xref: /openbmc/linux/kernel/locking/lockdep.c (revision 34d6f206a88c2651d216bd3487ac956a40b2ba8e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 
60 #include <asm/sections.h>
61 
62 #include "lockdep_internals.h"
63 
64 #include <trace/events/lock.h>
65 
66 #ifdef CONFIG_PROVE_LOCKING
67 static int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72 
73 #ifdef CONFIG_LOCK_STAT
74 static int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79 
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_lockdep_table[] = {
82 #ifdef CONFIG_PROVE_LOCKING
83 	{
84 		.procname       = "prove_locking",
85 		.data           = &prove_locking,
86 		.maxlen         = sizeof(int),
87 		.mode           = 0644,
88 		.proc_handler   = proc_dointvec,
89 	},
90 #endif /* CONFIG_PROVE_LOCKING */
91 #ifdef CONFIG_LOCK_STAT
92 	{
93 		.procname       = "lock_stat",
94 		.data           = &lock_stat,
95 		.maxlen         = sizeof(int),
96 		.mode           = 0644,
97 		.proc_handler   = proc_dointvec,
98 	},
99 #endif /* CONFIG_LOCK_STAT */
100 	{ }
101 };
102 
kernel_lockdep_sysctls_init(void)103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105 	register_sysctl_init("kernel", kern_lockdep_table);
106 	return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110 
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113 
lockdep_enabled(void)114 static __always_inline bool lockdep_enabled(void)
115 {
116 	if (!debug_locks)
117 		return false;
118 
119 	if (this_cpu_read(lockdep_recursion))
120 		return false;
121 
122 	if (current->lockdep_recursion)
123 		return false;
124 
125 	return true;
126 }
127 
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138 
lockdep_lock(void)139 static inline void lockdep_lock(void)
140 {
141 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142 
143 	__this_cpu_inc(lockdep_recursion);
144 	arch_spin_lock(&__lock);
145 	__owner = current;
146 }
147 
lockdep_unlock(void)148 static inline void lockdep_unlock(void)
149 {
150 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151 
152 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153 		return;
154 
155 	__owner = NULL;
156 	arch_spin_unlock(&__lock);
157 	__this_cpu_dec(lockdep_recursion);
158 }
159 
lockdep_assert_locked(void)160 static inline bool lockdep_assert_locked(void)
161 {
162 	return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164 
165 static struct task_struct *lockdep_selftest_task_struct;
166 
167 
graph_lock(void)168 static int graph_lock(void)
169 {
170 	lockdep_lock();
171 	/*
172 	 * Make sure that if another CPU detected a bug while
173 	 * walking the graph we dont change it (while the other
174 	 * CPU is busy printing out stuff with the graph lock
175 	 * dropped already)
176 	 */
177 	if (!debug_locks) {
178 		lockdep_unlock();
179 		return 0;
180 	}
181 	return 1;
182 }
183 
graph_unlock(void)184 static inline void graph_unlock(void)
185 {
186 	lockdep_unlock();
187 }
188 
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
debug_locks_off_graph_unlock(void)193 static inline int debug_locks_off_graph_unlock(void)
194 {
195 	int ret = debug_locks_off();
196 
197 	lockdep_unlock();
198 
199 	return ret;
200 }
201 
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205 
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220 
hlock_class(struct held_lock * hlock)221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223 	unsigned int class_idx = hlock->class_idx;
224 
225 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226 	barrier();
227 
228 	if (!test_bit(class_idx, lock_classes_in_use)) {
229 		/*
230 		 * Someone passed in garbage, we give up.
231 		 */
232 		DEBUG_LOCKS_WARN_ON(1);
233 		return NULL;
234 	}
235 
236 	/*
237 	 * At this point, if the passed hlock->class_idx is still garbage,
238 	 * we just have to live with it
239 	 */
240 	return lock_classes + class_idx;
241 }
242 
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245 
lockstat_clock(void)246 static inline u64 lockstat_clock(void)
247 {
248 	return local_clock();
249 }
250 
lock_point(unsigned long points[],unsigned long ip)251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253 	int i;
254 
255 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
256 		if (points[i] == 0) {
257 			points[i] = ip;
258 			break;
259 		}
260 		if (points[i] == ip)
261 			break;
262 	}
263 
264 	return i;
265 }
266 
lock_time_inc(struct lock_time * lt,u64 time)267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269 	if (time > lt->max)
270 		lt->max = time;
271 
272 	if (time < lt->min || !lt->nr)
273 		lt->min = time;
274 
275 	lt->total += time;
276 	lt->nr++;
277 }
278 
lock_time_add(struct lock_time * src,struct lock_time * dst)279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281 	if (!src->nr)
282 		return;
283 
284 	if (src->max > dst->max)
285 		dst->max = src->max;
286 
287 	if (src->min < dst->min || !dst->nr)
288 		dst->min = src->min;
289 
290 	dst->total += src->total;
291 	dst->nr += src->nr;
292 }
293 
lock_stats(struct lock_class * class)294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296 	struct lock_class_stats stats;
297 	int cpu, i;
298 
299 	memset(&stats, 0, sizeof(struct lock_class_stats));
300 	for_each_possible_cpu(cpu) {
301 		struct lock_class_stats *pcs =
302 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303 
304 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305 			stats.contention_point[i] += pcs->contention_point[i];
306 
307 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308 			stats.contending_point[i] += pcs->contending_point[i];
309 
310 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312 
313 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315 
316 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317 			stats.bounces[i] += pcs->bounces[i];
318 	}
319 
320 	return stats;
321 }
322 
clear_lock_stats(struct lock_class * class)323 void clear_lock_stats(struct lock_class *class)
324 {
325 	int cpu;
326 
327 	for_each_possible_cpu(cpu) {
328 		struct lock_class_stats *cpu_stats =
329 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330 
331 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332 	}
333 	memset(class->contention_point, 0, sizeof(class->contention_point));
334 	memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336 
get_lock_stats(struct lock_class * class)337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341 
lock_release_holdtime(struct held_lock * hlock)342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344 	struct lock_class_stats *stats;
345 	u64 holdtime;
346 
347 	if (!lock_stat)
348 		return;
349 
350 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
351 
352 	stats = get_lock_stats(hlock_class(hlock));
353 	if (hlock->read)
354 		lock_time_inc(&stats->read_holdtime, holdtime);
355 	else
356 		lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
lock_release_holdtime(struct held_lock * hlock)359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363 
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372 
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *	are about to be freed.
378  */
379 struct pending_free {
380 	struct list_head zapped;
381 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383 
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396 	struct rcu_head		rcu_head;
397 	int			index;
398 	int			scheduled;
399 	struct pending_free	pf[2];
400 } delayed_free;
401 
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
409 
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411 
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
420 
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422 
423 /*
424  * the id of held_lock
425  */
hlock_id(struct held_lock * hlock)426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429 
430 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432 
chain_hlock_class_idx(u16 hlock_id)433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437 
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
iterate_chain_key(u64 key,u32 idx)444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446 	u32 k0 = key, k1 = key >> 32;
447 
448 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449 
450 	return k0 | (u64)k1 << 32;
451 }
452 
lockdep_init_task(struct task_struct * task)453 void lockdep_init_task(struct task_struct *task)
454 {
455 	task->lockdep_depth = 0; /* no locks held yet */
456 	task->curr_chain_key = INITIAL_CHAIN_KEY;
457 	task->lockdep_recursion = 0;
458 }
459 
lockdep_recursion_inc(void)460 static __always_inline void lockdep_recursion_inc(void)
461 {
462 	__this_cpu_inc(lockdep_recursion);
463 }
464 
lockdep_recursion_finish(void)465 static __always_inline void lockdep_recursion_finish(void)
466 {
467 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468 		__this_cpu_write(lockdep_recursion, 0);
469 }
470 
lockdep_set_selftest_task(struct task_struct * task)471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473 	lockdep_selftest_task_struct = task;
474 }
475 
476 /*
477  * Debugging switches:
478  */
479 
480 #define VERBOSE			0
481 #define VERY_VERBOSE		0
482 
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE	1
485 # define SOFTIRQ_VERBOSE	1
486 #else
487 # define HARDIRQ_VERBOSE	0
488 # define SOFTIRQ_VERBOSE	0
489 #endif
490 
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
class_filter(struct lock_class * class)495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498 	/* Example */
499 	if (class->name_version == 1 &&
500 			!strcmp(class->name, "lockname"))
501 		return 1;
502 	if (class->name_version == 1 &&
503 			!strcmp(class->name, "&struct->lockfield"))
504 		return 1;
505 #endif
506 	/* Filter everything else. 1 would be to allow everything else */
507 	return 0;
508 }
509 #endif
510 
verbose(struct lock_class * class)511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514 	return class_filter(class);
515 #endif
516 	return 0;
517 }
518 
print_lockdep_off(const char * bug_msg)519 static void print_lockdep_off(const char *bug_msg)
520 {
521 	printk(KERN_DEBUG "%s\n", bug_msg);
522 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527 
528 unsigned long nr_stack_trace_entries;
529 
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry:	Entry in a stack_trace_hash[] list.
534  * @hash:	jhash() of @entries.
535  * @nr_entries:	Number of entries in @entries.
536  * @entries:	Actual stack backtrace.
537  */
538 struct lock_trace {
539 	struct hlist_node	hash_entry;
540 	u32			hash;
541 	u32			nr_entries;
542 	unsigned long		entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS				\
545 	(sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551 
traces_identical(struct lock_trace * t1,struct lock_trace * t2)552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555 		memcmp(t1->entries, t2->entries,
556 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558 
save_trace(void)559 static struct lock_trace *save_trace(void)
560 {
561 	struct lock_trace *trace, *t2;
562 	struct hlist_head *hash_head;
563 	u32 hash;
564 	int max_entries;
565 
566 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568 
569 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571 		LOCK_TRACE_SIZE_IN_LONGS;
572 
573 	if (max_entries <= 0) {
574 		if (!debug_locks_off_graph_unlock())
575 			return NULL;
576 
577 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578 		dump_stack();
579 
580 		return NULL;
581 	}
582 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583 
584 	hash = jhash(trace->entries, trace->nr_entries *
585 		     sizeof(trace->entries[0]), 0);
586 	trace->hash = hash;
587 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588 	hlist_for_each_entry(t2, hash_head, hash_entry) {
589 		if (traces_identical(trace, t2))
590 			return t2;
591 	}
592 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593 	hlist_add_head(&trace->hash_entry, hash_head);
594 
595 	return trace;
596 }
597 
598 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)599 u64 lockdep_stack_trace_count(void)
600 {
601 	struct lock_trace *trace;
602 	u64 c = 0;
603 	int i;
604 
605 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607 			c++;
608 		}
609 	}
610 
611 	return c;
612 }
613 
614 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)615 u64 lockdep_stack_hash_count(void)
616 {
617 	u64 c = 0;
618 	int i;
619 
620 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621 		if (!hlist_empty(&stack_trace_hash[i]))
622 			c++;
623 
624 	return c;
625 }
626 #endif
627 
628 unsigned int nr_hardirq_chains;
629 unsigned int nr_softirq_chains;
630 unsigned int nr_process_chains;
631 unsigned int max_lockdep_depth;
632 
633 #ifdef CONFIG_DEBUG_LOCKDEP
634 /*
635  * Various lockdep statistics:
636  */
637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638 #endif
639 
640 #ifdef CONFIG_PROVE_LOCKING
641 /*
642  * Locking printouts:
643  */
644 
645 #define __USAGE(__STATE)						\
646 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
647 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
648 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650 
651 static const char *usage_str[] =
652 {
653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656 	[LOCK_USED] = "INITIAL USE",
657 	[LOCK_USED_READ] = "INITIAL READ USE",
658 	/* abused as string storage for verify_lock_unused() */
659 	[LOCK_USAGE_STATES] = "IN-NMI",
660 };
661 #endif
662 
__get_key_name(const struct lockdep_subclass_key * key,char * str)663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664 {
665 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666 }
667 
lock_flag(enum lock_usage_bit bit)668 static inline unsigned long lock_flag(enum lock_usage_bit bit)
669 {
670 	return 1UL << bit;
671 }
672 
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674 {
675 	/*
676 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
677 	 * irq context), which is the safest usage category.
