1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115
116 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117 static void vsock_sk_destruct(struct sock *sk);
118 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119 static void vsock_close(struct sock *sk, long timeout);
120
121 /* Protocol family. */
122 struct proto vsock_proto = {
123 .name = "AF_VSOCK",
124 .owner = THIS_MODULE,
125 .obj_size = sizeof(struct vsock_sock),
126 .close = vsock_close,
127 #ifdef CONFIG_BPF_SYSCALL
128 .psock_update_sk_prot = vsock_bpf_update_proto,
129 #endif
130 };
131
132 /* The default peer timeout indicates how long we will wait for a peer response
133 * to a control message.
134 */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136
137 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
138 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
140
141 /* Transport used for host->guest communication */
142 static const struct vsock_transport *transport_h2g;
143 /* Transport used for guest->host communication */
144 static const struct vsock_transport *transport_g2h;
145 /* Transport used for DGRAM communication */
146 static const struct vsock_transport *transport_dgram;
147 /* Transport used for local communication */
148 static const struct vsock_transport *transport_local;
149 static DEFINE_MUTEX(vsock_register_mutex);
150
151 /**** UTILS ****/
152
153 /* Each bound VSocket is stored in the bind hash table and each connected
154 * VSocket is stored in the connected hash table.
155 *
156 * Unbound sockets are all put on the same list attached to the end of the hash
157 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
158 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
159 * represents the list that addr hashes to).
160 *
161 * Specifically, we initialize the vsock_bind_table array to a size of
162 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
163 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
164 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
165 * mods with VSOCK_HASH_SIZE to ensure this.
166 */
167 #define MAX_PORT_RETRIES 24
168
169 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
170 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
171 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
172
173 /* XXX This can probably be implemented in a better way. */
174 #define VSOCK_CONN_HASH(src, dst) \
175 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
176 #define vsock_connected_sockets(src, dst) \
177 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
178 #define vsock_connected_sockets_vsk(vsk) \
179 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
180
181 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
182 EXPORT_SYMBOL_GPL(vsock_bind_table);
183 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
184 EXPORT_SYMBOL_GPL(vsock_connected_table);
185 DEFINE_SPINLOCK(vsock_table_lock);
186 EXPORT_SYMBOL_GPL(vsock_table_lock);
187
188 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)189 static int vsock_auto_bind(struct vsock_sock *vsk)
190 {
191 struct sock *sk = sk_vsock(vsk);
192 struct sockaddr_vm local_addr;
193
194 if (vsock_addr_bound(&vsk->local_addr))
195 return 0;
196 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
197 return __vsock_bind(sk, &local_addr);
198 }
199
vsock_init_tables(void)200 static void vsock_init_tables(void)
201 {
202 int i;
203
204 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
205 INIT_LIST_HEAD(&vsock_bind_table[i]);
206
207 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
208 INIT_LIST_HEAD(&vsock_connected_table[i]);
209 }
210
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)211 static void __vsock_insert_bound(struct list_head *list,
212 struct vsock_sock *vsk)
213 {
214 sock_hold(&vsk->sk);
215 list_add(&vsk->bound_table, list);
216 }
217
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)218 static void __vsock_insert_connected(struct list_head *list,
219 struct vsock_sock *vsk)
220 {
221 sock_hold(&vsk->sk);
222 list_add(&vsk->connected_table, list);
223 }
224
__vsock_remove_bound(struct vsock_sock * vsk)225 static void __vsock_remove_bound(struct vsock_sock *vsk)
226 {
227 list_del_init(&vsk->bound_table);
228 sock_put(&vsk->sk);
229 }
230
__vsock_remove_connected(struct vsock_sock * vsk)231 static void __vsock_remove_connected(struct vsock_sock *vsk)
232 {
233 list_del_init(&vsk->connected_table);
234 sock_put(&vsk->sk);
235 }
236
__vsock_find_bound_socket(struct sockaddr_vm * addr)237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238 {
239 struct vsock_sock *vsk;
240
241 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
242 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
243 return sk_vsock(vsk);
244
245 if (addr->svm_port == vsk->local_addr.svm_port &&
246 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
247 addr->svm_cid == VMADDR_CID_ANY))
248 return sk_vsock(vsk);
249 }
250
251 return NULL;
252 }
253
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)254 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
255 struct sockaddr_vm *dst)
256 {
257 struct vsock_sock *vsk;
258
259 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
260 connected_table) {
261 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
262 dst->svm_port == vsk->local_addr.svm_port) {
263 return sk_vsock(vsk);
264 }
265 }
266
267 return NULL;
268 }
269
vsock_insert_unbound(struct vsock_sock * vsk)270 static void vsock_insert_unbound(struct vsock_sock *vsk)
271 {
272 spin_lock_bh(&vsock_table_lock);
273 __vsock_insert_bound(vsock_unbound_sockets, vsk);
274 spin_unlock_bh(&vsock_table_lock);
275 }
276
vsock_insert_connected(struct vsock_sock * vsk)277 void vsock_insert_connected(struct vsock_sock *vsk)
278 {
279 struct list_head *list = vsock_connected_sockets(
280 &vsk->remote_addr, &vsk->local_addr);
281
282 spin_lock_bh(&vsock_table_lock);
283 __vsock_insert_connected(list, vsk);
284 spin_unlock_bh(&vsock_table_lock);
285 }
286 EXPORT_SYMBOL_GPL(vsock_insert_connected);
287
vsock_remove_bound(struct vsock_sock * vsk)288 void vsock_remove_bound(struct vsock_sock *vsk)
289 {
290 spin_lock_bh(&vsock_table_lock);
291 if (__vsock_in_bound_table(vsk))
292 __vsock_remove_bound(vsk);
293 spin_unlock_bh(&vsock_table_lock);
294 }
295 EXPORT_SYMBOL_GPL(vsock_remove_bound);
296
vsock_remove_connected(struct vsock_sock * vsk)297 void vsock_remove_connected(struct vsock_sock *vsk)
298 {
299 spin_lock_bh(&vsock_table_lock);
300 if (__vsock_in_connected_table(vsk))
301 __vsock_remove_connected(vsk);
302 spin_unlock_bh(&vsock_table_lock);
303 }
304 EXPORT_SYMBOL_GPL(vsock_remove_connected);
305
vsock_find_bound_socket(struct sockaddr_vm * addr)306 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
307 {
308 struct sock *sk;
309
310 spin_lock_bh(&vsock_table_lock);
311 sk = __vsock_find_bound_socket(addr);
312 if (sk)
313 sock_hold(sk);
314
315 spin_unlock_bh(&vsock_table_lock);
316
317 return sk;
318 }
319 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
320
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)321 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
322 struct sockaddr_vm *dst)
323 {
324 struct sock *sk;
325
326 spin_lock_bh(&vsock_table_lock);
327 sk = __vsock_find_connected_socket(src, dst);
328 if (sk)
329 sock_hold(sk);
330
331 spin_unlock_bh(&vsock_table_lock);
332
333 return sk;
334 }
335 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
336
vsock_remove_sock(struct vsock_sock * vsk)337 void vsock_remove_sock(struct vsock_sock *vsk)
338 {
339 /* Transport reassignment must not remove the binding. */
340 if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
341 vsock_remove_bound(vsk);
342
343 vsock_remove_connected(vsk);
344 }
345 EXPORT_SYMBOL_GPL(vsock_remove_sock);
346
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))347 void vsock_for_each_connected_socket(struct vsock_transport *transport,
348 void (*fn)(struct sock *sk))
349 {
350 int i;
351
352 spin_lock_bh(&vsock_table_lock);
353
354 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
355 struct vsock_sock *vsk;
356 list_for_each_entry(vsk, &vsock_connected_table[i],
357 connected_table) {
358 if (vsk->transport != transport)
359 continue;
360
361 fn(sk_vsock(vsk));
362 }
363 }
364
365 spin_unlock_bh(&vsock_table_lock);
366 }
367 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
368
vsock_add_pending(struct sock * listener,struct sock * pending)369 void vsock_add_pending(struct sock *listener, struct sock *pending)
370 {
371 struct vsock_sock *vlistener;
372 struct vsock_sock *vpending;
373
374 vlistener = vsock_sk(listener);
375 vpending = vsock_sk(pending);
376
377 sock_hold(pending);
378 sock_hold(listener);
379 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
380 }
381 EXPORT_SYMBOL_GPL(vsock_add_pending);
382
vsock_remove_pending(struct sock * listener,struct sock * pending)383 void vsock_remove_pending(struct sock *listener, struct sock *pending)
384 {
385 struct vsock_sock *vpending = vsock_sk(pending);
386
387 list_del_init(&vpending->pending_links);
388 sock_put(listener);
389 sock_put(pending);
390 }
391 EXPORT_SYMBOL_GPL(vsock_remove_pending);
392
vsock_enqueue_accept(struct sock * listener,struct sock * connected)393 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
394 {
395 struct vsock_sock *vlistener;
396 struct vsock_sock *vconnected;
397
398 vlistener = vsock_sk(listener);
399 vconnected = vsock_sk(connected);
400
401 sock_hold(connected);
402 sock_hold(listener);
403 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
404 }
405 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
406
vsock_use_local_transport(unsigned int remote_cid)407 static bool vsock_use_local_transport(unsigned int remote_cid)
408 {
409 if (!transport_local)
410 return false;
411
412 if (remote_cid == VMADDR_CID_LOCAL)
413 return true;
414
415 if (transport_g2h) {
416 return remote_cid == transport_g2h->get_local_cid();
417 } else {
418 return remote_cid == VMADDR_CID_HOST;
419 }
420 }
421
vsock_deassign_transport(struct vsock_sock * vsk)422 static void vsock_deassign_transport(struct vsock_sock *vsk)
423 {
424 if (!vsk->transport)
425 return;
426
427 vsk->transport->destruct(vsk);
428 module_put(vsk->transport->module);
429 vsk->transport = NULL;
430 }
431
432 /* Assign a transport to a socket and call the .init transport callback.
