct __ec_align1 {
4390 			uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
4391 		} status;
4392 	};
4393 } __ec_align1;
4394 
4395 /*
4396  * Entering Verified Boot Mode Command
4397  * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
4398  * Valid Modes are: normal, developer, and recovery.
4399  */
4400 #define EC_CMD_ENTERING_MODE 0x00B6
4401 
4402 struct ec_params_entering_mode {
4403 	int vboot_mode;
4404 } __ec_align4;
4405 
4406 #define VBOOT_MODE_NORMAL    0
4407 #define VBOOT_MODE_DEVELOPER 1
4408 #define VBOOT_MODE_RECOVERY  2
4409 
4410 /*****************************************************************************/
4411 /*
4412  * I2C passthru protection command: Protects I2C tunnels against access on
4413  * certain addresses (board-specific).
4414  */
4415 #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
4416 
4417 enum ec_i2c_passthru_protect_subcmd {
4418 	EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
4419 	EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
4420 };
4421 
4422 struct ec_params_i2c_passthru_protect {
4423 	uint8_t subcmd;
4424 	uint8_t port;		/* I2C port number */
4425 } __ec_align1;
4426 
4427 struct ec_response_i2c_passthru_protect {
4428 	uint8_t status;		/* Status flags (0: unlocked, 1: locked) */
4429 } __ec_align1;
4430 
4431 
4432 /*****************************************************************************/
4433 /*
4434  * HDMI CEC commands
4435  *
4436  * These commands are for sending and receiving message via HDMI CEC
4437  */
4438 
4439 #define MAX_CEC_MSG_LEN 16
4440 
4441 /* CEC message from the AP to be written on the CEC bus */
4442 #define EC_CMD_CEC_WRITE_MSG 0x00B8
4443 
4444 /**
4445  * struct ec_params_cec_write - Message to write to the CEC bus
4446  * @msg: message content to write to the CEC bus
4447  */
4448 struct ec_params_cec_write {
4449 	uint8_t msg[MAX_CEC_MSG_LEN];
4450 } __ec_align1;
4451 
4452 /* Set various CEC parameters */
4453 #define EC_CMD_CEC_SET 0x00BA
4454 
4455 /**
4456  * struct ec_params_cec_set - CEC parameters set
4457  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4458  * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
4459  *	or 1 to enable CEC functionality, in case cmd is
4460  *	CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
4461  *	address between 0 and 15 or 0xff to unregister
4462  */
4463 struct ec_params_cec_set {
4464 	uint8_t cmd; /* enum cec_command */
4465 	uint8_t val;
4466 } __ec_align1;
4467 
4468 /* Read various CEC parameters */
4469 #define EC_CMD_CEC_GET 0x00BB
4470 
4471 /**
4472  * struct ec_params_cec_get - CEC parameters get
4473  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4474  */
4475 struct ec_params_cec_get {
4476 	uint8_t cmd; /* enum cec_command */
4477 } __ec_align1;
4478 
4479 /**
4480  * struct ec_response_cec_get - CEC parameters get response
4481  * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
4482  *	disabled or 1 if CEC functionality is enabled,
4483  *	in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
4484  *	configured logical address between 0 and 15 or 0xff if unregistered
4485  */
4486 struct ec_response_cec_get {
4487 	uint8_t val;
4488 } __ec_align1;
4489 
4490 /* CEC parameters command */
4491 enum cec_command {
4492 	/* CEC reading, writing and events enable */
4493 	CEC_CMD_ENABLE,
4494 	/* CEC logical address  */
4495 	CEC_CMD_LOGICAL_ADDRESS,
4496 };
4497 
4498 /* Events from CEC to AP */
4499 enum mkbp_cec_event {
4500 	/* Outgoing message was acknowledged by a follower */
4501 	EC_MKBP_CEC_SEND_OK			= BIT(0),
4502 	/* Outgoing message was not acknowledged */
4503 	EC_MKBP_CEC_SEND_FAILED			= BIT(1),
4504 };
4505 
4506 /*****************************************************************************/
4507 
4508 /* Commands for audio codec. */
4509 #define EC_CMD_EC_CODEC 0x00BC
4510 
4511 enum ec_codec_subcmd {
4512 	EC_CODEC_GET_CAPABILITIES = 0x0,
4513 	EC_CODEC_GET_SHM_ADDR = 0x1,
4514 	EC_CODEC_SET_SHM_ADDR = 0x2,
4515 	EC_CODEC_SUBCMD_COUNT,
4516 };
4517 
4518 enum ec_codec_cap {
4519 	EC_CODEC_CAP_WOV_AUDIO_SHM = 0,
4520 	EC_CODEC_CAP_WOV_LANG_SHM = 1,
4521 	EC_CODEC_CAP_LAST = 32,
4522 };
4523 
4524 enum ec_codec_shm_id {
4525 	EC_CODEC_SHM_ID_WOV_AUDIO = 0x0,
4526 	EC_CODEC_SHM_ID_WOV_LANG = 0x1,
4527 	EC_CODEC_SHM_ID_LAST,
4528 };
4529 
4530 enum ec_codec_shm_type {
4531 	EC_CODEC_SHM_TYPE_EC_RAM = 0x0,
4532 	EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1,
4533 };
4534 
4535 struct __ec_align1 ec_param_ec_codec_get_shm_addr {
4536 	uint8_t shm_id;
4537 	uint8_t reserved[3];
4538 };
4539 
4540 struct __ec_align4 ec_param_ec_codec_set_shm_addr {
4541 	uint64_t phys_addr;
4542 	uint32_t len;
4543 	uint8_t shm_id;
4544 	uint8_t reserved[3];
4545 };
4546 
4547 struct __ec_align4 ec_param_ec_codec {
4548 	uint8_t cmd; /* enum ec_codec_subcmd */
4549 	uint8_t reserved[3];
4550 
4551 	union {
4552 		struct ec_param_ec_codec_get_shm_addr
4553 				get_shm_addr_param;
4554 		struct ec_param_ec_codec_set_shm_addr
4555 				set_shm_addr_param;
4556 	};
4557 };
4558 
4559 struct __ec_align4 ec_response_ec_codec_get_capabilities {
4560 	uint32_t capabilities;
4561 };
4562 
4563 struct __ec_align4 ec_response_ec_codec_get_shm_addr {
4564 	uint64_t phys_addr;
4565 	uint32_t len;
4566 	uint8_t type;
4567 	uint8_t reserved[3];
4568 };
4569 
4570 /*****************************************************************************/
4571 
4572 /* Commands for DMIC on audio codec. */
4573 #define EC_CMD_EC_CODEC_DMIC 0x00BD
4574 
4575 enum ec_codec_dmic_subcmd {
4576 	EC_CODEC_DMIC_GET_MAX_GAIN = 0x0,
4577 	EC_CODEC_DMIC_SET_GAIN_IDX = 0x1,
4578 	EC_CODEC_DMIC_GET_GAIN_IDX = 0x2,
4579 	EC_CODEC_DMIC_SUBCMD_COUNT,
4580 };
4581 
4582 enum ec_codec_dmic_channel {
4583 	EC_CODEC_DMIC_CHANNEL_0 = 0x0,
4584 	EC_CODEC_DMIC_CHANNEL_1 = 0x1,
4585 	EC_CODEC_DMIC_CHANNEL_2 = 0x2,
4586 	EC_CODEC_DMIC_CHANNEL_3 = 0x3,
4587 	EC_CODEC_DMIC_CHANNEL_4 = 0x4,
4588 	EC_CODEC_DMIC_CHANNEL_5 = 0x5,
4589 	EC_CODEC_DMIC_CHANNEL_6 = 0x6,
4590 	EC_CODEC_DMIC_CHANNEL_7 = 0x7,
4591 	EC_CODEC_DMIC_CHANNEL_COUNT,
4592 };
4593 
4594 struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx {
4595 	uint8_t channel; /* enum ec_codec_dmic_channel */
4596 	uint8_t gain;
4597 	uint8_t reserved[2];
4598 };
4599 
4600 struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx {
4601 	uint8_t channel; /* enum ec_codec_dmic_channel */
4602 	uint8_t reserved[3];
4603 };
4604 
4605 struct __ec_align4 ec_param_ec_codec_dmic {
4606 	uint8_t cmd; /* enum ec_codec_dmic_subcmd */
4607 	uint8_t reserved[3];
4608 
4609 	union {
4610 		struct ec_param_ec_codec_dmic_set_gain_idx
4611 				set_gain_idx_param;
4612 		struct ec_param_ec_codec_dmic_get_gain_idx
4613 				get_gain_idx_param;
4614 	};
4615 };
4616 
4617 struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain {
4618 	uint8_t max_gain;
4619 };
4620 
4621 struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx {
4622 	uint8_t gain;
4623 };
4624 
4625 /*****************************************************************************/
4626 
4627 /* Commands for I2S RX on audio codec. */
4628 
4629 #define EC_CMD_EC_CODEC_I2S_RX 0x00BE
4630 
4631 enum ec_codec_i2s_rx_subcmd {
4632 	EC_CODEC_I2S_RX_ENABLE = 0x0,
4633 	EC_CODEC_I2S_RX_DISABLE = 0x1,
4634 	EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2,
4635 	EC_CODEC_I2S_RX_SET_DAIFMT = 0x3,
4636 	EC_CODEC_I2S_RX_SET_BCLK = 0x4,
4637 	EC_CODEC_I2S_RX_RESET = 0x5,
4638 	EC_CODEC_I2S_RX_SUBCMD_COUNT,
4639 };
4640 
4641 enum ec_codec_i2s_rx_sample_depth {
4642 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0,
4643 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1,
4644 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT,
4645 };
4646 
4647 enum ec_codec_i2s_rx_daifmt {
4648 	EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0,
4649 	EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1,
4650 	EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2,
4651 	EC_CODEC_I2S_RX_DAIFMT_COUNT,
4652 };
4653 
4654 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth {
4655 	uint8_t depth;
4656 	uint8_t reserved[3];
4657 };
4658 
4659 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain {
4660 	uint8_t left;
4661 	uint8_t right;
4662 	uint8_t reserved[2];
4663 };
4664 
4665 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt {
4666 	uint8_t daifmt;
4667 	uint8_t reserved[3];
4668 };
4669 
4670 struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk {
4671 	uint32_t bclk;
4672 };
4673 
4674 struct __ec_align4 ec_param_ec_codec_i2s_rx {
4675 	uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */
4676 	uint8_t reserved[3];
4677 
4678 	union {
4679 		struct ec_param_ec_codec_i2s_rx_set_sample_depth
4680 				set_sample_depth_param;
4681 		struct ec_param_ec_codec_i2s_rx_set_daifmt
4682 				set_daifmt_param;
4683 		struct ec_param_ec_codec_i2s_rx_set_bclk
4684 				set_bclk_param;
4685 	};
4686 };
4687 
4688 /*****************************************************************************/
4689 /* Commands for WoV on audio codec. */
4690 
4691 #define EC_CMD_EC_CODEC_WOV 0x00BF
4692 
4693 enum ec_codec_wov_subcmd {
4694 	EC_CODEC_WOV_SET_LANG = 0x0,
4695 	EC_CODEC_WOV_SET_LANG_SHM = 0x1,
4696 	EC_CODEC_WOV_GET_LANG = 0x2,
4697 	EC_CODEC_WOV_ENABLE = 0x3,
4698 	EC_CODEC_WOV_DISABLE = 0x4,
4699 	EC_CODEC_WOV_READ_AUDIO = 0x5,
4700 	EC_CODEC_WOV_READ_AUDIO_SHM = 0x6,
4701 	EC_CODEC_WOV_SUBCMD_COUNT,
4702 };
4703 
4704 /*
4705  * @hash is SHA256 of the whole language model.
