xref: /openbmc/linux/block/mq-deadline.c (revision 7e24a55b2122746c2eef192296fc84624354f895)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler,
4  *  for the blk-mq scheduling framework
5  *
6  *  Copyright (C) 2016 Jens Axboe <axboe@kernel.dk>
7  */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/init.h>
15 #include <linux/compiler.h>
16 #include <linux/rbtree.h>
17 #include <linux/sbitmap.h>
18 
19 #include <trace/events/block.h>
20 
21 #include "elevator.h"
22 #include "blk.h"
23 #include "blk-mq.h"
24 #include "blk-mq-debugfs.h"
25 #include "blk-mq-sched.h"
26 
27 /*
28  * See Documentation/block/deadline-iosched.rst
29  */
30 static const int read_expire = HZ / 2;  /* max time before a read is submitted. */
31 static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
32 /*
33  * Time after which to dispatch lower priority requests even if higher
34  * priority requests are pending.
35  */
36 static const int prio_aging_expire = 10 * HZ;
37 static const int writes_starved = 2;    /* max times reads can starve a write */
38 static const int fifo_batch = 16;       /* # of sequential requests treated as one
39 				     by the above parameters. For throughput. */
40 
41 enum dd_data_dir {
42 	DD_READ		= READ,
43 	DD_WRITE	= WRITE,
44 };
45 
46 enum { DD_DIR_COUNT = 2 };
47 
48 enum dd_prio {
49 	DD_RT_PRIO	= 0,
50 	DD_BE_PRIO	= 1,
51 	DD_IDLE_PRIO	= 2,
52 	DD_PRIO_MAX	= 2,
53 };
54 
55 enum { DD_PRIO_COUNT = 3 };
56 
57 /*
58  * I/O statistics per I/O priority. It is fine if these counters overflow.
59  * What matters is that these counters are at least as wide as
60  * log2(max_outstanding_requests).
61  */
62 struct io_stats_per_prio {
63 	uint32_t inserted;
64 	uint32_t merged;
65 	uint32_t dispatched;
66 	atomic_t completed;
67 };
68 
69 /*
70  * Deadline scheduler data per I/O priority (enum dd_prio). Requests are
71  * present on both sort_list[] and fifo_list[].
72  */
73 struct dd_per_prio {
74 	struct list_head dispatch;
75 	struct rb_root sort_list[DD_DIR_COUNT];
76 	struct list_head fifo_list[DD_DIR_COUNT];
77 	/* Position of the most recently dispatched request. */
78 	sector_t latest_pos[DD_DIR_COUNT];
79 	struct io_stats_per_prio stats;
80 };
81 
82 struct deadline_data {
83 	/*
84 	 * run time data
85 	 */
86 
87 	struct dd_per_prio per_prio[DD_PRIO_COUNT];
88 
89 	/* Data direction of latest dispatched request. */
90 	enum dd_data_dir last_dir;
91 	unsigned int batching;		/* number of sequential requests made */
92 	unsigned int starved;		/* times reads have starved writes */
93 
94 	/*
95 	 * settings that change how the i/o scheduler behaves
96 	 */
97 	int fifo_expire[DD_DIR_COUNT];
98 	int fifo_batch;
99 	int writes_starved;
100 	int front_merges;
101 	u32 async_depth;
102 	int prio_aging_expire;
103 
104 	spinlock_t lock;
105 	spinlock_t zone_lock;
106 };
107 
108 /* Maps an I/O priority class to a deadline scheduler priority. */
109 static const enum dd_prio ioprio_class_to_prio[] = {
110 	[IOPRIO_CLASS_NONE]	= DD_BE_PRIO,
111 	[IOPRIO_CLASS_RT]	= DD_RT_PRIO,
112 	[IOPRIO_CLASS_BE]	= DD_BE_PRIO,
113 	[IOPRIO_CLASS_IDLE]	= DD_IDLE_PRIO,
114 };
115 
116 static inline struct rb_root *
deadline_rb_root(struct dd_per_prio * per_prio,struct request * rq)117 deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq)
118 {
119 	return &per_prio->sort_list[rq_data_dir(rq)];
120 }
121 
122 /*
123  * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a
124  * request.
125  */
dd_rq_ioclass(struct request * rq)126 static u8 dd_rq_ioclass(struct request *rq)
127 {
128 	return IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
129 }
130 
131 /*
132  * get the request before `rq' in sector-sorted order
133  */
134 static inline struct request *
deadline_earlier_request(struct request * rq)135 deadline_earlier_request(struct request *rq)
136 {
137 	struct rb_node *node = rb_prev(&rq->rb_node);
138 
139 	if (node)
140 		return rb_entry_rq(node);
141 
142 	return NULL;
143 }
144 
145 /*
146  * get the request after `rq' in sector-sorted order
147  */
148 static inline struct request *
deadline_latter_request(struct request * rq)149 deadline_latter_request(struct request *rq)
150 {
151 	struct rb_node *node = rb_next(&rq->rb_node);
152 
153 	if (node)
154 		return rb_entry_rq(node);
155 
156 	return NULL;
157 }
158 
159 /*
160  * Return the first request for which blk_rq_pos() >= @pos. For zoned devices,
161  * return the first request after the start of the zone containing @pos.
162  */
deadline_from_pos(struct dd_per_prio * per_prio,enum dd_data_dir data_dir,sector_t pos)163 static inline struct request *deadline_from_pos(struct dd_per_prio *per_prio,
164 				enum dd_data_dir data_dir, sector_t pos)
165 {
166 	struct rb_node *node = per_prio->sort_list[data_dir].rb_node;
167 	struct request *rq, *res = NULL;
168 
169 	if (!node)
170 		return NULL;
171 
172 	rq = rb_entry_rq(node);
173 	/*
174 	 * A zoned write may have been requeued with a starting position that
175 	 * is below that of the most recently dispatched request. Hence, for
176 	 * zoned writes, start searching from the start of a zone.
