1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * caam - Freescale FSL CAAM support for Public Key Cryptography
4 *
5 * Copyright 2016 Freescale Semiconductor, Inc.
6 * Copyright 2018-2019, 2023 NXP
7 *
8 * There is no Shared Descriptor for PKC so that the Job Descriptor must carry
9 * all the desired key parameters, input and output pointers.
10 */
11 #include "compat.h"
12 #include "regs.h"
13 #include "intern.h"
14 #include "jr.h"
15 #include "error.h"
16 #include "desc_constr.h"
17 #include "sg_sw_sec4.h"
18 #include "caampkc.h"
19 #include <crypto/internal/engine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/err.h>
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25
26 #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB)
27 #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \
28 SIZEOF_RSA_PRIV_F1_PDB)
29 #define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \
30 SIZEOF_RSA_PRIV_F2_PDB)
31 #define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \
32 SIZEOF_RSA_PRIV_F3_PDB)
33 #define CAAM_RSA_MAX_INPUT_SIZE 512 /* for a 4096-bit modulus */
34
35 /* buffer filled with zeros, used for padding */
36 static u8 *zero_buffer;
37
38 /*
39 * variable used to avoid double free of resources in case
40 * algorithm registration was unsuccessful
41 */
42 static bool init_done;
43
44 struct caam_akcipher_alg {
45 struct akcipher_engine_alg akcipher;
46 bool registered;
47 };
48
rsa_io_unmap(struct device * dev,struct rsa_edesc * edesc,struct akcipher_request * req)49 static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc,
50 struct akcipher_request *req)
51 {
52 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
53
54 dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE);
55 dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE);
56
57 if (edesc->sec4_sg_bytes)
58 dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes,
59 DMA_TO_DEVICE);
60 }
61
rsa_pub_unmap(struct device * dev,struct rsa_edesc * edesc,struct akcipher_request * req)62 static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc,
63 struct akcipher_request *req)
64 {
65 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
66 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
67 struct caam_rsa_key *key = &ctx->key;
68 struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
69
70 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
71 dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE);
72 }
73
rsa_priv_f1_unmap(struct device * dev,struct rsa_edesc * edesc,struct akcipher_request * req)74 static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc,
75 struct akcipher_request *req)
76 {
77 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
78 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
79 struct caam_rsa_key *key = &ctx->key;
80 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
81
82 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
83 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
84 }
85
rsa_priv_f2_unmap(struct device * dev,struct rsa_edesc * edesc,struct akcipher_request * req)86 static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc,
87 struct akcipher_request *req)
88 {
89 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
90 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
91 struct caam_rsa_key *key = &ctx->key;
92 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
93 size_t p_sz = key->p_sz;
94 size_t q_sz = key->q_sz;
95
96 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
97 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
98 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
99 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
100 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
101 }
102
rsa_priv_f3_unmap(struct device * dev,struct rsa_edesc * edesc,struct akcipher_request * req)103 static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc,
104 struct akcipher_request *req)
105 {
106 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
107 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
108 struct caam_rsa_key *key = &ctx->key;
109 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
110 size_t p_sz = key->p_sz;
111 size_t q_sz = key->q_sz;
112
113 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
114 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
115 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
116 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
117 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
118 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
119 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
120 }
121
122 /* RSA Job Completion handler */
rsa_pub_done(struct device * dev,u32 * desc,u32 err,void * context)123 static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context)
124 {
125 struct akcipher_request *req = context;
126 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
127 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
128 struct rsa_edesc *edesc;
129 int ecode = 0;
130 bool has_bklog;
131
132 if (err)
133 ecode = caam_jr_strstatus(dev, err);
134
135 edesc = req_ctx->edesc;
136 has_bklog = edesc->bklog;
137
138 rsa_pub_unmap(dev, edesc, req);
139 rsa_io_unmap(dev, edesc, req);
140 kfree(edesc);
141
142 /*
143 * If no backlog flag, the completion of the request is done
144 * by CAAM, not crypto engine.
145 */
146 if (!has_bklog)
147 akcipher_request_complete(req, ecode);
148 else
149 crypto_finalize_akcipher_request(jrp->engine, req, ecode);
150 }
151
rsa_priv_f_done(struct device * dev,u32 * desc,u32 err,void * context)152 static void rsa_priv_f_done(struct device *dev, u32 *desc, u32 err,
153 void *context)
154 {
155 struct akcipher_request *req = context;
156 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
157 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
158 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
159 struct caam_rsa_key *key = &ctx->key;
160 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
161 struct rsa_edesc *edesc;
162 int ecode = 0;
163 bool has_bklog;
164
165 if (err)
166 ecode = caam_jr_strstatus(dev, err);
167
168 edesc = req_ctx->edesc;
169 has_bklog = edesc->bklog;
170
171 switch (key->priv_form) {
172 case FORM1:
173 rsa_priv_f1_unmap(dev, edesc, req);
174 break;
175 case FORM2:
176 rsa_priv_f2_unmap(dev, edesc, req);
177 break;
178 case FORM3:
179 rsa_priv_f3_unmap(dev, edesc, req);
180 }
181
182 rsa_io_unmap(dev, edesc, req);
183 kfree(edesc);
184
185 /*
186 * If no backlog flag, the completion of the request is done
187 * by CAAM, not crypto engine.