4706  * @total_len indicates the length of whole language model.
4707  * @offset is the cursor from the beginning of the model.
4708  * @buf is the packet buffer.
4709  * @len denotes how many bytes in the buf.
4710  */
4711 struct __ec_align4 ec_param_ec_codec_wov_set_lang {
4712 	uint8_t hash[32];
4713 	uint32_t total_len;
4714 	uint32_t offset;
4715 	uint8_t buf[128];
4716 	uint32_t len;
4717 };
4718 
4719 struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm {
4720 	uint8_t hash[32];
4721 	uint32_t total_len;
4722 };
4723 
4724 struct __ec_align4 ec_param_ec_codec_wov {
4725 	uint8_t cmd; /* enum ec_codec_wov_subcmd */
4726 	uint8_t reserved[3];
4727 
4728 	union {
4729 		struct ec_param_ec_codec_wov_set_lang
4730 				set_lang_param;
4731 		struct ec_param_ec_codec_wov_set_lang_shm
4732 				set_lang_shm_param;
4733 	};
4734 };
4735 
4736 struct __ec_align4 ec_response_ec_codec_wov_get_lang {
4737 	uint8_t hash[32];
4738 };
4739 
4740 struct __ec_align4 ec_response_ec_codec_wov_read_audio {
4741 	uint8_t buf[128];
4742 	uint32_t len;
4743 };
4744 
4745 struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm {
4746 	uint32_t offset;
4747 	uint32_t len;
4748 };
4749 
4750 /*****************************************************************************/
4751 /* System commands */
4752 
4753 /*
4754  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
4755  * necessarily reboot the EC.  Rename to "image" or something similar?
4756  */
4757 #define EC_CMD_REBOOT_EC 0x00D2
4758 
4759 /* Command */
4760 enum ec_reboot_cmd {
4761 	EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
4762 	EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
4763 	EC_REBOOT_JUMP_RW = 2,       /* Jump to active RW without rebooting */
4764 	/* (command 3 was jump to RW-B) */
4765 	EC_REBOOT_COLD = 4,          /* Cold-reboot */
4766 	EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
4767 	EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
4768 	EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
4769 	EC_REBOOT_COLD_AP_OFF = 8,   /* Cold-reboot and don't boot AP */
4770 };
4771 
4772 /* Flags for ec_params_reboot_ec.reboot_flags */
4773 #define EC_REBOOT_FLAG_RESERVED0      BIT(0)  /* Was recovery request */
4774 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1)  /* Reboot after AP shutdown */
4775 #define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2)  /* Switch RW slot */
4776 
4777 struct ec_params_reboot_ec {
4778 	uint8_t cmd;           /* enum ec_reboot_cmd */
4779 	uint8_t flags;         /* See EC_REBOOT_FLAG_* */
4780 } __ec_align1;
4781 
4782 /*
4783  * Get information on last EC panic.
4784  *
4785  * Returns variable-length platform-dependent panic information.  See panic.h
4786  * for details.
4787  */
4788 #define EC_CMD_GET_PANIC_INFO 0x00D3
4789 
4790 /*****************************************************************************/
4791 /*
4792  * Special commands
4793  *
4794  * These do not follow the normal rules for commands.  See each command for
4795  * details.
4796  */
4797 
4798 /*
4799  * Reboot NOW
4800  *
4801  * This command will work even when the EC LPC interface is busy, because the
4802  * reboot command is processed at interrupt level.  Note that when the EC
4803  * reboots, the host will reboot too, so there is no response to this command.
4804  *
4805  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
4806  */
4807 #define EC_CMD_REBOOT 0x00D1  /* Think "die" */
4808 
4809 /*
4810  * Resend last response (not supported on LPC).
4811  *
4812  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
4813  * there was no previous command, or the previous command's response was too
4814  * big to save.
4815  */
4816 #define EC_CMD_RESEND_RESPONSE 0x00DB
4817 
4818 /*
4819  * This header byte on a command indicate version 0. Any header byte less
4820  * than this means that we are talking to an old EC which doesn't support
4821  * versioning. In that case, we assume version 0.
4822  *
4823  * Header bytes greater than this indicate a later version. For example,
4824  * EC_CMD_VERSION0 + 1 means we are using version 1.
4825  *
4826  * The old EC interface must not use commands 0xdc or higher.
4827  */
4828 #define EC_CMD_VERSION0 0x00DC
4829 
4830 /*****************************************************************************/
4831 /*
4832  * PD commands
4833  *
4834  * These commands are for PD MCU communication.
4835  */
4836 
4837 /* EC to PD MCU exchange status command */
4838 #define EC_CMD_PD_EXCHANGE_STATUS 0x0100
4839 #define EC_VER_PD_EXCHANGE_STATUS 2
4840 
4841 enum pd_charge_state {
4842 	PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
4843 	PD_CHARGE_NONE,          /* No charging allowed */
4844 	PD_CHARGE_5V,            /* 5V charging only */
4845 	PD_CHARGE_MAX            /* Charge at max voltage */
4846 };
4847 
4848 /* Status of EC being sent to PD */
4849 #define EC_STATUS_HIBERNATING	BIT(0)
4850 
4851 struct ec_params_pd_status {
4852 	uint8_t status;       /* EC status */
4853 	int8_t batt_soc;      /* battery state of charge */
4854 	uint8_t charge_state; /* charging state (from enum pd_charge_state) */
4855 } __ec_align1;
4856 
4857 /* Status of PD being sent back to EC */
4858 #define PD_STATUS_HOST_EVENT      BIT(0) /* Forward host event to AP */
4859 #define PD_STATUS_IN_RW           BIT(1) /* Running RW image */
4860 #define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
4861 #define PD_STATUS_TCPC_ALERT_0    BIT(3) /* Alert active in port 0 TCPC */
4862 #define PD_STATUS_TCPC_ALERT_1    BIT(4) /* Alert active in port 1 TCPC */
4863 #define PD_STATUS_TCPC_ALERT_2    BIT(5) /* Alert active in port 2 TCPC */
4864 #define PD_STATUS_TCPC_ALERT_3    BIT(6) /* Alert active in port 3 TCPC */
4865 #define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
4866 				      PD_STATUS_TCPC_ALERT_1 | \
4867 				      PD_STATUS_HOST_EVENT)
4868 struct ec_response_pd_status {
4869 	uint32_t curr_lim_ma;       /* input current limit */
4870 	uint16_t status;            /* PD MCU status */
4871 	int8_t active_charge_port;  /* active charging port */
4872 } __ec_align_size1;
4873 
4874 /* AP to PD MCU host event status command, cleared on read */
4875 #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
4876 
4877 /* PD MCU host event status bits */
4878 #define PD_EVENT_UPDATE_DEVICE     BIT(0)
4879 #define PD_EVENT_POWER_CHANGE      BIT(1)
4880 #define PD_EVENT_IDENTITY_RECEIVED BIT(2)
4881 #define PD_EVENT_DATA_SWAP         BIT(3)
4882 struct ec_response_host_event_status {
4883 	uint32_t status;      /* PD MCU host event status */
4884 } __ec_align4;
4885 
4886 /* Set USB type-C port role and muxes */
4887 #define EC_CMD_USB_PD_CONTROL 0x0101
4888 
4889 enum usb_pd_control_role {
4890 	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
4891 	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
4892 	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
4893 	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
4894 	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