433 *
434 * Note: for connection oriented socket this must be called when vsk->remote_addr
435 * is set (e.g. during the connect() or when a connection request on a listener
436 * socket is received).
437 * The vsk->remote_addr is used to decide which transport to use:
438 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
439 * g2h is not loaded, will use local transport;
440 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
441 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
442 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
443 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)444 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
445 {
446 const struct vsock_transport *new_transport;
447 struct sock *sk = sk_vsock(vsk);
448 unsigned int remote_cid = vsk->remote_addr.svm_cid;
449 __u8 remote_flags;
450 int ret;
451
452 /* If the packet is coming with the source and destination CIDs higher
453 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
454 * forwarded to the host should be established. Then the host will
455 * need to forward the packets to the guest.
456 *
457 * The flag is set on the (listen) receive path (psk is not NULL). On
458 * the connect path the flag can be set by the user space application.
459 */
460 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
461 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
462 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
463
464 remote_flags = vsk->remote_addr.svm_flags;
465
466 switch (sk->sk_type) {
467 case SOCK_DGRAM:
468 new_transport = transport_dgram;
469 break;
470 case SOCK_STREAM:
471 case SOCK_SEQPACKET:
472 if (vsock_use_local_transport(remote_cid))
473 new_transport = transport_local;
474 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
475 (remote_flags & VMADDR_FLAG_TO_HOST))
476 new_transport = transport_g2h;
477 else
478 new_transport = transport_h2g;
479 break;
480 default:
481 return -ESOCKTNOSUPPORT;
482 }
483
484 if (vsk->transport) {
485 if (vsk->transport == new_transport)
486 return 0;
487
488 /* transport->release() must be called with sock lock acquired.
489 * This path can only be taken during vsock_connect(), where we
490 * have already held the sock lock. In the other cases, this
491 * function is called on a new socket which is not assigned to
492 * any transport.
493 */
494 vsk->transport->release(vsk);
495 vsock_deassign_transport(vsk);
496
497 /* transport's release() and destruct() can touch some socket
498 * state, since we are reassigning the socket to a new transport
499 * during vsock_connect(), let's reset these fields to have a
500 * clean state.
501 */
502 sock_reset_flag(sk, SOCK_DONE);
503 sk->sk_state = TCP_CLOSE;
504 vsk->peer_shutdown = 0;
505 }
506
507 /* We increase the module refcnt to prevent the transport unloading
508 * while there are open sockets assigned to it.
509 */
510 if (!new_transport || !try_module_get(new_transport->module))
511 return -ENODEV;
512
513 if (sk->sk_type == SOCK_SEQPACKET) {
514 if (!new_transport->seqpacket_allow ||
515 !new_transport->seqpacket_allow(remote_cid)) {
516 module_put(new_transport->module);
517 return -ESOCKTNOSUPPORT;
518 }
519 }
520
521 ret = new_transport->init(vsk, psk);
522 if (ret) {
523 module_put(new_transport->module);
524 return ret;
525 }
526
527 vsk->transport = new_transport;
528
529 return 0;
530 }
531 EXPORT_SYMBOL_GPL(vsock_assign_transport);
532
vsock_find_cid(unsigned int cid)533 bool vsock_find_cid(unsigned int cid)
534 {
535 if (transport_g2h && cid == transport_g2h->get_local_cid())
536 return true;
537
538 if (transport_h2g && cid == VMADDR_CID_HOST)
539 return true;
540
541 if (transport_local && cid == VMADDR_CID_LOCAL)
542 return true;
543
544 return false;
545 }
546 EXPORT_SYMBOL_GPL(vsock_find_cid);
547
vsock_dequeue_accept(struct sock * listener)548 static struct sock *vsock_dequeue_accept(struct sock *listener)
549 {
550 struct vsock_sock *vlistener;
551 struct vsock_sock *vconnected;
552
553 vlistener = vsock_sk(listener);
554
555 if (list_empty(&vlistener->accept_queue))
556 return NULL;
557
558 vconnected = list_entry(vlistener->accept_queue.next,
559 struct vsock_sock, accept_queue);
560
561 list_del_init(&vconnected->accept_queue);
562 sock_put(listener);
563 /* The caller will need a reference on the connected socket so we let
564 * it call sock_put().
565 */
566
567 return sk_vsock(vconnected);
568 }
569
vsock_is_accept_queue_empty(struct sock * sk)570 static bool vsock_is_accept_queue_empty(struct sock *sk)
571 {
572 struct vsock_sock *vsk = vsock_sk(sk);
573 return list_empty(&vsk->accept_queue);
574 }
575
vsock_is_pending(struct sock * sk)576 static bool vsock_is_pending(struct sock *sk)
577 {
578 struct vsock_sock *vsk = vsock_sk(sk);
579 return !list_empty(&vsk->pending_links);
580 }
581
vsock_send_shutdown(struct sock * sk,int mode)582 static int vsock_send_shutdown(struct sock *sk, int mode)
583 {
584 struct vsock_sock *vsk = vsock_sk(sk);
585
586 if (!vsk->transport)
587 return -ENODEV;
588
589 return vsk->transport->shutdown(vsk, mode);
590 }
591
vsock_pending_work(struct work_struct * work)592 static void vsock_pending_work(struct work_struct *work)
593 {
594 struct sock *sk;
595 struct sock *listener;
596 struct vsock_sock *vsk;
597 bool cleanup;
598
599 vsk = container_of(work, struct vsock_sock, pending_work.work);
600 sk = sk_vsock(vsk);
601 listener = vsk->listener;
602 cleanup = true;
603
604 lock_sock(listener);
605 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
606
607 if (vsock_is_pending(sk)) {
608 vsock_remove_pending(listener, sk);
609
610 sk_acceptq_removed(listener);
611 } else if (!vsk->rejected) {
612 /* We are not on the pending list and accept() did not reject
613 * us, so we must have been accepted by our user process. We
614 * just need to drop our references to the sockets and be on
615 * our way.
616 */
617 cleanup = false;
618 goto out;
619 }
620
621 /* We need to remove ourself from the global connected sockets list so
622 * incoming packets can't find this socket, and to reduce the reference
623 * count.
624 */
625 vsock_remove_connected(vsk);
626
627 sk->sk_state = TCP_CLOSE;
628
629 out:
630 release_sock(sk);
631 release_sock(listener);
632 if (cleanup)
633 sock_put(sk);
634
635 sock_put(sk);
636 sock_put(listener);
637 }
638
639 /**** SOCKET OPERATIONS ****/
640
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)641 static int __vsock_bind_connectible(struct vsock_sock *vsk,
642 struct sockaddr_vm *addr)
643 {
644 static u32 port;
645 struct sockaddr_vm new_addr;
646
647 if (!port)
648 port = get_random_u32_above(LAST_RESERVED_PORT);
649
650 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
651
652 if (addr->svm_port == VMADDR_PORT_ANY) {
653 bool found = false;
654 unsigned int i;
655
656 for (i = 0; i < MAX_PORT_RETRIES; i++) {
657 if (port <= LAST_RESERVED_PORT)
658 port = LAST_RESERVED_PORT + 1;
659
660 new_addr.svm_port = port++;
661
662 if (!__vsock_find_bound_socket(&new_addr)) {
663 found = true;
664 break;
665 }
666 }
667
668 if (!found)
669 return -EADDRNOTAVAIL;
670 } else {
671 /* If port is in reserved range, ensure caller
672 * has necessary privileges.
673 */
674 if (addr->svm_port <= LAST_RESERVED_PORT &&
675 !capable(CAP_NET_BIND_SERVICE)) {
676 return -EACCES;
677 }
678
679 if (__vsock_find_bound_socket(&new_addr))
680 return -EADDRINUSE;
681 }
682
683 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
684
685 /* Remove connection oriented sockets from the unbound list and add them
686 * to the hash table for easy lookup by its address. The unbound list
687 * is simply an extra entry at the end of the hash table, a trick used
688 * by AF_UNIX.