678 	 */
679 	char c = '.';
680 
681 	/*
682 	 * The order of the following usage checks matters, which will
683 	 * result in the outcome character as follows:
684 	 *
685 	 * - '+': irq is enabled and not in irq context
686 	 * - '-': in irq context and irq is disabled
687 	 * - '?': in irq context and irq is enabled
688 	 */
689 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690 		c = '+';
691 		if (class->usage_mask & lock_flag(bit))
692 			c = '?';
693 	} else if (class->usage_mask & lock_flag(bit))
694 		c = '-';
695 
696 	return c;
697 }
698 
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700 {
701 	int i = 0;
702 
703 #define LOCKDEP_STATE(__STATE) 						\
704 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
705 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706 #include "lockdep_states.h"
707 #undef LOCKDEP_STATE
708 
709 	usage[i] = '\0';
710 }
711 
__print_lock_name(struct held_lock * hlock,struct lock_class * class)712 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
713 {
714 	char str[KSYM_NAME_LEN];
715 	const char *name;
716 
717 	name = class->name;
718 	if (!name) {
719 		name = __get_key_name(class->key, str);
720 		printk(KERN_CONT "%s", name);
721 	} else {
722 		printk(KERN_CONT "%s", name);
723 		if (class->name_version > 1)
724 			printk(KERN_CONT "#%d", class->name_version);
725 		if (class->subclass)
726 			printk(KERN_CONT "/%d", class->subclass);
727 		if (hlock && class->print_fn)
728 			class->print_fn(hlock->instance);
729 	}
730 }
731 
print_lock_name(struct held_lock * hlock,struct lock_class * class)732 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
733 {
734 	char usage[LOCK_USAGE_CHARS];
735 
736 	get_usage_chars(class, usage);
737 
738 	printk(KERN_CONT " (");
739 	__print_lock_name(hlock, class);
740 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
741 			class->wait_type_outer ?: class->wait_type_inner,
742 			class->wait_type_inner);
743 }
744 
print_lockdep_cache(struct lockdep_map * lock)745 static void print_lockdep_cache(struct lockdep_map *lock)
746 {
747 	const char *name;
748 	char str[KSYM_NAME_LEN];
749 
750 	name = lock->name;
751 	if (!name)
752 		name = __get_key_name(lock->key->subkeys, str);
753 
754 	printk(KERN_CONT "%s", name);
755 }
756 
print_lock(struct held_lock * hlock)757 static void print_lock(struct held_lock *hlock)
758 {
759 	/*
760 	 * We can be called locklessly through debug_show_all_locks() so be
761 	 * extra careful, the hlock might have been released and cleared.
762 	 *
763 	 * If this indeed happens, lets pretend it does not hurt to continue
764 	 * to print the lock unless the hlock class_idx does not point to a
765 	 * registered class. The rationale here is: since we don't attempt
766 	 * to distinguish whether we are in this situation, if it just
767 	 * happened we can't count on class_idx to tell either.
768 	 */
769 	struct lock_class *lock = hlock_class(hlock);
770 
771 	if (!lock) {
772 		printk(KERN_CONT "<RELEASED>\n");
773 		return;
774 	}
775 
776 	printk(KERN_CONT "%px", hlock->instance);
777 	print_lock_name(hlock, lock);
778 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
779 }
780 
lockdep_print_held_locks(struct task_struct * p)781 static void lockdep_print_held_locks(struct task_struct *p)
782 {
783 	int i, depth = READ_ONCE(p->lockdep_depth);
784 
785 	if (!depth)
786 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
787 	else
788 		printk("%d lock%s held by %s/%d:\n", depth,
789 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
790 	/*
791 	 * It's not reliable to print a task's held locks if it's not sleeping
792 	 * and it's not the current task.
793 	 */
794 	if (p != current && task_is_running(p))
795 		return;
796 	for (i = 0; i < depth; i++) {
797 		printk(" #%d: ", i);
798 		print_lock(p->held_locks + i);
799 	}
800 }
801 
print_kernel_ident(void)802 static void print_kernel_ident(void)
803 {
804 	printk("%s %.*s %s\n", init_utsname()->release,
805 		(int)strcspn(init_utsname()->version, " "),
806 		init_utsname()->version,
807 		print_tainted());
808 }
809 
very_verbose(struct lock_class * class)810 static int very_verbose(struct lock_class *class)
811 {
812 #if VERY_VERBOSE
813 	return class_filter(class);
814 #endif
815 	return 0;
816 }
817 
818 /*
819  * Is this the address of a static object:
820  */
821 #ifdef __KERNEL__
static_obj(const void * obj)822 static int static_obj(const void *obj)
823 {
824 	unsigned long addr = (unsigned long) obj;
825 
826 	if (is_kernel_core_data(addr))
827 		return 1;
828 
829 	/*
830 	 * keys are allowed in the __ro_after_init section.
831 	 */
832 	if (is_kernel_rodata(addr))
833 		return 1;
834 
835 	/*
836 	 * in initdata section and used during bootup only?
837 	 * NOTE: On some platforms the initdata section is
838 	 * outside of the _stext ... _end range.
839 	 */
840 	if (system_state < SYSTEM_FREEING_INITMEM &&
841 		init_section_contains((void *)addr, 1))
842 		return 1;
843 
844 	/*
845 	 * in-kernel percpu var?
846 	 */
847 	if (is_kernel_percpu_address(addr))
848 		return 1;
849 
850 	/*
851 	 * module static or percpu var?
852 	 */
853 	return is_module_address(addr) || is_module_percpu_address(addr);
854 }
855 #endif
856 
857 /*
858  * To make lock name printouts unique, we calculate a unique
859  * class->name_version generation counter. The caller must hold the graph
860  * lock.
861  */
count_matching_names(struct lock_class * new_class)862 static int count_matching_names(struct lock_class *new_class)
863 {
864 	struct lock_class *class;
865 	int count = 0;
866 
867 	if (!new_class->name)
868 		return 0;
869 
870 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
871 		if (new_class->key - new_class->subclass == class->key)
872 			return class->name_version;
873 		if (class->name && !strcmp(class->name, new_class->name))
874 			count = max(count, class->name_version);
875 	}
876 
877 	return count + 1;
878 }
879 
880 /* used from NMI context -- must be lockless */
881 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)882 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
883 {
884 	struct lockdep_subclass_key *key;
885 	struct hlist_head *hash_head;
886 	struct lock_class *class;
887 
888 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
889 		instrumentation_begin();
890 		debug_locks_off();
891 		printk(KERN_ERR
892 			"BUG: looking up invalid subclass: %u\n", subclass);
893 		printk(KERN_ERR
894 			"turning off the locking correctness validator.\n");
895 		dump_stack();
896 		instrumentation_end();
897 		return NULL;
898 	}
899 
900 	/*
901 	 * If it is not initialised then it has never been locked,
902 	 * so it won't be present in the hash table.
903 	 */
904 	if (unlikely(!lock->key))
905 		return NULL;
906 
907 	/*
908 	 * NOTE: the class-key must be unique. For dynamic locks, a static
909 	 * lock_class_key variable is passed in through the mutex_init()
910 	 * (or spin_lock_init()) call - which acts as the key. For static
911 	 * locks we use the lock object itself as the key.
912 	 */
913 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
914 			sizeof(struct lockdep_map));
915 
916 	key = lock->key->subkeys + subclass;
917 
918 	hash_head = classhashentry(key);
919 
920 	/*
921 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
922 	 */
923 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
924 		return NULL;
925 
926 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
927 		if (class->key == key) {
928 			/*
929 			 * Huh! same key, different name? Did someone trample
930 			 * on some memory? We're most confused.
931 			 */
932 			WARN_ONCE(class->name != lock->name &&
933 				  lock->key != &__lockdep_no_validate__,
934 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
935 				  lock->name, lock->key, class->name);
936 			return class;
937 		}
938 	}
939 
940 	return NULL;
941 }
942 
943 /*
944  * Static locks do not have their class-keys yet - for them the key is
945  * the lock object itself. If the lock is in the per cpu area, the
946  * canonical address of the lock (per cpu offset removed) is used.
947  */
assign_lock_key(struct lockdep_map * lock)948 static bool assign_lock_key(struct lockdep_map *lock)
949 {
950 	unsigned long can_addr, addr = (unsigned long)lock;
951 
952 #ifdef __KERNEL__
953 	/*
954 	 * lockdep_free_key_range() assumes that struct lock_class_key
955 	 * objects do not overlap. Since we use the address of lock
956 	 * objects as class key for static objects, check whether the
957 	 * size of lock_class_key objects does not exceed the size of
958 	 * the smallest lock object.
959 	 */
960 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
961 #endif
962 
963 	if (__is_kernel_percpu_address(addr, &can_addr))
964 		lock->key = (void *)can_addr;
965 	else if (__is_module_percpu_address(addr, &can_addr))
966 		lock->key = (void *)can_addr;
967 	else if (static_obj(lock))
968 		lock->key = (void *)lock;
969 	else {
970 		/* Debug-check: all keys must be persistent! */
971 		debug_locks_off();
972 		pr_err("INFO: trying to register non-static key.\n");
973 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
974 		pr_err("you didn't initialize this object before use?\n");
975 		pr_err("turning off the locking correctness validator.\n");
976 		dump_stack();
977 		return false;
978 	}
979 
980 	return true;
981 }
982 
983 #ifdef CONFIG_DEBUG_LOCKDEP
984 
985 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)986 static bool in_list(struct list_head *e, struct list_head *h)
987 {
988 	struct list_head *f;
989 
990 	list_for_each(f, h) {
991 		if (e == f)
992 			return true;
993 	}
994 
995 	return false;
996 }
997 
998 /*
999  * Check whether entry @e occurs in any of the locks_after or locks_before
1000  * lists.
1001  */
in_any_class_list(struct list_head * e)1002 static bool in_any_class_list(struct list_head *e)
1003 {
1004 	struct lock_class *class;
1005 	int i;
1006 
1007 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1008 		class = &lock_classes[i];
1009 		if (in_list(e, &class->locks_after) ||
1010 		    in_list(e, &class->locks_before))
1011 			return true;
1012 	}
1013 	return false;
1014 }
1015 
class_lock_list_valid(struct lock_class * c,struct list_head * h)1016 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1017 {
1018 	struct lock_list *e;
1019 
1020 	list_for_each_entry(e, h, entry) {
1021 		if (e->links_to != c) {
1022 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1023 			       c->name ? : "(?)",
1024 			       (unsigned long)(e - list_entries),
1025 			       e->links_to && e->links_to->name ?
1026 			       e->links_to->name : "(?)",
1027 			       e->class && e->class->name ? e->class->name :
1028 			       "(?)");
1029 			return false;
1030 		}
1031 	}
1032 	return true;
1033 }
1034 
1035 #ifdef CONFIG_PROVE_LOCKING
1036 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1037 #endif
1038 
check_lock_chain_key(struct lock_chain * chain)1039 static bool check_lock_chain_key(struct lock_chain *chain)
1040 {
1041 #ifdef CONFIG_PROVE_LOCKING
1042 	u64 chain_key = INITIAL_CHAIN_KEY;
1043 	int i;
1044 
1045 	for (i = chain->base; i < chain->base + chain->depth; i++)
1046 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1047 	/*
1048 	 * The 'unsigned long long' casts avoid that a compiler warning
1049 	 * is reported when building tools/lib/lockdep.
1050 	 */
1051 	if (chain->chain_key != chain_key) {
1052 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1053 		       (unsigned long long)(chain - lock_chains),
1054 		       (unsigned long long)chain->chain_key,
1055 		       (unsigned long long)chain_key);
1056 		return false;
1057 	}
1058 #endif
1059 	return true;
1060 }
1061 
in_any_zapped_class_list(struct lock_class * class)1062 static bool in_any_zapped_class_list(struct lock_class *class)
1063 {
1064 	struct pending_free *pf;
1065 	int i;
1066 
1067 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1068 		if (in_list(&class->lock_entry, &pf->zapped))
1069 			return true;
1070 	}
1071 
1072 	return false;
1073 }
1074 
__check_data_structures(void)1075 static bool __check_data_structures(void)
1076 {
1077 	struct lock_class *class;
1078 	struct lock_chain *chain;
1079 	struct hlist_head *head;
1080 	struct lock_list *e;
1081 	int i;
1082 
1083 	/* Check whether all classes occur in a lock list. */
1084 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1085 		class = &lock_classes[i];
1086 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1087 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1088 		    !in_any_zapped_class_list(class)) {
1089 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1090 			       class, class->name ? : "(?)");
1091 			return false;
1092 		}
1093 	}
1094 
1095 	/* Check whether all classes have valid lock lists. */
1096 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1097 		class = &lock_classes[i];
1098 		if (!class_lock_list_valid(class, &class->locks_before))
1099 			return false;
1100 		if (!class_lock_list_valid(class, &class->locks_after))
1101 			return false;
1102 	}
1103 
1104 	/* Check the chain_key of all lock chains. */
1105 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1106 		head = chainhash_table + i;
1107 		hlist_for_each_entry_rcu(chain, head, entry) {
1108 			if (!check_lock_chain_key(chain))
1109 				return false;
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * Check whether all list entries that are in use occur in a class
1115 	 * lock list.
1116 	 */
1117 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1118 		e = list_entries + i;
1119 		if (!in_any_class_list(&e->entry)) {
1120 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1121 			       (unsigned int)(e - list_entries),
1122 			       e->class->name ? : "(?)",
1123 			       e->links_to->name ? : "(?)");
1124 			return false;
1125 		}
1126 	}
1127 
1128 	/*
1129 	 * Check whether all list entries that are not in use do not occur in
1130 	 * a class lock list.
1131 	 */
1132 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1133 		e = list_entries + i;
1134 		if (in_any_class_list(&e->entry)) {
1135 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1136 			       (unsigned int)(e - list_entries),
1137 			       e->class && e->class->name ? e->class->name :
1138 			       "(?)",
1139 			       e->links_to && e->links_to->name ?