4895 	USB_PD_CTRL_ROLE_FREEZE = 5,
4896 	USB_PD_CTRL_ROLE_COUNT
4897 };
4898 
4899 enum usb_pd_control_mux {
4900 	USB_PD_CTRL_MUX_NO_CHANGE = 0,
4901 	USB_PD_CTRL_MUX_NONE = 1,
4902 	USB_PD_CTRL_MUX_USB = 2,
4903 	USB_PD_CTRL_MUX_DP = 3,
4904 	USB_PD_CTRL_MUX_DOCK = 4,
4905 	USB_PD_CTRL_MUX_AUTO = 5,
4906 	USB_PD_CTRL_MUX_COUNT
4907 };
4908 
4909 enum usb_pd_control_swap {
4910 	USB_PD_CTRL_SWAP_NONE = 0,
4911 	USB_PD_CTRL_SWAP_DATA = 1,
4912 	USB_PD_CTRL_SWAP_POWER = 2,
4913 	USB_PD_CTRL_SWAP_VCONN = 3,
4914 	USB_PD_CTRL_SWAP_COUNT
4915 };
4916 
4917 struct ec_params_usb_pd_control {
4918 	uint8_t port;
4919 	uint8_t role;
4920 	uint8_t mux;
4921 	uint8_t swap;
4922 } __ec_align1;
4923 
4924 #define PD_CTRL_RESP_ENABLED_COMMS      BIT(0) /* Communication enabled */
4925 #define PD_CTRL_RESP_ENABLED_CONNECTED  BIT(1) /* Device connected */
4926 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
4927 
4928 #define PD_CTRL_RESP_ROLE_POWER         BIT(0) /* 0=SNK/1=SRC */
4929 #define PD_CTRL_RESP_ROLE_DATA          BIT(1) /* 0=UFP/1=DFP */
4930 #define PD_CTRL_RESP_ROLE_VCONN         BIT(2) /* Vconn status */
4931 #define PD_CTRL_RESP_ROLE_DR_POWER      BIT(3) /* Partner is dualrole power */
4932 #define PD_CTRL_RESP_ROLE_DR_DATA       BIT(4) /* Partner is dualrole data */
4933 #define PD_CTRL_RESP_ROLE_USB_COMM      BIT(5) /* Partner USB comm capable */
4934 #define PD_CTRL_RESP_ROLE_EXT_POWERED   BIT(6) /* Partner externally powerd */
4935 
4936 struct ec_response_usb_pd_control {
4937 	uint8_t enabled;
4938 	uint8_t role;
4939 	uint8_t polarity;
4940 	uint8_t state;
4941 } __ec_align1;
4942 
4943 struct ec_response_usb_pd_control_v1 {
4944 	uint8_t enabled;
4945 	uint8_t role;
4946 	uint8_t polarity;
4947 	char state[32];
4948 } __ec_align1;
4949 
4950 /* Values representing usbc PD CC state */
4951 #define USBC_PD_CC_NONE		0 /* No accessory connected */
4952 #define USBC_PD_CC_NO_UFP	1 /* No UFP accessory connected */
4953 #define USBC_PD_CC_AUDIO_ACC	2 /* Audio accessory connected */
4954 #define USBC_PD_CC_DEBUG_ACC	3 /* Debug accessory connected */
4955 #define USBC_PD_CC_UFP_ATTACHED	4 /* UFP attached to usbc */
4956 #define USBC_PD_CC_DFP_ATTACHED	5 /* DPF attached to usbc */
4957 
4958 /* Active/Passive Cable */
4959 #define USB_PD_CTRL_ACTIVE_CABLE        BIT(0)
4960 /* Optical/Non-optical cable */
4961 #define USB_PD_CTRL_OPTICAL_CABLE       BIT(1)
4962 /* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */
4963 #define USB_PD_CTRL_TBT_LEGACY_ADAPTER  BIT(2)
4964 /* Active Link Uni-Direction */
4965 #define USB_PD_CTRL_ACTIVE_LINK_UNIDIR  BIT(3)
4966 
4967 struct ec_response_usb_pd_control_v2 {
4968 	uint8_t enabled;
4969 	uint8_t role;
4970 	uint8_t polarity;
4971 	char state[32];
4972 	uint8_t cc_state;	/* enum pd_cc_states representing cc state */
4973 	uint8_t dp_mode;	/* Current DP pin mode (MODE_DP_PIN_[A-E]) */
4974 	uint8_t reserved;	/* Reserved for future use */
4975 	uint8_t control_flags;	/* USB_PD_CTRL_*flags */
4976 	uint8_t cable_speed;	/* TBT_SS_* cable speed */
4977 	uint8_t cable_gen;	/* TBT_GEN3_* cable rounded support */
4978 } __ec_align1;
4979 
4980 #define EC_CMD_USB_PD_PORTS 0x0102
4981 
4982 /* Maximum number of PD ports on a device, num_ports will be <= this */
4983 #define EC_USB_PD_MAX_PORTS 8
4984 
4985 struct ec_response_usb_pd_ports {
4986 	uint8_t num_ports;
4987 } __ec_align1;
4988 
4989 #define EC_CMD_USB_PD_POWER_INFO 0x0103
4990 
4991 #define PD_POWER_CHARGING_PORT 0xff
4992 struct ec_params_usb_pd_power_info {
4993 	uint8_t port;
4994 } __ec_align1;
4995 
4996 enum usb_chg_type {
4997 	USB_CHG_TYPE_NONE,
4998 	USB_CHG_TYPE_PD,
4999 	USB_CHG_TYPE_C,
5000 	USB_CHG_TYPE_PROPRIETARY,
5001 	USB_CHG_TYPE_BC12_DCP,
5002 	USB_CHG_TYPE_BC12_CDP,
5003 	USB_CHG_TYPE_BC12_SDP,
5004 	USB_CHG_TYPE_OTHER,
5005 	USB_CHG_TYPE_VBUS,
5006 	USB_CHG_TYPE_UNKNOWN,
5007 	USB_CHG_TYPE_DEDICATED,
5008 };
5009 enum usb_power_roles {
5010 	USB_PD_PORT_POWER_DISCONNECTED,
5011 	USB_PD_PORT_POWER_SOURCE,
5012 	USB_PD_PORT_POWER_SINK,
5013 	USB_PD_PORT_POWER_SINK_NOT_CHARGING,
5014 };
5015 
5016 struct usb_chg_measures {
5017 	uint16_t voltage_max;
5018 	uint16_t voltage_now;
5019 	uint16_t current_max;
5020 	uint16_t current_lim;
5021 } __ec_align2;
5022 
5023 struct ec_response_usb_pd_power_info {
5024 	uint8_t role;
5025 	uint8_t type;
5026 	uint8_t dualrole;
5027 	uint8_t reserved1;
5028 	struct usb_chg_measures meas;
5029 	uint32_t max_power;
5030 } __ec_align4;
5031 
5032 
5033 /*
5034  * This command will return the number of USB PD charge port + the number
5035  * of dedicated port present.
5036  * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
5037  */
5038 #define EC_CMD_CHARGE_PORT_COUNT 0x0105
5039 struct ec_response_charge_port_count {
5040 	uint8_t port_count;
5041 } __ec_align1;
5042 
5043 /* Write USB-PD device FW */
5044 #define EC_CMD_USB_PD_FW_UPDATE 0x0110
5045 
5046 enum usb_pd_fw_update_cmds {
5047 	USB_PD_FW_REBOOT,
5048 	USB_PD_FW_FLASH_ERASE,
5049 	USB_PD_FW_FLASH_WRITE,
5050 	USB_PD_FW_ERASE_SIG,
5051 };
5052 
5053 struct ec_params_usb_pd_fw_update {
5054 	uint16_t dev_id;
5055 	uint8_t cmd;
5056 	uint8_t port;
5057 	uint32_t size;     /* Size to write in bytes */
5058 	/* Followed by data to write */
5059 } __ec_align4;
5060 
5061 /* Write USB-PD Accessory RW_HASH table entry */
5062 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
5063 /* RW hash is first 20 bytes of SHA-256 of RW section */
5064 #define PD_RW_HASH_SIZE 20
5065 struct ec_params_usb_pd_rw_hash_entry {
5066 	uint16_t dev_id;
5067 	uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
5068 	uint8_t reserved;        /*
5069 				  * For alignment of current_image
5070 				  * TODO(rspangler) but it's not aligned!
5071 				  * Should have been reserved[2].
5072 				  */
5073 	uint32_t current_image;  /* One of ec_current_image */
5074 } __ec_align1;
5075 
5076 /* Read USB-PD Accessory info */
5077 #define EC_CMD_USB_PD_DEV_INFO 0x0112
5078 
5079 struct ec_params_usb_pd_info_request {
5080 	uint8_t port;
5081 } __ec_align1;
5082 
5083 /* Read USB-PD Device discovery info */
5084 #define EC_CMD_USB_PD_DISCOVERY 0x0113
5085 struct ec_params_usb_pd_discovery_entry {
5086 	uint16_t vid;  /* USB-IF VID */
5087 	uint16_t pid;  /* USB-IF PID */
5088 	uint8_t ptype; /* product type (hub,periph,cable,ama) */
5089 } __ec_align_size1;
5090 
5091 /* Override default charge behavior */
5092 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
5093 
5094 /* Negative port parameters have special meaning */
5095 enum usb_pd_override_ports {
5096 	OVERRIDE_DONT_CHARGE = -2,
5097 	OVERRIDE_OFF = -1,
5098 	/* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
5099 };
5100 
5101 struct ec_params_charge_port_override {
5102 	int16_t override_port; /* Override port# */
5103 } __ec_align2;
5104 
5105 /*
5106  * Read (and delete) one entry of PD event log.
5107  * TODO(crbug.com/751742): Make this host command more generic to accommodate
5108  * future non-PD logs that use the same internal EC event_log.
