xref: /openbmc/qemu/rust/hw/char/pl011/src/lib.rs (revision a1dacb66915eb7d08a0596cc97068a37c39930d3)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 //
5 // PL011 QEMU Device Model
6 //
7 // This library implements a device model for the PrimeCell® UART (PL011)
8 // device in QEMU.
9 //
10 #![doc = include_str!("../README.md")]
11 //! # Library crate
12 //!
13 //! See [`PL011State`](crate::device::PL011State) for the device model type and
14 //! the [`registers`] module for register types.
15 
16 #![deny(
17     rustdoc::broken_intra_doc_links,
18     rustdoc::redundant_explicit_links,
19     clippy::correctness,
20     clippy::suspicious,
21     clippy::complexity,
22     clippy::perf,
23     clippy::cargo,
24     clippy::nursery,
25     clippy::style,
26     // restriction group
27     clippy::dbg_macro,
28     clippy::as_underscore,
29     clippy::assertions_on_result_states,
30     // pedantic group
31     clippy::doc_markdown,
32     clippy::borrow_as_ptr,
33     clippy::cast_lossless,
34     clippy::option_if_let_else,
35     clippy::missing_const_for_fn,
36     clippy::cognitive_complexity,
37     clippy::missing_safety_doc,
38     )]
39 #![allow(clippy::result_unit_err)]
40 
41 extern crate bilge;
42 extern crate bilge_impl;
43 extern crate qemu_api;
44 
45 use qemu_api::c_str;
46 
47 pub mod device;
48 pub mod device_class;
49 pub mod memory_ops;
50 
51 pub const TYPE_PL011: &::std::ffi::CStr = c_str!("pl011");
52 pub const TYPE_PL011_LUMINARY: &::std::ffi::CStr = c_str!("pl011_luminary");
53 
54 /// Offset of each register from the base memory address of the device.
55 ///
56 /// # Source
57 /// ARM DDI 0183G, Table 3-1 p.3-3
58 #[doc(alias = "offset")]
59 #[allow(non_camel_case_types)]
60 #[repr(u64)]
61 #[derive(Debug)]
62 pub enum RegisterOffset {
63     /// Data Register
64     ///
65     /// A write to this register initiates the actual data transmission
66     #[doc(alias = "UARTDR")]
67     DR = 0x000,
68     /// Receive Status Register or Error Clear Register
69     #[doc(alias = "UARTRSR")]
70     #[doc(alias = "UARTECR")]
71     RSR = 0x004,
72     /// Flag Register
73     ///
74     /// A read of this register shows if transmission is complete
75     #[doc(alias = "UARTFR")]
76     FR = 0x018,
77     /// Fractional Baud Rate Register
78     ///
79     /// responsible for baud rate speed
80     #[doc(alias = "UARTFBRD")]
81     FBRD = 0x028,
82     /// `IrDA` Low-Power Counter Register
83     #[doc(alias = "UARTILPR")]
84     ILPR = 0x020,
85     /// Integer Baud Rate Register
86     ///
87     /// Responsible for baud rate speed
88     #[doc(alias = "UARTIBRD")]
89     IBRD = 0x024,
90     /// line control register (data frame format)
91     #[doc(alias = "UARTLCR_H")]
92     LCR_H = 0x02C,
93     /// Toggle UART, transmission or reception
94     #[doc(alias = "UARTCR")]
95     CR = 0x030,
96     /// Interrupt FIFO Level Select Register
97     #[doc(alias = "UARTIFLS")]
98     FLS = 0x034,
99     /// Interrupt Mask Set/Clear Register
100     #[doc(alias = "UARTIMSC")]
101     IMSC = 0x038,
102     /// Raw Interrupt Status Register
103     #[doc(alias = "UARTRIS")]
104     RIS = 0x03C,
105     /// Masked Interrupt Status Register
106     #[doc(alias = "UARTMIS")]
107     MIS = 0x040,
108     /// Interrupt Clear Register
109     #[doc(alias = "UARTICR")]
110     ICR = 0x044,
111     /// DMA control Register
112     #[doc(alias = "UARTDMACR")]
113     DMACR = 0x048,
114     ///// Reserved, offsets `0x04C` to `0x07C`.