689 */
690 __vsock_remove_bound(vsk);
691 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
692
693 return 0;
694 }
695
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)696 static int __vsock_bind_dgram(struct vsock_sock *vsk,
697 struct sockaddr_vm *addr)
698 {
699 return vsk->transport->dgram_bind(vsk, addr);
700 }
701
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)702 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
703 {
704 struct vsock_sock *vsk = vsock_sk(sk);
705 int retval;
706
707 /* First ensure this socket isn't already bound. */
708 if (vsock_addr_bound(&vsk->local_addr))
709 return -EINVAL;
710
711 /* Now bind to the provided address or select appropriate values if
712 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
713 * like AF_INET prevents binding to a non-local IP address (in most
714 * cases), we only allow binding to a local CID.
715 */
716 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
717 return -EADDRNOTAVAIL;
718
719 switch (sk->sk_socket->type) {
720 case SOCK_STREAM:
721 case SOCK_SEQPACKET:
722 spin_lock_bh(&vsock_table_lock);
723 retval = __vsock_bind_connectible(vsk, addr);
724 spin_unlock_bh(&vsock_table_lock);
725 break;
726
727 case SOCK_DGRAM:
728 retval = __vsock_bind_dgram(vsk, addr);
729 break;
730
731 default:
732 retval = -EINVAL;
733 break;
734 }
735
736 return retval;
737 }
738
739 static void vsock_connect_timeout(struct work_struct *work);
740
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)741 static struct sock *__vsock_create(struct net *net,
742 struct socket *sock,
743 struct sock *parent,
744 gfp_t priority,
745 unsigned short type,
746 int kern)
747 {
748 struct sock *sk;
749 struct vsock_sock *psk;
750 struct vsock_sock *vsk;
751
752 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
753 if (!sk)
754 return NULL;
755
756 sock_init_data(sock, sk);
757
758 /* sk->sk_type is normally set in sock_init_data, but only if sock is
759 * non-NULL. We make sure that our sockets always have a type by
760 * setting it here if needed.
761 */
762 if (!sock)
763 sk->sk_type = type;
764
765 vsk = vsock_sk(sk);
766 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
767 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
768
769 sk->sk_destruct = vsock_sk_destruct;
770 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
771 sock_reset_flag(sk, SOCK_DONE);
772
773 INIT_LIST_HEAD(&vsk->bound_table);
774 INIT_LIST_HEAD(&vsk->connected_table);
775 vsk->listener = NULL;
776 INIT_LIST_HEAD(&vsk->pending_links);
777 INIT_LIST_HEAD(&vsk->accept_queue);
778 vsk->rejected = false;
779 vsk->sent_request = false;
780 vsk->ignore_connecting_rst = false;
781 vsk->peer_shutdown = 0;
782 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
783 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
784
785 psk = parent ? vsock_sk(parent) : NULL;
786 if (parent) {
787 vsk->trusted = psk->trusted;
788 vsk->owner = get_cred(psk->owner);
789 vsk->connect_timeout = psk->connect_timeout;
790 vsk->buffer_size = psk->buffer_size;
791 vsk->buffer_min_size = psk->buffer_min_size;
792 vsk->buffer_max_size = psk->buffer_max_size;
793 security_sk_clone(parent, sk);
794 } else {
795 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
796 vsk->owner = get_current_cred();
797 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
798 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
799 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
800 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
801 }
802
803 return sk;
804 }
805
sock_type_connectible(u16 type)806 static bool sock_type_connectible(u16 type)
807 {
808 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
809 }
810
__vsock_release(struct sock * sk,int level)811 static void __vsock_release(struct sock *sk, int level)
812 {
813 struct vsock_sock *vsk;
814 struct sock *pending;
815
816 vsk = vsock_sk(sk);
817 pending = NULL; /* Compiler warning. */
818
819 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
820 * version to avoid the warning "possible recursive locking
821 * detected". When "level" is 0, lock_sock_nested(sk, level)
822 * is the same as lock_sock(sk).
823 */
824 lock_sock_nested(sk, level);
825
826 /* Indicate to vsock_remove_sock() that the socket is being released and
827 * can be removed from the bound_table. Unlike transport reassignment
828 * case, where the socket must remain bound despite vsock_remove_sock()
829 * being called from the transport release() callback.
830 */
831 sock_set_flag(sk, SOCK_DEAD);
832
833 if (vsk->transport)
834 vsk->transport->release(vsk);
835 else if (sock_type_connectible(sk->sk_type))
836 vsock_remove_sock(vsk);
837
838 sock_orphan(sk);
839 sk->sk_shutdown = SHUTDOWN_MASK;
840
841 skb_queue_purge(&sk->sk_receive_queue);
842
843 /* Clean up any sockets that never were accepted. */
844 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
845 __vsock_release(pending, SINGLE_DEPTH_NESTING);
846 sock_put(pending);
847 }
848
849 release_sock(sk);
850 sock_put(sk);
851 }
852
vsock_sk_destruct(struct sock * sk)853 static void vsock_sk_destruct(struct sock *sk)
854 {
855 struct vsock_sock *vsk = vsock_sk(sk);
856
857 vsock_deassign_transport(vsk);
858
859 /* When clearing these addresses, there's no need to set the family and
860 * possibly register the address family with the kernel.
861 */
862 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
863 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
864
865 put_cred(vsk->owner);
866 }
867
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)868 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
869 {
870 int err;
871
872 err = sock_queue_rcv_skb(sk, skb);
873 if (err)
874 kfree_skb(skb);
875
876 return err;
877 }
878
vsock_create_connected(struct sock * parent)879 struct sock *vsock_create_connected(struct sock *parent)
880 {
881 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
882 parent->sk_type, 0);
883 }
884 EXPORT_SYMBOL_GPL(vsock_create_connected);
885
vsock_stream_has_data(struct vsock_sock * vsk)886 s64 vsock_stream_has_data(struct vsock_sock *vsk)
887 {
888 if (WARN_ON(!vsk->transport))
889 return 0;
890
891 return vsk->transport->stream_has_data(vsk);
892 }
893 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
894
vsock_connectible_has_data(struct vsock_sock * vsk)895 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
896 {
897 struct sock *sk = sk_vsock(vsk);
898
899 if (WARN_ON(!vsk->transport))
900 return 0;
901
902 if (sk->sk_type == SOCK_SEQPACKET)
903 return vsk->transport->seqpacket_has_data(vsk);
904 else
905 return vsock_stream_has_data(vsk);
906 }
907 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
908
vsock_stream_has_space(struct vsock_sock * vsk)909 s64 vsock_stream_has_space(struct vsock_sock *vsk)
910 {
911 if (WARN_ON(!vsk->transport))
912 return 0;
913
914 return vsk->transport->stream_has_space(vsk);
915 }
916 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
917
vsock_data_ready(struct sock * sk)918 void vsock_data_ready(struct sock *sk)
919 {
920 struct vsock_sock *vsk = vsock_sk(sk);
921
922 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
923 sock_flag(sk, SOCK_DONE))
924 sk->sk_data_ready(sk);
925 }
926 EXPORT_SYMBOL_GPL(vsock_data_ready);
927
928 /* Dummy callback required by sockmap.
929 * See unconditional call of saved_close() in sock_map_close().
930 */
vsock_close(struct sock * sk,long timeout)931 static void vsock_close(struct sock *sk, long timeout)
932 {
933 }
934
vsock_release(struct socket * sock)935 static int vsock_release(struct socket *sock)
936 {
937 struct sock *sk = sock->sk;
938
939 if (!sk)
940 return 0;
941
942 sk->sk_prot->close(sk, 0);
943 __vsock_release(sk, 0);
944 sock->sk = NULL;
945 sock->state = SS_FREE;
946
947 return 0;
948 }
949
950 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)951 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
952 {
953 int err;
954 struct sock *sk;
955 struct sockaddr_vm *vm_addr;
956
957 sk = sock->sk;
958
959 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
960 return -EINVAL;
961
962 lock_sock(sk);
963 err = __vsock_bind(sk, vm_addr);
964 release_sock(sk);
965
966 return err;
967 }
968
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)969 static int vsock_getname(struct socket *sock,
970 struct sockaddr *addr, int peer)
971 {
972 int err;
973 struct sock *sk;
974 struct vsock_sock *vsk;
975 struct sockaddr_vm *vm_addr;
976
977 sk = sock->sk;
978 vsk = vsock_sk(sk);
979 err = 0;
980
981 lock_sock(sk);
982
983 if (peer) {
984 if (sock->state != SS_CONNECTED) {
985 err = -ENOTCONN;
986 goto out;
987 }
988 vm_addr = &vsk->remote_addr;
989 } else {
990 vm_addr = &vsk->local_addr;
991 }
992
993 if (!vm_addr) {
994 err = -EINVAL;
995 goto out;
996 }
997
998 /* sys_getsockname() and sys_getpeername() pass us a
999 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
1000 * that macro is defined in socket.c instead of .h, so we hardcode its
1001 * value here.