5109  */
5110 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115
5111 
5112 struct ec_response_pd_log {
5113 	uint32_t timestamp; /* relative timestamp in milliseconds */
5114 	uint8_t type;       /* event type : see PD_EVENT_xx below */
5115 	uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
5116 	uint16_t data;      /* type-defined data payload */
5117 	uint8_t payload[];  /* optional additional data payload: 0..16 bytes */
5118 } __ec_align4;
5119 
5120 /* The timestamp is the microsecond counter shifted to get about a ms. */
5121 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
5122 
5123 #define PD_LOG_SIZE_MASK  0x1f
5124 #define PD_LOG_PORT_MASK  0xe0
5125 #define PD_LOG_PORT_SHIFT    5
5126 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
5127 				      ((size) & PD_LOG_SIZE_MASK))
5128 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
5129 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
5130 
5131 /* PD event log : entry types */
5132 /* PD MCU events */
5133 #define PD_EVENT_MCU_BASE       0x00
5134 #define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
5135 #define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
5136 /* Reserved for custom board event */
5137 #define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
5138 /* PD generic accessory events */
5139 #define PD_EVENT_ACC_BASE       0x20
5140 #define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
5141 #define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
5142 /* PD power supply events */
5143 #define PD_EVENT_PS_BASE        0x40
5144 #define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
5145 /* PD video dongles events */
5146 #define PD_EVENT_VIDEO_BASE     0x60
5147 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
5148 #define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
5149 /* Returned in the "type" field, when there is no entry available */
5150 #define PD_EVENT_NO_ENTRY       0xff
5151 
5152 /*
5153  * PD_EVENT_MCU_CHARGE event definition :
5154  * the payload is "struct usb_chg_measures"
5155  * the data field contains the port state flags as defined below :
5156  */
5157 /* Port partner is a dual role device */
5158 #define CHARGE_FLAGS_DUAL_ROLE         BIT(15)
5159 /* Port is the pending override port */
5160 #define CHARGE_FLAGS_DELAYED_OVERRIDE  BIT(14)
5161 /* Port is the override port */
5162 #define CHARGE_FLAGS_OVERRIDE          BIT(13)
5163 /* Charger type */
5164 #define CHARGE_FLAGS_TYPE_SHIFT               3
5165 #define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
5166 /* Power delivery role */
5167 #define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
5168 
5169 /*
5170  * PD_EVENT_PS_FAULT data field flags definition :
5171  */
5172 #define PS_FAULT_OCP                          1
5173 #define PS_FAULT_FAST_OCP                     2
5174 #define PS_FAULT_OVP                          3
5175 #define PS_FAULT_DISCH                        4
5176 
5177 /*
5178  * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
5179  */
5180 struct mcdp_version {
5181 	uint8_t major;
5182 	uint8_t minor;
5183 	uint16_t build;
5184 } __ec_align4;
5185 
5186 struct mcdp_info {
5187 	uint8_t family[2];
5188 	uint8_t chipid[2];
5189 	struct mcdp_version irom;
5190 	struct mcdp_version fw;
5191 } __ec_align4;
5192 
5193 /* struct mcdp_info field decoding */
5194 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
5195 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
5196 
5197 /* Get/Set USB-PD Alternate mode info */
5198 #define EC_CMD_USB_PD_GET_AMODE 0x0116
5199 struct ec_params_usb_pd_get_mode_request {
5200 	uint16_t svid_idx; /* SVID index to get */
5201 	uint8_t port;      /* port */
5202 } __ec_align_size1;
5203 
5204 struct ec_params_usb_pd_get_mode_response {
5205 	uint16_t svid;   /* SVID */
5206 	uint16_t opos;    /* Object Position */
5207 	uint32_t vdo[6]; /* Mode VDOs */
5208 } __ec_align4;
5209 
5210 #define EC_CMD_USB_PD_SET_AMODE 0x0117
5211 
5212 enum pd_mode_cmd {
5213 	PD_EXIT_MODE = 0,
5214 	PD_ENTER_MODE = 1,
5215 	/* Not a command.  Do NOT remove. */
5216 	PD_MODE_CMD_COUNT,
5217 };
5218 
5219 struct ec_params_usb_pd_set_mode_request {
5220 	uint32_t cmd;  /* enum pd_mode_cmd */
5221 	uint16_t svid; /* SVID to set */
5222 	uint8_t opos;  /* Object Position */
5223 	uint8_t port;  /* port */
5224 } __ec_align4;
5225 
5226 /* Ask the PD MCU to record a log of a requested type */
5227 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
5228 
5229 struct ec_params_pd_write_log_entry {
5230 	uint8_t type; /* event type : see PD_EVENT_xx above */
5231 	uint8_t port; /* port#, or 0 for events unrelated to a given port */
5232 } __ec_align1;
5233 
5234 
5235 /* Control USB-PD chip */
5236 #define EC_CMD_PD_CONTROL 0x0119
5237 
5238 enum ec_pd_control_cmd {
5239 	PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
5240 	PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
5241 	PD_RESET,            /* Force reset the PD chip */
5242 	PD_CONTROL_DISABLE,  /* Disable further calls to this command */
5243 	PD_CHIP_ON,          /* Power on the PD chip */
5244 };
5245 
5246 struct ec_params_pd_control {
5247 	uint8_t chip;         /* chip id */
5248 	uint8_t subcmd;
5249 } __ec_align1;
5250 
5251 /* Get info about USB-C SS muxes */
5252 #define EC_CMD_USB_PD_MUX_INFO 0x011A
5253 
5254 struct ec_params_usb_pd_mux_info {
5255 	uint8_t port; /* USB-C port number */
5256 } __ec_align1;
5257 
5258 /* Flags representing mux state */
5259 #define USB_PD_MUX_NONE               0      /* Open switch */
5260 #define USB_PD_MUX_USB_ENABLED        BIT(0) /* USB connected */
5261 #define USB_PD_MUX_DP_ENABLED         BIT(1) /* DP connected */
5262 #define USB_PD_MUX_POLARITY_INVERTED  BIT(2) /* CC line Polarity inverted */
5263 #define USB_PD_MUX_HPD_IRQ            BIT(3) /* HPD IRQ is asserted */
5264 #define USB_PD_MUX_HPD_LVL            BIT(4) /* HPD level is asserted */
5265 #define USB_PD_MUX_SAFE_MODE          BIT(5) /* DP is in safe mode */
5266 #define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */
5267 #define USB_PD_MUX_USB4_ENABLED       BIT(7) /* USB4 enabled */
5268 
5269 struct ec_response_usb_pd_mux_info {
5270 	uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
5271 } __ec_align1;
5272 
5273 #define EC_CMD_PD_CHIP_INFO		0x011B
5274 
5275 struct ec_params_pd_chip_info {
5276 	uint8_t port;	/* USB-C port number */
5277 	uint8_t renew;	/* Force renewal */
5278 } __ec_align1;
5279 
5280 struct ec_response_pd_chip_info {
5281 	uint16_t vendor_id;
5282 	uint16_t product_id;
5283 	uint16_t device_id;
5284 	union {
5285 		uint8_t fw_version_string[8];
5286 		uint64_t fw_version_number;
5287 	};
5288 } __ec_align2;
5289 
5290 struct ec_response_pd_chip_info_v1 {
5291 	uint16_t vendor_id;
5292 	uint16_t product_id;
5293 	uint16_t device_id;
5294 	union {
5295 		uint8_t fw_version_string[8];
5296 		uint64_t fw_version_number;
5297 	};
5298 	union {
5299 		uint8_t min_req_fw_version_string[8];
5300 		uint64_t min_req_fw_version_number;
5301 	};
5302 } __ec_align2;
5303 
5304 /* Run RW signature verification and get status */
5305 #define EC_CMD_RWSIG_CHECK_STATUS	0x011C
5306 
5307 struct ec_response_rwsig_check_status {
5308 	uint32_t status;
5309 } __ec_align4;
5310 
5311 /* For controlling RWSIG task */
5312 #define EC_CMD_RWSIG_ACTION	0x011D
5313 
5314 enum rwsig_action {
5315 	RWSIG_ACTION_ABORT = 0,		/* Abort RWSIG and prevent jumping */
5316 	RWSIG_ACTION_CONTINUE = 1,	/* Jump to RW immediately */
5317 };
5318 
5319 struct ec_params_rwsig_action {
5320 	uint32_t action;
5321 } __ec_align4;
5322 
5323 /* Run verification on a slot */
5324 #define EC_CMD_EFS_VERIFY	0x011E
5325 
5326 struct ec_params_efs_verify {
5327 	uint8_t region;		/* enum ec_flash_region */
5328 } __ec_align1;
5329 
5330 /*
5331  * Retrieve info from Cros Board Info store. Response is based on the data
5332  * type. Integers return a uint32. Strings return a string, using the response
5333  * size to determine how big it is.
5334  */
5335 #define EC_CMD_GET_CROS_BOARD_INFO	0x011F
5336 /*
5337  * Write info into Cros Board Info on EEPROM. Write fails if the board has
5338  * hardware write-protect enabled.
5339  */
5340 #define EC_CMD_SET_CROS_BOARD_INFO	0x0120
5341 
5342 enum cbi_data_tag {
5343 	CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
5344 	CBI_TAG_OEM_ID = 1,        /* uint32_t or smaller */
5345 	CBI_TAG_SKU_ID = 2,        /* uint32_t or smaller */
5346 	CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
5347 	CBI_TAG_OEM_NAME = 4,      /* variable length ascii, nul terminated. */
5348 	CBI_TAG_MODEL_ID = 5,      /* uint32_t or smaller */
5349 	CBI_TAG_COUNT,
5350 };
5351 
5352 /*
5353  * Flags to control read operation
5354  *
5355  * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
5356  *          write was successful without reboot.
5357  */
5358 #define CBI_GET_RELOAD		BIT(0)
5359 
5360 struct ec_params_get_cbi {
5361 	uint32_t tag;		/* enum cbi_data_tag */
5362 	uint32_t flag;		/* CBI_GET_* */
5363 } __ec_align4;
5364 
5365 /*
5366  * Flags to control write behavior.
5367  *
5368  * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
5369  *          useful when writing multiple fields in a row.
5370  * INIT:    Need to be set when creating a new CBI from scratch. All fields
5371  *          will be initialized to zero first.
5372  */
5373 #define CBI_SET_NO_SYNC		BIT(0)
5374 #define CBI_SET_INIT		BIT(1)
5375 
5376 struct ec_params_set_cbi {
5377 	uint32_t tag;		/* enum cbi_data_tag */
5378 	uint32_t flag;		/* CBI_SET_* */
5379 	uint32_t size;		/* Data size */
5380 	uint8_t data[];		/* For string and raw data */
5381 } __ec_align1;
5382 
5383 /*
5384  * Information about resets of the AP by the EC and the EC's own uptime.
5385  */
5386 #define EC_CMD_GET_UPTIME_INFO 0x0121
5387 
5388 struct ec_response_uptime_info {
5389 	/*
5390 	 * Number of milliseconds since the last EC boot. Sysjump resets
5391 	 * typically do not restart the EC's time_since_boot epoch.
5392 	 *
5393 	 * WARNING: The EC's sense of time is much less accurate than the AP's
5394 	 * sense of time, in both phase and frequency.  This timebase is similar
5395 	 * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
5396 	 */
5397 	uint32_t time_since_ec_boot_ms;
5398 
5399 	/*
5400 	 * Number of times the AP was reset by the EC since the last EC boot.
5401 	 * Note that the AP may be held in reset by the EC during the initial
5402 	 * boot sequence, such that the very first AP boot may count as more
5403 	 * than one here.