1140 			       e->links_to->name : "(?)");
1141 			return false;
1142 		}
1143 	}
1144 
1145 	return true;
1146 }
1147 
1148 int check_consistency = 0;
1149 module_param(check_consistency, int, 0644);
1150 
check_data_structures(void)1151 static void check_data_structures(void)
1152 {
1153 	static bool once = false;
1154 
1155 	if (check_consistency && !once) {
1156 		if (!__check_data_structures()) {
1157 			once = true;
1158 			WARN_ON(once);
1159 		}
1160 	}
1161 }
1162 
1163 #else /* CONFIG_DEBUG_LOCKDEP */
1164 
check_data_structures(void)1165 static inline void check_data_structures(void) { }
1166 
1167 #endif /* CONFIG_DEBUG_LOCKDEP */
1168 
1169 static void init_chain_block_buckets(void);
1170 
1171 /*
1172  * Initialize the lock_classes[] array elements, the free_lock_classes list
1173  * and also the delayed_free structure.
1174  */
init_data_structures_once(void)1175 static void init_data_structures_once(void)
1176 {
1177 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1178 	int i;
1179 
1180 	if (likely(rcu_head_initialized))
1181 		return;
1182 
1183 	if (system_state >= SYSTEM_SCHEDULING) {
1184 		init_rcu_head(&delayed_free.rcu_head);
1185 		rcu_head_initialized = true;
1186 	}
1187 
1188 	if (ds_initialized)
1189 		return;
1190 
1191 	ds_initialized = true;
1192 
1193 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1194 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1195 
1196 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1197 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1198 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1199 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1200 	}
1201 	init_chain_block_buckets();
1202 }
1203 
keyhashentry(const struct lock_class_key * key)1204 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1205 {
1206 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1207 
1208 	return lock_keys_hash + hash;
1209 }
1210 
1211 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1212 void lockdep_register_key(struct lock_class_key *key)
1213 {
1214 	struct hlist_head *hash_head;
1215 	struct lock_class_key *k;
1216 	unsigned long flags;
1217 
1218 	if (WARN_ON_ONCE(static_obj(key)))
1219 		return;
1220 	hash_head = keyhashentry(key);
1221 
1222 	raw_local_irq_save(flags);
1223 	if (!graph_lock())
1224 		goto restore_irqs;
1225 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1226 		if (WARN_ON_ONCE(k == key))
1227 			goto out_unlock;
1228 	}
1229 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1230 out_unlock:
1231 	graph_unlock();
1232 restore_irqs:
1233 	raw_local_irq_restore(flags);
1234 }
1235 EXPORT_SYMBOL_GPL(lockdep_register_key);
1236 
1237 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1238 static bool is_dynamic_key(const struct lock_class_key *key)
1239 {
1240 	struct hlist_head *hash_head;
1241 	struct lock_class_key *k;
1242 	bool found = false;
1243 
1244 	if (WARN_ON_ONCE(static_obj(key)))
1245 		return false;
1246 
1247 	/*
1248 	 * If lock debugging is disabled lock_keys_hash[] may contain
1249 	 * pointers to memory that has already been freed. Avoid triggering
1250 	 * a use-after-free in that case by returning early.
1251 	 */
1252 	if (!debug_locks)
1253 		return true;
1254 
1255 	hash_head = keyhashentry(key);
1256 
1257 	rcu_read_lock();
1258 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1259 		if (k == key) {
1260 			found = true;
1261 			break;
1262 		}
1263 	}
1264 	rcu_read_unlock();
1265 
1266 	return found;
1267 }
1268 
1269 /*
1270  * Register a lock's class in the hash-table, if the class is not present
1271  * yet. Otherwise we look it up. We cache the result in the lock object
1272  * itself, so actual lookup of the hash should be once per lock object.
1273  */
1274 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1275 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1276 {
1277 	struct lockdep_subclass_key *key;
1278 	struct hlist_head *hash_head;
1279 	struct lock_class *class;
1280 	int idx;
1281 
1282 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1283 
1284 	class = look_up_lock_class(lock, subclass);
1285 	if (likely(class))
1286 		goto out_set_class_cache;
1287 
1288 	if (!lock->key) {
1289 		if (!assign_lock_key(lock))
1290 			return NULL;
1291 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1292 		return NULL;
1293 	}
1294 
1295 	key = lock->key->subkeys + subclass;
1296 	hash_head = classhashentry(key);
1297 
1298 	if (!graph_lock()) {
1299 		return NULL;
1300 	}
1301 	/*
1302 	 * We have to do the hash-walk again, to avoid races
1303 	 * with another CPU:
1304 	 */
1305 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1306 		if (class->key == key)
1307 			goto out_unlock_set;
1308 	}
1309 
1310 	init_data_structures_once();
1311 
1312 	/* Allocate a new lock class and add it to the hash. */
1313 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1314 					 lock_entry);
1315 	if (!class) {
1316 		if (!debug_locks_off_graph_unlock()) {
1317 			return NULL;
1318 		}
1319 
1320 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1321 		dump_stack();
1322 		return NULL;
1323 	}
1324 	nr_lock_classes++;
1325 	__set_bit(class - lock_classes, lock_classes_in_use);
1326 	debug_atomic_inc(nr_unused_locks);
1327 	class->key = key;
1328 	class->name = lock->name;
1329 	class->subclass = subclass;
1330 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1331 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1332 	class->name_version = count_matching_names(class);
1333 	class->wait_type_inner = lock->wait_type_inner;
1334 	class->wait_type_outer = lock->wait_type_outer;
1335 	class->lock_type = lock->lock_type;
1336 	/*
1337 	 * We use RCU's safe list-add method to make
1338 	 * parallel walking of the hash-list safe:
1339 	 */
1340 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1341 	/*
1342 	 * Remove the class from the free list and add it to the global list
1343 	 * of classes.
1344 	 */
1345 	list_move_tail(&class->lock_entry, &all_lock_classes);
1346 	idx = class - lock_classes;
1347 	if (idx > max_lock_class_idx)
1348 		max_lock_class_idx = idx;
1349 
1350 	if (verbose(class)) {
1351 		graph_unlock();
1352 
1353 		printk("\nnew class %px: %s", class->key, class->name);
1354 		if (class->name_version > 1)
1355 			printk(KERN_CONT "#%d", class->name_version);
1356 		printk(KERN_CONT "\n");
1357 		dump_stack();
1358 
1359 		if (!graph_lock()) {
1360 			return NULL;
1361 		}
1362 	}
1363 out_unlock_set:
1364 	graph_unlock();
1365 
1366 out_set_class_cache:
1367 	if (!subclass || force)
1368 		lock->class_cache[0] = class;
1369 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1370 		lock->class_cache[subclass] = class;
1371 
1372 	/*
1373 	 * Hash collision, did we smoke some? We found a class with a matching
1374 	 * hash but the subclass -- which is hashed in -- didn't match.
1375 	 */
1376 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1377 		return NULL;
1378 
1379 	return class;
1380 }
1381 
1382 #ifdef CONFIG_PROVE_LOCKING
1383 /*
1384  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1385  * with NULL on failure)
1386  */
alloc_list_entry(void)1387 static struct lock_list *alloc_list_entry(void)
1388 {
1389 	int idx = find_first_zero_bit(list_entries_in_use,
1390 				      ARRAY_SIZE(list_entries));
1391 
1392 	if (idx >= ARRAY_SIZE(list_entries)) {
1393 		if (!debug_locks_off_graph_unlock())
1394 			return NULL;
1395 
1396 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1397 		dump_stack();
1398 		return NULL;
1399 	}
1400 	nr_list_entries++;
1401 	__set_bit(idx, list_entries_in_use);
1402 	return list_entries + idx;
1403 }
1404 
1405 /*
1406  * Add a new dependency to the head of the list:
1407  */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,u16 distance,u8 dep,const struct lock_trace * trace)1408 static int add_lock_to_list(struct lock_class *this,
1409 			    struct lock_class *links_to, struct list_head *head,
1410 			    u16 distance, u8 dep,
1411 			    const struct lock_trace *trace)
1412 {
1413 	struct lock_list *entry;
1414 	/*
1415 	 * Lock not present yet - get a new dependency struct and
1416 	 * add it to the list:
1417 	 */
1418 	entry = alloc_list_entry();
1419 	if (!entry)
1420 		return 0;
1421 
1422 	entry->class = this;
1423 	entry->links_to = links_to;
1424 	entry->dep = dep;
1425 	entry->distance = distance;
1426 	entry->trace = trace;
1427 	/*
1428 	 * Both allocation and removal are done under the graph lock; but
1429 	 * iteration is under RCU-sched; see look_up_lock_class() and
1430 	 * lockdep_free_key_range().
1431 	 */
1432 	list_add_tail_rcu(&entry->entry, head);
1433 
1434 	return 1;
1435 }
1436 
1437 /*
1438  * For good efficiency of modular, we use power of 2
1439  */
1440 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1441 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1442 
1443 /*
1444  * The circular_queue and helpers are used to implement graph
1445  * breadth-first search (BFS) algorithm, by which we can determine
1446  * whether there is a path from a lock to another. In deadlock checks,
1447  * a path from the next lock to be acquired to a previous held lock
1448  * indicates that adding the <prev> -> <next> lock dependency will
1449  * produce a circle in the graph. Breadth-first search instead of
1450  * depth-first search is used in order to find the shortest (circular)
1451  * path.
1452  */
1453 struct circular_queue {
1454 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1455 	unsigned int  front, rear;
1456 };
1457 
1458 static struct circular_queue lock_cq;
1459 
1460 unsigned int max_bfs_queue_depth;
1461 
1462 static unsigned int lockdep_dependency_gen_id;
1463 
__cq_init(struct circular_queue * cq)1464 static inline void __cq_init(struct circular_queue *cq)
1465 {
1466 	cq->front = cq->rear = 0;
1467 	lockdep_dependency_gen_id++;
1468 }
1469 
__cq_empty(struct circular_queue * cq)1470 static inline int __cq_empty(struct circular_queue *cq)
1471 {
1472 	return (cq->front == cq->rear);
1473 }
1474 
__cq_full(struct circular_queue * cq)1475 static inline int __cq_full(struct circular_queue *cq)
1476 {
1477 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1478 }
1479 
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1480 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1481 {
1482 	if (__cq_full(cq))
1483 		return -1;
1484 
1485 	cq->element[cq->rear] = elem;
1486 	cq->rear = (cq->rear + 1) & CQ_MASK;
1487 	return 0;
1488 }
1489 
1490 /*
1491  * Dequeue an element from the circular_queue, return a lock_list if
1492  * the queue is not empty, or NULL if otherwise.
1493  */
__cq_dequeue(struct circular_queue * cq)1494 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1495 {
1496 	struct lock_list * lock;
1497 
1498 	if (__cq_empty(cq))
1499 		return NULL;
1500 
1501 	lock = cq->element[cq->front];
1502 	cq->front = (cq->front + 1) & CQ_MASK;
1503 
1504 	return lock;
1505 }
1506 
__cq_get_elem_count(struct circular_queue * cq)1507 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1508 {
1509 	return (cq->rear - cq->front) & CQ_MASK;
1510 }
1511 
mark_lock_accessed(struct lock_list * lock)1512 static inline void mark_lock_accessed(struct lock_list *lock)
1513 {
1514 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1515 }
1516 
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1517 static inline void visit_lock_entry(struct lock_list *lock,
1518 				    struct lock_list *parent)
1519 {
1520 	lock->parent = parent;
1521 }
1522 
lock_accessed(struct lock_list * lock)1523 static inline unsigned long lock_accessed(struct lock_list *lock)
1524 {
1525 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1526 }
1527 
get_lock_parent(struct lock_list * child)1528 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1529 {
1530 	return child->parent;
1531 }
1532 
get_lock_depth(struct lock_list * child)1533 static inline int get_lock_depth(struct lock_list *child)
1534 {
1535 	int depth = 0;
1536 	struct lock_list *parent;
1537 
1538 	while ((parent = get_lock_parent(child))) {
1539 		child = parent;
1540 		depth++;
1541 	}
1542 	return depth;
1543 }
1544 
1545 /*
1546  * Return the forward or backward dependency list.
1547  *
1548  * @lock:   the lock_list to get its class's dependency list
1549  * @offset: the offset to struct lock_class to determine whether it is
1550  *          locks_after or locks_before
1551  */
get_dep_list(struct lock_list * lock,int offset)1552 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1553 {
1554 	void *lock_class = lock->class;
1555 
1556 	return lock_class + offset;
1557 }
1558 /*
1559  * Return values of a bfs search:
1560  *
1561  * BFS_E* indicates an error
1562  * BFS_R* indicates a result (match or not)
1563  *
1564  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1565  *
1566  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1567  *
1568  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1569  *             *@target_entry.
1570  *
1571  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1572  *               _unchanged_.