1002 */
1003 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1004 memcpy(addr, vm_addr, sizeof(*vm_addr));
1005 err = sizeof(*vm_addr);
1006
1007 out:
1008 release_sock(sk);
1009 return err;
1010 }
1011
vsock_shutdown(struct socket * sock,int mode)1012 static int vsock_shutdown(struct socket *sock, int mode)
1013 {
1014 int err;
1015 struct sock *sk;
1016
1017 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1018 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1019 * here like the other address families do. Note also that the
1020 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1021 * which is what we want.
1022 */
1023 mode++;
1024
1025 if ((mode & ~SHUTDOWN_MASK) || !mode)
1026 return -EINVAL;
1027
1028 /* If this is a connection oriented socket and it is not connected then
1029 * bail out immediately. If it is a DGRAM socket then we must first
1030 * kick the socket so that it wakes up from any sleeping calls, for
1031 * example recv(), and then afterwards return the error.
1032 */
1033
1034 sk = sock->sk;
1035
1036 lock_sock(sk);
1037 if (sock->state == SS_UNCONNECTED) {
1038 err = -ENOTCONN;
1039 if (sock_type_connectible(sk->sk_type))
1040 goto out;
1041 } else {
1042 sock->state = SS_DISCONNECTING;
1043 err = 0;
1044 }
1045
1046 /* Receive and send shutdowns are treated alike. */
1047 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1048 if (mode) {
1049 sk->sk_shutdown |= mode;
1050 sk->sk_state_change(sk);
1051
1052 if (sock_type_connectible(sk->sk_type)) {
1053 sock_reset_flag(sk, SOCK_DONE);
1054 vsock_send_shutdown(sk, mode);
1055 }
1056 }
1057
1058 out:
1059 release_sock(sk);
1060 return err;
1061 }
1062
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1063 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1064 poll_table *wait)
1065 {
1066 struct sock *sk;
1067 __poll_t mask;
1068 struct vsock_sock *vsk;
1069
1070 sk = sock->sk;
1071 vsk = vsock_sk(sk);
1072
1073 poll_wait(file, sk_sleep(sk), wait);
1074 mask = 0;
1075
1076 if (sk->sk_err)
1077 /* Signify that there has been an error on this socket. */
1078 mask |= EPOLLERR;
1079
1080 /* INET sockets treat local write shutdown and peer write shutdown as a
1081 * case of EPOLLHUP set.
1082 */
1083 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1084 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1085 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1086 mask |= EPOLLHUP;
1087 }
1088
1089 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1090 vsk->peer_shutdown & SEND_SHUTDOWN) {
1091 mask |= EPOLLRDHUP;
1092 }
1093
1094 if (sk_is_readable(sk))
1095 mask |= EPOLLIN | EPOLLRDNORM;
1096
1097 if (sock->type == SOCK_DGRAM) {
1098 /* For datagram sockets we can read if there is something in
1099 * the queue and write as long as the socket isn't shutdown for
1100 * sending.
1101 */
1102 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1103 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1104 mask |= EPOLLIN | EPOLLRDNORM;
1105 }
1106
1107 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1108 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1109
1110 } else if (sock_type_connectible(sk->sk_type)) {
1111 const struct vsock_transport *transport;
1112
1113 lock_sock(sk);
1114
1115 transport = vsk->transport;
1116
1117 /* Listening sockets that have connections in their accept
1118 * queue can be read.
1119 */
1120 if (sk->sk_state == TCP_LISTEN
1121 && !vsock_is_accept_queue_empty(sk))
1122 mask |= EPOLLIN | EPOLLRDNORM;
1123
1124 /* If there is something in the queue then we can read. */
1125 if (transport && transport->stream_is_active(vsk) &&
1126 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1127 bool data_ready_now = false;
1128 int target = sock_rcvlowat(sk, 0, INT_MAX);
1129 int ret = transport->notify_poll_in(
1130 vsk, target, &data_ready_now);
1131 if (ret < 0) {
1132 mask |= EPOLLERR;
1133 } else {
1134 if (data_ready_now)
1135 mask |= EPOLLIN | EPOLLRDNORM;
1136
1137 }
1138 }
1139
1140 /* Sockets whose connections have been closed, reset, or
1141 * terminated should also be considered read, and we check the
1142 * shutdown flag for that.
1143 */
1144 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1145 vsk->peer_shutdown & SEND_SHUTDOWN) {
1146 mask |= EPOLLIN | EPOLLRDNORM;
1147 }
1148
1149 /* Connected sockets that can produce data can be written. */
1150 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1151 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1152 bool space_avail_now = false;
1153 int ret = transport->notify_poll_out(
1154 vsk, 1, &space_avail_now);
1155 if (ret < 0) {
1156 mask |= EPOLLERR;
1157 } else {
1158 if (space_avail_now)
1159 /* Remove EPOLLWRBAND since INET
1160 * sockets are not setting it.
1161 */
1162 mask |= EPOLLOUT | EPOLLWRNORM;
1163
1164 }
1165 }
1166 }
1167
1168 /* Simulate INET socket poll behaviors, which sets
1169 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1170 * but local send is not shutdown.
1171 */
1172 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1173 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1174 mask |= EPOLLOUT | EPOLLWRNORM;
1175
1176 }
1177
1178 release_sock(sk);
1179 }
1180
1181 return mask;
1182 }
1183
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1184 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1185 {
1186 struct vsock_sock *vsk = vsock_sk(sk);
1187
1188 if (WARN_ON_ONCE(!vsk->transport))
1189 return -ENODEV;
1190
1191 return vsk->transport->read_skb(vsk, read_actor);
1192 }
1193
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1194 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1195 size_t len)
1196 {
1197 int err;
1198 struct sock *sk;
1199 struct vsock_sock *vsk;
1200 struct sockaddr_vm *remote_addr;
1201 const struct vsock_transport *transport;
1202
1203 if (msg->msg_flags & MSG_OOB)
1204 return -EOPNOTSUPP;
1205
1206 /* For now, MSG_DONTWAIT is always assumed... */
1207 err = 0;
1208 sk = sock->sk;
1209 vsk = vsock_sk(sk);
1210
1211 lock_sock(sk);
1212
1213 transport = vsk->transport;
1214
1215 err = vsock_auto_bind(vsk);
1216 if (err)
1217 goto out;
1218
1219
1220 /* If the provided message contains an address, use that. Otherwise
1221 * fall back on the socket's remote handle (if it has been connected).
1222 */
1223 if (msg->msg_name &&
1224 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1225 &remote_addr) == 0) {
1226 /* Ensure this address is of the right type and is a valid
1227 * destination.
1228 */
1229
1230 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1231 remote_addr->svm_cid = transport->get_local_cid();
1232
1233 if (!vsock_addr_bound(remote_addr)) {
1234 err = -EINVAL;
1235 goto out;
1236 }
1237 } else if (sock->state == SS_CONNECTED) {
1238 remote_addr = &vsk->remote_addr;
1239
1240 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1241 remote_addr->svm_cid = transport->get_local_cid();
1242
1243 /* XXX Should connect() or this function ensure remote_addr is
1244 * bound?
1245 */
1246 if (!vsock_addr_bound(&vsk->remote_addr)) {
1247 err = -EINVAL;
1248 goto out;
1249 }
1250 } else {
1251 err = -EINVAL;
1252 goto out;
1253 }
1254
1255 if (!transport->dgram_allow(remote_addr->svm_cid,
1256 remote_addr->svm_port)) {
1257 err = -EINVAL;
1258 goto out;
1259 }
1260
1261 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1262
1263 out:
1264 release_sock(sk);
1265 return err;
1266 }
1267
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1268 static int vsock_dgram_connect(struct socket *sock,
1269 struct sockaddr *addr, int addr_len, int flags)
1270 {
1271 int err;
1272 struct sock *sk;
1273 struct vsock_sock *vsk;
1274 struct sockaddr_vm *remote_addr;
1275
1276 sk = sock->sk;
1277 vsk = vsock_sk(sk);
1278
1279 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1280 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1281 lock_sock(sk);
1282 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1283 VMADDR_PORT_ANY);
1284 sock->state = SS_UNCONNECTED;
1285 release_sock(sk);
1286 return 0;
1287 } else if (err != 0)
1288 return -EINVAL;
1289
1290 lock_sock(sk);
1291
1292 err = vsock_auto_bind(vsk);
1293 if (err)
1294 goto out;
1295
1296 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1297 remote_addr->svm_port)) {
1298 err = -EINVAL;
1299 goto out;
1300 }
1301
1302 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1303 sock->state = SS_CONNECTED;
1304
1305 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1306 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1307 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1308 *
1309 * This doesn't seem to be abnormal state for datagram sockets, as the
1310 * same approach can be see in other datagram socket types as well
1311 * (such as unix sockets).