177 	 */
178 	if (blk_rq_is_seq_zoned_write(rq))
179 		pos = round_down(pos, rq->q->limits.chunk_sectors);
180 
181 	while (node) {
182 		rq = rb_entry_rq(node);
183 		if (blk_rq_pos(rq) >= pos) {
184 			res = rq;
185 			node = node->rb_left;
186 		} else {
187 			node = node->rb_right;
188 		}
189 	}
190 	return res;
191 }
192 
193 static void
deadline_add_rq_rb(struct dd_per_prio * per_prio,struct request * rq)194 deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
195 {
196 	struct rb_root *root = deadline_rb_root(per_prio, rq);
197 
198 	elv_rb_add(root, rq);
199 }
200 
201 static inline void
deadline_del_rq_rb(struct dd_per_prio * per_prio,struct request * rq)202 deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
203 {
204 	elv_rb_del(deadline_rb_root(per_prio, rq), rq);
205 }
206 
207 /*
208  * remove rq from rbtree and fifo.
209  */
deadline_remove_request(struct request_queue * q,struct dd_per_prio * per_prio,struct request * rq)210 static void deadline_remove_request(struct request_queue *q,
211 				    struct dd_per_prio *per_prio,
212 				    struct request *rq)
213 {
214 	list_del_init(&rq->queuelist);
215 
216 	/*
217 	 * We might not be on the rbtree, if we are doing an insert merge
218 	 */
219 	if (!RB_EMPTY_NODE(&rq->rb_node))
220 		deadline_del_rq_rb(per_prio, rq);
221 
222 	elv_rqhash_del(q, rq);
223 	if (q->last_merge == rq)
224 		q->last_merge = NULL;
225 }
226 
dd_request_merged(struct request_queue * q,struct request * req,enum elv_merge type)227 static void dd_request_merged(struct request_queue *q, struct request *req,
228 			      enum elv_merge type)
229 {
230 	struct deadline_data *dd = q->elevator->elevator_data;
231 	const u8 ioprio_class = dd_rq_ioclass(req);
232 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
233 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
234 
235 	/*
236 	 * if the merge was a front merge, we need to reposition request
237 	 */
238 	if (type == ELEVATOR_FRONT_MERGE) {
239 		elv_rb_del(deadline_rb_root(per_prio, req), req);
240 		deadline_add_rq_rb(per_prio, req);
241 	}
242 }
243 
244 /*
245  * Callback function that is invoked after @next has been merged into @req.
246  */
dd_merged_requests(struct request_queue * q,struct request * req,struct request * next)247 static void dd_merged_requests(struct request_queue *q, struct request *req,
248 			       struct request *next)
249 {
250 	struct deadline_data *dd = q->elevator->elevator_data;
251 	const u8 ioprio_class = dd_rq_ioclass(next);
252 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
253 
254 	lockdep_assert_held(&dd->lock);
255 
256 	dd->per_prio[prio].stats.merged++;
257 
258 	/*
259 	 * if next expires before rq, assign its expire time to rq
260 	 * and move into next position (next will be deleted) in fifo
261 	 */
262 	if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
263 		if (time_before((unsigned long)next->fifo_time,
264 				(unsigned long)req->fifo_time)) {
265 			list_move(&req->queuelist, &next->queuelist);
266 			req->fifo_time = next->fifo_time;
267 		}
268 	}
269 
270 	/*
271 	 * kill knowledge of next, this one is a goner
272 	 */
273 	deadline_remove_request(q, &dd->per_prio[prio], next);
274 }
275 
276 /*
277  * move an entry to dispatch queue
278  */
279 static void
deadline_move_request(struct deadline_data * dd,struct dd_per_prio * per_prio,struct request * rq)280 deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
281 		      struct request *rq)
282 {
283 	/*
284 	 * take it off the sort and fifo list
285 	 */
286 	deadline_remove_request(rq->q, per_prio, rq);
287 }
288 
289 /* Number of requests queued for a given priority level. */
dd_queued(struct deadline_data * dd,enum dd_prio prio)290 static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio)
291 {
292 	const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
293 
294 	lockdep_assert_held(&dd->lock);
295 
296 	return stats->inserted - atomic_read(&stats->completed);
297 }
298 
299 /*
300  * deadline_check_fifo returns true if and only if there are expired requests
301  * in the FIFO list. Requires !list_empty(&dd->fifo_list[data_dir]).
302  */
deadline_check_fifo(struct dd_per_prio * per_prio,enum dd_data_dir data_dir)303 static inline bool deadline_check_fifo(struct dd_per_prio *per_prio,
304 				       enum dd_data_dir data_dir)
305 {
306 	struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
307 
308 	return time_is_before_eq_jiffies((unsigned long)rq->fifo_time);
309 }
310 
311 /*
312  * Check if rq has a sequential request preceding it.
313  */
deadline_is_seq_write(struct deadline_data * dd,struct request * rq)314 static bool deadline_is_seq_write(struct deadline_data *dd, struct request *rq)
315 {
316 	struct request *prev = deadline_earlier_request(rq);
317 
318 	if (!prev)
319 		return false;
320 
321 	return blk_rq_pos(prev) + blk_rq_sectors(prev) == blk_rq_pos(rq);
322 }
323 
324 /*
325  * Skip all write requests that are sequential from @rq, even if we cross
326  * a zone boundary.
327  */
deadline_skip_seq_writes(struct deadline_data * dd,struct request * rq)328 static struct request *deadline_skip_seq_writes(struct deadline_data *dd,
329 						struct request *rq)
330 {
331 	sector_t pos = blk_rq_pos(rq);
332 
333 	do {
334 		pos += blk_rq_sectors(rq);
335 		rq = deadline_latter_request(rq);
336 	} while (rq && blk_rq_pos(rq) == pos);
337 
338 	return rq;
339 }
340 
341 /*
342  * For the specified data direction, return the next request to
343  * dispatch using arrival ordered lists.