5404 	 */
5405 	uint32_t ap_resets_since_ec_boot;
5406 
5407 	/*
5408 	 * The set of flags which describe the EC's most recent reset.  See
5409 	 * include/system.h RESET_FLAG_* for details.
5410 	 */
5411 	uint32_t ec_reset_flags;
5412 
5413 	/* Empty log entries have both the cause and timestamp set to zero. */
5414 	struct ap_reset_log_entry {
5415 		/*
5416 		 * See include/chipset.h: enum chipset_{reset,shutdown}_reason
5417 		 * for details.
5418 		 */
5419 		uint16_t reset_cause;
5420 
5421 		/* Reserved for protocol growth. */
5422 		uint16_t reserved;
5423 
5424 		/*
5425 		 * The time of the reset's assertion, in milliseconds since the
5426 		 * last EC boot, in the same epoch as time_since_ec_boot_ms.
5427 		 * Set to zero if the log entry is empty.
5428 		 */
5429 		uint32_t reset_time_ms;
5430 	} recent_ap_reset[4];
5431 } __ec_align4;
5432 
5433 /*
5434  * Add entropy to the device secret (stored in the rollback region).
5435  *
5436  * Depending on the chip, the operation may take a long time (e.g. to erase
5437  * flash), so the commands are asynchronous.
5438  */
5439 #define EC_CMD_ADD_ENTROPY	0x0122
5440 
5441 enum add_entropy_action {
5442 	/* Add entropy to the current secret. */
5443 	ADD_ENTROPY_ASYNC = 0,
5444 	/*
5445 	 * Add entropy, and also make sure that the previous secret is erased.
5446 	 * (this can be implemented by adding entropy multiple times until
5447 	 * all rolback blocks have been overwritten).
5448 	 */
5449 	ADD_ENTROPY_RESET_ASYNC = 1,
5450 	/* Read back result from the previous operation. */
5451 	ADD_ENTROPY_GET_RESULT = 2,
5452 };
5453 
5454 struct ec_params_rollback_add_entropy {
5455 	uint8_t action;
5456 } __ec_align1;
5457 
5458 /*
5459  * Perform a single read of a given ADC channel.
5460  */
5461 #define EC_CMD_ADC_READ		0x0123
5462 
5463 struct ec_params_adc_read {
5464 	uint8_t adc_channel;
5465 } __ec_align1;
5466 
5467 struct ec_response_adc_read {
5468 	int32_t adc_value;
5469 } __ec_align4;
5470 
5471 /*
5472  * Read back rollback info
5473  */
5474 #define EC_CMD_ROLLBACK_INFO		0x0124
5475 
5476 struct ec_response_rollback_info {
5477 	int32_t id; /* Incrementing number to indicate which region to use. */
5478 	int32_t rollback_min_version;
5479 	int32_t rw_rollback_version;
5480 } __ec_align4;
5481 
5482 
5483 /* Issue AP reset */
5484 #define EC_CMD_AP_RESET 0x0125
5485 
5486 /*
5487  * Get the number of peripheral charge ports
5488  */
5489 #define EC_CMD_PCHG_COUNT 0x0134
5490 
5491 #define EC_PCHG_MAX_PORTS 8
5492 
5493 struct ec_response_pchg_count {
5494 	uint8_t port_count;
5495 } __ec_align1;
5496 
5497 /*
5498  * Get the status of a peripheral charge port
5499  */
5500 #define EC_CMD_PCHG 0x0135
5501 
5502 struct ec_params_pchg {
5503 	uint8_t port;
5504 } __ec_align1;
5505 
5506 struct ec_response_pchg {
5507 	uint32_t error;			/* enum pchg_error */
5508 	uint8_t state;			/* enum pchg_state state */
5509 	uint8_t battery_percentage;
5510 	uint8_t unused0;
5511 	uint8_t unused1;
5512 	/* Fields added in version 1 */
5513 	uint32_t fw_version;
5514 	uint32_t dropped_event_count;
5515 } __ec_align2;
5516 
5517 enum pchg_state {
5518 	/* Charger is reset and not initialized. */
5519 	PCHG_STATE_RESET = 0,
5520 	/* Charger is initialized or disabled. */
5521 	PCHG_STATE_INITIALIZED,
5522 	/* Charger is enabled and ready to detect a device. */
5523 	PCHG_STATE_ENABLED,
5524 	/* Device is in proximity. */
5525 	PCHG_STATE_DETECTED,
5526 	/* Device is being charged. */
5527 	PCHG_STATE_CHARGING,
5528 	/* Device is fully charged. It implies DETECTED (& not charging). */
5529 	PCHG_STATE_FULL,
5530 	/* In download (a.k.a. firmware update) mode */
5531 	PCHG_STATE_DOWNLOAD,
5532 	/* In download mode. Ready for receiving data. */
5533 	PCHG_STATE_DOWNLOADING,
5534 	/* Device is ready for data communication. */
5535 	PCHG_STATE_CONNECTED,
5536 	/* Put no more entry below */
5537 	PCHG_STATE_COUNT,
5538 };
5539 
5540 #define EC_PCHG_STATE_TEXT { \
5541 	[PCHG_STATE_RESET] = "RESET", \
5542 	[PCHG_STATE_INITIALIZED] = "INITIALIZED", \
5543 	[PCHG_STATE_ENABLED] = "ENABLED", \
5544 	[PCHG_STATE_DETECTED] = "DETECTED", \
5545 	[PCHG_STATE_CHARGING] = "CHARGING", \
5546 	[PCHG_STATE_FULL] = "FULL", \
5547 	[PCHG_STATE_DOWNLOAD] = "DOWNLOAD", \
5548 	[PCHG_STATE_DOWNLOADING] = "DOWNLOADING", \
5549 	[PCHG_STATE_CONNECTED] = "CONNECTED", \
5550 	}
5551 
5552 /*
5553  * Update firmware of peripheral chip
5554  */
5555 #define EC_CMD_PCHG_UPDATE 0x0136
5556 
5557 /* Port number is encoded in bit[28:31]. */
5558 #define EC_MKBP_PCHG_PORT_SHIFT		28
5559 /* Utility macro for converting MKBP event to port number. */
5560 #define EC_MKBP_PCHG_EVENT_TO_PORT(e)	(((e) >> EC_MKBP_PCHG_PORT_SHIFT) & 0xf)
5561 /* Utility macro for extracting event bits. */
5562 #define EC_MKBP_PCHG_EVENT_MASK(e)	((e) \
5563 					& GENMASK(EC_MKBP_PCHG_PORT_SHIFT-1, 0))
5564 
5565 #define EC_MKBP_PCHG_UPDATE_OPENED	BIT(0)
5566 #define EC_MKBP_PCHG_WRITE_COMPLETE	BIT(1)
5567 #define EC_MKBP_PCHG_UPDATE_CLOSED	BIT(2)
5568 #define EC_MKBP_PCHG_UPDATE_ERROR	BIT(3)
5569 #define EC_MKBP_PCHG_DEVICE_EVENT	BIT(4)
5570 
5571 enum ec_pchg_update_cmd {
5572 	/* Reset chip to normal mode. */
5573 	EC_PCHG_UPDATE_CMD_RESET_TO_NORMAL = 0,
5574 	/* Reset and put a chip in update (a.k.a. download) mode. */
5575 	EC_PCHG_UPDATE_CMD_OPEN,
5576 	/* Write a block of data containing FW image. */
5577 	EC_PCHG_UPDATE_CMD_WRITE,
5578 	/* Close update session. */
5579 	EC_PCHG_UPDATE_CMD_CLOSE,
5580 	/* End of commands */
5581 	EC_PCHG_UPDATE_CMD_COUNT,
5582 };
5583 
5584 struct ec_params_pchg_update {
5585 	/* PCHG port number */
5586 	uint8_t port;
5587 	/* enum ec_pchg_update_cmd */
5588 	uint8_t cmd;
5589 	/* Padding */
5590 	uint8_t reserved0;
5591 	uint8_t reserved1;
5592 	/* Version of new firmware */
5593 	uint32_t version;
5594 	/* CRC32 of new firmware */
5595 	uint32_t crc32;
5596 	/* Address in chip memory where <data> is written to */
5597 	uint32_t addr;
5598 	/* Size of <data> */
5599 	uint32_t size;
5600 	/* Partial data of new firmware */
5601 	uint8_t data[];
5602 } __ec_align4;
5603 
5604 BUILD_ASSERT(EC_PCHG_UPDATE_CMD_COUNT
5605 	     < BIT(sizeof(((struct ec_params_pchg_update *)0)->cmd)*8));
5606 
5607 struct ec_response_pchg_update {
5608 	/* Block size */
5609 	uint32_t block_size;
5610 } __ec_align4;
5611 
5612 
5613 /*****************************************************************************/
5614 /* Voltage regulator controls */
5615 
5616 /*
5617  * Get basic info of voltage regulator for given index.
5618  *
5619  * Returns the regulator name and supported voltage list in mV.
5620  */
5621 #define EC_CMD_REGULATOR_GET_INFO 0x012C
5622 
5623 /* Maximum length of regulator name */
5624 #define EC_REGULATOR_NAME_MAX_LEN 16
5625 
5626 /* Maximum length of the supported voltage list. */
5627 #define EC_REGULATOR_VOLTAGE_MAX_COUNT 16
5628 
5629 struct ec_params_regulator_get_info {
5630 	uint32_t index;
5631 } __ec_align4;
5632 
5633 struct ec_response_regulator_get_info {
5634 	char name[EC_REGULATOR_NAME_MAX_LEN];
5635 	uint16_t num_voltages;
5636 	uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT];
5637 } __ec_align2;
5638 
5639 /*
5640  * Configure the regulator as enabled / disabled.
5641  */
5642 #define EC_CMD_REGULATOR_ENABLE 0x012D
5643 
5644 struct ec_params_regulator_enable {
5645 	uint32_t index;
5646 	uint8_t enable;
5647 } __ec_align4;
5648 
5649 /*
5650  * Query if the regulator is enabled.
5651  *
5652  * Returns 1 if the regulator is enabled, 0 if not.