115     //Reserved = 0x04C,
116 }
117 
118 impl core::convert::TryFrom<u64> for RegisterOffset {
119     type Error = u64;
120 
try_from(value: u64) -> Result<Self, Self::Error>121     fn try_from(value: u64) -> Result<Self, Self::Error> {
122         macro_rules! case {
123             ($($discriminant:ident),*$(,)*) => {
124                 /* check that matching on all macro arguments compiles, which means we are not
125                  * missing any enum value; if the type definition ever changes this will stop
126                  * compiling.
127                  */
128                 const fn _assert_exhaustive(val: RegisterOffset) {
129                     match val {
130                         $(RegisterOffset::$discriminant => (),)*
131                     }
132                 }
133 
134                 match value {
135                     $(x if x == Self::$discriminant as u64 => Ok(Self::$discriminant),)*
136                      _ => Err(value),
137                 }
138             }
139         }
140         case! { DR, RSR, FR, FBRD, ILPR, IBRD, LCR_H, CR, FLS, IMSC, RIS, MIS, ICR, DMACR }
141     }
142 }
143 
144 pub mod registers {
145     //! Device registers exposed as typed structs which are backed by arbitrary
146     //! integer bitmaps. [`Data`], [`Control`], [`LineControl`], etc.
147     //!
148     //! All PL011 registers are essentially 32-bit wide, but are typed here as
149     //! bitmaps with only the necessary width. That is, if a struct bitmap
150     //! in this module is for example 16 bits long, it should be conceived
151     //! as a 32-bit register where the unmentioned higher bits are always
152     //! unused thus treated as zero when read or written.
153     use bilge::prelude::*;
154 
155     // TODO: FIFO Mode has different semantics
156     /// Data Register, `UARTDR`
157     ///
158     /// The `UARTDR` register is the data register.
159     ///
160     /// For words to be transmitted:
161     ///
162     /// - if the FIFOs are enabled, data written to this location is pushed onto
163     ///   the transmit
164     /// FIFO
165     /// - if the FIFOs are not enabled, data is stored in the transmitter
166     ///   holding register (the
167     /// bottom word of the transmit FIFO).
168     ///
169     /// The write operation initiates transmission from the UART. The data is
170     /// prefixed with a start bit, appended with the appropriate parity bit
171     /// (if parity is enabled), and a stop bit. The resultant word is then
172     /// transmitted.
173     ///
174     /// For received words:
175     ///
176     /// - if the FIFOs are enabled, the data byte and the 4-bit status (break,
177     ///   frame, parity,
178     /// and overrun) is pushed onto the 12-bit wide receive FIFO
179     /// - if the FIFOs are not enabled, the data byte and status are stored in
180     ///   the receiving
181     /// holding register (the bottom word of the receive FIFO).
182     ///
183     /// The received data byte is read by performing reads from the `UARTDR`
184     /// register along with the corresponding status information. The status
185     /// information can also be read by a read of the `UARTRSR/UARTECR`
186     /// register.
187     ///
188     /// # Note
189     ///
190     /// You must disable the UART before any of the control registers are
191     /// reprogrammed. When the UART is disabled in the middle of
192     /// transmission or reception, it completes the current character before
193     /// stopping.
194     ///
195     /// # Source
196     /// ARM DDI 0183G 3.3.1 Data Register, UARTDR
197     #[bitsize(16)]
198     #[derive(Clone, Copy, DebugBits, FromBits)]
199     #[doc(alias = "UARTDR")]
200     pub struct Data {
201         _reserved: u4,
202         pub data: u8,
203         pub framing_error: bool,
204         pub parity_error: bool,
205         pub break_error: bool,
206         pub overrun_error: bool,
207     }
208 
209     // TODO: FIFO Mode has different semantics
210     /// Receive Status Register / Error Clear Register, `UARTRSR/UARTECR`
211     ///
212     /// The UARTRSR/UARTECR register is the receive status register/error clear
213     /// register. Receive status can also be read from the `UARTRSR`
214     /// register. If the status is read from this register, then the status
215     /// information for break, framing and parity corresponds to the
216     /// data character read from the [Data register](Data), `UARTDR` prior to
217     /// reading the UARTRSR register. The status information for overrun is
218     /// set immediately when an overrun condition occurs.