344  */
345 static struct request *
deadline_fifo_request(struct deadline_data * dd,struct dd_per_prio * per_prio,enum dd_data_dir data_dir)346 deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
347 		      enum dd_data_dir data_dir)
348 {
349 	struct request *rq, *rb_rq, *next;
350 	unsigned long flags;
351 
352 	if (list_empty(&per_prio->fifo_list[data_dir]))
353 		return NULL;
354 
355 	rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
356 	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
357 		return rq;
358 
359 	/*
360 	 * Look for a write request that can be dispatched, that is one with
361 	 * an unlocked target zone. For some HDDs, breaking a sequential
362 	 * write stream can lead to lower throughput, so make sure to preserve
363 	 * sequential write streams, even if that stream crosses into the next
364 	 * zones and these zones are unlocked.
365 	 */
366 	spin_lock_irqsave(&dd->zone_lock, flags);
367 	list_for_each_entry_safe(rq, next, &per_prio->fifo_list[DD_WRITE],
368 				 queuelist) {
369 		/* Check whether a prior request exists for the same zone. */
370 		rb_rq = deadline_from_pos(per_prio, data_dir, blk_rq_pos(rq));
371 		if (rb_rq && blk_rq_pos(rb_rq) < blk_rq_pos(rq))
372 			rq = rb_rq;
373 		if (blk_req_can_dispatch_to_zone(rq) &&
374 		    (blk_queue_nonrot(rq->q) ||
375 		     !deadline_is_seq_write(dd, rq)))
376 			goto out;
377 	}
378 	rq = NULL;
379 out:
380 	spin_unlock_irqrestore(&dd->zone_lock, flags);
381 
382 	return rq;
383 }
384 
385 /*
386  * For the specified data direction, return the next request to
387  * dispatch using sector position sorted lists.
388  */
389 static struct request *
deadline_next_request(struct deadline_data * dd,struct dd_per_prio * per_prio,enum dd_data_dir data_dir)390 deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
391 		      enum dd_data_dir data_dir)
392 {
393 	struct request *rq;
394 	unsigned long flags;
395 
396 	rq = deadline_from_pos(per_prio, data_dir,
397 			       per_prio->latest_pos[data_dir]);
398 	if (!rq)
399 		return NULL;
400 
401 	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
402 		return rq;
403 
404 	/*
405 	 * Look for a write request that can be dispatched, that is one with
406 	 * an unlocked target zone. For some HDDs, breaking a sequential
407 	 * write stream can lead to lower throughput, so make sure to preserve
408 	 * sequential write streams, even if that stream crosses into the next
409 	 * zones and these zones are unlocked.
410 	 */
411 	spin_lock_irqsave(&dd->zone_lock, flags);
412 	while (rq) {
413 		if (blk_req_can_dispatch_to_zone(rq))
414 			break;
415 		if (blk_queue_nonrot(rq->q))
416 			rq = deadline_latter_request(rq);
417 		else
418 			rq = deadline_skip_seq_writes(dd, rq);
419 	}
420 	spin_unlock_irqrestore(&dd->zone_lock, flags);
421 
422 	return rq;
423 }
424 
425 /*
426  * Returns true if and only if @rq started after @latest_start where
427  * @latest_start is in jiffies.
428  */
started_after(struct deadline_data * dd,struct request * rq,unsigned long latest_start)429 static bool started_after(struct deadline_data *dd, struct request *rq,
430 			  unsigned long latest_start)
431 {
432 	unsigned long start_time = (unsigned long)rq->fifo_time;
433 
434 	start_time -= dd->fifo_expire[rq_data_dir(rq)];
435 
436 	return time_after(start_time, latest_start);
437 }
438 
439 /*
440  * deadline_dispatch_requests selects the best request according to
441  * read/write expire, fifo_batch, etc and with a start time <= @latest_start.
442  */
__dd_dispatch_request(struct deadline_data * dd,struct dd_per_prio * per_prio,unsigned long latest_start)443 static struct request *__dd_dispatch_request(struct deadline_data *dd,
444 					     struct dd_per_prio *per_prio,
445 					     unsigned long latest_start)
446 {
447 	struct request *rq, *next_rq;
448 	enum dd_data_dir data_dir;
449 	enum dd_prio prio;
450 	u8 ioprio_class;
451 
452 	lockdep_assert_held(&dd->lock);
453 
454 	if (!list_empty(&per_prio->dispatch)) {
455 		rq = list_first_entry(&per_prio->dispatch, struct request,
456 				      queuelist);
457 		if (started_after(dd, rq, latest_start))
458 			return NULL;
459 		list_del_init(&rq->queuelist);
460 		data_dir = rq_data_dir(rq);
461 		goto done;
462 	}
463 
464 	/*
465 	 * batches are currently reads XOR writes
466 	 */
467 	rq = deadline_next_request(dd, per_prio, dd->last_dir);
468 	if (rq && dd->batching < dd->fifo_batch) {
469 		/* we have a next request and are still entitled to batch */
470 		data_dir = rq_data_dir(rq);
471 		goto dispatch_request;
472 	}
473 
474 	/*
475 	 * at this point we are not running a batch. select the appropriate
476 	 * data direction (read / write)
477 	 */
478 
479 	if (!list_empty(&per_prio->fifo_list[DD_READ])) {
480 		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ]));
481 
482 		if (deadline_fifo_request(dd, per_prio, DD_WRITE) &&
483 		    (dd->starved++ >= dd->writes_starved))
484 			goto dispatch_writes;
485 
486 		data_dir = DD_READ;
487 
488 		goto dispatch_find_request;
489 	}
490 
491 	/*
492 	 * there are either no reads or writes have been starved
493 	 */
494 
495 	if (!list_empty(&per_prio->fifo_list[DD_WRITE])) {
496 dispatch_writes:
497 		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE]));
498 
499 		dd->starved = 0;
500 
501 		data_dir = DD_WRITE;
502 
503 		goto dispatch_find_request;
504 	}
505 
506 	return NULL;
507 
508 dispatch_find_request:
509 	/*
510 	 * we are not running a batch, find best request for selected data_dir
511 	 */
512 	next_rq = deadline_next_request(dd, per_prio, data_dir);
513 	if (deadline_check_fifo(per_prio, data_dir) || !next_rq) {
514 		/*
515 		 * A deadline has expired, the last request was in the other
516 		 * direction, or we have run out of higher-sectored requests.