5653  */
5654 #define EC_CMD_REGULATOR_IS_ENABLED 0x012E
5655 
5656 struct ec_params_regulator_is_enabled {
5657 	uint32_t index;
5658 } __ec_align4;
5659 
5660 struct ec_response_regulator_is_enabled {
5661 	uint8_t enabled;
5662 } __ec_align1;
5663 
5664 /*
5665  * Set voltage for the voltage regulator within the range specified.
5666  *
5667  * The driver should select the voltage in range closest to min_mv.
5668  *
5669  * Also note that this might be called before the regulator is enabled, and the
5670  * setting should be in effect after the regulator is enabled.
5671  */
5672 #define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F
5673 
5674 struct ec_params_regulator_set_voltage {
5675 	uint32_t index;
5676 	uint32_t min_mv;
5677 	uint32_t max_mv;
5678 } __ec_align4;
5679 
5680 /*
5681  * Get the currently configured voltage for the voltage regulator.
5682  *
5683  * Note that this might be called before the regulator is enabled, and this
5684  * should return the configured output voltage if the regulator is enabled.
5685  */
5686 #define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130
5687 
5688 struct ec_params_regulator_get_voltage {
5689 	uint32_t index;
5690 } __ec_align4;
5691 
5692 struct ec_response_regulator_get_voltage {
5693 	uint32_t voltage_mv;
5694 } __ec_align4;
5695 
5696 /*
5697  * Gather all discovery information for the given port and partner type.
5698  *
5699  * Note that if discovery has not yet completed, only the currently completed
5700  * responses will be filled in.   If the discovery data structures are changed
5701  * in the process of the command running, BUSY will be returned.
5702  *
5703  * VDO field sizes are set to the maximum possible number of VDOs a VDM may
5704  * contain, while the number of SVIDs here is selected to fit within the PROTO2
5705  * maximum parameter size.
5706  */
5707 #define EC_CMD_TYPEC_DISCOVERY 0x0131
5708 
5709 enum typec_partner_type {
5710 	TYPEC_PARTNER_SOP = 0,
5711 	TYPEC_PARTNER_SOP_PRIME = 1,
5712 };
5713 
5714 struct ec_params_typec_discovery {
5715 	uint8_t port;
5716 	uint8_t partner_type; /* enum typec_partner_type */
5717 } __ec_align1;
5718 
5719 struct svid_mode_info {
5720 	uint16_t svid;
5721 	uint16_t mode_count;  /* Number of modes partner sent */
5722 	uint32_t mode_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5723 };
5724 
5725 struct ec_response_typec_discovery {
5726 	uint8_t identity_count;    /* Number of identity VDOs partner sent */
5727 	uint8_t svid_count;	   /* Number of SVIDs partner sent */
5728 	uint16_t reserved;
5729 	uint32_t discovery_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5730 	struct svid_mode_info svids[];
5731 } __ec_align1;
5732 
5733 /* USB Type-C commands for AP-controlled device policy. */
5734 #define EC_CMD_TYPEC_CONTROL 0x0132
5735 
5736 enum typec_control_command {
5737 	TYPEC_CONTROL_COMMAND_EXIT_MODES,
5738 	TYPEC_CONTROL_COMMAND_CLEAR_EVENTS,
5739 	TYPEC_CONTROL_COMMAND_ENTER_MODE,
5740 	TYPEC_CONTROL_COMMAND_TBT_UFP_REPLY,
5741 	TYPEC_CONTROL_COMMAND_USB_MUX_SET,
5742 	TYPEC_CONTROL_COMMAND_BIST_SHARE_MODE,
5743 	TYPEC_CONTROL_COMMAND_SEND_VDM_REQ,
5744 };
5745 
5746 /* Replies the AP may specify to the TBT EnterMode command as a UFP */
5747 enum typec_tbt_ufp_reply {
5748 	TYPEC_TBT_UFP_REPLY_NAK,
5749 	TYPEC_TBT_UFP_REPLY_ACK,
5750 };
5751 
5752 struct typec_usb_mux_set {
5753 	uint8_t mux_index;	/* Index of the mux to set in the chain */
5754 	uint8_t mux_flags;	/* USB_PD_MUX_*-encoded USB mux state to set */
5755 } __ec_align1;
5756 
5757 #define VDO_MAX_SIZE 7
5758 
5759 struct typec_vdm_req {
5760 	/* VDM data, including VDM header */
5761 	uint32_t vdm_data[VDO_MAX_SIZE];
5762 	/* Number of 32-bit fields filled in */
5763 	uint8_t vdm_data_objects;
5764 	/* Partner to address - see enum typec_partner_type */
5765 	uint8_t partner_type;
5766 } __ec_align1;
5767 
5768 struct ec_params_typec_control {
5769 	uint8_t port;
5770 	uint8_t command;	/* enum typec_control_command */
5771 	uint16_t reserved;
5772 
5773 	/*
5774 	 * This section will be interpreted based on |command|. Define a
5775 	 * placeholder structure to avoid having to increase the size and bump
5776 	 * the command version when adding new sub-commands.
5777 	 */
5778 	union {
5779 		uint32_t clear_events_mask;
5780 		uint8_t mode_to_enter;      /* enum typec_mode */
5781 		uint8_t tbt_ufp_reply;      /* enum typec_tbt_ufp_reply */
5782 		struct typec_usb_mux_set mux_params;
5783 		/* Used for VMD_REQ */
5784 		struct typec_vdm_req vdm_req_params;
5785 		uint8_t placeholder[128];
5786 	};
5787 } __ec_align1;
5788 
5789 /*
5790  * Gather all status information for a port.
5791  *
5792  * Note: this covers many of the return fields from the deprecated
5793  * EC_CMD_USB_PD_CONTROL command, except those that are redundant with the
5794  * discovery data.  The "enum pd_cc_states" is defined with the deprecated
5795  * EC_CMD_USB_PD_CONTROL command.
5796  *
5797  * This also combines in the EC_CMD_USB_PD_MUX_INFO flags.
5798  */
5799 #define EC_CMD_TYPEC_STATUS 0x0133
5800 
5801 /*
5802  * Power role.
5803  *
5804  * Note this is also used for PD header creation, and values align to those in
5805  * the Power Delivery Specification Revision 3.0 (See
5806  * 6.2.1.1.4 Port Power Role).
5807  */
5808 enum pd_power_role {
5809 	PD_ROLE_SINK = 0,
5810 	PD_ROLE_SOURCE = 1
5811 };
5812 
5813 /*
5814  * Data role.
5815  *
5816  * Note this is also used for PD header creation, and the first two values
5817  * align to those in the Power Delivery Specification Revision 3.0 (See
5818  * 6.2.1.1.6 Port Data Role).
5819  */
5820 enum pd_data_role {
5821 	PD_ROLE_UFP = 0,
5822 	PD_ROLE_DFP = 1,
5823 	PD_ROLE_DISCONNECTED = 2,
5824 };
5825 
5826 enum pd_vconn_role {
5827 	PD_ROLE_VCONN_OFF = 0,
5828 	PD_ROLE_VCONN_SRC = 1,
5829 };
5830 
5831 /*
5832  * Note: BIT(0) may be used to determine whether the polarity is CC1 or CC2,
5833  * regardless of whether a debug accessory is connected.
5834  */
5835 enum tcpc_cc_polarity {
5836 	/*
5837 	 * _CCx: is used to indicate the polarity while not connected to
5838 	 * a Debug Accessory.  Only one CC line will assert a resistor and
5839 	 * the other will be open.
5840 	 */
5841 	POLARITY_CC1 = 0,
5842 	POLARITY_CC2 = 1,
5843 
5844 	/*
5845 	 * _CCx_DTS is used to indicate the polarity while connected to a
5846 	 * SRC Debug Accessory.  Assert resistors on both lines.
5847 	 */
5848 	POLARITY_CC1_DTS = 2,
5849 	POLARITY_CC2_DTS = 3,
5850 
5851 	/*
5852 	 * The current TCPC code relies on these specific POLARITY values.
5853 	 * Adding in a check to verify if the list grows for any reason
5854 	 * that this will give a hint that other places need to be
5855 	 * adjusted.
5856 	 */
5857 	POLARITY_COUNT
5858 };
5859 
5860 #define PD_STATUS_EVENT_SOP_DISC_DONE		BIT(0)
5861 #define PD_STATUS_EVENT_SOP_PRIME_DISC_DONE	BIT(1)
5862 #define PD_STATUS_EVENT_HARD_RESET		BIT(2)
5863 #define PD_STATUS_EVENT_DISCONNECTED		BIT(3)
5864 #define PD_STATUS_EVENT_MUX_0_SET_DONE		BIT(4)
5865 #define PD_STATUS_EVENT_MUX_1_SET_DONE		BIT(5)
5866 #define PD_STATUS_EVENT_VDM_REQ_REPLY		BIT(6)
5867 #define PD_STATUS_EVENT_VDM_REQ_FAILED		BIT(7)
5868 #define PD_STATUS_EVENT_VDM_ATTENTION		BIT(8)
5869 
5870 struct ec_params_typec_status {
5871 	uint8_t port;
5872 } __ec_align1;
5873 
5874 struct ec_response_typec_status {
5875 	uint8_t pd_enabled;		/* PD communication enabled - bool */
5876 	uint8_t dev_connected;		/* Device connected - bool */
5877 	uint8_t sop_connected;		/* Device is SOP PD capable - bool */
5878 	uint8_t source_cap_count;	/* Number of Source Cap PDOs */
5879 
5880 	uint8_t power_role;		/* enum pd_power_role */
5881 	uint8_t data_role;		/* enum pd_data_role */
5882 	uint8_t vconn_role;		/* enum pd_vconn_role */
5883 	uint8_t sink_cap_count;		/* Number of Sink Cap PDOs */
5884 
5885 	uint8_t polarity;		/* enum tcpc_cc_polarity */
5886 	uint8_t cc_state;		/* enum pd_cc_states */
5887 	uint8_t dp_pin;			/* DP pin mode (MODE_DP_IN_[A-E]) */
5888 	uint8_t mux_state;		/* USB_PD_MUX* - encoded mux state */
5889 
5890 	char tc_state[32];		/* TC state name */
5891 
5892 	uint32_t events;		/* PD_STATUS_EVENT bitmask */
5893 
5894 	/*
5895 	 * BCD PD revisions for partners
5896 	 *
5897 	 * The format has the PD major reversion in the upper nibble, and PD
5898 	 * minor version in the next nibble.  Following two nibbles are
5899 	 * currently 0.