1573  */
1574 enum bfs_result {
1575 	BFS_EINVALIDNODE = -2,
1576 	BFS_EQUEUEFULL = -1,
1577 	BFS_RMATCH = 0,
1578 	BFS_RNOMATCH = 1,
1579 };
1580 
1581 /*
1582  * bfs_result < 0 means error
1583  */
bfs_error(enum bfs_result res)1584 static inline bool bfs_error(enum bfs_result res)
1585 {
1586 	return res < 0;
1587 }
1588 
1589 /*
1590  * DEP_*_BIT in lock_list::dep
1591  *
1592  * For dependency @prev -> @next:
1593  *
1594  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1595  *       (->read == 2)
1596  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1597  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1598  *   EN: @prev is exclusive locker and @next is non-recursive locker
1599  *
1600  * Note that we define the value of DEP_*_BITs so that:
1601  *   bit0 is prev->read == 0
1602  *   bit1 is next->read != 2
1603  */
1604 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1605 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1606 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1607 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1608 
1609 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1610 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1611 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1612 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1613 
1614 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1615 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1616 {
1617 	return (prev->read == 0) + ((next->read != 2) << 1);
1618 }
1619 
calc_dep(struct held_lock * prev,struct held_lock * next)1620 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1621 {
1622 	return 1U << __calc_dep_bit(prev, next);
1623 }
1624 
1625 /*
1626  * calculate the dep_bit for backwards edges. We care about whether @prev is
1627  * shared and whether @next is recursive.
1628  */
1629 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1630 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1631 {
1632 	return (next->read != 2) + ((prev->read == 0) << 1);
1633 }
1634 
calc_depb(struct held_lock * prev,struct held_lock * next)1635 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1636 {
1637 	return 1U << __calc_dep_bitb(prev, next);
1638 }
1639 
1640 /*
1641  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1642  * search.
1643  */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1644 static inline void __bfs_init_root(struct lock_list *lock,
1645 				   struct lock_class *class)
1646 {
1647 	lock->class = class;
1648 	lock->parent = NULL;
1649 	lock->only_xr = 0;
1650 }
1651 
1652 /*
1653  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1654  * root for a BFS search.
1655  *
1656  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1657  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1658  * and -(S*)->.
1659  */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1660 static inline void bfs_init_root(struct lock_list *lock,
1661 				 struct held_lock *hlock)
1662 {
1663 	__bfs_init_root(lock, hlock_class(hlock));
1664 	lock->only_xr = (hlock->read == 2);
1665 }
1666 
1667 /*
1668  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1669  *
1670  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1671  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1672  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1673  */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1674 static inline void bfs_init_rootb(struct lock_list *lock,
1675 				  struct held_lock *hlock)
1676 {
1677 	__bfs_init_root(lock, hlock_class(hlock));
1678 	lock->only_xr = (hlock->read != 0);
1679 }
1680 
__bfs_next(struct lock_list * lock,int offset)1681 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1682 {
1683 	if (!lock || !lock->parent)
1684 		return NULL;
1685 
1686 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1687 				     &lock->entry, struct lock_list, entry);
1688 }
1689 
1690 /*
1691  * Breadth-First Search to find a strong path in the dependency graph.
1692  *
1693  * @source_entry: the source of the path we are searching for.
1694  * @data: data used for the second parameter of @match function
1695  * @match: match function for the search
1696  * @target_entry: pointer to the target of a matched path
1697  * @offset: the offset to struct lock_class to determine whether it is
1698  *          locks_after or locks_before
1699  *
1700  * We may have multiple edges (considering different kinds of dependencies,
1701  * e.g. ER and SN) between two nodes in the dependency graph. But
1702  * only the strong dependency path in the graph is relevant to deadlocks. A
1703  * strong dependency path is a dependency path that doesn't have two adjacent
1704  * dependencies as -(*R)-> -(S*)->, please see:
1705  *
1706  *         Documentation/locking/lockdep-design.rst
1707  *
1708  * for more explanation of the definition of strong dependency paths
1709  *
1710  * In __bfs(), we only traverse in the strong dependency path:
1711  *
1712  *     In lock_list::only_xr, we record whether the previous dependency only
1713  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1714  *     filter out any -(S*)-> in the current dependency and after that, the
1715  *     ->only_xr is set according to whether we only have -(*R)-> left.
1716  */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1717 static enum bfs_result __bfs(struct lock_list *source_entry,
1718 			     void *data,
1719 			     bool (*match)(struct lock_list *entry, void *data),
1720 			     bool (*skip)(struct lock_list *entry, void *data),
1721 			     struct lock_list **target_entry,
1722 			     int offset)
1723 {
1724 	struct circular_queue *cq = &lock_cq;
1725 	struct lock_list *lock = NULL;
1726 	struct lock_list *entry;
1727 	struct list_head *head;
1728 	unsigned int cq_depth;
1729 	bool first;
1730 
1731 	lockdep_assert_locked();
1732 
1733 	__cq_init(cq);
1734 	__cq_enqueue(cq, source_entry);
1735 
1736 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1737 		if (!lock->class)
1738 			return BFS_EINVALIDNODE;
1739 
1740 		/*
1741 		 * Step 1: check whether we already finish on this one.
1742 		 *
1743 		 * If we have visited all the dependencies from this @lock to
1744 		 * others (iow, if we have visited all lock_list entries in
1745 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1746 		 * and visit all the dependencies in the list and mark this
1747 		 * list accessed.
1748 		 */
1749 		if (lock_accessed(lock))
1750 			continue;
1751 		else
1752 			mark_lock_accessed(lock);
1753 
1754 		/*
1755 		 * Step 2: check whether prev dependency and this form a strong
1756 		 *         dependency path.
1757 		 */
1758 		if (lock->parent) { /* Parent exists, check prev dependency */
1759 			u8 dep = lock->dep;
1760 			bool prev_only_xr = lock->parent->only_xr;
1761 
1762 			/*
1763 			 * Mask out all -(S*)-> if we only have *R in previous
1764 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1765 			 * dependency.
1766 			 */
1767 			if (prev_only_xr)
1768 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1769 
1770 			/* If nothing left, we skip */
1771 			if (!dep)
1772 				continue;
1773 
1774 			/* If there are only -(*R)-> left, set that for the next step */
1775 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1776 		}
1777 
1778 		/*
1779 		 * Step 3: we haven't visited this and there is a strong
1780 		 *         dependency path to this, so check with @match.
1781 		 *         If @skip is provide and returns true, we skip this
1782 		 *         lock (and any path this lock is in).
1783 		 */
1784 		if (skip && skip(lock, data))
1785 			continue;
1786 
1787 		if (match(lock, data)) {
1788 			*target_entry = lock;
1789 			return BFS_RMATCH;
1790 		}
1791 
1792 		/*
1793 		 * Step 4: if not match, expand the path by adding the
1794 		 *         forward or backwards dependencies in the search
1795 		 *
1796 		 */
1797 		first = true;
1798 		head = get_dep_list(lock, offset);
1799 		list_for_each_entry_rcu(entry, head, entry) {
1800 			visit_lock_entry(entry, lock);
1801 
1802 			/*
1803 			 * Note we only enqueue the first of the list into the
1804 			 * queue, because we can always find a sibling
1805 			 * dependency from one (see __bfs_next()), as a result
1806 			 * the space of queue is saved.
1807 			 */
1808 			if (!first)
1809 				continue;
1810 
1811 			first = false;
1812 
1813 			if (__cq_enqueue(cq, entry))
1814 				return BFS_EQUEUEFULL;
1815 
1816 			cq_depth = __cq_get_elem_count(cq);
1817 			if (max_bfs_queue_depth < cq_depth)
1818 				max_bfs_queue_depth = cq_depth;
1819 		}
1820 	}
1821 
1822 	return BFS_RNOMATCH;
1823 }
1824 
1825 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1826 __bfs_forwards(struct lock_list *src_entry,
1827 	       void *data,
1828 	       bool (*match)(struct lock_list *entry, void *data),
1829 	       bool (*skip)(struct lock_list *entry, void *data),
1830 	       struct lock_list **target_entry)
1831 {
1832 	return __bfs(src_entry, data, match, skip, target_entry,
1833 		     offsetof(struct lock_class, locks_after));
1834 
1835 }
1836 
1837 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1838 __bfs_backwards(struct lock_list *src_entry,
1839 		void *data,
1840 		bool (*match)(struct lock_list *entry, void *data),
1841 	       bool (*skip)(struct lock_list *entry, void *data),
1842 		struct lock_list **target_entry)
1843 {
1844 	return __bfs(src_entry, data, match, skip, target_entry,
1845 		     offsetof(struct lock_class, locks_before));
1846 
1847 }
1848 
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1849 static void print_lock_trace(const struct lock_trace *trace,
1850 			     unsigned int spaces)
1851 {
1852 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1853 }
1854 
1855 /*
1856  * Print a dependency chain entry (this is only done when a deadlock
1857  * has been detected):
1858  */
1859 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1860 print_circular_bug_entry(struct lock_list *target, int depth)
1861 {
1862 	if (debug_locks_silent)
1863 		return;
1864 	printk("\n-> #%u", depth);
1865 	print_lock_name(NULL, target->class);
1866 	printk(KERN_CONT ":\n");
1867 	print_lock_trace(target->trace, 6);
1868 }
1869 
1870 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1871 print_circular_lock_scenario(struct held_lock *src,
1872 			     struct held_lock *tgt,
1873 			     struct lock_list *prt)
1874 {
1875 	struct lock_class *source = hlock_class(src);
1876 	struct lock_class *target = hlock_class(tgt);
1877 	struct lock_class *parent = prt->class;
1878 	int src_read = src->read;
1879 	int tgt_read = tgt->read;
1880 
1881 	/*
1882 	 * A direct locking problem where unsafe_class lock is taken
1883 	 * directly by safe_class lock, then all we need to show
1884 	 * is the deadlock scenario, as it is obvious that the
1885 	 * unsafe lock is taken under the safe lock.
1886 	 *
1887 	 * But if there is a chain instead, where the safe lock takes
1888 	 * an intermediate lock (middle_class) where this lock is
1889 	 * not the same as the safe lock, then the lock chain is
1890 	 * used to describe the problem. Otherwise we would need
1891 	 * to show a different CPU case for each link in the chain
1892 	 * from the safe_class lock to the unsafe_class lock.
1893 	 */
1894 	if (parent != source) {
1895 		printk("Chain exists of:\n  ");
1896 		__print_lock_name(src, source);
1897 		printk(KERN_CONT " --> ");
1898 		__print_lock_name(NULL, parent);
1899 		printk(KERN_CONT " --> ");
1900 		__print_lock_name(tgt, target);
1901 		printk(KERN_CONT "\n\n");
1902 	}
1903 
1904 	printk(" Possible unsafe locking scenario:\n\n");
1905 	printk("       CPU0                    CPU1\n");
1906 	printk("       ----                    ----\n");
1907 	if (tgt_read != 0)
1908 		printk("  rlock(");
1909 	else
1910 		printk("  lock(");
1911 	__print_lock_name(tgt, target);
1912 	printk(KERN_CONT ");\n");
1913 	printk("                               lock(");
1914 	__print_lock_name(NULL, parent);
1915 	printk(KERN_CONT ");\n");
1916 	printk("                               lock(");
1917 	__print_lock_name(tgt, target);
1918 	printk(KERN_CONT ");\n");
1919 	if (src_read != 0)
1920 		printk("  rlock(");
1921 	else if (src->sync)
1922 		printk("  sync(");
1923 	else
1924 		printk("  lock(");
1925 	__print_lock_name(src, source);
1926 	printk(KERN_CONT ");\n");
1927 	printk("\n *** DEADLOCK ***\n\n");
1928 }
1929 
1930 /*
1931  * When a circular dependency is detected, print the
1932  * header first:
1933  */
1934 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1935 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1936 			struct held_lock *check_src,
1937 			struct held_lock *check_tgt)
1938 {
1939 	struct task_struct *curr = current;
1940 
1941 	if (debug_locks_silent)
1942 		return;
1943 
1944 	pr_warn("\n");
1945 	pr_warn("======================================================\n");
1946 	pr_warn("WARNING: possible circular locking dependency detected\n");
1947 	print_kernel_ident();
1948 	pr_warn("------------------------------------------------------\n");
1949 	pr_warn("%s/%d is trying to acquire lock:\n",
1950 		curr->comm, task_pid_nr(curr));
1951 	print_lock(check_src);
1952 
1953 	pr_warn("\nbut task is already holding lock:\n");
1954 
1955 	print_lock(check_tgt);
1956 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1957 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1958 
1959 	print_circular_bug_entry(entry, depth);
1960 }
1961 
1962 /*
1963  * We are about to add A -> B into the dependency graph, and in __bfs() a
1964  * strong dependency path A -> .. -> B is found: hlock_class equals
1965  * entry->class.
1966  *
1967  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1968  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1969  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1970  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1971  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1972  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1973  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1974  *
1975  * We need to make sure both the start and the end of A -> .. -> B is not
1976  * weaker than A -> B. For the start part, please see the comment in
1977  * check_redundant(). For the end part, we need:
1978  *
1979  * Either
1980  *
1981  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1982  *
1983  * or
1984  *
1985  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1986  *
1987  */
hlock_equal(struct lock_list * entry,void * data)1988 static inline bool hlock_equal(struct lock_list *entry, void *data)
1989 {
1990 	struct held_lock *hlock = (struct held_lock *)data;
1991 
1992 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1993 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1994 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1995 }
1996 
1997 /*
1998  * We are about to add B -> A into the dependency graph, and in __bfs() a
1999  * strong dependency path A -> .. -> B is found: hlock_class equals
2000  * entry->class.