188 */
189 if (!has_bklog)
190 akcipher_request_complete(req, ecode);
191 else
192 crypto_finalize_akcipher_request(jrp->engine, req, ecode);
193 }
194
195 /**
196 * caam_rsa_count_leading_zeros - Count leading zeros, need it to strip,
197 * from a given scatterlist
198 *
199 * @sgl : scatterlist to count zeros from
200 * @nbytes: number of zeros, in bytes, to strip
201 * @flags : operation flags
202 */
caam_rsa_count_leading_zeros(struct scatterlist * sgl,unsigned int nbytes,unsigned int flags)203 static int caam_rsa_count_leading_zeros(struct scatterlist *sgl,
204 unsigned int nbytes,
205 unsigned int flags)
206 {
207 struct sg_mapping_iter miter;
208 int lzeros, ents;
209 unsigned int len;
210 unsigned int tbytes = nbytes;
211 const u8 *buff;
212
213 ents = sg_nents_for_len(sgl, nbytes);
214 if (ents < 0)
215 return ents;
216
217 sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags);
218
219 lzeros = 0;
220 len = 0;
221 while (nbytes > 0) {
222 /* do not strip more than given bytes */
223 while (len && !*buff && lzeros < nbytes) {
224 lzeros++;
225 len--;
226 buff++;
227 }
228
229 if (len && *buff)
230 break;
231
232 if (!sg_miter_next(&miter))
233 break;
234
235 buff = miter.addr;
236 len = miter.length;
237
238 nbytes -= lzeros;
239 lzeros = 0;
240 }
241
242 miter.consumed = lzeros;
243 sg_miter_stop(&miter);
244 nbytes -= lzeros;
245
246 return tbytes - nbytes;
247 }
248
rsa_edesc_alloc(struct akcipher_request * req,size_t desclen)249 static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req,
250 size_t desclen)
251 {
252 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
253 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
254 struct device *dev = ctx->dev;
255 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
256 struct caam_rsa_key *key = &ctx->key;
257 struct rsa_edesc *edesc;
258 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
259 GFP_KERNEL : GFP_ATOMIC;
260 int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0;
261 int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes;
262 int src_nents, dst_nents;
263 int mapped_src_nents, mapped_dst_nents;
264 unsigned int diff_size = 0;
265 int lzeros;
266
267 if (req->src_len > key->n_sz) {
268 /*
269 * strip leading zeros and
270 * return the number of zeros to skip
271 */
272 lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len -
273 key->n_sz, sg_flags);
274 if (lzeros < 0)
275 return ERR_PTR(lzeros);
276
277 req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src,
278 lzeros);
279 req_ctx->fixup_src_len = req->src_len - lzeros;
280 } else {
281 /*
282 * input src is less then n key modulus,
283 * so there will be zero padding
284 */
285 diff_size = key->n_sz - req->src_len;
286 req_ctx->fixup_src = req->src;
287 req_ctx->fixup_src_len = req->src_len;
288 }
289
290 src_nents = sg_nents_for_len(req_ctx->fixup_src,
291 req_ctx->fixup_src_len);
292 dst_nents = sg_nents_for_len(req->dst, req->dst_len);
293
294 mapped_src_nents = dma_map_sg(dev, req_ctx->fixup_src, src_nents,
295 DMA_TO_DEVICE);
296 if (unlikely(!mapped_src_nents)) {
297 dev_err(dev, "unable to map source\n");
298 return ERR_PTR(-ENOMEM);
299 }
300 mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
301 DMA_FROM_DEVICE);
302 if (unlikely(!mapped_dst_nents)) {
303 dev_err(dev, "unable to map destination\n");
304 goto src_fail;
305 }
306
307 if (!diff_size && mapped_src_nents == 1)
308 sec4_sg_len = 0; /* no need for an input hw s/g table */
309 else
310 sec4_sg_len = mapped_src_nents + !!diff_size;
311 sec4_sg_index = sec4_sg_len;
312
313 if (mapped_dst_nents > 1)
314 sec4_sg_len += pad_sg_nents(mapped_dst_nents);
315 else
316 sec4_sg_len = pad_sg_nents(sec4_sg_len);
317
318 sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);
319
320 /* allocate space for base edesc, hw desc commands and link tables */
321 edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, flags);
322 if (!edesc)
323 goto dst_fail;
324
325 edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen;
326 if (diff_size)
327 dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size,
328 0);
329
330 if (sec4_sg_index)
331 sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len,
332 edesc->sec4_sg + !!diff_size, 0);
333
334 if (mapped_dst_nents > 1)
335 sg_to_sec4_sg_last(req->dst, req->dst_len,
336 edesc->sec4_sg + sec4_sg_index, 0);
337
338 /* Save nents for later use in Job Descriptor */
339 edesc->src_nents = src_nents;
340 edesc->dst_nents = dst_nents;
341
342 req_ctx->edesc = edesc;
343
344 if (!sec4_sg_bytes)