517 		 * Start again from the request with the earliest expiry time.
518 		 */
519 		rq = deadline_fifo_request(dd, per_prio, data_dir);
520 	} else {
521 		/*
522 		 * The last req was the same dir and we have a next request in
523 		 * sort order. No expired requests so continue on from here.
524 		 */
525 		rq = next_rq;
526 	}
527 
528 	/*
529 	 * For a zoned block device, if we only have writes queued and none of
530 	 * them can be dispatched, rq will be NULL.
531 	 */
532 	if (!rq)
533 		return NULL;
534 
535 	dd->last_dir = data_dir;
536 	dd->batching = 0;
537 
538 dispatch_request:
539 	if (started_after(dd, rq, latest_start))
540 		return NULL;
541 
542 	/*
543 	 * rq is the selected appropriate request.
544 	 */
545 	dd->batching++;
546 	deadline_move_request(dd, per_prio, rq);
547 done:
548 	ioprio_class = dd_rq_ioclass(rq);
549 	prio = ioprio_class_to_prio[ioprio_class];
550 	dd->per_prio[prio].latest_pos[data_dir] = blk_rq_pos(rq);
551 	dd->per_prio[prio].stats.dispatched++;
552 	/*
553 	 * If the request needs its target zone locked, do it.
554 	 */
555 	blk_req_zone_write_lock(rq);
556 	rq->rq_flags |= RQF_STARTED;
557 	return rq;
558 }
559 
560 /*
561  * Check whether there are any requests with priority other than DD_RT_PRIO
562  * that were inserted more than prio_aging_expire jiffies ago.
563  */
dd_dispatch_prio_aged_requests(struct deadline_data * dd,unsigned long now)564 static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd,
565 						      unsigned long now)
566 {
567 	struct request *rq;
568 	enum dd_prio prio;
569 	int prio_cnt;
570 
571 	lockdep_assert_held(&dd->lock);
572 
573 	prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) +
574 		   !!dd_queued(dd, DD_IDLE_PRIO);
575 	if (prio_cnt < 2)
576 		return NULL;
577 
578 	for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) {
579 		rq = __dd_dispatch_request(dd, &dd->per_prio[prio],
580 					   now - dd->prio_aging_expire);
581 		if (rq)
582 			return rq;
583 	}
584 
585 	return NULL;
586 }
587 
588 /*
589  * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests().
590  *
591  * One confusing aspect here is that we get called for a specific
592  * hardware queue, but we may return a request that is for a
593  * different hardware queue. This is because mq-deadline has shared
594  * state for all hardware queues, in terms of sorting, FIFOs, etc.
595  */
dd_dispatch_request(struct blk_mq_hw_ctx * hctx)596 static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx)
597 {
598 	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
599 	const unsigned long now = jiffies;
600 	struct request *rq;
601 	enum dd_prio prio;
602 
603 	spin_lock(&dd->lock);
604 	rq = dd_dispatch_prio_aged_requests(dd, now);
605 	if (rq)
606 		goto unlock;
607 
608 	/*
609 	 * Next, dispatch requests in priority order. Ignore lower priority
610 	 * requests if any higher priority requests are pending.
611 	 */
612 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
613 		rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now);
614 		if (rq || dd_queued(dd, prio))
615 			break;
616 	}
617 
618 unlock:
619 	spin_unlock(&dd->lock);
620 
621 	return rq;
622 }
623 
624 /*
625  * 'depth' is a number in the range 1..INT_MAX representing a number of
626  * requests. Scale it with a factor (1 << bt->sb.shift) / q->nr_requests since
627  * 1..(1 << bt->sb.shift) is the range expected by sbitmap_get_shallow().
628  * Values larger than q->nr_requests have the same effect as q->nr_requests.
629  */
dd_to_word_depth(struct blk_mq_hw_ctx * hctx,unsigned int qdepth)630 static int dd_to_word_depth(struct blk_mq_hw_ctx *hctx, unsigned int qdepth)
631 {
632 	struct sbitmap_queue *bt = &hctx->sched_tags->bitmap_tags;
633 	const unsigned int nrr = hctx->queue->nr_requests;
634 
635 	return ((qdepth << bt->sb.shift) + nrr - 1) / nrr;
636 }
637 
638 /*
639  * Called by __blk_mq_alloc_request(). The shallow_depth value set by this
640  * function is used by __blk_mq_get_tag().
641  */
dd_limit_depth(blk_opf_t opf,struct blk_mq_alloc_data * data)642 static void dd_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
643 {
644 	struct deadline_data *dd = data->q->elevator->elevator_data;
645 
646 	/* Do not throttle synchronous reads. */
647 	if (op_is_sync(opf) && !op_is_write(opf))
648 		return;
649 
650 	/*
651 	 * Throttle asynchronous requests and writes such that these requests
652 	 * do not block the allocation of synchronous requests.
653 	 */
654 	data->shallow_depth = dd_to_word_depth(data->hctx, dd->async_depth);
655 }
656 
657 /* Called by blk_mq_update_nr_requests(). */
dd_depth_updated(struct blk_mq_hw_ctx * hctx)658 static void dd_depth_updated(struct blk_mq_hw_ctx *hctx)
659 {
660 	struct request_queue *q = hctx->queue;
661 	struct deadline_data *dd = q->elevator->elevator_data;
662 	struct blk_mq_tags *tags = hctx->sched_tags;
663 
664 	dd->async_depth = q->nr_requests;
665 
666 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1);
667 }
668 
669 /* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */
dd_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)670 static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
671 {
672 	dd_depth_updated(hctx);
673 	return 0;
674 }
675 
dd_exit_sched(struct elevator_queue * e)676 static void dd_exit_sched(struct elevator_queue *e)
677 {
678 	struct deadline_data *dd = e->elevator_data;
679 	enum dd_prio prio;
680 
681 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
682 		struct dd_per_prio *per_prio = &dd->per_prio[prio];
683 		const struct io_stats_per_prio *stats = &per_prio->stats;
684 		uint32_t queued;
685 
686 		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ]));
687 		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE]));
688 
689 		spin_lock(&dd->lock);
690 		queued = dd_queued(dd, prio);
691 		spin_unlock(&dd->lock);
692 
693 		WARN_ONCE(queued != 0,
694 			  "statistics for priority %d: i %u m %u d %u c %u\n",
695 			  prio, stats->inserted, stats->merged,
696 			  stats->dispatched, atomic_read(&stats->completed));
697 	}
698 
699 	kfree(dd);
700 }
701 
702 /*
703  * initialize elevator private data (deadline_data).