1312 */
1313 sk->sk_state = TCP_ESTABLISHED;
1314
1315 out:
1316 release_sock(sk);
1317 return err;
1318 }
1319
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1320 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1321 size_t len, int flags)
1322 {
1323 struct sock *sk = sock->sk;
1324 struct vsock_sock *vsk = vsock_sk(sk);
1325
1326 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1327 }
1328
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1329 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1330 size_t len, int flags)
1331 {
1332 #ifdef CONFIG_BPF_SYSCALL
1333 struct sock *sk = sock->sk;
1334 const struct proto *prot;
1335
1336 prot = READ_ONCE(sk->sk_prot);
1337 if (prot != &vsock_proto)
1338 return prot->recvmsg(sk, msg, len, flags, NULL);
1339 #endif
1340
1341 return __vsock_dgram_recvmsg(sock, msg, len, flags);
1342 }
1343 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1344
1345 static const struct proto_ops vsock_dgram_ops = {
1346 .family = PF_VSOCK,
1347 .owner = THIS_MODULE,
1348 .release = vsock_release,
1349 .bind = vsock_bind,
1350 .connect = vsock_dgram_connect,
1351 .socketpair = sock_no_socketpair,
1352 .accept = sock_no_accept,
1353 .getname = vsock_getname,
1354 .poll = vsock_poll,
1355 .ioctl = sock_no_ioctl,
1356 .listen = sock_no_listen,
1357 .shutdown = vsock_shutdown,
1358 .sendmsg = vsock_dgram_sendmsg,
1359 .recvmsg = vsock_dgram_recvmsg,
1360 .mmap = sock_no_mmap,
1361 .read_skb = vsock_read_skb,
1362 };
1363
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1364 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1365 {
1366 const struct vsock_transport *transport = vsk->transport;
1367
1368 if (!transport || !transport->cancel_pkt)
1369 return -EOPNOTSUPP;
1370
1371 return transport->cancel_pkt(vsk);
1372 }
1373
vsock_connect_timeout(struct work_struct * work)1374 static void vsock_connect_timeout(struct work_struct *work)
1375 {
1376 struct sock *sk;
1377 struct vsock_sock *vsk;
1378
1379 vsk = container_of(work, struct vsock_sock, connect_work.work);
1380 sk = sk_vsock(vsk);
1381
1382 lock_sock(sk);
1383 if (sk->sk_state == TCP_SYN_SENT &&
1384 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1385 sk->sk_state = TCP_CLOSE;
1386 sk->sk_socket->state = SS_UNCONNECTED;
1387 sk->sk_err = ETIMEDOUT;
1388 sk_error_report(sk);
1389 vsock_transport_cancel_pkt(vsk);
1390 }
1391 release_sock(sk);
1392
1393 sock_put(sk);
1394 }
1395
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1396 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1397 int addr_len, int flags)
1398 {
1399 int err;
1400 struct sock *sk;
1401 struct vsock_sock *vsk;
1402 const struct vsock_transport *transport;
1403 struct sockaddr_vm *remote_addr;
1404 long timeout;
1405 DEFINE_WAIT(wait);
1406
1407 err = 0;
1408 sk = sock->sk;
1409 vsk = vsock_sk(sk);
1410
1411 lock_sock(sk);
1412
1413 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1414 switch (sock->state) {
1415 case SS_CONNECTED:
1416 err = -EISCONN;
1417 goto out;
1418 case SS_DISCONNECTING:
1419 err = -EINVAL;
1420 goto out;
1421 case SS_CONNECTING:
1422 /* This continues on so we can move sock into the SS_CONNECTED
1423 * state once the connection has completed (at which point err
1424 * will be set to zero also). Otherwise, we will either wait
1425 * for the connection or return -EALREADY should this be a
1426 * non-blocking call.
1427 */
1428 err = -EALREADY;
1429 if (flags & O_NONBLOCK)
1430 goto out;
1431 break;
1432 default:
1433 if ((sk->sk_state == TCP_LISTEN) ||
1434 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1435 err = -EINVAL;
1436 goto out;
1437 }
1438
1439 /* Set the remote address that we are connecting to. */
1440 memcpy(&vsk->remote_addr, remote_addr,
1441 sizeof(vsk->remote_addr));
1442
1443 err = vsock_assign_transport(vsk, NULL);
1444 if (err)
1445 goto out;
1446
1447 transport = vsk->transport;
1448
1449 /* The hypervisor and well-known contexts do not have socket
1450 * endpoints.
1451 */
1452 if (!transport ||
1453 !transport->stream_allow(remote_addr->svm_cid,
1454 remote_addr->svm_port)) {
1455 err = -ENETUNREACH;
1456 goto out;
1457 }
1458
1459 err = vsock_auto_bind(vsk);
1460 if (err)
1461 goto out;
1462
1463 sk->sk_state = TCP_SYN_SENT;
1464
1465 err = transport->connect(vsk);
1466 if (err < 0)
1467 goto out;
1468
1469 /* sk_err might have been set as a result of an earlier
1470 * (failed) connect attempt.
1471 */
1472 sk->sk_err = 0;
1473
1474 /* Mark sock as connecting and set the error code to in
1475 * progress in case this is a non-blocking connect.
1476 */
1477 sock->state = SS_CONNECTING;
1478 err = -EINPROGRESS;
1479 }
1480
1481 /* The receive path will handle all communication until we are able to
1482 * enter the connected state. Here we wait for the connection to be
1483 * completed or a notification of an error.
1484 */
1485 timeout = vsk->connect_timeout;
1486 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1487
1488 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1489 if (flags & O_NONBLOCK) {
1490 /* If we're not going to block, we schedule a timeout
1491 * function to generate a timeout on the connection
1492 * attempt, in case the peer doesn't respond in a
1493 * timely manner. We hold on to the socket until the
1494 * timeout fires.
1495 */
1496 sock_hold(sk);
1497
1498 /* If the timeout function is already scheduled,
1499 * reschedule it, then ungrab the socket refcount to
1500 * keep it balanced.
1501 */
1502 if (mod_delayed_work(system_wq, &vsk->connect_work,
1503 timeout))
1504 sock_put(sk);
1505
1506 /* Skip ahead to preserve error code set above. */
1507 goto out_wait;
1508 }
1509
1510 release_sock(sk);
1511 timeout = schedule_timeout(timeout);
1512 lock_sock(sk);
1513
1514 if (signal_pending(current)) {
1515 err = sock_intr_errno(timeout);
1516 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1517 sock->state = SS_UNCONNECTED;
1518 vsock_transport_cancel_pkt(vsk);
1519 vsock_remove_connected(vsk);
1520 goto out_wait;
1521 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1522 err = -ETIMEDOUT;
1523 sk->sk_state = TCP_CLOSE;
1524 sock->state = SS_UNCONNECTED;
1525 vsock_transport_cancel_pkt(vsk);
1526 goto out_wait;
1527 }
1528
1529 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1530 }
1531
1532 if (sk->sk_err) {
1533 err = -sk->sk_err;
1534 sk->sk_state = TCP_CLOSE;
1535 sock->state = SS_UNCONNECTED;
1536 } else {
1537 err = 0;
1538 }
1539
1540 out_wait:
1541 finish_wait(sk_sleep(sk), &wait);
1542 out:
1543 release_sock(sk);
1544 return err;
1545 }
1546
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1547 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1548 bool kern)
1549 {
1550 struct sock *listener;
1551 int err;
1552 struct sock *connected;
1553 struct vsock_sock *vconnected;
1554 long timeout;
1555 DEFINE_WAIT(wait);
1556
1557 err = 0;
1558 listener = sock->sk;
1559
1560 lock_sock(listener);
1561
1562 if (!sock_type_connectible(sock->type)) {
1563 err = -EOPNOTSUPP;
1564 goto out;
1565 }
1566
1567 if (listener->sk_state != TCP_LISTEN) {
1568 err = -EINVAL;
1569 goto out;
1570 }
1571
1572 /* Wait for children sockets to appear; these are the new sockets
1573 * created upon connection establishment.
1574 */
1575 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1576 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1577
1578 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1579 listener->sk_err == 0) {
1580 release_sock(listener);
1581 timeout = schedule_timeout(timeout);
1582 finish_wait(sk_sleep(listener), &wait);
1583 lock_sock(listener);
1584
1585 if (signal_pending(current)) {
1586 err = sock_intr_errno(timeout);
1587 goto out;
1588 } else if (timeout == 0) {
1589 err = -EAGAIN;
1590 goto out;
1591 }
1592
1593 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1594 }
1595 finish_wait(sk_sleep(listener), &wait);
1596
1597 if (listener->sk_err)
1598 err = -listener->sk_err;
1599
1600 if (connected) {
1601 sk_acceptq_removed(listener);
1602
1603 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1604 vconnected = vsock_sk(connected);
1605
1606 /* If the listener socket has received an error, then we should
1607 * reject this socket and return. Note that we simply mark the
1608 * socket rejected, drop our reference, and let the cleanup
1609 * function handle the cleanup; the fact that we found it in
1610 * the listener's accept queue guarantees that the cleanup
1611 * function hasn't run yet.