219     ///
220     ///
221     /// # Note
222     /// The received data character must be read first from the [Data
223     /// Register](Data), `UARTDR` before reading the error status associated
224     /// with that data character from the `UARTRSR` register. This read
225     /// sequence cannot be reversed, because the `UARTRSR` register is
226     /// updated only when a read occurs from the `UARTDR` register. However,
227     /// the status information can also be obtained by reading the `UARTDR`
228     /// register
229     ///
230     /// # Source
231     /// ARM DDI 0183G 3.3.2 Receive Status Register/Error Clear Register,
232     /// UARTRSR/UARTECR
233     #[bitsize(8)]
234     #[derive(Clone, Copy, DebugBits, FromBits)]
235     pub struct ReceiveStatusErrorClear {
236         pub framing_error: bool,
237         pub parity_error: bool,
238         pub break_error: bool,
239         pub overrun_error: bool,
240         _reserved_unpredictable: u4,
241     }
242 
243     impl ReceiveStatusErrorClear {
reset(&mut self)244         pub fn reset(&mut self) {
245             // All the bits are cleared to 0 on reset.
246             *self = 0.into();
247         }
248     }
249 
250     impl Default for ReceiveStatusErrorClear {
default() -> Self251         fn default() -> Self {
252             0.into()
253         }
254     }
255 
256     #[bitsize(16)]
257     #[derive(Clone, Copy, DebugBits, FromBits)]
258     /// Flag Register, `UARTFR`
259     #[doc(alias = "UARTFR")]
260     pub struct Flags {
261         /// CTS Clear to send. This bit is the complement of the UART clear to
262         /// send, `nUARTCTS`, modem status input. That is, the bit is 1
263         /// when `nUARTCTS` is LOW.
264         pub clear_to_send: bool,
265         /// DSR Data set ready. This bit is the complement of the UART data set
266         /// ready, `nUARTDSR`, modem status input. That is, the bit is 1 when
267         /// `nUARTDSR` is LOW.
268         pub data_set_ready: bool,
269         /// DCD Data carrier detect. This bit is the complement of the UART data
270         /// carrier detect, `nUARTDCD`, modem status input. That is, the bit is
271         /// 1 when `nUARTDCD` is LOW.
272         pub data_carrier_detect: bool,
273         /// BUSY UART busy. If this bit is set to 1, the UART is busy
274         /// transmitting data. This bit remains set until the complete
275         /// byte, including all the stop bits, has been sent from the
276         /// shift register. This bit is set as soon as the transmit FIFO
277         /// becomes non-empty, regardless of whether the UART is enabled
278         /// or not.
279         pub busy: bool,
280         /// RXFE Receive FIFO empty. The meaning of this bit depends on the
281         /// state of the FEN bit in the UARTLCR_H register. If the FIFO
282         /// is disabled, this bit is set when the receive holding
283         /// register is empty. If the FIFO is enabled, the RXFE bit is
284         /// set when the receive FIFO is empty.
285         pub receive_fifo_empty: bool,
286         /// TXFF Transmit FIFO full. The meaning of this bit depends on the
287         /// state of the FEN bit in the UARTLCR_H register. If the FIFO
288         /// is disabled, this bit is set when the transmit holding
289         /// register is full. If the FIFO is enabled, the TXFF bit is
290         /// set when the transmit FIFO is full.
291         pub transmit_fifo_full: bool,
292         /// RXFF Receive FIFO full. The meaning of this bit depends on the state
293         /// of the FEN bit in the UARTLCR_H register. If the FIFO is
294         /// disabled, this bit is set when the receive holding register
295         /// is full. If the FIFO is enabled, the RXFF bit is set when
296         /// the receive FIFO is full.
297         pub receive_fifo_full: bool,
298         /// Transmit FIFO empty. The meaning of this bit depends on the state of
299         /// the FEN bit in the [Line Control register](LineControl),
300         /// `UARTLCR_H`. If the FIFO is disabled, this bit is set when the
301         /// transmit holding register is empty. If the FIFO is enabled,
302         /// the TXFE bit is set when the transmit FIFO is empty. This
303         /// bit does not indicate if there is data in the transmit shift
304         /// register.
305         pub transmit_fifo_empty: bool,
306         /// `RI`, is `true` when `nUARTRI` is `LOW`.