5900 	 * ex. PD 3.2 would map to 0x3200
5901 	 *
5902 	 * PD major/minor will be 0 if no PD device is connected.
5903 	 */
5904 	uint16_t sop_revision;
5905 	uint16_t sop_prime_revision;
5906 
5907 	uint32_t source_cap_pdos[7];	/* Max 7 PDOs can be present */
5908 
5909 	uint32_t sink_cap_pdos[7];	/* Max 7 PDOs can be present */
5910 } __ec_align1;
5911 
5912 /*
5913  * Gather the response to the most recent VDM REQ from the AP, as well
5914  * as popping the oldest VDM:Attention from the DPM queue
5915  */
5916 #define EC_CMD_TYPEC_VDM_RESPONSE 0x013C
5917 
5918 struct ec_params_typec_vdm_response {
5919 	uint8_t port;
5920 } __ec_align1;
5921 
5922 struct ec_response_typec_vdm_response {
5923 	/* Number of 32-bit fields filled in */
5924 	uint8_t vdm_data_objects;
5925 	/* Partner to address - see enum typec_partner_type */
5926 	uint8_t partner_type;
5927 	/* enum ec_status describing VDM response */
5928 	uint16_t vdm_response_err;
5929 	/* VDM data, including VDM header */
5930 	uint32_t vdm_response[VDO_MAX_SIZE];
5931 	/* Number of 32-bit Attention fields filled in */
5932 	uint8_t vdm_attention_objects;
5933 	/* Number of remaining messages to consume */
5934 	uint8_t vdm_attention_left;
5935 	/* Reserved */
5936 	uint16_t reserved1;
5937 	/* VDM:Attention contents */
5938 	uint32_t vdm_attention[2];
5939 } __ec_align1;
5940 
5941 #undef VDO_MAX_SIZE
5942 
5943 /*****************************************************************************/
5944 /* The command range 0x200-0x2FF is reserved for Rotor. */
5945 
5946 /*****************************************************************************/
5947 /*
5948  * Reserve a range of host commands for the CR51 firmware.
5949  */
5950 #define EC_CMD_CR51_BASE 0x0300
5951 #define EC_CMD_CR51_LAST 0x03FF
5952 
5953 /*****************************************************************************/
5954 /* Fingerprint MCU commands: range 0x0400-0x040x */
5955 
5956 /* Fingerprint SPI sensor passthru command: prototyping ONLY */
5957 #define EC_CMD_FP_PASSTHRU 0x0400
5958 
5959 #define EC_FP_FLAG_NOT_COMPLETE 0x1
5960 
5961 struct ec_params_fp_passthru {
5962 	uint16_t len;		/* Number of bytes to write then read */
5963 	uint16_t flags;		/* EC_FP_FLAG_xxx */
5964 	uint8_t data[];		/* Data to send */
5965 } __ec_align2;
5966 
5967 /* Configure the Fingerprint MCU behavior */
5968 #define EC_CMD_FP_MODE 0x0402
5969 
5970 /* Put the sensor in its lowest power mode */
5971 #define FP_MODE_DEEPSLEEP      BIT(0)
5972 /* Wait to see a finger on the sensor */
5973 #define FP_MODE_FINGER_DOWN    BIT(1)
5974 /* Poll until the finger has left the sensor */
5975 #define FP_MODE_FINGER_UP      BIT(2)
5976 /* Capture the current finger image */
5977 #define FP_MODE_CAPTURE        BIT(3)
5978 /* Finger enrollment session on-going */
5979 #define FP_MODE_ENROLL_SESSION BIT(4)
5980 /* Enroll the current finger image */
5981 #define FP_MODE_ENROLL_IMAGE   BIT(5)
5982 /* Try to match the current finger image */
5983 #define FP_MODE_MATCH          BIT(6)
5984 /* Reset and re-initialize the sensor. */
5985 #define FP_MODE_RESET_SENSOR   BIT(7)
5986 /* special value: don't change anything just read back current mode */
5987 #define FP_MODE_DONT_CHANGE    BIT(31)
5988 
5989 #define FP_VALID_MODES (FP_MODE_DEEPSLEEP      | \
5990 			FP_MODE_FINGER_DOWN    | \
5991 			FP_MODE_FINGER_UP      | \
5992 			FP_MODE_CAPTURE        | \
5993 			FP_MODE_ENROLL_SESSION | \
5994 			FP_MODE_ENROLL_IMAGE   | \
5995 			FP_MODE_MATCH          | \
5996 			FP_MODE_RESET_SENSOR   | \
5997 			FP_MODE_DONT_CHANGE)
5998 
5999 /* Capture types defined in bits [30..28] */
6000 #define FP_MODE_CAPTURE_TYPE_SHIFT 28
6001 #define FP_MODE_CAPTURE_TYPE_MASK  (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
6002 /*
6003  * This enum must remain ordered, if you add new values you must ensure that
6004  * FP_CAPTURE_TYPE_MAX is still the last one.
6005  */
6006 enum fp_capture_type {
6007 	/* Full blown vendor-defined capture (produces 'frame_size' bytes) */
6008 	FP_CAPTURE_VENDOR_FORMAT = 0,
6009 	/* Simple raw image capture (produces width x height x bpp bits) */
6010 	FP_CAPTURE_SIMPLE_IMAGE = 1,
6011 	/* Self test pattern (e.g. checkerboard) */
6012 	FP_CAPTURE_PATTERN0 = 2,
6013 	/* Self test pattern (e.g. inverted checkerboard) */
6014 	FP_CAPTURE_PATTERN1 = 3,
6015 	/* Capture for Quality test with fixed contrast */
6016 	FP_CAPTURE_QUALITY_TEST = 4,
6017 	/* Capture for pixel reset value test */
6018 	FP_CAPTURE_RESET_TEST = 5,
6019 	FP_CAPTURE_TYPE_MAX,
6020 };
6021 /* Extracts the capture type from the sensor 'mode' word */
6022 #define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \
6023 				       >> FP_MODE_CAPTURE_TYPE_SHIFT)
6024 
6025 struct ec_params_fp_mode {
6026 	uint32_t mode; /* as defined by FP_MODE_ constants */
6027 } __ec_align4;
6028 
6029 struct ec_response_fp_mode {
6030 	uint32_t mode; /* as defined by FP_MODE_ constants */
6031 } __ec_align4;
6032 
6033 /* Retrieve Fingerprint sensor information */
6034 #define EC_CMD_FP_INFO 0x0403
6035 
6036 /* Number of dead pixels detected on the last maintenance */
6037 #define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
6038 /* Unknown number of dead pixels detected on the last maintenance */
6039 #define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
6040 /* No interrupt from the sensor */
6041 #define FP_ERROR_NO_IRQ    BIT(12)
6042 /* SPI communication error */
6043 #define FP_ERROR_SPI_COMM  BIT(13)
6044 /* Invalid sensor Hardware ID */
6045 #define FP_ERROR_BAD_HWID  BIT(14)
6046 /* Sensor initialization failed */
6047 #define FP_ERROR_INIT_FAIL BIT(15)
6048 
6049 struct ec_response_fp_info_v0 {
6050 	/* Sensor identification */
6051 	uint32_t vendor_id;
6052 	uint32_t product_id;
6053 	uint32_t model_id;
6054 	uint32_t version;
6055 	/* Image frame characteristics */
6056 	uint32_t frame_size;
6057 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
6058 	uint16_t width;
6059 	uint16_t height;
6060 	uint16_t bpp;
6061 	uint16_t errors; /* see FP_ERROR_ flags above */
6062 } __ec_align4;
6063 
6064 struct ec_response_fp_info {
6065 	/* Sensor identification */
6066 	uint32_t vendor_id;
6067 	uint32_t product_id;
6068 	uint32_t model_id;
6069 	uint32_t version;
6070 	/* Image frame characteristics */
6071 	uint32_t frame_size;
6072 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
6073 	uint16_t width;
6074 	uint16_t height;
6075 	uint16_t bpp;
6076 	uint16_t errors; /* see FP_ERROR_ flags above */
6077 	/* Template/finger current information */
6078 	uint32_t template_size;  /* max template size in bytes */
6079 	uint16_t template_max;   /* maximum number of fingers/templates */
6080 	uint16_t template_valid; /* number of valid fingers/templates */
6081 	uint32_t template_dirty; /* bitmap of templates with MCU side changes */
6082 	uint32_t template_version; /* version of the template format */
6083 } __ec_align4;
6084 
6085 /* Get the last captured finger frame or a template content */
6086 #define EC_CMD_FP_FRAME 0x0404
6087 
6088 /* constants defining the 'offset' field which also contains the frame index */
6089 #define FP_FRAME_INDEX_SHIFT       28
6090 /* Frame buffer where the captured image is stored */
6091 #define FP_FRAME_INDEX_RAW_IMAGE    0
6092 /* First frame buffer holding a template */
6093 #define FP_FRAME_INDEX_TEMPLATE     1
6094 #define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
6095 #define FP_FRAME_OFFSET_MASK       0x0FFFFFFF
6096 
6097 /* Version of the format of the encrypted templates. */
6098 #define FP_TEMPLATE_FORMAT_VERSION 3
6099 
6100 /* Constants for encryption parameters */
6101 #define FP_CONTEXT_NONCE_BYTES 12
6102 #define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t))
6103 #define FP_CONTEXT_TAG_BYTES 16
6104 #define FP_CONTEXT_SALT_BYTES 16
6105 #define FP_CONTEXT_TPM_BYTES 32
6106 
6107 struct ec_fp_template_encryption_metadata {
6108 	/*
6109 	 * Version of the structure format (N=3).
6110 	 */
6111 	uint16_t struct_version;
6112 	/* Reserved bytes, set to 0. */
6113 	uint16_t reserved;
6114 	/*
6115 	 * The salt is *only* ever used for key derivation. The nonce is unique,
6116 	 * a different one is used for every message.