345 return edesc;
346
347 edesc->mapped_src_nents = mapped_src_nents;
348 edesc->mapped_dst_nents = mapped_dst_nents;
349
350 edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg,
351 sec4_sg_bytes, DMA_TO_DEVICE);
352 if (dma_mapping_error(dev, edesc->sec4_sg_dma)) {
353 dev_err(dev, "unable to map S/G table\n");
354 goto sec4_sg_fail;
355 }
356
357 edesc->sec4_sg_bytes = sec4_sg_bytes;
358
359 print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ",
360 DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
361 edesc->sec4_sg_bytes, 1);
362
363 return edesc;
364
365 sec4_sg_fail:
366 kfree(edesc);
367 dst_fail:
368 dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
369 src_fail:
370 dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE);
371 return ERR_PTR(-ENOMEM);
372 }
373
akcipher_do_one_req(struct crypto_engine * engine,void * areq)374 static int akcipher_do_one_req(struct crypto_engine *engine, void *areq)
375 {
376 struct akcipher_request *req = container_of(areq,
377 struct akcipher_request,
378 base);
379 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
380 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
381 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
382 struct device *jrdev = ctx->dev;
383 u32 *desc = req_ctx->edesc->hw_desc;
384 int ret;
385
386 req_ctx->edesc->bklog = true;
387
388 ret = caam_jr_enqueue(jrdev, desc, req_ctx->akcipher_op_done, req);
389
390 if (ret == -ENOSPC && engine->retry_support)
391 return ret;
392
393 if (ret != -EINPROGRESS) {
394 rsa_pub_unmap(jrdev, req_ctx->edesc, req);
395 rsa_io_unmap(jrdev, req_ctx->edesc, req);
396 kfree(req_ctx->edesc);
397 } else {
398 ret = 0;
399 }
400
401 return ret;
402 }
403
set_rsa_pub_pdb(struct akcipher_request * req,struct rsa_edesc * edesc)404 static int set_rsa_pub_pdb(struct akcipher_request *req,
405 struct rsa_edesc *edesc)
406 {
407 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
408 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
409 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
410 struct caam_rsa_key *key = &ctx->key;
411 struct device *dev = ctx->dev;
412 struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
413 int sec4_sg_index = 0;
414
415 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
416 if (dma_mapping_error(dev, pdb->n_dma)) {
417 dev_err(dev, "Unable to map RSA modulus memory\n");
418 return -ENOMEM;
419 }
420
421 pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE);
422 if (dma_mapping_error(dev, pdb->e_dma)) {
423 dev_err(dev, "Unable to map RSA public exponent memory\n");
424 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
425 return -ENOMEM;
426 }
427
428 if (edesc->mapped_src_nents > 1) {
429 pdb->sgf |= RSA_PDB_SGF_F;
430 pdb->f_dma = edesc->sec4_sg_dma;
431 sec4_sg_index += edesc->mapped_src_nents;
432 } else {
433 pdb->f_dma = sg_dma_address(req_ctx->fixup_src);
434 }
435
436 if (edesc->mapped_dst_nents > 1) {
437 pdb->sgf |= RSA_PDB_SGF_G;
438 pdb->g_dma = edesc->sec4_sg_dma +
439 sec4_sg_index * sizeof(struct sec4_sg_entry);
440 } else {
441 pdb->g_dma = sg_dma_address(req->dst);
442 }
443
444 pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz;
445 pdb->f_len = req_ctx->fixup_src_len;
446
447 return 0;
448 }
449
set_rsa_priv_f1_pdb(struct akcipher_request * req,struct rsa_edesc * edesc)450 static int set_rsa_priv_f1_pdb(struct akcipher_request *req,
451 struct rsa_edesc *edesc)
452 {
453 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
454 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
455 struct caam_rsa_key *key = &ctx->key;
456 struct device *dev = ctx->dev;
457 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
458 int sec4_sg_index = 0;
459
460 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
461 if (dma_mapping_error(dev, pdb->n_dma)) {
462 dev_err(dev, "Unable to map modulus memory\n");
463 return -ENOMEM;
464 }
465
466 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
467 if (dma_mapping_error(dev, pdb->d_dma)) {
468 dev_err(dev, "Unable to map RSA private exponent memory\n");
469 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
470 return -ENOMEM;
471 }
472
473 if (edesc->mapped_src_nents > 1) {
474 pdb->sgf |= RSA_PRIV_PDB_SGF_G;
475 pdb->g_dma = edesc->sec4_sg_dma;
476 sec4_sg_index += edesc->mapped_src_nents;
477
478 } else {
479 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
480
481 pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
482 }
483
484 if (edesc->mapped_dst_nents > 1) {
485 pdb->sgf |= RSA_PRIV_PDB_SGF_F;