2001  *
2002  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2003  * dependency cycle, that means:
2004  *
2005  * Either
2006  *
2007  *     a) B -> A is -(E*)->
2008  *
2009  * or
2010  *
2011  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2012  *
2013  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2014  */
hlock_conflict(struct lock_list * entry,void * data)2015 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2016 {
2017 	struct held_lock *hlock = (struct held_lock *)data;
2018 
2019 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2020 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2021 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2022 }
2023 
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)2024 static noinline void print_circular_bug(struct lock_list *this,
2025 				struct lock_list *target,
2026 				struct held_lock *check_src,
2027 				struct held_lock *check_tgt)
2028 {
2029 	struct task_struct *curr = current;
2030 	struct lock_list *parent;
2031 	struct lock_list *first_parent;
2032 	int depth;
2033 
2034 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2035 		return;
2036 
2037 	this->trace = save_trace();
2038 	if (!this->trace)
2039 		return;
2040 
2041 	depth = get_lock_depth(target);
2042 
2043 	print_circular_bug_header(target, depth, check_src, check_tgt);
2044 
2045 	parent = get_lock_parent(target);
2046 	first_parent = parent;
2047 
2048 	while (parent) {
2049 		print_circular_bug_entry(parent, --depth);
2050 		parent = get_lock_parent(parent);
2051 	}
2052 
2053 	printk("\nother info that might help us debug this:\n\n");
2054 	print_circular_lock_scenario(check_src, check_tgt,
2055 				     first_parent);
2056 
2057 	lockdep_print_held_locks(curr);
2058 
2059 	printk("\nstack backtrace:\n");
2060 	dump_stack();
2061 }
2062 
print_bfs_bug(int ret)2063 static noinline void print_bfs_bug(int ret)
2064 {
2065 	if (!debug_locks_off_graph_unlock())
2066 		return;
2067 
2068 	/*
2069 	 * Breadth-first-search failed, graph got corrupted?
2070 	 */
2071 	WARN(1, "lockdep bfs error:%d\n", ret);
2072 }
2073 
noop_count(struct lock_list * entry,void * data)2074 static bool noop_count(struct lock_list *entry, void *data)
2075 {
2076 	(*(unsigned long *)data)++;
2077 	return false;
2078 }
2079 
__lockdep_count_forward_deps(struct lock_list * this)2080 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2081 {
2082 	unsigned long  count = 0;
2083 	struct lock_list *target_entry;
2084 
2085 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2086 
2087 	return count;
2088 }
lockdep_count_forward_deps(struct lock_class * class)2089 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2090 {
2091 	unsigned long ret, flags;
2092 	struct lock_list this;
2093 
2094 	__bfs_init_root(&this, class);
2095 
2096 	raw_local_irq_save(flags);
2097 	lockdep_lock();
2098 	ret = __lockdep_count_forward_deps(&this);
2099 	lockdep_unlock();
2100 	raw_local_irq_restore(flags);
2101 
2102 	return ret;
2103 }
2104 
__lockdep_count_backward_deps(struct lock_list * this)2105 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2106 {
2107 	unsigned long  count = 0;
2108 	struct lock_list *target_entry;
2109 
2110 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2111 
2112 	return count;
2113 }
2114 
lockdep_count_backward_deps(struct lock_class * class)2115 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2116 {
2117 	unsigned long ret, flags;
2118 	struct lock_list this;
2119 
2120 	__bfs_init_root(&this, class);
2121 
2122 	raw_local_irq_save(flags);
2123 	lockdep_lock();
2124 	ret = __lockdep_count_backward_deps(&this);
2125 	lockdep_unlock();
2126 	raw_local_irq_restore(flags);
2127 
2128 	return ret;
2129 }
2130 
2131 /*
2132  * Check that the dependency graph starting at <src> can lead to
2133  * <target> or not.
2134  */
2135 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2136 check_path(struct held_lock *target, struct lock_list *src_entry,
2137 	   bool (*match)(struct lock_list *entry, void *data),
2138 	   bool (*skip)(struct lock_list *entry, void *data),
2139 	   struct lock_list **target_entry)
2140 {
2141 	enum bfs_result ret;
2142 
2143 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2144 
2145 	if (unlikely(bfs_error(ret)))
2146 		print_bfs_bug(ret);
2147 
2148 	return ret;
2149 }
2150 
2151 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2152 
2153 /*
2154  * Prove that the dependency graph starting at <src> can not
2155  * lead to <target>. If it can, there is a circle when adding
2156  * <target> -> <src> dependency.
2157  *
2158  * Print an error and return BFS_RMATCH if it does.
2159  */
2160 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2161 check_noncircular(struct held_lock *src, struct held_lock *target,
2162 		  struct lock_trace **const trace)
2163 {
2164 	enum bfs_result ret;
2165 	struct lock_list *target_entry;
2166 	struct lock_list src_entry;
2167 
2168 	bfs_init_root(&src_entry, src);
2169 
2170 	debug_atomic_inc(nr_cyclic_checks);
2171 
2172 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2173 
2174 	if (unlikely(ret == BFS_RMATCH)) {
2175 		if (!*trace) {
2176 			/*
2177 			 * If save_trace fails here, the printing might
2178 			 * trigger a WARN but because of the !nr_entries it
2179 			 * should not do bad things.
2180 			 */
2181 			*trace = save_trace();
2182 		}
2183 
2184 		if (src->class_idx == target->class_idx)
2185 			print_deadlock_bug(current, src, target);
2186 		else
2187 			print_circular_bug(&src_entry, target_entry, src, target);
2188 	}
2189 
2190 	return ret;
2191 }
2192 
2193 #ifdef CONFIG_TRACE_IRQFLAGS
2194 
2195 /*
2196  * Forwards and backwards subgraph searching, for the purposes of
2197  * proving that two subgraphs can be connected by a new dependency
2198  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2199  *
2200  * A irq safe->unsafe deadlock happens with the following conditions:
2201  *
2202  * 1) We have a strong dependency path A -> ... -> B
2203  *
2204  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2205  *    irq can create a new dependency B -> A (consider the case that a holder
2206  *    of B gets interrupted by an irq whose handler will try to acquire A).
2207  *
2208  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2209  *    strong circle:
2210  *
2211  *      For the usage bits of B:
2212  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2213  *           ENABLED_IRQ usage suffices.
2214  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2215  *           ENABLED_IRQ_*_READ usage suffices.
2216  *
2217  *      For the usage bits of A:
2218  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2219  *           USED_IN_IRQ usage suffices.
2220  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2221  *           USED_IN_IRQ_*_READ usage suffices.
2222  */
2223 
2224 /*
2225  * There is a strong dependency path in the dependency graph: A -> B, and now
2226  * we need to decide which usage bit of A should be accumulated to detect
2227  * safe->unsafe bugs.
2228  *
2229  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2230  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2231  *
2232  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2233  * path, any usage of A should be considered. Otherwise, we should only
2234  * consider _READ usage.
2235  */
usage_accumulate(struct lock_list * entry,void * mask)2236 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2237 {
2238 	if (!entry->only_xr)
2239 		*(unsigned long *)mask |= entry->class->usage_mask;
2240 	else /* Mask out _READ usage bits */
2241 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2242 
2243 	return false;
2244 }
2245 
2246 /*
2247  * There is a strong dependency path in the dependency graph: A -> B, and now
2248  * we need to decide which usage bit of B conflicts with the usage bits of A,
2249  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2250  *
2251  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2252  * path, any usage of B should be considered. Otherwise, we should only
2253  * consider _READ usage.
2254  */
usage_match(struct lock_list * entry,void * mask)2255 static inline bool usage_match(struct lock_list *entry, void *mask)
2256 {
2257 	if (!entry->only_xr)
2258 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2259 	else /* Mask out _READ usage bits */
2260 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2261 }
2262 
usage_skip(struct lock_list * entry,void * mask)2263 static inline bool usage_skip(struct lock_list *entry, void *mask)
2264 {
2265 	if (entry->class->lock_type == LD_LOCK_NORMAL)
2266 		return false;
2267 
2268 	/*
2269 	 * Skip local_lock() for irq inversion detection.
2270 	 *
2271 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2272 	 * dependency.
2273 	 *
2274 	 * For RT, an irq inversion happens when we have lock A and B, and on
2275 	 * some CPU we can have:
2276 	 *
2277 	 *	lock(A);
2278 	 *	<interrupted>
2279 	 *	  lock(B);
2280 	 *
2281 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2282 	 *
2283 	 * Now we prove local_lock() cannot exist in that dependency. First we
2284 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2285 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2286 	 * wait context check will complain. And since B is not a sleep lock,
2287 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2288 	 * local_lock() is 3, which is greater than 2, therefore there is no
2289 	 * way the local_lock() exists in the dependency B -> ... -> A.
2290 	 *
2291 	 * As a result, we will skip local_lock(), when we search for irq
2292 	 * inversion bugs.
2293 	 */
2294 	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2295 	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2296 		return false;
2297 
2298 	/*
2299 	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2300 	 * a lock and only used to override the wait_type.
2301 	 */
2302 
2303 	return true;
2304 }
2305 
2306 /*
2307  * Find a node in the forwards-direction dependency sub-graph starting
2308  * at @root->class that matches @bit.
2309  *
2310  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2311  * into *@target_entry.
2312  */
2313 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2314 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2315 			struct lock_list **target_entry)
2316 {
2317 	enum bfs_result result;
2318 
2319 	debug_atomic_inc(nr_find_usage_forwards_checks);
2320 
2321 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2322 
2323 	return result;
2324 }
2325 
2326 /*
2327  * Find a node in the backwards-direction dependency sub-graph starting
2328  * at @root->class that matches @bit.
2329  */
2330 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2331 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2332 			struct lock_list **target_entry)
2333 {
2334 	enum bfs_result result;
2335 
2336 	debug_atomic_inc(nr_find_usage_backwards_checks);
2337 
2338 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2339 
2340 	return result;
2341 }
2342 
print_lock_class_header(struct lock_class * class,int depth)2343 static void print_lock_class_header(struct lock_class *class, int depth)
2344 {
2345 	int bit;
2346 
2347 	printk("%*s->", depth, "");
2348 	print_lock_name(NULL, class);
2349 #ifdef CONFIG_DEBUG_LOCKDEP
2350 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2351 #endif
2352 	printk(KERN_CONT " {\n");
2353 
2354 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2355 		if (class->usage_mask & (1 << bit)) {
2356 			int len = depth;
2357 
2358 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2359 			len += printk(KERN_CONT " at:\n");
2360 			print_lock_trace(class->usage_traces[bit], len);
2361 		}
2362 	}
2363 	printk("%*s }\n", depth, "");
2364 
2365 	printk("%*s ... key      at: [<%px>] %pS\n",
2366 		depth, "", class->key, class->key);
2367 }
2368 
2369 /*
2370  * Dependency path printing:
2371  *
2372  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2373  * printing out each lock in the dependency path will help on understanding how
2374  * the deadlock could happen. Here are some details about dependency path
2375  * printing:
2376  *
2377  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2378  * 	for a lock dependency A -> B, there are two lock_lists:
2379  *
2380  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2381  * 		->links_to is A. In this case, we can say the lock_list is
2382  * 		"A -> B" (forwards case).
2383  *
2384  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2385  * 		and ->links_to is B. In this case, we can say the lock_list is
2386  * 		"B <- A" (bacwards case).
2387  *
2388  * 	The ->trace of both a) and b) point to the call trace where B was
2389  * 	acquired with A held.
2390  *
2391  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2392  * 	represent a certain lock dependency, it only provides an initial entry
2393  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2394  * 	->class is A, as a result BFS will search all dependencies starting with
2395  * 	A, e.g. A -> B or A -> C.
2396  *
2397  * 	The notation of a forwards helper lock_list is like "-> A", which means
2398  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2399  * 	or A -> C.
2400  *
2401  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2402  * 	we should search the backwards dependencies ending with "B", e.g.
2403  * 	B <- A or B <- C.
2404  */
2405 
2406 /*
2407  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2408  *
2409  * We have a lock dependency path as follow:
2410  *
2411  *    @root                                                                 @leaf
2412  *      |                                                                     |
2413  *      V                                                                     V
2414  *	          ->parent                                   ->parent
2415  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2416  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2417  *
2418  * , so it's natural that we start from @leaf and print every ->class and
2419  * ->trace until we reach the @root.
2420  */
2421 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2422 print_shortest_lock_dependencies(struct lock_list *leaf,
2423 				 struct lock_list *root)
2424 {
2425 	struct lock_list *entry = leaf;
2426 	int depth;
2427 
2428 	/*compute depth from generated tree by BFS*/
2429 	depth = get_lock_depth(leaf);
2430 
2431 	do {
2432 		print_lock_class_header(entry->class, depth);
2433 		printk("%*s ... acquired at:\n", depth, "");
2434 		print_lock_trace(entry->trace, 2);
2435 		printk("\n");
2436 
2437 		if (depth == 0 && (entry != root)) {
2438 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2439 			break;
2440 		}
2441 
2442 		entry = get_lock_parent(entry);
2443 		depth--;
2444 	} while (entry && (depth >= 0));
2445 }
2446 
2447 /*
2448  * printk the shortest lock dependencies from @leaf to @root.