307         pub ring_indicator: bool,
308         _reserved_zero_no_modify: u7,
309     }
310 
311     impl Flags {
reset(&mut self)312         pub fn reset(&mut self) {
313             // After reset TXFF, RXFF, and BUSY are 0, and TXFE and RXFE are 1
314             self.set_receive_fifo_full(false);
315             self.set_transmit_fifo_full(false);
316             self.set_busy(false);
317             self.set_receive_fifo_empty(true);
318             self.set_transmit_fifo_empty(true);
319         }
320     }
321 
322     impl Default for Flags {
default() -> Self323         fn default() -> Self {
324             let mut ret: Self = 0.into();
325             ret.reset();
326             ret
327         }
328     }
329 
330     #[bitsize(16)]
331     #[derive(Clone, Copy, DebugBits, FromBits)]
332     /// Line Control Register, `UARTLCR_H`
333     #[doc(alias = "UARTLCR_H")]
334     pub struct LineControl {
335         /// 15:8 - Reserved, do not modify, read as zero.
336         _reserved_zero_no_modify: u8,
337         /// 7 SPS Stick parity select.
338         /// 0 = stick parity is disabled
339         /// 1 = either:
340         /// • if the EPS bit is 0 then the parity bit is transmitted and checked
341         /// as a 1 • if the EPS bit is 1 then the parity bit is
342         /// transmitted and checked as a 0. This bit has no effect when
343         /// the PEN bit disables parity checking and generation. See Table 3-11
344         /// on page 3-14 for the parity truth table.
345         pub sticky_parity: bool,
346         /// WLEN Word length. These bits indicate the number of data bits
347         /// transmitted or received in a frame as follows: b11 = 8 bits
348         /// b10 = 7 bits
349         /// b01 = 6 bits
350         /// b00 = 5 bits.
351         pub word_length: WordLength,
352         /// FEN Enable FIFOs:
353         /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
354         /// 1-byte-deep holding registers 1 = transmit and receive FIFO
355         /// buffers are enabled (FIFO mode).
356         pub fifos_enabled: Mode,
357         /// 3 STP2 Two stop bits select. If this bit is set to 1, two stop bits
358         /// are transmitted at the end of the frame. The receive
359         /// logic does not check for two stop bits being received.
360         pub two_stops_bits: bool,
361         /// EPS Even parity select. Controls the type of parity the UART uses
362         /// during transmission and reception:
363         /// - 0 = odd parity. The UART generates or checks for an odd number of
364         ///   1s in the data and parity bits.
365         /// - 1 = even parity. The UART generates or checks for an even number
366         ///   of 1s in the data and parity bits.
367         /// This bit has no effect when the `PEN` bit disables parity checking
368         /// and generation. See Table 3-11 on page 3-14 for the parity
369         /// truth table.
370         pub parity: Parity,
371         /// 1 PEN Parity enable:
372         ///
373         /// - 0 = parity is disabled and no parity bit added to the data frame
374         /// - 1 = parity checking and generation is enabled.
375         ///
376         /// See Table 3-11 on page 3-14 for the parity truth table.
377         pub parity_enabled: bool,
378         /// BRK Send break.
379         ///
380         /// If this bit is set to `1`, a low-level is continually output on the
381         /// `UARTTXD` output, after completing transmission of the
382         /// current character. For the proper execution of the break command,
383         /// the software must set this bit for at least two complete
384         /// frames. For normal use, this bit must be cleared to `0`.
385         pub send_break: bool,
386     }
387 
388     impl LineControl {
reset(&mut self)389         pub fn reset(&mut self) {
390             // All the bits are cleared to 0 when reset.
391             *self = 0.into();
392         }
393     }
394 
395     impl Default for LineControl {
default() -> Self396         fn default() -> Self {
397             0.into()
398         }
399     }
400 
401     #[bitsize(1)]
402     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
403     /// `EPS` "Even parity select", field of [Line Control
404     /// register](LineControl).
405     pub enum Parity {
406         /// - 0 = odd parity. The UART generates or checks for an odd number of
407         ///   1s in the data and parity bits.
408         Odd = 0,
409         /// - 1 = even parity. The UART generates or checks for an even number
410         ///   of 1s in the data and parity bits.
411         Even = 1,
412     }
413 
414     #[bitsize(1)]
415     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
416     /// `FEN` "Enable FIFOs" or Device mode, field of [Line Control
417     /// register](LineControl).