486 pdb->f_dma = edesc->sec4_sg_dma +
487 sec4_sg_index * sizeof(struct sec4_sg_entry);
488 } else {
489 pdb->f_dma = sg_dma_address(req->dst);
490 }
491
492 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
493
494 return 0;
495 }
496
set_rsa_priv_f2_pdb(struct akcipher_request * req,struct rsa_edesc * edesc)497 static int set_rsa_priv_f2_pdb(struct akcipher_request *req,
498 struct rsa_edesc *edesc)
499 {
500 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
501 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
502 struct caam_rsa_key *key = &ctx->key;
503 struct device *dev = ctx->dev;
504 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
505 int sec4_sg_index = 0;
506 size_t p_sz = key->p_sz;
507 size_t q_sz = key->q_sz;
508
509 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
510 if (dma_mapping_error(dev, pdb->d_dma)) {
511 dev_err(dev, "Unable to map RSA private exponent memory\n");
512 return -ENOMEM;
513 }
514
515 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
516 if (dma_mapping_error(dev, pdb->p_dma)) {
517 dev_err(dev, "Unable to map RSA prime factor p memory\n");
518 goto unmap_d;
519 }
520
521 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
522 if (dma_mapping_error(dev, pdb->q_dma)) {
523 dev_err(dev, "Unable to map RSA prime factor q memory\n");
524 goto unmap_p;
525 }
526
527 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
528 if (dma_mapping_error(dev, pdb->tmp1_dma)) {
529 dev_err(dev, "Unable to map RSA tmp1 memory\n");
530 goto unmap_q;
531 }
532
533 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
534 if (dma_mapping_error(dev, pdb->tmp2_dma)) {
535 dev_err(dev, "Unable to map RSA tmp2 memory\n");
536 goto unmap_tmp1;
537 }
538
539 if (edesc->mapped_src_nents > 1) {
540 pdb->sgf |= RSA_PRIV_PDB_SGF_G;
541 pdb->g_dma = edesc->sec4_sg_dma;
542 sec4_sg_index += edesc->mapped_src_nents;
543 } else {
544 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
545
546 pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
547 }
548
549 if (edesc->mapped_dst_nents > 1) {
550 pdb->sgf |= RSA_PRIV_PDB_SGF_F;
551 pdb->f_dma = edesc->sec4_sg_dma +
552 sec4_sg_index * sizeof(struct sec4_sg_entry);
553 } else {
554 pdb->f_dma = sg_dma_address(req->dst);
555 }
556
557 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
558 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
559
560 return 0;
561
562 unmap_tmp1:
563 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
564 unmap_q:
565 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
566 unmap_p:
567 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
568 unmap_d:
569 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
570
571 return -ENOMEM;
572 }
573
set_rsa_priv_f3_pdb(struct akcipher_request * req,struct rsa_edesc * edesc)574 static int set_rsa_priv_f3_pdb(struct akcipher_request *req,
575 struct rsa_edesc *edesc)
576 {
577 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
578 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
579 struct caam_rsa_key *key = &ctx->key;
580 struct device *dev = ctx->dev;
581 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
582 int sec4_sg_index = 0;
583 size_t p_sz = key->p_sz;
584 size_t q_sz = key->q_sz;
585
586 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
587 if (dma_mapping_error(dev, pdb->p_dma)) {
588 dev_err(dev, "Unable to map RSA prime factor p memory\n");
589 return -ENOMEM;
590 }
591
592 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
593 if (dma_mapping_error(dev, pdb->q_dma)) {
594 dev_err(dev, "Unable to map RSA prime factor q memory\n");
595 goto unmap_p;
596 }
597
598 pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE);
599 if (dma_mapping_error(dev, pdb->dp_dma)) {
600 dev_err(dev, "Unable to map RSA exponent dp memory\n");
601 goto unmap_q;
602 }
603
604 pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE);
605 if (dma_mapping_error(dev, pdb->dq_dma)) {
606 dev_err(dev, "Unable to map RSA exponent dq memory\n");
607 goto unmap_dp;
608 }
609
610 pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE);
611 if (dma_mapping_error(dev, pdb->c_dma)) {
612 dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n");
613 goto unmap_dq;
614 }
615
616 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
617 if (dma_mapping_error(dev, pdb->tmp1_dma)) {
618 dev_err(dev, "Unable to map RSA tmp1 memory\n");
619 goto unmap_qinv;
620 }
621
622 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
623 if (dma_mapping_error(dev, pdb->tmp2_dma)) {