1612 */
1613 if (err) {
1614 vconnected->rejected = true;
1615 } else {
1616 newsock->state = SS_CONNECTED;
1617 sock_graft(connected, newsock);
1618 }
1619
1620 release_sock(connected);
1621 sock_put(connected);
1622 }
1623
1624 out:
1625 release_sock(listener);
1626 return err;
1627 }
1628
vsock_listen(struct socket * sock,int backlog)1629 static int vsock_listen(struct socket *sock, int backlog)
1630 {
1631 int err;
1632 struct sock *sk;
1633 struct vsock_sock *vsk;
1634
1635 sk = sock->sk;
1636
1637 lock_sock(sk);
1638
1639 if (!sock_type_connectible(sk->sk_type)) {
1640 err = -EOPNOTSUPP;
1641 goto out;
1642 }
1643
1644 if (sock->state != SS_UNCONNECTED) {
1645 err = -EINVAL;
1646 goto out;
1647 }
1648
1649 vsk = vsock_sk(sk);
1650
1651 if (!vsock_addr_bound(&vsk->local_addr)) {
1652 err = -EINVAL;
1653 goto out;
1654 }
1655
1656 sk->sk_max_ack_backlog = backlog;
1657 sk->sk_state = TCP_LISTEN;
1658
1659 err = 0;
1660
1661 out:
1662 release_sock(sk);
1663 return err;
1664 }
1665
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1666 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1667 const struct vsock_transport *transport,
1668 u64 val)
1669 {
1670 if (val > vsk->buffer_max_size)
1671 val = vsk->buffer_max_size;
1672
1673 if (val < vsk->buffer_min_size)
1674 val = vsk->buffer_min_size;
1675
1676 if (val != vsk->buffer_size &&
1677 transport && transport->notify_buffer_size)
1678 transport->notify_buffer_size(vsk, &val);
1679
1680 vsk->buffer_size = val;
1681 }
1682
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1683 static int vsock_connectible_setsockopt(struct socket *sock,
1684 int level,
1685 int optname,
1686 sockptr_t optval,
1687 unsigned int optlen)
1688 {
1689 int err;
1690 struct sock *sk;
1691 struct vsock_sock *vsk;
1692 const struct vsock_transport *transport;
1693 u64 val;
1694
1695 if (level != AF_VSOCK)
1696 return -ENOPROTOOPT;
1697
1698 #define COPY_IN(_v) \
1699 do { \
1700 if (optlen < sizeof(_v)) { \
1701 err = -EINVAL; \
1702 goto exit; \
1703 } \
1704 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1705 err = -EFAULT; \
1706 goto exit; \
1707 } \
1708 } while (0)
1709
1710 err = 0;
1711 sk = sock->sk;
1712 vsk = vsock_sk(sk);
1713
1714 lock_sock(sk);
1715
1716 transport = vsk->transport;
1717
1718 switch (optname) {
1719 case SO_VM_SOCKETS_BUFFER_SIZE:
1720 COPY_IN(val);
1721 vsock_update_buffer_size(vsk, transport, val);
1722 break;
1723
1724 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1725 COPY_IN(val);
1726 vsk->buffer_max_size = val;
1727 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1728 break;
1729
1730 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1731 COPY_IN(val);
1732 vsk->buffer_min_size = val;
1733 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1734 break;
1735
1736 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1737 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1738 struct __kernel_sock_timeval tv;
1739
1740 err = sock_copy_user_timeval(&tv, optval, optlen,
1741 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1742 if (err)
1743 break;
1744 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1745 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1746 vsk->connect_timeout = tv.tv_sec * HZ +
1747 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1748 if (vsk->connect_timeout == 0)
1749 vsk->connect_timeout =
1750 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1751
1752 } else {
1753 err = -ERANGE;
1754 }
1755 break;
1756 }
1757
1758 default:
1759 err = -ENOPROTOOPT;
1760 break;
1761 }
1762
1763 #undef COPY_IN
1764
1765 exit:
1766 release_sock(sk);
1767 return err;
1768 }
1769
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1770 static int vsock_connectible_getsockopt(struct socket *sock,
1771 int level, int optname,
1772 char __user *optval,
1773 int __user *optlen)
1774 {
1775 struct sock *sk = sock->sk;
1776 struct vsock_sock *vsk = vsock_sk(sk);
1777
1778 union {
1779 u64 val64;
1780 struct old_timeval32 tm32;
1781 struct __kernel_old_timeval tm;
1782 struct __kernel_sock_timeval stm;
1783 } v;
1784
1785 int lv = sizeof(v.val64);
1786 int len;
1787
1788 if (level != AF_VSOCK)
1789 return -ENOPROTOOPT;
1790
1791 if (get_user(len, optlen))
1792 return -EFAULT;
1793
1794 memset(&v, 0, sizeof(v));
1795
1796 switch (optname) {
1797 case SO_VM_SOCKETS_BUFFER_SIZE:
1798 v.val64 = vsk->buffer_size;
1799 break;
1800
1801 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1802 v.val64 = vsk->buffer_max_size;
1803 break;
1804
1805 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1806 v.val64 = vsk->buffer_min_size;
1807 break;
1808
1809 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1810 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1811 lv = sock_get_timeout(vsk->connect_timeout, &v,
1812 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1813 break;
1814
1815 default:
1816 return -ENOPROTOOPT;
1817 }
1818
1819 if (len < lv)
1820 return -EINVAL;
1821 if (len > lv)
1822 len = lv;
1823 if (copy_to_user(optval, &v, len))
1824 return -EFAULT;
1825
1826 if (put_user(len, optlen))
1827 return -EFAULT;
1828
1829 return 0;
1830 }
1831
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1832 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1833 size_t len)
1834 {
1835 struct sock *sk;
1836 struct vsock_sock *vsk;
1837 const struct vsock_transport *transport;
1838 ssize_t total_written;
1839 long timeout;
1840 int err;
1841 struct vsock_transport_send_notify_data send_data;
1842 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1843
1844 sk = sock->sk;
1845 vsk = vsock_sk(sk);
1846 total_written = 0;
1847 err = 0;
1848
1849 if (msg->msg_flags & MSG_OOB)
1850 return -EOPNOTSUPP;
1851
1852 lock_sock(sk);
1853
1854 transport = vsk->transport;
1855
1856 /* Callers should not provide a destination with connection oriented
1857 * sockets.
1858 */
1859 if (msg->msg_namelen) {
1860 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1861 goto out;
1862 }
1863
1864 /* Send data only if both sides are not shutdown in the direction. */
1865 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1866 vsk->peer_shutdown & RCV_SHUTDOWN) {
1867 err = -EPIPE;
1868 goto out;
1869 }
1870
1871 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1872 !vsock_addr_bound(&vsk->local_addr)) {
1873 err = -ENOTCONN;
1874 goto out;
1875 }
1876
1877 if (!vsock_addr_bound(&vsk->remote_addr)) {
1878 err = -EDESTADDRREQ;
1879 goto out;
1880 }
1881
1882 /* Wait for room in the produce queue to enqueue our user's data. */
1883 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1884
1885 err = transport->notify_send_init(vsk, &send_data);
1886 if (err < 0)
1887 goto out;
1888
1889 while (total_written < len) {
1890 ssize_t written;
1891
1892 add_wait_queue(sk_sleep(sk), &wait);
1893 while (vsock_stream_has_space(vsk) == 0 &&
1894 sk->sk_err == 0 &&
1895 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1896 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1897
1898 /* Don't wait for non-blocking sockets. */
1899 if (timeout == 0) {
1900 err = -EAGAIN;
1901 remove_wait_queue(sk_sleep(sk), &wait);
1902 goto out_err;
1903 }
1904
1905 err = transport->notify_send_pre_block(vsk, &send_data);
1906 if (err < 0) {
1907 remove_wait_queue(sk_sleep(sk), &wait);
1908 goto out_err;
1909 }
1910
1911 release_sock(sk);
1912 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1913 lock_sock(sk);
1914 if (signal_pending(current)) {
1915 err = sock_intr_errno(timeout);
1916 remove_wait_queue(sk_sleep(sk), &wait);
1917 goto out_err;
1918 } else if (timeout == 0) {
1919 err = -EAGAIN;
1920 remove_wait_queue(sk_sleep(sk), &wait);
1921 goto out_err;
1922 }
1923 }
1924 remove_wait_queue(sk_sleep(sk), &wait);
1925
1926 /* These checks occur both as part of and after the loop
1927 * conditional since we need to check before and after
1928 * sleeping.
1929 */
1930 if (sk->sk_err) {
1931 err = -sk->sk_err;
1932 goto out_err;
1933 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1934 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1935 err = -EPIPE;
1936 goto out_err;
1937 }
1938
1939 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1940 if (err < 0)
1941 goto out_err;
1942
1943 /* Note that enqueue will only write as many bytes as are free
1944 * in the produce queue, so we don't need to ensure len is
1945 * smaller than the queue size. It is the caller's
1946 * responsibility to check how many bytes we were able to send.