2449  *
2450  * We have a lock dependency path (from a backwards search) as follow:
2451  *
2452  *    @leaf                                                                 @root
2453  *      |                                                                     |
2454  *      V                                                                     V
2455  *	          ->parent                                   ->parent
2456  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2457  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2458  *
2459  * , so when we iterate from @leaf to @root, we actually print the lock
2460  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2461  *
2462  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2463  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2464  * trace of L1 in the dependency path, which is alright, because most of the
2465  * time we can figure out where L1 is held from the call trace of L2.
2466  */
2467 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2468 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2469 					   struct lock_list *root)
2470 {
2471 	struct lock_list *entry = leaf;
2472 	const struct lock_trace *trace = NULL;
2473 	int depth;
2474 
2475 	/*compute depth from generated tree by BFS*/
2476 	depth = get_lock_depth(leaf);
2477 
2478 	do {
2479 		print_lock_class_header(entry->class, depth);
2480 		if (trace) {
2481 			printk("%*s ... acquired at:\n", depth, "");
2482 			print_lock_trace(trace, 2);
2483 			printk("\n");
2484 		}
2485 
2486 		/*
2487 		 * Record the pointer to the trace for the next lock_list
2488 		 * entry, see the comments for the function.
2489 		 */
2490 		trace = entry->trace;
2491 
2492 		if (depth == 0 && (entry != root)) {
2493 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2494 			break;
2495 		}
2496 
2497 		entry = get_lock_parent(entry);
2498 		depth--;
2499 	} while (entry && (depth >= 0));
2500 }
2501 
2502 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2503 print_irq_lock_scenario(struct lock_list *safe_entry,
2504 			struct lock_list *unsafe_entry,
2505 			struct lock_class *prev_class,
2506 			struct lock_class *next_class)
2507 {
2508 	struct lock_class *safe_class = safe_entry->class;
2509 	struct lock_class *unsafe_class = unsafe_entry->class;
2510 	struct lock_class *middle_class = prev_class;
2511 
2512 	if (middle_class == safe_class)
2513 		middle_class = next_class;
2514 
2515 	/*
2516 	 * A direct locking problem where unsafe_class lock is taken
2517 	 * directly by safe_class lock, then all we need to show
2518 	 * is the deadlock scenario, as it is obvious that the
2519 	 * unsafe lock is taken under the safe lock.
2520 	 *
2521 	 * But if there is a chain instead, where the safe lock takes
2522 	 * an intermediate lock (middle_class) where this lock is
2523 	 * not the same as the safe lock, then the lock chain is
2524 	 * used to describe the problem. Otherwise we would need
2525 	 * to show a different CPU case for each link in the chain
2526 	 * from the safe_class lock to the unsafe_class lock.
2527 	 */
2528 	if (middle_class != unsafe_class) {
2529 		printk("Chain exists of:\n  ");
2530 		__print_lock_name(NULL, safe_class);
2531 		printk(KERN_CONT " --> ");
2532 		__print_lock_name(NULL, middle_class);
2533 		printk(KERN_CONT " --> ");
2534 		__print_lock_name(NULL, unsafe_class);
2535 		printk(KERN_CONT "\n\n");
2536 	}
2537 
2538 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2539 	printk("       CPU0                    CPU1\n");
2540 	printk("       ----                    ----\n");
2541 	printk("  lock(");
2542 	__print_lock_name(NULL, unsafe_class);
2543 	printk(KERN_CONT ");\n");
2544 	printk("                               local_irq_disable();\n");
2545 	printk("                               lock(");
2546 	__print_lock_name(NULL, safe_class);
2547 	printk(KERN_CONT ");\n");
2548 	printk("                               lock(");
2549 	__print_lock_name(NULL, middle_class);
2550 	printk(KERN_CONT ");\n");
2551 	printk("  <Interrupt>\n");
2552 	printk("    lock(");
2553 	__print_lock_name(NULL, safe_class);
2554 	printk(KERN_CONT ");\n");
2555 	printk("\n *** DEADLOCK ***\n\n");
2556 }
2557 
2558 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2559 print_bad_irq_dependency(struct task_struct *curr,
2560 			 struct lock_list *prev_root,
2561 			 struct lock_list *next_root,
2562 			 struct lock_list *backwards_entry,
2563 			 struct lock_list *forwards_entry,
2564 			 struct held_lock *prev,
2565 			 struct held_lock *next,
2566 			 enum lock_usage_bit bit1,
2567 			 enum lock_usage_bit bit2,
2568 			 const char *irqclass)
2569 {
2570 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2571 		return;
2572 
2573 	pr_warn("\n");
2574 	pr_warn("=====================================================\n");
2575 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2576 		irqclass, irqclass);
2577 	print_kernel_ident();
2578 	pr_warn("-----------------------------------------------------\n");
2579 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2580 		curr->comm, task_pid_nr(curr),
2581 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2582 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2583 		lockdep_hardirqs_enabled(),
2584 		curr->softirqs_enabled);
2585 	print_lock(next);
2586 
2587 	pr_warn("\nand this task is already holding:\n");
2588 	print_lock(prev);
2589 	pr_warn("which would create a new lock dependency:\n");
2590 	print_lock_name(prev, hlock_class(prev));
2591 	pr_cont(" ->");
2592 	print_lock_name(next, hlock_class(next));
2593 	pr_cont("\n");
2594 
2595 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2596 		irqclass);
2597 	print_lock_name(NULL, backwards_entry->class);
2598 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2599 
2600 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2601 
2602 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2603 	print_lock_name(NULL, forwards_entry->class);
2604 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2605 	pr_warn("...");
2606 
2607 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2608 
2609 	pr_warn("\nother info that might help us debug this:\n\n");
2610 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2611 				hlock_class(prev), hlock_class(next));
2612 
2613 	lockdep_print_held_locks(curr);
2614 
2615 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2616 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2617 
2618 	pr_warn("\nthe dependencies between the lock to be acquired");
2619 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2620 	next_root->trace = save_trace();
2621 	if (!next_root->trace)
2622 		return;
2623 	print_shortest_lock_dependencies(forwards_entry, next_root);
2624 
2625 	pr_warn("\nstack backtrace:\n");
2626 	dump_stack();
2627 }
2628 
2629 static const char *state_names[] = {
2630 #define LOCKDEP_STATE(__STATE) \
2631 	__stringify(__STATE),
2632 #include "lockdep_states.h"
2633 #undef LOCKDEP_STATE
2634 };
2635 
2636 static const char *state_rnames[] = {
2637 #define LOCKDEP_STATE(__STATE) \
2638 	__stringify(__STATE)"-READ",
2639 #include "lockdep_states.h"
2640 #undef LOCKDEP_STATE
2641 };
2642 
state_name(enum lock_usage_bit bit)2643 static inline const char *state_name(enum lock_usage_bit bit)
2644 {
2645 	if (bit & LOCK_USAGE_READ_MASK)
2646 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2647 	else
2648 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2649 }
2650 
2651 /*
2652  * The bit number is encoded like:
2653  *
2654  *  bit0: 0 exclusive, 1 read lock
2655  *  bit1: 0 used in irq, 1 irq enabled
2656  *  bit2-n: state
2657  */
exclusive_bit(int new_bit)2658 static int exclusive_bit(int new_bit)
2659 {
2660 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2661 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2662 
2663 	/*
2664 	 * keep state, bit flip the direction and strip read.
2665 	 */
2666 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2667 }
2668 
2669 /*
2670  * Observe that when given a bitmask where each bitnr is encoded as above, a
2671  * right shift of the mask transforms the individual bitnrs as -1 and
2672  * conversely, a left shift transforms into +1 for the individual bitnrs.
2673  *
2674  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2675  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2676  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2677  *
2678  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2679  *
2680  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2681  * all bits set) and recompose with bitnr1 flipped.
2682  */
invert_dir_mask(unsigned long mask)2683 static unsigned long invert_dir_mask(unsigned long mask)
2684 {
2685 	unsigned long excl = 0;
2686 
2687 	/* Invert dir */
2688 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2689 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2690 
2691 	return excl;
2692 }
2693 
2694 /*
2695  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2696  * usage may cause deadlock too, for example:
2697  *
2698  * P1				P2
2699  * <irq disabled>
2700  * write_lock(l1);		<irq enabled>
2701  *				read_lock(l2);
2702  * write_lock(l2);
2703  * 				<in irq>
2704  * 				read_lock(l1);
2705  *
2706  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2707  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2708  * deadlock.
2709  *
2710  * In fact, all of the following cases may cause deadlocks:
2711  *
2712  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2713  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2714  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2715  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2716  *
2717  * As a result, to calculate the "exclusive mask", first we invert the
2718  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2719  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2720  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2721  */
exclusive_mask(unsigned long mask)2722 static unsigned long exclusive_mask(unsigned long mask)
2723 {
2724 	unsigned long excl = invert_dir_mask(mask);
2725 
2726 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2727 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2728 
2729 	return excl;
2730 }
2731 
2732 /*
2733  * Retrieve the _possible_ original mask to which @mask is
2734  * exclusive. Ie: this is the opposite of exclusive_mask().
2735  * Note that 2 possible original bits can match an exclusive
2736  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2737  * cleared. So both are returned for each exclusive bit.
2738  */
original_mask(unsigned long mask)2739 static unsigned long original_mask(unsigned long mask)
2740 {
2741 	unsigned long excl = invert_dir_mask(mask);
2742 
2743 	/* Include read in existing usages */
2744 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2745 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2746 
2747 	return excl;
2748 }
2749 
2750 /*
2751  * Find the first pair of bit match between an original
2752  * usage mask and an exclusive usage mask.
2753  */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2754 static int find_exclusive_match(unsigned long mask,
2755 				unsigned long excl_mask,
2756 				enum lock_usage_bit *bitp,
2757 				enum lock_usage_bit *excl_bitp)
2758 {
2759 	int bit, excl, excl_read;
2760 
2761 	for_each_set_bit(bit, &mask, LOCK_USED) {
2762 		/*
2763 		 * exclusive_bit() strips the read bit, however,
2764 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2765 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2766 		 */
2767 		excl = exclusive_bit(bit);
2768 		excl_read = excl | LOCK_USAGE_READ_MASK;
2769 		if (excl_mask & lock_flag(excl)) {
2770 			*bitp = bit;
2771 			*excl_bitp = excl;
2772 			return 0;
2773 		} else if (excl_mask & lock_flag(excl_read)) {
2774 			*bitp = bit;
2775 			*excl_bitp = excl_read;
2776 			return 0;
2777 		}
2778 	}
2779 	return -1;
2780 }
2781 
2782 /*
2783  * Prove that the new dependency does not connect a hardirq-safe(-read)
2784  * lock with a hardirq-unsafe lock - to achieve this we search
2785  * the backwards-subgraph starting at <prev>, and the
2786  * forwards-subgraph starting at <next>:
2787  */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2788 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2789 			   struct held_lock *next)
2790 {
2791 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2792 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2793 	struct lock_list *target_entry1;
2794 	struct lock_list *target_entry;
2795 	struct lock_list this, that;
2796 	enum bfs_result ret;
2797 
2798 	/*
2799 	 * Step 1: gather all hard/soft IRQs usages backward in an
2800 	 * accumulated usage mask.
2801 	 */
2802 	bfs_init_rootb(&this, prev);
2803 
2804 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2805 	if (bfs_error(ret)) {
2806 		print_bfs_bug(ret);
2807 		return 0;
2808 	}
2809 
2810 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2811 	if (!usage_mask)
2812 		return 1;
2813 
2814 	/*
2815 	 * Step 2: find exclusive uses forward that match the previous
2816 	 * backward accumulated mask.
2817 	 */
2818 	forward_mask = exclusive_mask(usage_mask);
2819 
2820 	bfs_init_root(&that, next);
2821 
2822 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2823 	if (bfs_error(ret)) {
2824 		print_bfs_bug(ret);
2825 		return 0;
2826 	}
2827 	if (ret == BFS_RNOMATCH)
2828 		return 1;
2829 
2830 	/*
2831 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2832 	 * list whose usage mask matches the exclusive usage mask from the
2833 	 * lock found on the forward list.
2834 	 *
2835 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2836 	 * the follow case:
2837 	 *
2838 	 * When trying to add A -> B to the graph, we find that there is a
2839 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2840 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2841 	 * invert bits of M's usage_mask, we will find another lock N that is
2842 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2843 	 * cause a inversion deadlock.
2844 	 */
2845 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2846 
2847 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2848 	if (bfs_error(ret)) {
2849 		print_bfs_bug(ret);
2850 		return 0;
2851 	}
2852 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2853 		return 1;
2854 
2855 	/*
2856 	 * Step 4: narrow down to a pair of incompatible usage bits
2857 	 * and report it.