624 dev_err(dev, "Unable to map RSA tmp2 memory\n");
625 goto unmap_tmp1;
626 }
627
628 if (edesc->mapped_src_nents > 1) {
629 pdb->sgf |= RSA_PRIV_PDB_SGF_G;
630 pdb->g_dma = edesc->sec4_sg_dma;
631 sec4_sg_index += edesc->mapped_src_nents;
632 } else {
633 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
634
635 pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
636 }
637
638 if (edesc->mapped_dst_nents > 1) {
639 pdb->sgf |= RSA_PRIV_PDB_SGF_F;
640 pdb->f_dma = edesc->sec4_sg_dma +
641 sec4_sg_index * sizeof(struct sec4_sg_entry);
642 } else {
643 pdb->f_dma = sg_dma_address(req->dst);
644 }
645
646 pdb->sgf |= key->n_sz;
647 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
648
649 return 0;
650
651 unmap_tmp1:
652 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
653 unmap_qinv:
654 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
655 unmap_dq:
656 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
657 unmap_dp:
658 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
659 unmap_q:
660 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
661 unmap_p:
662 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
663
664 return -ENOMEM;
665 }
666
akcipher_enqueue_req(struct device * jrdev,void (* cbk)(struct device * jrdev,u32 * desc,u32 err,void * context),struct akcipher_request * req)667 static int akcipher_enqueue_req(struct device *jrdev,
668 void (*cbk)(struct device *jrdev, u32 *desc,
669 u32 err, void *context),
670 struct akcipher_request *req)
671 {
672 struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev);
673 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
674 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
675 struct caam_rsa_key *key = &ctx->key;
676 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
677 struct rsa_edesc *edesc = req_ctx->edesc;
678 u32 *desc = edesc->hw_desc;
679 int ret;
680
681 req_ctx->akcipher_op_done = cbk;
682 /*
683 * Only the backlog request are sent to crypto-engine since the others
684 * can be handled by CAAM, if free, especially since JR has up to 1024
685 * entries (more than the 10 entries from crypto-engine).
686 */
687 if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
688 ret = crypto_transfer_akcipher_request_to_engine(jrpriv->engine,
689 req);
690 else
691 ret = caam_jr_enqueue(jrdev, desc, cbk, req);
692
693 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) {
694 switch (key->priv_form) {
695 case FORM1:
696 rsa_priv_f1_unmap(jrdev, edesc, req);
697 break;
698 case FORM2:
699 rsa_priv_f2_unmap(jrdev, edesc, req);
700 break;
701 case FORM3:
702 rsa_priv_f3_unmap(jrdev, edesc, req);
703 break;
704 default:
705 rsa_pub_unmap(jrdev, edesc, req);
706 }
707 rsa_io_unmap(jrdev, edesc, req);
708 kfree(edesc);
709 }
710
711 return ret;
712 }
713
caam_rsa_enc(struct akcipher_request * req)714 static int caam_rsa_enc(struct akcipher_request *req)
715 {
716 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
717 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
718 struct caam_rsa_key *key = &ctx->key;
719 struct device *jrdev = ctx->dev;
720 struct rsa_edesc *edesc;
721 int ret;
722
723 if (unlikely(!key->n || !key->e))
724 return -EINVAL;
725
726 if (req->dst_len < key->n_sz) {
727 req->dst_len = key->n_sz;
728 dev_err(jrdev, "Output buffer length less than parameter n\n");
729 return -EOVERFLOW;
730 }
731
732 /* Allocate extended descriptor */
733 edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN);
734 if (IS_ERR(edesc))
735 return PTR_ERR(edesc);
736
737 /* Set RSA Encrypt Protocol Data Block */
738 ret = set_rsa_pub_pdb(req, edesc);
739 if (ret)
740 goto init_fail;
741
742 /* Initialize Job Descriptor */
743 init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub);
744
745 return akcipher_enqueue_req(jrdev, rsa_pub_done, req);
746
747 init_fail:
748 rsa_io_unmap(jrdev, edesc, req);
749 kfree(edesc);
750 return ret;
751 }
752
caam_rsa_dec_priv_f1(struct akcipher_request * req)753 static int caam_rsa_dec_priv_f1(struct akcipher_request *req)
754 {
755 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
756 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
757 struct device *jrdev = ctx->dev;
758 struct rsa_edesc *edesc;
759 int ret;
760
761 /* Allocate extended descriptor */
762 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN);
763 if (IS_ERR(edesc))
764 return PTR_ERR(edesc);
765
766 /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */
767 ret = set_rsa_priv_f1_pdb(req, edesc);
768 if (ret)
769 goto init_fail;
770
771 /* Initialize Job Descriptor */