1947 */
1948
1949 if (sk->sk_type == SOCK_SEQPACKET) {
1950 written = transport->seqpacket_enqueue(vsk,
1951 msg, len - total_written);
1952 } else {
1953 written = transport->stream_enqueue(vsk,
1954 msg, len - total_written);
1955 }
1956
1957 if (written < 0) {
1958 err = written;
1959 goto out_err;
1960 }
1961
1962 total_written += written;
1963
1964 err = transport->notify_send_post_enqueue(
1965 vsk, written, &send_data);
1966 if (err < 0)
1967 goto out_err;
1968
1969 }
1970
1971 out_err:
1972 if (total_written > 0) {
1973 /* Return number of written bytes only if:
1974 * 1) SOCK_STREAM socket.
1975 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1976 */
1977 if (sk->sk_type == SOCK_STREAM || total_written == len)
1978 err = total_written;
1979 }
1980 out:
1981 release_sock(sk);
1982 return err;
1983 }
1984
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)1985 static int vsock_connectible_wait_data(struct sock *sk,
1986 struct wait_queue_entry *wait,
1987 long timeout,
1988 struct vsock_transport_recv_notify_data *recv_data,
1989 size_t target)
1990 {
1991 const struct vsock_transport *transport;
1992 struct vsock_sock *vsk;
1993 s64 data;
1994 int err;
1995
1996 vsk = vsock_sk(sk);
1997 err = 0;
1998 transport = vsk->transport;
1999
2000 while (1) {
2001 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2002 data = vsock_connectible_has_data(vsk);
2003 if (data != 0)
2004 break;
2005
2006 if (sk->sk_err != 0 ||
2007 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2008 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2009 break;
2010 }
2011
2012 /* Don't wait for non-blocking sockets. */
2013 if (timeout == 0) {
2014 err = -EAGAIN;
2015 break;
2016 }
2017
2018 if (recv_data) {
2019 err = transport->notify_recv_pre_block(vsk, target, recv_data);
2020 if (err < 0)
2021 break;
2022 }
2023
2024 release_sock(sk);
2025 timeout = schedule_timeout(timeout);
2026 lock_sock(sk);
2027
2028 if (signal_pending(current)) {
2029 err = sock_intr_errno(timeout);
2030 break;
2031 } else if (timeout == 0) {
2032 err = -EAGAIN;
2033 break;
2034 }
2035 }
2036
2037 finish_wait(sk_sleep(sk), wait);
2038
2039 if (err)
2040 return err;
2041
2042 /* Internal transport error when checking for available
2043 * data. XXX This should be changed to a connection
2044 * reset in a later change.
2045 */
2046 if (data < 0)
2047 return -ENOMEM;
2048
2049 return data;
2050 }
2051
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2052 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2053 size_t len, int flags)
2054 {
2055 struct vsock_transport_recv_notify_data recv_data;
2056 const struct vsock_transport *transport;
2057 struct vsock_sock *vsk;
2058 ssize_t copied;
2059 size_t target;
2060 long timeout;
2061 int err;
2062
2063 DEFINE_WAIT(wait);
2064
2065 vsk = vsock_sk(sk);
2066 transport = vsk->transport;
2067
2068 /* We must not copy less than target bytes into the user's buffer
2069 * before returning successfully, so we wait for the consume queue to
2070 * have that much data to consume before dequeueing. Note that this
2071 * makes it impossible to handle cases where target is greater than the
2072 * queue size.
2073 */
2074 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2075 if (target >= transport->stream_rcvhiwat(vsk)) {
2076 err = -ENOMEM;
2077 goto out;
2078 }
2079 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2080 copied = 0;
2081
2082 err = transport->notify_recv_init(vsk, target, &recv_data);
2083 if (err < 0)
2084 goto out;
2085
2086
2087 while (1) {
2088 ssize_t read;
2089
2090 err = vsock_connectible_wait_data(sk, &wait, timeout,
2091 &recv_data, target);
2092 if (err <= 0)
2093 break;
2094
2095 err = transport->notify_recv_pre_dequeue(vsk, target,
2096 &recv_data);
2097 if (err < 0)
2098 break;
2099
2100 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2101 if (read < 0) {
2102 err = read;
2103 break;
2104 }
2105
2106 copied += read;
2107
2108 err = transport->notify_recv_post_dequeue(vsk, target, read,
2109 !(flags & MSG_PEEK), &recv_data);
2110 if (err < 0)
2111 goto out;
2112
2113 if (read >= target || flags & MSG_PEEK)
2114 break;
2115
2116 target -= read;
2117 }
2118
2119 if (sk->sk_err)
2120 err = -sk->sk_err;
2121 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2122 err = 0;
2123
2124 if (copied > 0)
2125 err = copied;
2126
2127 out:
2128 return err;
2129 }
2130
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2131 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2132 size_t len, int flags)
2133 {
2134 const struct vsock_transport *transport;
2135 struct vsock_sock *vsk;
2136 ssize_t msg_len;
2137 long timeout;
2138 int err = 0;
2139 DEFINE_WAIT(wait);
2140
2141 vsk = vsock_sk(sk);
2142 transport = vsk->transport;
2143
2144 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2145
2146 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2147 if (err <= 0)
2148 goto out;
2149
2150 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2151
2152 if (msg_len < 0) {
2153 err = msg_len;
2154 goto out;
2155 }
2156
2157 if (sk->sk_err) {
2158 err = -sk->sk_err;
2159 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2160 err = 0;
2161 } else {
2162 /* User sets MSG_TRUNC, so return real length of
2163 * packet.
2164 */
2165 if (flags & MSG_TRUNC)
2166 err = msg_len;
2167 else
2168 err = len - msg_data_left(msg);
2169
2170 /* Always set MSG_TRUNC if real length of packet is
2171 * bigger than user's buffer.
2172 */
2173 if (msg_len > len)
2174 msg->msg_flags |= MSG_TRUNC;
2175 }
2176
2177 out:
2178 return err;
2179 }
2180
2181 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2182 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2183 int flags)
2184 {
2185 struct sock *sk;
2186 struct vsock_sock *vsk;
2187 const struct vsock_transport *transport;
2188 int err;
2189
2190 sk = sock->sk;
2191
2192 if (unlikely(flags & MSG_ERRQUEUE))
2193 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2194
2195 vsk = vsock_sk(sk);
2196 err = 0;
2197
2198 lock_sock(sk);
2199
2200 transport = vsk->transport;
2201
2202 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2203 /* Recvmsg is supposed to return 0 if a peer performs an
2204 * orderly shutdown. Differentiate between that case and when a
2205 * peer has not connected or a local shutdown occurred with the
2206 * SOCK_DONE flag.
2207 */
2208 if (sock_flag(sk, SOCK_DONE))
2209 err = 0;
2210 else
2211 err = -ENOTCONN;
2212
2213 goto out;
2214 }
2215
2216 if (flags & MSG_OOB) {
2217 err = -EOPNOTSUPP;
2218 goto out;
2219 }
2220
2221 /* We don't check peer_shutdown flag here since peer may actually shut
2222 * down, but there can be data in the queue that a local socket can
2223 * receive.
2224 */
2225 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2226 err = 0;
2227 goto out;
2228 }
2229
2230 /* It is valid on Linux to pass in a zero-length receive buffer. This
2231 * is not an error. We may as well bail out now.