418     pub enum Mode {
419         /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
420         /// 1-byte-deep holding registers
421         Character = 0,
422         /// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
423         FIFO = 1,
424     }
425 
426     impl From<Mode> for bool {
from(val: Mode) -> Self427         fn from(val: Mode) -> Self {
428             matches!(val, Mode::FIFO)
429         }
430     }
431 
432     #[bitsize(2)]
433     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
434     /// `WLEN` Word length, field of [Line Control register](LineControl).
435     ///
436     /// These bits indicate the number of data bits transmitted or received in a
437     /// frame as follows:
438     pub enum WordLength {
439         /// b11 = 8 bits
440         _8Bits = 0b11,
441         /// b10 = 7 bits
442         _7Bits = 0b10,
443         /// b01 = 6 bits
444         _6Bits = 0b01,
445         /// b00 = 5 bits.
446         _5Bits = 0b00,
447     }
448 
449     /// Control Register, `UARTCR`
450     ///
451     /// The `UARTCR` register is the control register. All the bits are cleared
452     /// to `0` on reset except for bits `9` and `8` that are set to `1`.
453     ///
454     /// # Source
455     /// ARM DDI 0183G, 3.3.8 Control Register, `UARTCR`, Table 3-12
456     #[bitsize(16)]
457     #[doc(alias = "UARTCR")]
458     #[derive(Clone, Copy, DebugBits, FromBits)]
459     pub struct Control {
460         /// `UARTEN` UART enable: 0 = UART is disabled. If the UART is disabled
461         /// in the middle of transmission or reception, it completes the current
462         /// character before stopping. 1 = the UART is enabled. Data
463         /// transmission and reception occurs for either UART signals or SIR
464         /// signals depending on the setting of the SIREN bit.
465         pub enable_uart: bool,
466         /// `SIREN` `SIR` enable: 0 = IrDA SIR ENDEC is disabled. `nSIROUT`
467         /// remains LOW (no light pulse generated), and signal transitions on
468         /// SIRIN have no effect. 1 = IrDA SIR ENDEC is enabled. Data is
469         /// transmitted and received on nSIROUT and SIRIN. UARTTXD remains HIGH,
470         /// in the marking state. Signal transitions on UARTRXD or modem status
471         /// inputs have no effect. This bit has no effect if the UARTEN bit
472         /// disables the UART.
473         pub enable_sir: bool,
474         /// `SIRLP` SIR low-power IrDA mode. This bit selects the IrDA encoding
475         /// mode. If this bit is cleared to 0, low-level bits are transmitted as
476         /// an active high pulse with a width of 3/ 16th of the bit period. If
477         /// this bit is set to 1, low-level bits are transmitted with a pulse
478         /// width that is 3 times the period of the IrLPBaud16 input signal,
479         /// regardless of the selected bit rate. Setting this bit uses less
480         /// power, but might reduce transmission distances.
481         pub sir_lowpower_irda_mode: u1,
482         /// Reserved, do not modify, read as zero.
483         _reserved_zero_no_modify: u4,
484         /// `LBE` Loopback enable. If this bit is set to 1 and the SIREN bit is
485         /// set to 1 and the SIRTEST bit in the Test Control register, UARTTCR
486         /// on page 4-5 is set to 1, then the nSIROUT path is inverted, and fed
487         /// through to the SIRIN path. The SIRTEST bit in the test register must
488         /// be set to 1 to override the normal half-duplex SIR operation. This
489         /// must be the requirement for accessing the test registers during
490         /// normal operation, and SIRTEST must be cleared to 0 when loopback
491         /// testing is finished. This feature reduces the amount of external
492         /// coupling required during system test. If this bit is set to 1, and
493         /// the SIRTEST bit is set to 0, the UARTTXD path is fed through to the
494         /// UARTRXD path. In either SIR mode or UART mode, when this bit is set,
495         /// the modem outputs are also fed through to the modem inputs. This bit
496         /// is cleared to 0 on reset, to disable loopback.
497         pub enable_loopback: bool,
498         /// `TXE` Transmit enable. If this bit is set to 1, the transmit section
499         /// of the UART is enabled. Data transmission occurs for either UART
500         /// signals, or SIR signals depending on the setting of the SIREN bit.