772 init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1);
773
774 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);
775
776 init_fail:
777 rsa_io_unmap(jrdev, edesc, req);
778 kfree(edesc);
779 return ret;
780 }
781
caam_rsa_dec_priv_f2(struct akcipher_request * req)782 static int caam_rsa_dec_priv_f2(struct akcipher_request *req)
783 {
784 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
785 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
786 struct device *jrdev = ctx->dev;
787 struct rsa_edesc *edesc;
788 int ret;
789
790 /* Allocate extended descriptor */
791 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN);
792 if (IS_ERR(edesc))
793 return PTR_ERR(edesc);
794
795 /* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */
796 ret = set_rsa_priv_f2_pdb(req, edesc);
797 if (ret)
798 goto init_fail;
799
800 /* Initialize Job Descriptor */
801 init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2);
802
803 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);
804
805 init_fail:
806 rsa_io_unmap(jrdev, edesc, req);
807 kfree(edesc);
808 return ret;
809 }
810
caam_rsa_dec_priv_f3(struct akcipher_request * req)811 static int caam_rsa_dec_priv_f3(struct akcipher_request *req)
812 {
813 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
814 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
815 struct device *jrdev = ctx->dev;
816 struct rsa_edesc *edesc;
817 int ret;
818
819 /* Allocate extended descriptor */
820 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN);
821 if (IS_ERR(edesc))
822 return PTR_ERR(edesc);
823
824 /* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */
825 ret = set_rsa_priv_f3_pdb(req, edesc);
826 if (ret)
827 goto init_fail;
828
829 /* Initialize Job Descriptor */
830 init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3);
831
832 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);
833
834 init_fail:
835 rsa_io_unmap(jrdev, edesc, req);
836 kfree(edesc);
837 return ret;
838 }
839
caam_rsa_dec(struct akcipher_request * req)840 static int caam_rsa_dec(struct akcipher_request *req)
841 {
842 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
843 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
844 struct caam_rsa_key *key = &ctx->key;
845 int ret;
846
847 if (unlikely(!key->n || !key->d))
848 return -EINVAL;
849
850 if (req->dst_len < key->n_sz) {
851 req->dst_len = key->n_sz;
852 dev_err(ctx->dev, "Output buffer length less than parameter n\n");
853 return -EOVERFLOW;
854 }
855
856 if (key->priv_form == FORM3)
857 ret = caam_rsa_dec_priv_f3(req);
858 else if (key->priv_form == FORM2)
859 ret = caam_rsa_dec_priv_f2(req);
860 else
861 ret = caam_rsa_dec_priv_f1(req);
862
863 return ret;
864 }
865
caam_rsa_free_key(struct caam_rsa_key * key)866 static void caam_rsa_free_key(struct caam_rsa_key *key)
867 {
868 kfree_sensitive(key->d);
869 kfree_sensitive(key->p);
870 kfree_sensitive(key->q);
871 kfree_sensitive(key->dp);
872 kfree_sensitive(key->dq);
873 kfree_sensitive(key->qinv);
874 kfree_sensitive(key->tmp1);
875 kfree_sensitive(key->tmp2);
876 kfree(key->e);
877 kfree(key->n);
878 memset(key, 0, sizeof(*key));
879 }
880
caam_rsa_drop_leading_zeros(const u8 ** ptr,size_t * nbytes)881 static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes)
882 {
883 while (!**ptr && *nbytes) {
884 (*ptr)++;
885 (*nbytes)--;
886 }
887 }
888
889 /**
890 * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members.
891 * dP, dQ and qInv could decode to less than corresponding p, q length, as the
892 * BER-encoding requires that the minimum number of bytes be used to encode the
893 * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate
894 * length.
895 *
896 * @ptr : pointer to {dP, dQ, qInv} CRT member
897 * @nbytes: length in bytes of {dP, dQ, qInv} CRT member
898 * @dstlen: length in bytes of corresponding p or q prime factor
899 */
caam_read_rsa_crt(const u8 * ptr,size_t nbytes,size_t dstlen)900 static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen)
901 {
902 u8 *dst;
903
904 caam_rsa_drop_leading_zeros(&ptr, &nbytes);
905 if (!nbytes)
906 return NULL;
907
908 dst = kzalloc(dstlen, GFP_KERNEL);
909 if (!dst)
910 return NULL;
911
912 memcpy(dst + (dstlen - nbytes), ptr, nbytes);
913
914 return dst;
915 }
916
917 /**
918 * caam_read_raw_data - Read a raw byte stream as a positive integer.
919 * The function skips buffer's leading zeros, copies the remained data
920 * to a buffer allocated in the GFP_KERNEL zone and returns
921 * the address of the new buffer.