2858 	 */
2859 	ret = find_exclusive_match(target_entry->class->usage_mask,
2860 				   target_entry1->class->usage_mask,
2861 				   &backward_bit, &forward_bit);
2862 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2863 		return 1;
2864 
2865 	print_bad_irq_dependency(curr, &this, &that,
2866 				 target_entry, target_entry1,
2867 				 prev, next,
2868 				 backward_bit, forward_bit,
2869 				 state_name(backward_bit));
2870 
2871 	return 0;
2872 }
2873 
2874 #else
2875 
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2876 static inline int check_irq_usage(struct task_struct *curr,
2877 				  struct held_lock *prev, struct held_lock *next)
2878 {
2879 	return 1;
2880 }
2881 
usage_skip(struct lock_list * entry,void * mask)2882 static inline bool usage_skip(struct lock_list *entry, void *mask)
2883 {
2884 	return false;
2885 }
2886 
2887 #endif /* CONFIG_TRACE_IRQFLAGS */
2888 
2889 #ifdef CONFIG_LOCKDEP_SMALL
2890 /*
2891  * Check that the dependency graph starting at <src> can lead to
2892  * <target> or not. If it can, <src> -> <target> dependency is already
2893  * in the graph.
2894  *
2895  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2896  * any error appears in the bfs search.
2897  */
2898 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2899 check_redundant(struct held_lock *src, struct held_lock *target)
2900 {
2901 	enum bfs_result ret;
2902 	struct lock_list *target_entry;
2903 	struct lock_list src_entry;
2904 
2905 	bfs_init_root(&src_entry, src);
2906 	/*
2907 	 * Special setup for check_redundant().
2908 	 *
2909 	 * To report redundant, we need to find a strong dependency path that
2910 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2911 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2912 	 * we achieve this by setting the initial node's ->only_xr to true in
2913 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2914 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2915 	 */
2916 	src_entry.only_xr = src->read == 0;
2917 
2918 	debug_atomic_inc(nr_redundant_checks);
2919 
2920 	/*
2921 	 * Note: we skip local_lock() for redundant check, because as the
2922 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2923 	 * the same.
2924 	 */
2925 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2926 
2927 	if (ret == BFS_RMATCH)
2928 		debug_atomic_inc(nr_redundant);
2929 
2930 	return ret;
2931 }
2932 
2933 #else
2934 
2935 static inline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2936 check_redundant(struct held_lock *src, struct held_lock *target)
2937 {
2938 	return BFS_RNOMATCH;
2939 }
2940 
2941 #endif
2942 
inc_chains(int irq_context)2943 static void inc_chains(int irq_context)
2944 {
2945 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2946 		nr_hardirq_chains++;
2947 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2948 		nr_softirq_chains++;
2949 	else
2950 		nr_process_chains++;
2951 }
2952 
dec_chains(int irq_context)2953 static void dec_chains(int irq_context)
2954 {
2955 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2956 		nr_hardirq_chains--;
2957 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2958 		nr_softirq_chains--;
2959 	else
2960 		nr_process_chains--;
2961 }
2962 
2963 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2964 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2965 {
2966 	struct lock_class *next = hlock_class(nxt);
2967 	struct lock_class *prev = hlock_class(prv);
2968 
2969 	printk(" Possible unsafe locking scenario:\n\n");
2970 	printk("       CPU0\n");
2971 	printk("       ----\n");
2972 	printk("  lock(");
2973 	__print_lock_name(prv, prev);
2974 	printk(KERN_CONT ");\n");
2975 	printk("  lock(");
2976 	__print_lock_name(nxt, next);
2977 	printk(KERN_CONT ");\n");
2978 	printk("\n *** DEADLOCK ***\n\n");
2979 	printk(" May be due to missing lock nesting notation\n\n");
2980 }
2981 
2982 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2983 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2984 		   struct held_lock *next)
2985 {
2986 	struct lock_class *class = hlock_class(prev);
2987 
2988 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2989 		return;
2990 
2991 	pr_warn("\n");
2992 	pr_warn("============================================\n");
2993 	pr_warn("WARNING: possible recursive locking detected\n");
2994 	print_kernel_ident();
2995 	pr_warn("--------------------------------------------\n");
2996 	pr_warn("%s/%d is trying to acquire lock:\n",
2997 		curr->comm, task_pid_nr(curr));
2998 	print_lock(next);
2999 	pr_warn("\nbut task is already holding lock:\n");
3000 	print_lock(prev);
3001 
3002 	if (class->cmp_fn) {
3003 		pr_warn("and the lock comparison function returns %i:\n",
3004 			class->cmp_fn(prev->instance, next->instance));
3005 	}
3006 
3007 	pr_warn("\nother info that might help us debug this:\n");
3008 	print_deadlock_scenario(next, prev);
3009 	lockdep_print_held_locks(curr);
3010 
3011 	pr_warn("\nstack backtrace:\n");
3012 	dump_stack();
3013 }
3014 
3015 /*
3016  * Check whether we are holding such a class already.
3017  *
3018  * (Note that this has to be done separately, because the graph cannot
3019  * detect such classes of deadlocks.)
3020  *
3021  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3022  * lock class is held but nest_lock is also held, i.e. we rely on the
3023  * nest_lock to avoid the deadlock.
3024  */
3025 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)3026 check_deadlock(struct task_struct *curr, struct held_lock *next)
3027 {
3028 	struct lock_class *class;
3029 	struct held_lock *prev;
3030 	struct held_lock *nest = NULL;
3031 	int i;
3032 
3033 	for (i = 0; i < curr->lockdep_depth; i++) {
3034 		prev = curr->held_locks + i;
3035 
3036 		if (prev->instance == next->nest_lock)
3037 			nest = prev;
3038 
3039 		if (hlock_class(prev) != hlock_class(next))
3040 			continue;
3041 
3042 		/*
3043 		 * Allow read-after-read recursion of the same
3044 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3045 		 */
3046 		if ((next->read == 2) && prev->read)
3047 			continue;
3048 
3049 		class = hlock_class(prev);
3050 
3051 		if (class->cmp_fn &&
3052 		    class->cmp_fn(prev->instance, next->instance) < 0)
3053 			continue;
3054 
3055 		/*
3056 		 * We're holding the nest_lock, which serializes this lock's
3057 		 * nesting behaviour.
3058 		 */
3059 		if (nest)
3060 			return 2;
3061 
3062 		print_deadlock_bug(curr, prev, next);
3063 		return 0;
3064 	}
3065 	return 1;
3066 }
3067 
3068 /*
3069  * There was a chain-cache miss, and we are about to add a new dependency
3070  * to a previous lock. We validate the following rules:
3071  *
3072  *  - would the adding of the <prev> -> <next> dependency create a
3073  *    circular dependency in the graph? [== circular deadlock]
3074  *
3075  *  - does the new prev->next dependency connect any hardirq-safe lock
3076  *    (in the full backwards-subgraph starting at <prev>) with any
3077  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3078  *    <next>)? [== illegal lock inversion with hardirq contexts]
3079  *
3080  *  - does the new prev->next dependency connect any softirq-safe lock
3081  *    (in the full backwards-subgraph starting at <prev>) with any
3082  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3083  *    <next>)? [== illegal lock inversion with softirq contexts]
3084  *
3085  * any of these scenarios could lead to a deadlock.
3086  *
3087  * Then if all the validations pass, we add the forwards and backwards
3088  * dependency.
3089  */
3090 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)3091 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3092 	       struct held_lock *next, u16 distance,
3093 	       struct lock_trace **const trace)
3094 {
3095 	struct lock_list *entry;
3096 	enum bfs_result ret;
3097 
3098 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3099 		/*
3100 		 * The warning statements below may trigger a use-after-free
3101 		 * of the class name. It is better to trigger a use-after free
3102 		 * and to have the class name most of the time instead of not
3103 		 * having the class name available.
3104 		 */
3105 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3106 			  "Detected use-after-free of lock class %px/%s\n",
3107 			  hlock_class(prev),
3108 			  hlock_class(prev)->name);
3109 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3110 			  "Detected use-after-free of lock class %px/%s\n",
3111 			  hlock_class(next),
3112 			  hlock_class(next)->name);
3113 		return 2;
3114 	}
3115 
3116 	if (prev->class_idx == next->class_idx) {
3117 		struct lock_class *class = hlock_class(prev);
3118 
3119 		if (class->cmp_fn &&
3120 		    class->cmp_fn(prev->instance, next->instance) < 0)
3121 			return 2;
3122 	}
3123 
3124 	/*
3125 	 * Prove that the new <prev> -> <next> dependency would not
3126 	 * create a circular dependency in the graph. (We do this by
3127 	 * a breadth-first search into the graph starting at <next>,
3128 	 * and check whether we can reach <prev>.)
3129 	 *
3130 	 * The search is limited by the size of the circular queue (i.e.,
3131 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3132 	 * in the graph whose neighbours are to be checked.
3133 	 */
3134 	ret = check_noncircular(next, prev, trace);
3135 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3136 		return 0;
3137 
3138 	if (!check_irq_usage(curr, prev, next))
3139 		return 0;
3140 
3141 	/*
3142 	 * Is the <prev> -> <next> dependency already present?
3143 	 *
3144 	 * (this may occur even though this is a new chain: consider
3145 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3146 	 *  chains - the second one will be new, but L1 already has
3147 	 *  L2 added to its dependency list, due to the first chain.)
3148 	 */
3149 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3150 		if (entry->class == hlock_class(next)) {
3151 			if (distance == 1)
3152 				entry->distance = 1;
3153 			entry->dep |= calc_dep(prev, next);
3154 
3155 			/*
3156 			 * Also, update the reverse dependency in @next's
3157 			 * ->locks_before list.
3158 			 *
3159 			 *  Here we reuse @entry as the cursor, which is fine
3160 			 *  because we won't go to the next iteration of the
3161 			 *  outer loop:
3162 			 *
3163 			 *  For normal cases, we return in the inner loop.
3164 			 *
3165 			 *  If we fail to return, we have inconsistency, i.e.
3166 			 *  <prev>::locks_after contains <next> while
3167 			 *  <next>::locks_before doesn't contain <prev>. In
3168 			 *  that case, we return after the inner and indicate
3169 			 *  something is wrong.
3170 			 */
3171 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3172 				if (entry->class == hlock_class(prev)) {
3173 					if (distance == 1)
3174 						entry->distance = 1;
3175 					entry->dep |= calc_depb(prev, next);
3176 					return 1;
3177 				}
3178 			}
3179 
3180 			/* <prev> is not found in <next>::locks_before */
3181 			return 0;
3182 		}
3183 	}
3184 
3185 	/*
3186 	 * Is the <prev> -> <next> link redundant?
3187 	 */
3188 	ret = check_redundant(prev, next);
3189 	if (bfs_error(ret))
3190 		return 0;
3191 	else if (ret == BFS_RMATCH)
3192 		return 2;
3193 
3194 	if (!*trace) {
3195 		*trace = save_trace();
3196 		if (!*trace)
3197 			return 0;
3198 	}
3199 
3200 	/*
3201 	 * Ok, all validations passed, add the new lock
3202 	 * to the previous lock's dependency list:
3203 	 */
3204 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3205 			       &hlock_class(prev)->locks_after, distance,
3206 			       calc_dep(prev, next), *trace);
3207 
3208 	if (!ret)
3209 		return 0;
3210 
3211 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3212 			       &hlock_class(next)->locks_before, distance,
3213 			       calc_depb(prev, next), *trace);
3214 	if (!ret)
3215 		return 0;
3216 
3217 	return 2;
3218 }
3219 
3220 /*
3221  * Add the dependency to all directly-previous locks that are 'relevant'.
3222  * The ones that are relevant are (in increasing distance from curr):
3223  * all consecutive trylock entries and the final non-trylock entry - or
3224  * the end of this context's lock-chain - whichever comes first.
3225  */
3226 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3227 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3228 {
3229 	struct lock_trace *trace = NULL;
3230 	int depth = curr->lockdep_depth;
3231 	struct held_lock *hlock;
3232 
3233 	/*
3234 	 * Debugging checks.
3235 	 *
3236 	 * Depth must not be zero for a non-head lock:
3237 	 */
3238 	if (!depth)
3239 		goto out_bug;
3240 	/*
3241 	 * At least two relevant locks must exist for this
3242 	 * to be a head:
3243 	 */
3244 	if (curr->held_locks[depth].irq_context !=
3245 			curr->held_locks[depth-1].irq_context)
3246 		goto out_bug;
3247 
3248 	for (;;) {
3249 		u16 distance = curr->lockdep_depth - depth + 1;
3250 		hlock = curr->held_locks + depth - 1;
3251 
3252 		if (hlock->check) {
3253 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3254 			if (!ret)
3255 				return 0;
3256 
3257 			/*
3258 			 * Stop after the first non-trylock entry,
3259 			 * as non-trylock entries have added their
3260 			 * own direct dependencies already, so this
3261 			 * lock is connected to them indirectly:
3262 			 */
3263 			if (!hlock->trylock)
3264 				break;
3265 		}
3266 
3267 		depth--;
3268 		/*
3269 		 * End of lock-stack?
3270 		 */
3271 		if (!depth)
3272 			break;
3273 		/*
3274 		 * Stop the search if we cross into another context:
3275 		 */
3276 		if (curr->held_locks[depth].irq_context !=
3277 				curr->held_locks[depth-1].irq_context)
3278 			break;
3279 	}
3280 	return 1;
3281 out_bug:
3282 	if (!debug_locks_off_graph_unlock())
3283 		return 0;
3284 
3285 	/*
3286 	 * Clearly we all shouldn't be here, but since we made it we
3287 	 * can reliable say we messed up our state. See the above two
3288 	 * gotos for reasons why we could possibly end up here.