704  */
dd_init_sched(struct request_queue * q,struct elevator_type * e)705 static int dd_init_sched(struct request_queue *q, struct elevator_type *e)
706 {
707 	struct deadline_data *dd;
708 	struct elevator_queue *eq;
709 	enum dd_prio prio;
710 	int ret = -ENOMEM;
711 
712 	eq = elevator_alloc(q, e);
713 	if (!eq)
714 		return ret;
715 
716 	dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
717 	if (!dd)
718 		goto put_eq;
719 
720 	eq->elevator_data = dd;
721 
722 	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
723 		struct dd_per_prio *per_prio = &dd->per_prio[prio];
724 
725 		INIT_LIST_HEAD(&per_prio->dispatch);
726 		INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]);
727 		INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]);
728 		per_prio->sort_list[DD_READ] = RB_ROOT;
729 		per_prio->sort_list[DD_WRITE] = RB_ROOT;
730 	}
731 	dd->fifo_expire[DD_READ] = read_expire;
732 	dd->fifo_expire[DD_WRITE] = write_expire;
733 	dd->writes_starved = writes_starved;
734 	dd->front_merges = 1;
735 	dd->last_dir = DD_WRITE;
736 	dd->fifo_batch = fifo_batch;
737 	dd->prio_aging_expire = prio_aging_expire;
738 	spin_lock_init(&dd->lock);
739 	spin_lock_init(&dd->zone_lock);
740 
741 	/* We dispatch from request queue wide instead of hw queue */
742 	blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
743 
744 	q->elevator = eq;
745 	return 0;
746 
747 put_eq:
748 	kobject_put(&eq->kobj);
749 	return ret;
750 }
751 
752 /*
753  * Try to merge @bio into an existing request. If @bio has been merged into
754  * an existing request, store the pointer to that request into *@rq.
755  */
dd_request_merge(struct request_queue * q,struct request ** rq,struct bio * bio)756 static int dd_request_merge(struct request_queue *q, struct request **rq,
757 			    struct bio *bio)
758 {
759 	struct deadline_data *dd = q->elevator->elevator_data;
760 	const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
761 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
762 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
763 	sector_t sector = bio_end_sector(bio);
764 	struct request *__rq;
765 
766 	if (!dd->front_merges)
767 		return ELEVATOR_NO_MERGE;
768 
769 	__rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector);
770 	if (__rq) {
771 		BUG_ON(sector != blk_rq_pos(__rq));
772 
773 		if (elv_bio_merge_ok(__rq, bio)) {
774 			*rq = __rq;
775 			if (blk_discard_mergable(__rq))
776 				return ELEVATOR_DISCARD_MERGE;
777 			return ELEVATOR_FRONT_MERGE;
778 		}
779 	}
780 
781 	return ELEVATOR_NO_MERGE;
782 }
783 
784 /*
785  * Attempt to merge a bio into an existing request. This function is called
786  * before @bio is associated with a request.
787  */
dd_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)788 static bool dd_bio_merge(struct request_queue *q, struct bio *bio,
789 		unsigned int nr_segs)
790 {
791 	struct deadline_data *dd = q->elevator->elevator_data;
792 	struct request *free = NULL;
793 	bool ret;
794 
795 	spin_lock(&dd->lock);
796 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
797 	spin_unlock(&dd->lock);
798 
799 	if (free)
800 		blk_mq_free_request(free);
801 
802 	return ret;
803 }
804 
805 /*
806  * add rq to rbtree and fifo
807  */
dd_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_insert_t flags,struct list_head * free)808 static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
809 			      blk_insert_t flags, struct list_head *free)
810 {
811 	struct request_queue *q = hctx->queue;
812 	struct deadline_data *dd = q->elevator->elevator_data;
813 	const enum dd_data_dir data_dir = rq_data_dir(rq);
814 	u16 ioprio = req_get_ioprio(rq);
815 	u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio);
816 	struct dd_per_prio *per_prio;
817 	enum dd_prio prio;
818 
819 	lockdep_assert_held(&dd->lock);
820 
821 	/*
822 	 * This may be a requeue of a write request that has locked its
823 	 * target zone. If it is the case, this releases the zone lock.
824 	 */
825 	blk_req_zone_write_unlock(rq);
826 
827 	prio = ioprio_class_to_prio[ioprio_class];
828 	per_prio = &dd->per_prio[prio];
829 	if (!rq->elv.priv[0]) {
830 		per_prio->stats.inserted++;
831 		rq->elv.priv[0] = (void *)(uintptr_t)1;
832 	}
833 
834 	if (blk_mq_sched_try_insert_merge(q, rq, free))
835 		return;
836 
837 	trace_block_rq_insert(rq);
838 
839 	if (flags & BLK_MQ_INSERT_AT_HEAD) {
840 		list_add(&rq->queuelist, &per_prio->dispatch);
841 		rq->fifo_time = jiffies;
842 	} else {
843 		struct list_head *insert_before;
844 
845 		deadline_add_rq_rb(per_prio, rq);
846 
847 		if (rq_mergeable(rq)) {
848 			elv_rqhash_add(q, rq);
849 			if (!q->last_merge)
850 				q->last_merge = rq;
851 		}
852 
853 		/*
854 		 * set expire time and add to fifo list
855 		 */
856 		rq->fifo_time = jiffies + dd->fifo_expire[data_dir];
857 		insert_before = &per_prio->fifo_list[data_dir];
858 #ifdef CONFIG_BLK_DEV_ZONED
859 		/*
860 		 * Insert zoned writes such that requests are sorted by
861 		 * position per zone.