922 *
923 * @buf : The data to read
924 * @nbytes: The amount of data to read
925 */
caam_read_raw_data(const u8 * buf,size_t * nbytes)926 static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes)
927 {
928
929 caam_rsa_drop_leading_zeros(&buf, nbytes);
930 if (!*nbytes)
931 return NULL;
932
933 return kmemdup(buf, *nbytes, GFP_KERNEL);
934 }
935
caam_rsa_check_key_length(unsigned int len)936 static int caam_rsa_check_key_length(unsigned int len)
937 {
938 if (len > 4096)
939 return -EINVAL;
940 return 0;
941 }
942
caam_rsa_set_pub_key(struct crypto_akcipher * tfm,const void * key,unsigned int keylen)943 static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
944 unsigned int keylen)
945 {
946 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
947 struct rsa_key raw_key = {NULL};
948 struct caam_rsa_key *rsa_key = &ctx->key;
949 int ret;
950
951 /* Free the old RSA key if any */
952 caam_rsa_free_key(rsa_key);
953
954 ret = rsa_parse_pub_key(&raw_key, key, keylen);
955 if (ret)
956 return ret;
957
958 /* Copy key in DMA zone */
959 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_KERNEL);
960 if (!rsa_key->e)
961 goto err;
962
963 /*
964 * Skip leading zeros and copy the positive integer to a buffer
965 * allocated in the GFP_KERNEL zone. The decryption descriptor
966 * expects a positive integer for the RSA modulus and uses its length as
967 * decryption output length.
968 */
969 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
970 if (!rsa_key->n)
971 goto err;
972
973 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
974 caam_rsa_free_key(rsa_key);
975 return -EINVAL;
976 }
977
978 rsa_key->e_sz = raw_key.e_sz;
979 rsa_key->n_sz = raw_key.n_sz;
980
981 return 0;
982 err:
983 caam_rsa_free_key(rsa_key);
984 return -ENOMEM;
985 }
986
caam_rsa_set_priv_key_form(struct caam_rsa_ctx * ctx,struct rsa_key * raw_key)987 static int caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx,
988 struct rsa_key *raw_key)
989 {
990 struct caam_rsa_key *rsa_key = &ctx->key;
991 size_t p_sz = raw_key->p_sz;
992 size_t q_sz = raw_key->q_sz;
993 unsigned aligned_size;
994
995 rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz);
996 if (!rsa_key->p)
997 return -ENOMEM;
998 rsa_key->p_sz = p_sz;
999
1000 rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz);
1001 if (!rsa_key->q)
1002 goto free_p;
1003 rsa_key->q_sz = q_sz;
1004
1005 aligned_size = ALIGN(raw_key->p_sz, dma_get_cache_alignment());
1006 rsa_key->tmp1 = kzalloc(aligned_size, GFP_KERNEL);
1007 if (!rsa_key->tmp1)
1008 goto free_q;
1009
1010 aligned_size = ALIGN(raw_key->q_sz, dma_get_cache_alignment());
1011 rsa_key->tmp2 = kzalloc(aligned_size, GFP_KERNEL);
1012 if (!rsa_key->tmp2)
1013 goto free_tmp1;
1014
1015 rsa_key->priv_form = FORM2;
1016
1017 rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz);
1018 if (!rsa_key->dp)
1019 goto free_tmp2;
1020
1021 rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz);
1022 if (!rsa_key->dq)
1023 goto free_dp;
1024
1025 rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz,
1026 q_sz);
1027 if (!rsa_key->qinv)
1028 goto free_dq;
1029
1030 rsa_key->priv_form = FORM3;
1031
1032 return 0;
1033
1034 free_dq:
1035 kfree_sensitive(rsa_key->dq);
1036 free_dp:
1037 kfree_sensitive(rsa_key->dp);
1038 free_tmp2:
1039 kfree_sensitive(rsa_key->tmp2);
1040 free_tmp1:
1041 kfree_sensitive(rsa_key->tmp1);
1042 free_q:
1043 kfree_sensitive(rsa_key->q);
1044 free_p:
1045 kfree_sensitive(rsa_key->p);
1046 return -ENOMEM;
1047 }
1048
caam_rsa_set_priv_key(struct crypto_akcipher * tfm,const void * key,unsigned int keylen)1049 static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
1050 unsigned int keylen)
1051 {
1052 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
1053 struct rsa_key raw_key = {NULL};
1054 struct caam_rsa_key *rsa_key = &ctx->key;
1055 int ret;
1056
1057 /* Free the old RSA key if any */
1058 caam_rsa_free_key(rsa_key);
1059
1060 ret = rsa_parse_priv_key(&raw_key, key, keylen);
1061 if (ret)
1062 return ret;
1063
1064 /* Copy key in DMA zone */
1065 rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_KERNEL);
1066 if (!rsa_key->d)
1067 goto err;
1068
1069 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_KERNEL);
1070 if (!rsa_key->e)
1071 goto err;
1072
1073 /*
1074 * Skip leading zeros and copy the positive integer to a buffer
1075 * allocated in the GFP_KERNEL zone. The decryption descriptor
1076 * expects a positive integer for the RSA modulus and uses its length as
1077 * decryption output length.