2232 */
2233 if (!len) {
2234 err = 0;
2235 goto out;
2236 }
2237
2238 if (sk->sk_type == SOCK_STREAM)
2239 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2240 else
2241 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2242
2243 out:
2244 release_sock(sk);
2245 return err;
2246 }
2247
2248 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2249 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2250 int flags)
2251 {
2252 #ifdef CONFIG_BPF_SYSCALL
2253 struct sock *sk = sock->sk;
2254 const struct proto *prot;
2255
2256 prot = READ_ONCE(sk->sk_prot);
2257 if (prot != &vsock_proto)
2258 return prot->recvmsg(sk, msg, len, flags, NULL);
2259 #endif
2260
2261 return __vsock_connectible_recvmsg(sock, msg, len, flags);
2262 }
2263 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2264
vsock_set_rcvlowat(struct sock * sk,int val)2265 static int vsock_set_rcvlowat(struct sock *sk, int val)
2266 {
2267 const struct vsock_transport *transport;
2268 struct vsock_sock *vsk;
2269
2270 vsk = vsock_sk(sk);
2271
2272 if (val > vsk->buffer_size)
2273 return -EINVAL;
2274
2275 transport = vsk->transport;
2276
2277 if (transport && transport->notify_set_rcvlowat) {
2278 int err;
2279
2280 err = transport->notify_set_rcvlowat(vsk, val);
2281 if (err)
2282 return err;
2283 }
2284
2285 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2286 return 0;
2287 }
2288
2289 static const struct proto_ops vsock_stream_ops = {
2290 .family = PF_VSOCK,
2291 .owner = THIS_MODULE,
2292 .release = vsock_release,
2293 .bind = vsock_bind,
2294 .connect = vsock_connect,
2295 .socketpair = sock_no_socketpair,
2296 .accept = vsock_accept,
2297 .getname = vsock_getname,
2298 .poll = vsock_poll,
2299 .ioctl = sock_no_ioctl,
2300 .listen = vsock_listen,
2301 .shutdown = vsock_shutdown,
2302 .setsockopt = vsock_connectible_setsockopt,
2303 .getsockopt = vsock_connectible_getsockopt,
2304 .sendmsg = vsock_connectible_sendmsg,
2305 .recvmsg = vsock_connectible_recvmsg,
2306 .mmap = sock_no_mmap,
2307 .set_rcvlowat = vsock_set_rcvlowat,
2308 .read_skb = vsock_read_skb,
2309 };
2310
2311 static const struct proto_ops vsock_seqpacket_ops = {
2312 .family = PF_VSOCK,
2313 .owner = THIS_MODULE,
2314 .release = vsock_release,
2315 .bind = vsock_bind,
2316 .connect = vsock_connect,
2317 .socketpair = sock_no_socketpair,
2318 .accept = vsock_accept,
2319 .getname = vsock_getname,
2320 .poll = vsock_poll,
2321 .ioctl = sock_no_ioctl,
2322 .listen = vsock_listen,
2323 .shutdown = vsock_shutdown,
2324 .setsockopt = vsock_connectible_setsockopt,
2325 .getsockopt = vsock_connectible_getsockopt,
2326 .sendmsg = vsock_connectible_sendmsg,
2327 .recvmsg = vsock_connectible_recvmsg,
2328 .mmap = sock_no_mmap,
2329 .read_skb = vsock_read_skb,
2330 };
2331
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2332 static int vsock_create(struct net *net, struct socket *sock,
2333 int protocol, int kern)
2334 {
2335 struct vsock_sock *vsk;
2336 struct sock *sk;
2337 int ret;
2338
2339 if (!sock)
2340 return -EINVAL;
2341
2342 if (protocol && protocol != PF_VSOCK)
2343 return -EPROTONOSUPPORT;
2344
2345 switch (sock->type) {
2346 case SOCK_DGRAM:
2347 sock->ops = &vsock_dgram_ops;
2348 break;
2349 case SOCK_STREAM:
2350 sock->ops = &vsock_stream_ops;
2351 break;
2352 case SOCK_SEQPACKET:
2353 sock->ops = &vsock_seqpacket_ops;
2354 break;
2355 default:
2356 return -ESOCKTNOSUPPORT;
2357 }
2358
2359 sock->state = SS_UNCONNECTED;
2360
2361 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2362 if (!sk)
2363 return -ENOMEM;
2364
2365 vsk = vsock_sk(sk);
2366
2367 if (sock->type == SOCK_DGRAM) {
2368 ret = vsock_assign_transport(vsk, NULL);
2369 if (ret < 0) {
2370 sock_put(sk);
2371 return ret;
2372 }
2373 }
2374
2375 vsock_insert_unbound(vsk);
2376
2377 return 0;
2378 }
2379
2380 static const struct net_proto_family vsock_family_ops = {
2381 .family = AF_VSOCK,
2382 .create = vsock_create,
2383 .owner = THIS_MODULE,
2384 };
2385
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2386 static long vsock_dev_do_ioctl(struct file *filp,
2387 unsigned int cmd, void __user *ptr)
2388 {
2389 u32 __user *p = ptr;
2390 u32 cid = VMADDR_CID_ANY;
2391 int retval = 0;
2392
2393 switch (cmd) {
2394 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2395 /* To be compatible with the VMCI behavior, we prioritize the
2396 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2397 */
2398 if (transport_g2h)
2399 cid = transport_g2h->get_local_cid();
2400 else if (transport_h2g)
2401 cid = transport_h2g->get_local_cid();
2402
2403 if (put_user(cid, p) != 0)
2404 retval = -EFAULT;
2405 break;
2406
2407 default:
2408 retval = -ENOIOCTLCMD;
2409 }
2410
2411 return retval;
2412 }
2413
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2414 static long vsock_dev_ioctl(struct file *filp,
2415 unsigned int cmd, unsigned long arg)
2416 {
2417 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2418 }
2419
2420 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2421 static long vsock_dev_compat_ioctl(struct file *filp,
2422 unsigned int cmd, unsigned long arg)
2423 {
2424 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2425 }
2426 #endif
2427
2428 static const struct file_operations vsock_device_ops = {
2429 .owner = THIS_MODULE,
2430 .unlocked_ioctl = vsock_dev_ioctl,
2431 #ifdef CONFIG_COMPAT
2432 .compat_ioctl = vsock_dev_compat_ioctl,
2433 #endif
2434 .open = nonseekable_open,
2435 };
2436
2437 static struct miscdevice vsock_device = {
2438 .name = "vsock",
2439 .fops = &vsock_device_ops,
2440 };
2441
vsock_init(void)2442 static int __init vsock_init(void)
2443 {
2444 int err = 0;
2445
2446 vsock_init_tables();
2447
2448 vsock_proto.owner = THIS_MODULE;
2449 vsock_device.minor = MISC_DYNAMIC_MINOR;
2450 err = misc_register(&vsock_device);
2451 if (err) {
2452 pr_err("Failed to register misc device\n");
2453 goto err_reset_transport;
2454 }
2455
2456 err = proto_register(&vsock_proto, 1); /* we want our slab */
2457 if (err) {
2458 pr_err("Cannot register vsock protocol\n");
2459 goto err_deregister_misc;
2460 }
2461
2462 err = sock_register(&vsock_family_ops);
2463 if (err) {
2464 pr_err("could not register af_vsock (%d) address family: %d\n",
2465 AF_VSOCK, err);
2466 goto err_unregister_proto;
2467 }
2468
2469 vsock_bpf_build_proto();
2470
2471 return 0;
2472
2473 err_unregister_proto:
2474 proto_unregister(&vsock_proto);
2475 err_deregister_misc:
2476 misc_deregister(&vsock_device);
2477 err_reset_transport:
2478 return err;
2479 }
2480
vsock_exit(void)2481 static void __exit vsock_exit(void)
2482 {
2483 misc_deregister(&vsock_device);
2484 sock_unregister(AF_VSOCK);
2485 proto_unregister(&vsock_proto);
2486 }
2487
vsock_core_get_transport(struct vsock_sock * vsk)2488 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2489 {
2490 return vsk->transport;
2491 }
2492 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2493
vsock_core_register(const struct vsock_transport * t,int features)2494 int vsock_core_register(const struct vsock_transport *t, int features)
2495 {
2496 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2497 int err = mutex_lock_interruptible(&vsock_register_mutex);
2498
2499 if (err)
2500 return err;
2501
2502 t_h2g = transport_h2g;
2503 t_g2h = transport_g2h;
2504 t_dgram = transport_dgram;
2505 t_local = transport_local;
2506
2507 if (features & VSOCK_TRANSPORT_F_H2G) {
2508 if (t_h2g) {
2509 err = -EBUSY;
2510 goto err_busy;
2511 }
2512 t_h2g = t;
2513 }
2514
2515 if (features & VSOCK_TRANSPORT_F_G2H) {
2516 if (t_g2h) {
2517 err = -EBUSY;
2518 goto err_busy;
2519 }
2520 t_g2h = t;
2521 }
2522
2523 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2524 if (t_dgram) {
2525 err = -EBUSY;
2526 goto err_busy;
2527 }
2528 t_dgram = t;
2529 }
2530
2531 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2532 if (t_local) {
2533 err = -EBUSY;
2534 goto err_busy;
2535 }
2536 t_local = t;
2537 }
2538
2539 transport_h2g = t_h2g;
2540 transport_g2h = t_g2h;
2541 transport_dgram = t_dgram;
2542 transport_local = t_local;
2543
2544 err_busy:
2545 mutex_unlock(&vsock_register_mutex);
2546 return err;
2547 }
2548 EXPORT_SYMBOL_GPL(vsock_core_register);
2549
vsock_core_unregister(const struct vsock_transport * t)2550 void vsock_core_unregister(const struct vsock_transport *t)
2551 {
2552 mutex_lock(&vsock_register_mutex);
2553
2554 if (transport_h2g == t)
2555 transport_h2g = NULL;
2556
2557 if (transport_g2h == t)
2558 transport_g2h = NULL;
2559
2560 if (transport_dgram == t)
2561 transport_dgram = NULL;
2562
2563 if (transport_local == t)
2564 transport_local = NULL;
2565
2566 mutex_unlock(&vsock_register_mutex);
2567 }
2568 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2569
2570 module_init(vsock_init);
2571 module_exit(vsock_exit);
2572
2573 MODULE_AUTHOR("VMware, Inc.");
2574 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2575 MODULE_VERSION("1.0.2.0-k");
2576 MODULE_LICENSE("GPL v2");
2577