862 		 */
863 		if (blk_rq_is_seq_zoned_write(rq)) {
864 			struct request *rq2 = deadline_latter_request(rq);
865 
866 			if (rq2 && blk_rq_zone_no(rq2) == blk_rq_zone_no(rq))
867 				insert_before = &rq2->queuelist;
868 		}
869 #endif
870 		list_add_tail(&rq->queuelist, insert_before);
871 	}
872 }
873 
874 /*
875  * Called from blk_mq_insert_request() or blk_mq_dispatch_plug_list().
876  */
dd_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * list,blk_insert_t flags)877 static void dd_insert_requests(struct blk_mq_hw_ctx *hctx,
878 			       struct list_head *list,
879 			       blk_insert_t flags)
880 {
881 	struct request_queue *q = hctx->queue;
882 	struct deadline_data *dd = q->elevator->elevator_data;
883 	LIST_HEAD(free);
884 
885 	spin_lock(&dd->lock);
886 	while (!list_empty(list)) {
887 		struct request *rq;
888 
889 		rq = list_first_entry(list, struct request, queuelist);
890 		list_del_init(&rq->queuelist);
891 		dd_insert_request(hctx, rq, flags, &free);
892 	}
893 	spin_unlock(&dd->lock);
894 
895 	blk_mq_free_requests(&free);
896 }
897 
898 /* Callback from inside blk_mq_rq_ctx_init(). */
dd_prepare_request(struct request * rq)899 static void dd_prepare_request(struct request *rq)
900 {
901 	rq->elv.priv[0] = NULL;
902 }
903 
dd_has_write_work(struct blk_mq_hw_ctx * hctx)904 static bool dd_has_write_work(struct blk_mq_hw_ctx *hctx)
905 {
906 	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
907 	enum dd_prio p;
908 
909 	for (p = 0; p <= DD_PRIO_MAX; p++)
910 		if (!list_empty_careful(&dd->per_prio[p].fifo_list[DD_WRITE]))
911 			return true;
912 
913 	return false;
914 }
915 
916 /*
917  * Callback from inside blk_mq_free_request().
918  *
919  * For zoned block devices, write unlock the target zone of
920  * completed write requests. Do this while holding the zone lock
921  * spinlock so that the zone is never unlocked while deadline_fifo_request()
922  * or deadline_next_request() are executing. This function is called for
923  * all requests, whether or not these requests complete successfully.
924  *
925  * For a zoned block device, __dd_dispatch_request() may have stopped
926  * dispatching requests if all the queued requests are write requests directed
927  * at zones that are already locked due to on-going write requests. To ensure
928  * write request dispatch progress in this case, mark the queue as needing a
929  * restart to ensure that the queue is run again after completion of the
930  * request and zones being unlocked.
931  */
dd_finish_request(struct request * rq)932 static void dd_finish_request(struct request *rq)
933 {
934 	struct request_queue *q = rq->q;
935 	struct deadline_data *dd = q->elevator->elevator_data;
936 	const u8 ioprio_class = dd_rq_ioclass(rq);
937 	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
938 	struct dd_per_prio *per_prio = &dd->per_prio[prio];
939 
940 	/*
941 	 * The block layer core may call dd_finish_request() without having
942 	 * called dd_insert_requests(). Skip requests that bypassed I/O
943 	 * scheduling. See also blk_mq_request_bypass_insert().
944 	 */
945 	if (!rq->elv.priv[0])
946 		return;
947 
948 	atomic_inc(&per_prio->stats.completed);
949 
950 	if (blk_queue_is_zoned(q)) {
951 		unsigned long flags;
952 
953 		spin_lock_irqsave(&dd->zone_lock, flags);
954 		blk_req_zone_write_unlock(rq);
955 		spin_unlock_irqrestore(&dd->zone_lock, flags);
956 
957 		if (dd_has_write_work(rq->mq_hctx))
958 			blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
959 	}
960 }
961 
dd_has_work_for_prio(struct dd_per_prio * per_prio)962 static bool dd_has_work_for_prio(struct dd_per_prio *per_prio)
963 {
964 	return !list_empty_careful(&per_prio->dispatch) ||
965 		!list_empty_careful(&per_prio->fifo_list[DD_READ]) ||
966 		!list_empty_careful(&per_prio->fifo_list[DD_WRITE]);
967 }
968 
dd_has_work(struct blk_mq_hw_ctx * hctx)969 static bool dd_has_work(struct blk_mq_hw_ctx *hctx)
970 {
971 	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
972 	enum dd_prio prio;
973 
974 	for (prio = 0; prio <= DD_PRIO_MAX; prio++)
975 		if (dd_has_work_for_prio(&dd->per_prio[prio]))
976 			return true;
977 
978 	return false;
979 }
980 
981 /*
982  * sysfs parts below
983  */
984 #define SHOW_INT(__FUNC, __VAR)						\
985 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
986 {									\
987 	struct deadline_data *dd = e->elevator_data;			\
988 									\
989 	return sysfs_emit(page, "%d\n", __VAR);				\
990 }
991 #define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR))
992 SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]);
993 SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]);
994 SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire);
995 SHOW_INT(deadline_writes_starved_show, dd->writes_starved);
996 SHOW_INT(deadline_front_merges_show, dd->front_merges);
997 SHOW_INT(deadline_async_depth_show, dd->async_depth);
998 SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch);
999 #undef SHOW_INT
1000 #undef SHOW_JIFFIES
1001 
1002 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
1003 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
1004 {									\
1005 	struct deadline_data *dd = e->elevator_data;			\
1006 	int __data, __ret;						\
1007 									\
1008 	__ret = kstrtoint(page, 0, &__data);				\
1009 	if (__ret < 0)							\
1010 		return __ret;						\
1011 	if (__data < (MIN))						\
1012 		__data = (MIN);						\