1078 */
1079 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
1080 if (!rsa_key->n)
1081 goto err;
1082
1083 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
1084 caam_rsa_free_key(rsa_key);
1085 return -EINVAL;
1086 }
1087
1088 rsa_key->d_sz = raw_key.d_sz;
1089 rsa_key->e_sz = raw_key.e_sz;
1090 rsa_key->n_sz = raw_key.n_sz;
1091
1092 ret = caam_rsa_set_priv_key_form(ctx, &raw_key);
1093 if (ret)
1094 goto err;
1095
1096 return 0;
1097
1098 err:
1099 caam_rsa_free_key(rsa_key);
1100 return -ENOMEM;
1101 }
1102
caam_rsa_max_size(struct crypto_akcipher * tfm)1103 static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm)
1104 {
1105 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
1106
1107 return ctx->key.n_sz;
1108 }
1109
1110 /* Per session pkc's driver context creation function */
caam_rsa_init_tfm(struct crypto_akcipher * tfm)1111 static int caam_rsa_init_tfm(struct crypto_akcipher *tfm)
1112 {
1113 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
1114
1115 akcipher_set_reqsize(tfm, sizeof(struct caam_rsa_req_ctx));
1116
1117 ctx->dev = caam_jr_alloc();
1118
1119 if (IS_ERR(ctx->dev)) {
1120 pr_err("Job Ring Device allocation for transform failed\n");
1121 return PTR_ERR(ctx->dev);
1122 }
1123
1124 ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer,
1125 CAAM_RSA_MAX_INPUT_SIZE - 1,
1126 DMA_TO_DEVICE);
1127 if (dma_mapping_error(ctx->dev, ctx->padding_dma)) {
1128 dev_err(ctx->dev, "unable to map padding\n");
1129 caam_jr_free(ctx->dev);
1130 return -ENOMEM;
1131 }
1132
1133 return 0;
1134 }
1135
1136 /* Per session pkc's driver context cleanup function */
caam_rsa_exit_tfm(struct crypto_akcipher * tfm)1137 static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm)
1138 {
1139 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
1140 struct caam_rsa_key *key = &ctx->key;
1141
1142 dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE -
1143 1, DMA_TO_DEVICE);
1144 caam_rsa_free_key(key);
1145 caam_jr_free(ctx->dev);
1146 }
1147
1148 static struct caam_akcipher_alg caam_rsa = {
1149 .akcipher.base = {
1150 .encrypt = caam_rsa_enc,
1151 .decrypt = caam_rsa_dec,
1152 .set_pub_key = caam_rsa_set_pub_key,
1153 .set_priv_key = caam_rsa_set_priv_key,
1154 .max_size = caam_rsa_max_size,
1155 .init = caam_rsa_init_tfm,
1156 .exit = caam_rsa_exit_tfm,
1157 .base = {
1158 .cra_name = "rsa",
1159 .cra_driver_name = "rsa-caam",
1160 .cra_priority = 3000,
1161 .cra_module = THIS_MODULE,
1162 .cra_ctxsize = sizeof(struct caam_rsa_ctx) +
1163 CRYPTO_DMA_PADDING,
1164 },
1165 },
1166 .akcipher.op = {
1167 .do_one_request = akcipher_do_one_req,
1168 },
1169 };
1170
1171 /* Public Key Cryptography module initialization handler */
caam_pkc_init(struct device * ctrldev)1172 int caam_pkc_init(struct device *ctrldev)
1173 {
1174 struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
1175 u32 pk_inst, pkha;
1176 int err;
1177 init_done = false;
1178
1179 /* Determine public key hardware accelerator presence. */
1180 if (priv->era < 10) {
1181 pk_inst = (rd_reg32(&priv->jr[0]->perfmon.cha_num_ls) &
1182 CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT;
1183 } else {
1184 pkha = rd_reg32(&priv->jr[0]->vreg.pkha);
1185 pk_inst = pkha & CHA_VER_NUM_MASK;
1186
1187 /*
1188 * Newer CAAMs support partially disabled functionality. If this is the
1189 * case, the number is non-zero, but this bit is set to indicate that
1190 * no encryption or decryption is supported. Only signing and verifying
1191 * is supported.
1192 */
1193 if (pkha & CHA_VER_MISC_PKHA_NO_CRYPT)
1194 pk_inst = 0;
1195 }
1196
1197 /* Do not register algorithms if PKHA is not present. */
1198 if (!pk_inst)
1199 return 0;
1200
1201 /* allocate zero buffer, used for padding input */
1202 zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_KERNEL);
1203 if (!zero_buffer)
1204 return -ENOMEM;
1205
1206 err = crypto_engine_register_akcipher(&caam_rsa.akcipher);
1207
1208 if (err) {
1209 kfree(zero_buffer);
1210 dev_warn(ctrldev, "%s alg registration failed\n",
1211 caam_rsa.akcipher.base.base.cra_driver_name);
1212 } else {
1213 init_done = true;
1214 caam_rsa.registered = true;
1215 dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n");
1216 }
1217
1218 return err;
1219 }
1220
caam_pkc_exit(void)1221 void caam_pkc_exit(void)
1222 {
1223 if (!init_done)
1224 return;
1225
1226 if (caam_rsa.registered)
1227 crypto_engine_unregister_akcipher(&caam_rsa.akcipher);
1228
1229 kfree(zero_buffer);
1230 }
1231