6117 	 */
6118 	uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
6119 	uint8_t salt[FP_CONTEXT_SALT_BYTES];
6120 	uint8_t tag[FP_CONTEXT_TAG_BYTES];
6121 };
6122 
6123 struct ec_params_fp_frame {
6124 	/*
6125 	 * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
6126 	 * in the high nibble, and the real offset within the frame in
6127 	 * FP_FRAME_OFFSET_MASK.
6128 	 */
6129 	uint32_t offset;
6130 	uint32_t size;
6131 } __ec_align4;
6132 
6133 /* Load a template into the MCU */
6134 #define EC_CMD_FP_TEMPLATE 0x0405
6135 
6136 /* Flag in the 'size' field indicating that the full template has been sent */
6137 #define FP_TEMPLATE_COMMIT 0x80000000
6138 
6139 struct ec_params_fp_template {
6140 	uint32_t offset;
6141 	uint32_t size;
6142 	uint8_t data[];
6143 } __ec_align4;
6144 
6145 /* Clear the current fingerprint user context and set a new one */
6146 #define EC_CMD_FP_CONTEXT 0x0406
6147 
6148 struct ec_params_fp_context {
6149 	uint32_t userid[FP_CONTEXT_USERID_WORDS];
6150 } __ec_align4;
6151 
6152 #define EC_CMD_FP_STATS 0x0407
6153 
6154 #define FPSTATS_CAPTURE_INV  BIT(0)
6155 #define FPSTATS_MATCHING_INV BIT(1)
6156 
6157 struct ec_response_fp_stats {
6158 	uint32_t capture_time_us;
6159 	uint32_t matching_time_us;
6160 	uint32_t overall_time_us;
6161 	struct {
6162 		uint32_t lo;
6163 		uint32_t hi;
6164 	} overall_t0;
6165 	uint8_t timestamps_invalid;
6166 	int8_t template_matched;
6167 } __ec_align2;
6168 
6169 #define EC_CMD_FP_SEED 0x0408
6170 struct ec_params_fp_seed {
6171 	/*
6172 	 * Version of the structure format (N=3).
6173 	 */
6174 	uint16_t struct_version;
6175 	/* Reserved bytes, set to 0. */
6176 	uint16_t reserved;
6177 	/* Seed from the TPM. */
6178 	uint8_t seed[FP_CONTEXT_TPM_BYTES];
6179 } __ec_align4;
6180 
6181 #define EC_CMD_FP_ENC_STATUS 0x0409
6182 
6183 /* FP TPM seed has been set or not */
6184 #define FP_ENC_STATUS_SEED_SET BIT(0)
6185 
6186 struct ec_response_fp_encryption_status {
6187 	/* Used bits in encryption engine status */
6188 	uint32_t valid_flags;
6189 	/* Encryption engine status */
6190 	uint32_t status;
6191 } __ec_align4;
6192 
6193 /*****************************************************************************/
6194 /* Touchpad MCU commands: range 0x0500-0x05FF */
6195 
6196 /* Perform touchpad self test */
6197 #define EC_CMD_TP_SELF_TEST 0x0500
6198 
6199 /* Get number of frame types, and the size of each type */
6200 #define EC_CMD_TP_FRAME_INFO 0x0501
6201 
6202 struct ec_response_tp_frame_info {
6203 	uint32_t n_frames;
6204 	uint32_t frame_sizes[];
6205 } __ec_align4;
6206 
6207 /* Create a snapshot of current frame readings */
6208 #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
6209 
6210 /* Read the frame */
6211 #define EC_CMD_TP_FRAME_GET 0x0503
6212 
6213 struct ec_params_tp_frame_get {
6214 	uint32_t frame_index;
6215 	uint32_t offset;
6216 	uint32_t size;
6217 } __ec_align4;
6218 
6219 /*****************************************************************************/
6220 /* EC-EC communication commands: range 0x0600-0x06FF */
6221 
6222 #define EC_COMM_TEXT_MAX 8
6223 
6224 /*
6225  * Get battery static information, i.e. information that never changes, or
6226  * very infrequently.
6227  */
6228 #define EC_CMD_BATTERY_GET_STATIC 0x0600
6229 
6230 /**
6231  * struct ec_params_battery_static_info - Battery static info parameters
6232  * @index: Battery index.
6233  */
6234 struct ec_params_battery_static_info {
6235 	uint8_t index;
6236 } __ec_align_size1;
6237 
6238 /**
6239  * struct ec_response_battery_static_info - Battery static info response
6240  * @design_capacity: Battery Design Capacity (mAh)
6241  * @design_voltage: Battery Design Voltage (mV)
6242  * @manufacturer: Battery Manufacturer String
6243  * @model: Battery Model Number String
6244  * @serial: Battery Serial Number String
6245  * @type: Battery Type String
6246  * @cycle_count: Battery Cycle Count
6247  */
6248 struct ec_response_battery_static_info {
6249 	uint16_t design_capacity;
6250 	uint16_t design_voltage;
6251 	char manufacturer[EC_COMM_TEXT_MAX];
6252 	char model[EC_COMM_TEXT_MAX];
6253 	char serial[EC_COMM_TEXT_MAX];
6254 	char type[EC_COMM_TEXT_MAX];
6255 	/* TODO(crbug.com/795991): Consider moving to dynamic structure. */
6256 	uint32_t cycle_count;
6257 } __ec_align4;
6258 
6259 /*
6260  * Get battery dynamic information, i.e. information that is likely to change
6261  * every time it is read.
6262  */
6263 #define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
6264 
6265 /**
6266  * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
6267  * @index: Battery index.
6268  */
6269 struct ec_params_battery_dynamic_info {
6270 	uint8_t index;
6271 } __ec_align_size1;
6272 
6273 /**
6274  * struct ec_response_battery_dynamic_info - Battery dynamic info response
6275  * @actual_voltage: Battery voltage (mV)
6276  * @actual_current: Battery current (mA); negative=discharging
6277  * @remaining_capacity: Remaining capacity (mAh)
6278  * @full_capacity: Capacity (mAh, might change occasionally)
6279  * @flags: Flags, see EC_BATT_FLAG_*
6280  * @desired_voltage: Charging voltage desired by battery (mV)
6281  * @desired_current: Charging current desired by battery (mA)
6282  */
6283 struct ec_response_battery_dynamic_info {
6284 	int16_t actual_voltage;
6285 	int16_t actual_current;
6286 	int16_t remaining_capacity;
6287 	int16_t full_capacity;
6288 	int16_t flags;
6289 	int16_t desired_voltage;
6290 	int16_t desired_current;
6291 } __ec_align2;
6292 
6293 /*
6294  * Control charger chip. Used to control charger chip on the slave.
6295  */
6296 #define EC_CMD_CHARGER_CONTROL 0x0602
6297 
6298 /**
6299  * struct ec_params_charger_control - Charger control parameters
6300  * @max_current: Charger current (mA). Positive to allow base to draw up to
6301  *     max_current and (possibly) charge battery, negative to request current
6302  *     from base (OTG).
6303  * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
6304  *     >= 0.
6305  * @allow_charging: Allow base battery charging (only makes sense if
6306  *     max_current > 0).
6307  */
6308 struct ec_params_charger_control {
6309 	int16_t max_current;
6310 	uint16_t otg_voltage;
6311 	uint8_t allow_charging;
6312 } __ec_align_size1;
6313 
6314 /* Get ACK from the USB-C SS muxes */
6315 #define EC_CMD_USB_PD_MUX_ACK 0x0603
6316 
6317 struct ec_params_usb_pd_mux_ack {
6318 	uint8_t port; /* USB-C port number */
6319 } __ec_align1;
6320 
6321 /*****************************************************************************/
6322 /*
6323  * Reserve a range of host commands for board-specific, experimental, or
6324  * special purpose features. These can be (re)used without updating this file.
6325  *
6326  * CAUTION: Don't go nuts with this. Shipping products should document ALL
6327  * their EC commands for easier development, testing, debugging, and support.
6328  *
6329  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
6330  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
6331  *
6332  * In your experimental code, you may want to do something like this:
6333  *
6334  *   #define EC_CMD_MAGIC_FOO 0x0000
6335  *   #define EC_CMD_MAGIC_BAR 0x0001
6336  *   #define EC_CMD_MAGIC_HEY 0x0002
6337  *
6338  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
6339  *      EC_VER_MASK(0);
6340  *
6341  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
6342  *      EC_VER_MASK(0);
6343  *
6344  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
6345  *      EC_VER_MASK(0);
6346  */
6347 #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
6348 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
6349 
6350 /*
6351  * Given the private host command offset, calculate the true private host
6352  * command value.
6353  */
6354 #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
6355 	(EC_CMD_BOARD_SPECIFIC_BASE + (command))
6356 
6357 /*****************************************************************************/
6358 /*
6359  * Passthru commands
6360  *
6361  * Some platforms have sub-processors chained to each other.  For example.
6362  *
6363  *     AP <--> EC <--> PD MCU
6364  *
6365  * The top 2 bits of the command number are used to indicate which device the
6366  * command is intended for.  Device 0 is always the device receiving the
6367  * command; other device mapping is board-specific.
6368  *
6369  * When a device receives a command to be passed to a sub-processor, it passes
6370  * it on with the device number set back to 0.  This allows the sub-processor
6371  * to remain blissfully unaware of whether the command originated on the next
6372  * device up the chain, or was passed through from the AP.
6373  *
6374  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
6375  *     AP sends command 0x4002 to the EC
6376  *     EC sends command 0x0002 to the PD MCU
6377  *     EC forwards PD MCU response back to the AP
6378  */
6379 
6380 /* Offset and max command number for sub-device n */
6381 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
6382 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
6383 
6384 /*****************************************************************************/
6385 /*
6386  * Deprecated constants. These constants have been renamed for clarity. The
6387  * meaning and size has not changed. Programs that use the old names should
6388  * switch to the new names soon, as the old names may not be carried forward
6389  * forever.
6390  */
6391 #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
6392 #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
6393 #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
6394 
6395 
6396 
6397 #endif  /* __CROS_EC_COMMANDS_H */
6398