1013 	else if (__data > (MAX))					\
1014 		__data = (MAX);						\
1015 	*(__PTR) = __CONV(__data);					\
1016 	return count;							\
1017 }
1018 #define STORE_INT(__FUNC, __PTR, MIN, MAX)				\
1019 	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, )
1020 #define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX)				\
1021 	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies)
1022 STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX);
1023 STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX);
1024 STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX);
1025 STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX);
1026 STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1);
1027 STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX);
1028 STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX);
1029 #undef STORE_FUNCTION
1030 #undef STORE_INT
1031 #undef STORE_JIFFIES
1032 
1033 #define DD_ATTR(name) \
1034 	__ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store)
1035 
1036 static struct elv_fs_entry deadline_attrs[] = {
1037 	DD_ATTR(read_expire),
1038 	DD_ATTR(write_expire),
1039 	DD_ATTR(writes_starved),
1040 	DD_ATTR(front_merges),
1041 	DD_ATTR(async_depth),
1042 	DD_ATTR(fifo_batch),
1043 	DD_ATTR(prio_aging_expire),
1044 	__ATTR_NULL
1045 };
1046 
1047 #ifdef CONFIG_BLK_DEBUG_FS
1048 #define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name)		\
1049 static void *deadline_##name##_fifo_start(struct seq_file *m,		\
1050 					  loff_t *pos)			\
1051 	__acquires(&dd->lock)						\
1052 {									\
1053 	struct request_queue *q = m->private;				\
1054 	struct deadline_data *dd = q->elevator->elevator_data;		\
1055 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1056 									\
1057 	spin_lock(&dd->lock);						\
1058 	return seq_list_start(&per_prio->fifo_list[data_dir], *pos);	\
1059 }									\
1060 									\
1061 static void *deadline_##name##_fifo_next(struct seq_file *m, void *v,	\
1062 					 loff_t *pos)			\
1063 {									\
1064 	struct request_queue *q = m->private;				\
1065 	struct deadline_data *dd = q->elevator->elevator_data;		\
1066 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1067 									\
1068 	return seq_list_next(v, &per_prio->fifo_list[data_dir], pos);	\
1069 }									\
1070 									\
1071 static void deadline_##name##_fifo_stop(struct seq_file *m, void *v)	\
1072 	__releases(&dd->lock)						\
1073 {									\
1074 	struct request_queue *q = m->private;				\
1075 	struct deadline_data *dd = q->elevator->elevator_data;		\
1076 									\
1077 	spin_unlock(&dd->lock);						\
1078 }									\
1079 									\
1080 static const struct seq_operations deadline_##name##_fifo_seq_ops = {	\
1081 	.start	= deadline_##name##_fifo_start,				\
1082 	.next	= deadline_##name##_fifo_next,				\
1083 	.stop	= deadline_##name##_fifo_stop,				\
1084 	.show	= blk_mq_debugfs_rq_show,				\
1085 };									\
1086 									\
1087 static int deadline_##name##_next_rq_show(void *data,			\
1088 					  struct seq_file *m)		\
1089 {									\
1090 	struct request_queue *q = data;					\
1091 	struct deadline_data *dd = q->elevator->elevator_data;		\
1092 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1093 	struct request *rq;						\
1094 									\
1095 	rq = deadline_from_pos(per_prio, data_dir,			\
1096 			       per_prio->latest_pos[data_dir]);		\
1097 	if (rq)								\
1098 		__blk_mq_debugfs_rq_show(m, rq);			\
1099 	return 0;							\
1100 }
1101 
1102 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0);
1103 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0);
1104 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1);
1105 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1);
1106 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2);
1107 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2);
1108 #undef DEADLINE_DEBUGFS_DDIR_ATTRS
1109 
deadline_batching_show(void * data,struct seq_file * m)1110 static int deadline_batching_show(void *data, struct seq_file *m)
1111 {
1112 	struct request_queue *q = data;
1113 	struct deadline_data *dd = q->elevator->elevator_data;
1114 
1115 	seq_printf(m, "%u\n", dd->batching);
1116 	return 0;
1117 }
1118 
deadline_starved_show(void * data,struct seq_file * m)1119 static int deadline_starved_show(void *data, struct seq_file *m)
1120 {
1121 	struct request_queue *q = data;
1122 	struct deadline_data *dd = q->elevator->elevator_data;
1123 
1124 	seq_printf(m, "%u\n", dd->starved);
1125 	return 0;
1126 }
1127 
dd_async_depth_show(void * data,struct seq_file * m)1128 static int dd_async_depth_show(void *data, struct seq_file *m)
1129 {
1130 	struct request_queue *q = data;
1131 	struct deadline_data *dd = q->elevator->elevator_data;
1132 
1133 	seq_printf(m, "%u\n", dd->async_depth);
1134 	return 0;
1135 }
1136 
dd_queued_show(void * data,struct seq_file * m)1137 static int dd_queued_show(void *data, struct seq_file *m)
1138 {
1139 	struct request_queue *q = data;
1140 	struct deadline_data *dd = q->elevator->elevator_data;
1141 	u32 rt, be, idle;
1142 
1143 	spin_lock(&dd->lock);
1144 	rt = dd_queued(dd, DD_RT_PRIO);
1145 	be = dd_queued(dd, DD_BE_PRIO);
1146 	idle = dd_queued(dd, DD_IDLE_PRIO);
1147 	spin_unlock(&dd->lock);
1148 
1149 	seq_printf(m, "%u %u %u\n", rt, be, idle);
1150 
1151 	return 0;
1152 }
1153 
1154 /* Number of requests owned by the block driver for a given priority. */