501         /// When the UART is disabled in the middle of transmission, it
502         /// completes the current character before stopping.
503         pub enable_transmit: bool,
504         /// `RXE` Receive enable. If this bit is set to 1, the receive section
505         /// of the UART is enabled. Data reception occurs for either UART
506         /// signals or SIR signals depending on the setting of the SIREN bit.
507         /// When the UART is disabled in the middle of reception, it completes
508         /// the current character before stopping.
509         pub enable_receive: bool,
510         /// `DTR` Data transmit ready. This bit is the complement of the UART
511         /// data transmit ready, `nUARTDTR`, modem status output. That is, when
512         /// the bit is programmed to a 1 then `nUARTDTR` is LOW.
513         pub data_transmit_ready: bool,
514         /// `RTS` Request to send. This bit is the complement of the UART
515         /// request to send, `nUARTRTS`, modem status output. That is, when the
516         /// bit is programmed to a 1 then `nUARTRTS` is LOW.
517         pub request_to_send: bool,
518         /// `Out1` This bit is the complement of the UART Out1 (`nUARTOut1`)
519         /// modem status output. That is, when the bit is programmed to a 1 the
520         /// output is 0. For DTE this can be used as Data Carrier Detect (DCD).
521         pub out_1: bool,
522         /// `Out2` This bit is the complement of the UART Out2 (`nUARTOut2`)
523         /// modem status output. That is, when the bit is programmed to a 1, the
524         /// output is 0. For DTE this can be used as Ring Indicator (RI).
525         pub out_2: bool,
526         /// `RTSEn` RTS hardware flow control enable. If this bit is set to 1,
527         /// RTS hardware flow control is enabled. Data is only requested when
528         /// there is space in the receive FIFO for it to be received.
529         pub rts_hardware_flow_control_enable: bool,
530         /// `CTSEn` CTS hardware flow control enable. If this bit is set to 1,
531         /// CTS hardware flow control is enabled. Data is only transmitted when
532         /// the `nUARTCTS` signal is asserted.
533         pub cts_hardware_flow_control_enable: bool,
534     }
535 
536     impl Control {
reset(&mut self)537         pub fn reset(&mut self) {
538             *self = 0.into();
539             self.set_enable_receive(true);
540             self.set_enable_transmit(true);
541         }
542     }
543 
544     impl Default for Control {
default() -> Self545         fn default() -> Self {
546             let mut ret: Self = 0.into();
547             ret.reset();
548             ret
549         }
550     }
551 
552     /// Interrupt status bits in UARTRIS, UARTMIS, UARTIMSC
553     pub const INT_OE: u32 = 1 << 10;
554     pub const INT_BE: u32 = 1 << 9;
555     pub const INT_PE: u32 = 1 << 8;
556     pub const INT_FE: u32 = 1 << 7;
557     pub const INT_RT: u32 = 1 << 6;
558     pub const INT_TX: u32 = 1 << 5;
559     pub const INT_RX: u32 = 1 << 4;
560     pub const INT_DSR: u32 = 1 << 3;
561     pub const INT_DCD: u32 = 1 << 2;
562     pub const INT_CTS: u32 = 1 << 1;
563     pub const INT_RI: u32 = 1 << 0;
564     pub const INT_E: u32 = INT_OE | INT_BE | INT_PE | INT_FE;
565     pub const INT_MS: u32 = INT_RI | INT_DSR | INT_DCD | INT_CTS;
566 
567     #[repr(u32)]
568     pub enum Interrupt {
569         OE = 1 << 10,
570         BE = 1 << 9,
571         PE = 1 << 8,
572         FE = 1 << 7,
573         RT = 1 << 6,
574         TX = 1 << 5,
575         RX = 1 << 4,
576         DSR = 1 << 3,
577         DCD = 1 << 2,
578         CTS = 1 << 1,
579         RI = 1 << 0,
580     }
581 
582     impl Interrupt {
583         pub const E: u32 = INT_OE | INT_BE | INT_PE | INT_FE;
584         pub const MS: u32 = INT_RI | INT_DSR | INT_DCD | INT_CTS;
585     }
586 }
587 
588 // TODO: You must disable the UART before any of the control registers are
589 // reprogrammed. When the UART is disabled in the middle of transmission or
590 // reception, it completes the current character before stopping
591