dd_owned_by_driver(struct deadline_data * dd,enum dd_prio prio)1155 static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio)
1156 {
1157 	const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
1158 
1159 	lockdep_assert_held(&dd->lock);
1160 
1161 	return stats->dispatched + stats->merged -
1162 		atomic_read(&stats->completed);
1163 }
1164 
dd_owned_by_driver_show(void * data,struct seq_file * m)1165 static int dd_owned_by_driver_show(void *data, struct seq_file *m)
1166 {
1167 	struct request_queue *q = data;
1168 	struct deadline_data *dd = q->elevator->elevator_data;
1169 	u32 rt, be, idle;
1170 
1171 	spin_lock(&dd->lock);
1172 	rt = dd_owned_by_driver(dd, DD_RT_PRIO);
1173 	be = dd_owned_by_driver(dd, DD_BE_PRIO);
1174 	idle = dd_owned_by_driver(dd, DD_IDLE_PRIO);
1175 	spin_unlock(&dd->lock);
1176 
1177 	seq_printf(m, "%u %u %u\n", rt, be, idle);
1178 
1179 	return 0;
1180 }
1181 
1182 #define DEADLINE_DISPATCH_ATTR(prio)					\
1183 static void *deadline_dispatch##prio##_start(struct seq_file *m,	\
1184 					     loff_t *pos)		\
1185 	__acquires(&dd->lock)						\
1186 {									\
1187 	struct request_queue *q = m->private;				\
1188 	struct deadline_data *dd = q->elevator->elevator_data;		\
1189 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1190 									\
1191 	spin_lock(&dd->lock);						\
1192 	return seq_list_start(&per_prio->dispatch, *pos);		\
1193 }									\
1194 									\
1195 static void *deadline_dispatch##prio##_next(struct seq_file *m,		\
1196 					    void *v, loff_t *pos)	\
1197 {									\
1198 	struct request_queue *q = m->private;				\
1199 	struct deadline_data *dd = q->elevator->elevator_data;		\
1200 	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1201 									\
1202 	return seq_list_next(v, &per_prio->dispatch, pos);		\
1203 }									\
1204 									\
1205 static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v)	\
1206 	__releases(&dd->lock)						\
1207 {									\
1208 	struct request_queue *q = m->private;				\
1209 	struct deadline_data *dd = q->elevator->elevator_data;		\
1210 									\
1211 	spin_unlock(&dd->lock);						\
1212 }									\
1213 									\
1214 static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \
1215 	.start	= deadline_dispatch##prio##_start,			\
1216 	.next	= deadline_dispatch##prio##_next,			\
1217 	.stop	= deadline_dispatch##prio##_stop,			\
1218 	.show	= blk_mq_debugfs_rq_show,				\
1219 }
1220 
1221 DEADLINE_DISPATCH_ATTR(0);
1222 DEADLINE_DISPATCH_ATTR(1);
1223 DEADLINE_DISPATCH_ATTR(2);
1224 #undef DEADLINE_DISPATCH_ATTR
1225 
1226 #define DEADLINE_QUEUE_DDIR_ATTRS(name)					\
1227 	{#name "_fifo_list", 0400,					\
1228 			.seq_ops = &deadline_##name##_fifo_seq_ops}
1229 #define DEADLINE_NEXT_RQ_ATTR(name)					\
1230 	{#name "_next_rq", 0400, deadline_##name##_next_rq_show}
1231 static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = {
1232 	DEADLINE_QUEUE_DDIR_ATTRS(read0),
1233 	DEADLINE_QUEUE_DDIR_ATTRS(write0),
1234 	DEADLINE_QUEUE_DDIR_ATTRS(read1),
1235 	DEADLINE_QUEUE_DDIR_ATTRS(write1),
1236 	DEADLINE_QUEUE_DDIR_ATTRS(read2),
1237 	DEADLINE_QUEUE_DDIR_ATTRS(write2),
1238 	DEADLINE_NEXT_RQ_ATTR(read0),
1239 	DEADLINE_NEXT_RQ_ATTR(write0),
1240 	DEADLINE_NEXT_RQ_ATTR(read1),
1241 	DEADLINE_NEXT_RQ_ATTR(write1),
1242 	DEADLINE_NEXT_RQ_ATTR(read2),
1243 	DEADLINE_NEXT_RQ_ATTR(write2),
1244 	{"batching", 0400, deadline_batching_show},
1245 	{"starved", 0400, deadline_starved_show},
1246 	{"async_depth", 0400, dd_async_depth_show},
1247 	{"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops},
1248 	{"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops},
1249 	{"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops},
1250 	{"owned_by_driver", 0400, dd_owned_by_driver_show},
1251 	{"queued", 0400, dd_queued_show},
1252 	{},
1253 };
1254 #undef DEADLINE_QUEUE_DDIR_ATTRS
1255 #endif
1256 
1257 static struct elevator_type mq_deadline = {
1258 	.ops = {
1259 		.depth_updated		= dd_depth_updated,
1260 		.limit_depth		= dd_limit_depth,
1261 		.insert_requests	= dd_insert_requests,
1262 		.dispatch_request	= dd_dispatch_request,
1263 		.prepare_request	= dd_prepare_request,
1264 		.finish_request		= dd_finish_request,
1265 		.next_request		= elv_rb_latter_request,
1266 		.former_request		= elv_rb_former_request,
1267 		.bio_merge		= dd_bio_merge,
1268 		.request_merge		= dd_request_merge,
1269 		.requests_merged	= dd_merged_requests,
1270 		.request_merged		= dd_request_merged,
1271 		.has_work		= dd_has_work,
1272 		.init_sched		= dd_init_sched,
1273 		.exit_sched		= dd_exit_sched,
1274 		.init_hctx		= dd_init_hctx,
1275 	},
1276 
1277 #ifdef CONFIG_BLK_DEBUG_FS
1278 	.queue_debugfs_attrs = deadline_queue_debugfs_attrs,
1279 #endif
1280 	.elevator_attrs = deadline_attrs,
1281 	.elevator_name = "mq-deadline",
1282 	.elevator_alias = "deadline",
1283 	.elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
1284 	.elevator_owner = THIS_MODULE,
1285 };
1286 MODULE_ALIAS("mq-deadline-iosched");
1287 
deadline_init(void)1288 static int __init deadline_init(void)
1289 {
1290 	return elv_register(&mq_deadline);
1291 }
1292 
deadline_exit(void)1293 static void __exit deadline_exit(void)
1294 {
1295 	elv_unregister(&mq_deadline);
1296 }
1297 
1298 module_init(deadline_init);
1299 module_exit(deadline_exit);
1300 
1301 MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche");
1302 MODULE_LICENSE("GPL");
1303 MODULE_DESCRIPTION("MQ deadline IO scheduler");
1304