3289 	 */
3290 	WARN_ON(1);
3291 
3292 	return 0;
3293 }
3294 
3295 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3296 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3297 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3298 unsigned long nr_zapped_lock_chains;
3299 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3300 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3301 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3302 
3303 /*
3304  * The first 2 chain_hlocks entries in the chain block in the bucket
3305  * list contains the following meta data:
3306  *
3307  *   entry[0]:
3308  *     Bit    15 - always set to 1 (it is not a class index)
3309  *     Bits 0-14 - upper 15 bits of the next block index
3310  *   entry[1]    - lower 16 bits of next block index
3311  *
3312  * A next block index of all 1 bits means it is the end of the list.
3313  *
3314  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3315  * the chain block size:
3316  *
3317  *   entry[2] - upper 16 bits of the chain block size
3318  *   entry[3] - lower 16 bits of the chain block size
3319  */
3320 #define MAX_CHAIN_BUCKETS	16
3321 #define CHAIN_BLK_FLAG		(1U << 15)
3322 #define CHAIN_BLK_LIST_END	0xFFFFU
3323 
3324 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3325 
size_to_bucket(int size)3326 static inline int size_to_bucket(int size)
3327 {
3328 	if (size > MAX_CHAIN_BUCKETS)
3329 		return 0;
3330 
3331 	return size - 1;
3332 }
3333 
3334 /*
3335  * Iterate all the chain blocks in a bucket.
3336  */
3337 #define for_each_chain_block(bucket, prev, curr)		\
3338 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3339 	     (curr) >= 0;					\
3340 	     (prev) = (curr), (curr) = chain_block_next(curr))
3341 
3342 /*
3343  * next block or -1
3344  */
chain_block_next(int offset)3345 static inline int chain_block_next(int offset)
3346 {
3347 	int next = chain_hlocks[offset];
3348 
3349 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3350 
3351 	if (next == CHAIN_BLK_LIST_END)
3352 		return -1;
3353 
3354 	next &= ~CHAIN_BLK_FLAG;
3355 	next <<= 16;
3356 	next |= chain_hlocks[offset + 1];
3357 
3358 	return next;
3359 }
3360 
3361 /*
3362  * bucket-0 only
3363  */
chain_block_size(int offset)3364 static inline int chain_block_size(int offset)
3365 {
3366 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3367 }
3368 
init_chain_block(int offset,int next,int bucket,int size)3369 static inline void init_chain_block(int offset, int next, int bucket, int size)
3370 {
3371 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3372 	chain_hlocks[offset + 1] = (u16)next;
3373 
3374 	if (size && !bucket) {
3375 		chain_hlocks[offset + 2] = size >> 16;
3376 		chain_hlocks[offset + 3] = (u16)size;
3377 	}
3378 }
3379 
add_chain_block(int offset,int size)3380 static inline void add_chain_block(int offset, int size)
3381 {
3382 	int bucket = size_to_bucket(size);
3383 	int next = chain_block_buckets[bucket];
3384 	int prev, curr;
3385 
3386 	if (unlikely(size < 2)) {
3387 		/*
3388 		 * We can't store single entries on the freelist. Leak them.
3389 		 *
3390 		 * One possible way out would be to uniquely mark them, other
3391 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3392 		 * the block before it is re-added.
3393 		 */
3394 		if (size)
3395 			nr_lost_chain_hlocks++;
3396 		return;
3397 	}
3398 
3399 	nr_free_chain_hlocks += size;
3400 	if (!bucket) {
3401 		nr_large_chain_blocks++;
3402 
3403 		/*
3404 		 * Variable sized, sort large to small.
3405 		 */
3406 		for_each_chain_block(0, prev, curr) {
3407 			if (size >= chain_block_size(curr))
3408 				break;
3409 		}
3410 		init_chain_block(offset, curr, 0, size);
3411 		if (prev < 0)
3412 			chain_block_buckets[0] = offset;
3413 		else
3414 			init_chain_block(prev, offset, 0, 0);
3415 		return;
3416 	}
3417 	/*
3418 	 * Fixed size, add to head.
3419 	 */
3420 	init_chain_block(offset, next, bucket, size);
3421 	chain_block_buckets[bucket] = offset;
3422 }
3423 
3424 /*
3425  * Only the first block in the list can be deleted.
3426  *
3427  * For the variable size bucket[0], the first block (the largest one) is
3428  * returned, broken up and put back into the pool. So if a chain block of
3429  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3430  * queued up after the primordial chain block and never be used until the
3431  * hlock entries in the primordial chain block is almost used up. That
3432  * causes fragmentation and reduce allocation efficiency. That can be
3433  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3434  */
del_chain_block(int bucket,int size,int next)3435 static inline void del_chain_block(int bucket, int size, int next)
3436 {
3437 	nr_free_chain_hlocks -= size;
3438 	chain_block_buckets[bucket] = next;
3439 
3440 	if (!bucket)
3441 		nr_large_chain_blocks--;
3442 }
3443 
init_chain_block_buckets(void)3444 static void init_chain_block_buckets(void)
3445 {
3446 	int i;
3447 
3448 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3449 		chain_block_buckets[i] = -1;
3450 
3451 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3452 }
3453 
3454 /*
3455  * Return offset of a chain block of the right size or -1 if not found.
3456  *
3457  * Fairly simple worst-fit allocator with the addition of a number of size
3458  * specific free lists.
3459  */
alloc_chain_hlocks(int req)3460 static int alloc_chain_hlocks(int req)
3461 {
3462 	int bucket, curr, size;
3463 
3464 	/*
3465 	 * We rely on the MSB to act as an escape bit to denote freelist
3466 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3467 	 */
3468 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3469 
3470 	init_data_structures_once();
3471 
3472 	if (nr_free_chain_hlocks < req)
3473 		return -1;
3474 
3475 	/*
3476 	 * We require a minimum of 2 (u16) entries to encode a freelist
3477 	 * 'pointer'.
3478 	 */
3479 	req = max(req, 2);
3480 	bucket = size_to_bucket(req);
3481 	curr = chain_block_buckets[bucket];
3482 
3483 	if (bucket) {
3484 		if (curr >= 0) {
3485 			del_chain_block(bucket, req, chain_block_next(curr));
3486 			return curr;
3487 		}
3488 		/* Try bucket 0 */
3489 		curr = chain_block_buckets[0];
3490 	}
3491 
3492 	/*
3493 	 * The variable sized freelist is sorted by size; the first entry is
3494 	 * the largest. Use it if it fits.
3495 	 */
3496 	if (curr >= 0) {
3497 		size = chain_block_size(curr);
3498 		if (likely(size >= req)) {
3499 			del_chain_block(0, size, chain_block_next(curr));
3500 			if (size > req)
3501 				add_chain_block(curr + req, size - req);
3502 			return curr;
3503 		}
3504 	}
3505 
3506 	/*
3507 	 * Last resort, split a block in a larger sized bucket.
3508 	 */
3509 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3510 		bucket = size_to_bucket(size);
3511 		curr = chain_block_buckets[bucket];
3512 		if (curr < 0)
3513 			continue;
3514 
3515 		del_chain_block(bucket, size, chain_block_next(curr));
3516 		add_chain_block(curr + req, size - req);
3517 		return curr;
3518 	}
3519 
3520 	return -1;
3521 }
3522 
free_chain_hlocks(int base,int size)3523 static inline void free_chain_hlocks(int base, int size)
3524 {
3525 	add_chain_block(base, max(size, 2));
3526 }
3527 
lock_chain_get_class(struct lock_chain * chain,int i)3528 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3529 {
3530 	u16 chain_hlock = chain_hlocks[chain->base + i];
3531 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3532 
3533 	return lock_classes + class_idx;
3534 }
3535 
3536 /*
3537  * Returns the index of the first held_lock of the current chain
3538  */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3539 static inline int get_first_held_lock(struct task_struct *curr,
3540 					struct held_lock *hlock)
3541 {
3542 	int i;
3543 	struct held_lock *hlock_curr;
3544 
3545 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3546 		hlock_curr = curr->held_locks + i;
3547 		if (hlock_curr->irq_context != hlock->irq_context)
3548 			break;
3549 
3550 	}
3551 
3552 	return ++i;
3553 }
3554 
3555 #ifdef CONFIG_DEBUG_LOCKDEP
3556 /*
3557  * Returns the next chain_key iteration
3558  */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3559 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3560 {
3561 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3562 
3563 	printk(" hlock_id:%d -> chain_key:%016Lx",
3564 		(unsigned int)hlock_id,
3565 		(unsigned long long)new_chain_key);
3566 	return new_chain_key;
3567 }
3568 
3569 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3570 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3571 {
3572 	struct held_lock *hlock;
3573 	u64 chain_key = INITIAL_CHAIN_KEY;
3574 	int depth = curr->lockdep_depth;
3575 	int i = get_first_held_lock(curr, hlock_next);
3576 
3577 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3578 		hlock_next->irq_context);
3579 	for (; i < depth; i++) {
3580 		hlock = curr->held_locks + i;
3581 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3582 
3583 		print_lock(hlock);
3584 	}
3585 
3586 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3587 	print_lock(hlock_next);
3588 }
3589 
print_chain_keys_chain(struct lock_chain * chain)3590 static void print_chain_keys_chain(struct lock_chain *chain)
3591 {
3592 	int i;
3593 	u64 chain_key = INITIAL_CHAIN_KEY;
3594 	u16 hlock_id;
3595 
3596 	printk("depth: %u\n", chain->depth);
3597 	for (i = 0; i < chain->depth; i++) {
3598 		hlock_id = chain_hlocks[chain->base + i];
3599 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3600 
3601 		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3602 		printk("\n");
3603 	}
3604 }
3605 
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3606 static void print_collision(struct task_struct *curr,
3607 			struct held_lock *hlock_next,
3608 			struct lock_chain *chain)
3609 {
3610 	pr_warn("\n");
3611 	pr_warn("============================\n");
3612 	pr_warn("WARNING: chain_key collision\n");
3613 	print_kernel_ident();
3614 	pr_warn("----------------------------\n");
3615 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3616 	pr_warn("Hash chain already cached but the contents don't match!\n");
3617 
3618 	pr_warn("Held locks:");
3619 	print_chain_keys_held_locks(curr, hlock_next);
3620 
3621 	pr_warn("Locks in cached chain:");
3622 	print_chain_keys_chain(chain);
3623 
3624 	pr_warn("\nstack backtrace:\n");
3625 	dump_stack();
3626 }
3627 #endif
3628 
3629 /*
3630  * Checks whether the chain and the current held locks are consistent
3631  * in depth and also in content. If they are not it most likely means
3632  * that there was a collision during the calculation of the chain_key.
3633  * Returns: 0 not passed, 1 passed
3634  */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3635 static int check_no_collision(struct task_struct *curr,
3636 			struct held_lock *hlock,
3637 			struct lock_chain *chain)
3638 {
3639 #ifdef CONFIG_DEBUG_LOCKDEP
3640 	int i, j, id;
3641 
3642 	i = get_first_held_lock(curr, hlock);
3643 
3644 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3645 		print_collision(curr, hlock, chain);
3646 		return 0;
3647 	}
3648 
3649 	for (j = 0; j < chain->depth - 1; j++, i++) {
3650 		id = hlock_id(&curr->held_locks[i]);
3651 
3652 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3653 			print_collision(curr, hlock, chain);
3654 			return 0;
3655 		}
3656 	}
3657 #endif
3658 	return 1;
3659 }
3660 
3661 /*
3662  * Given an index that is >= -1, return the index of the next lock chain.
3663  * Return -2 if there is no next lock chain.
3664  */
lockdep_next_lockchain(long i)3665 long lockdep_next_lockchain(long i)
3666 {
3667 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3668 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3669 }
3670 
lock_chain_count(void)3671 unsigned long lock_chain_count(void)
3672 {
3673 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3674 }
3675 
3676 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3677 static struct lock_chain *alloc_lock_chain(void)
3678 {
3679 	int idx = find_first_zero_bit(lock_chains_in_use,
3680 				      ARRAY_SIZE(lock_chains));
3681 
3682 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3683 		return NULL;
3684 	__set_bit(idx, lock_chains_in_use);
3685 	return lock_chains + idx;
3686 }
3687 
3688 /*
3689  * Adds a dependency chain into chain hashtable. And must be called with
3690  * graph_lock held.
3691  *
3692  * Return 0 if fail, and graph_lock is released.
3693  * Return 1 if succeed, with graph_lock held.
3694  */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3695 static inline int add_chain_cache(struct task_struct *curr,
3696 				  struct held_lock *hlock,
3697 				  u64 chain_key)
3698 {
3699 	struct hlist_head *hash_head = chainhashentry(chain_key);
3700 	struct lock_chain *chain;
3701 	int i, j;
3702 
3703 	/*
3704 	 * The caller must hold the graph lock, ensure we've got IRQs
3705 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3706 	 * lockdep won't complain about its own locking errors.
3707 	 */
3708 	if (lockdep_assert_locked())
3709 		return 0;
3710 
3711 	chain = alloc_lock_chain();
3712 	if (!chain) {
3713 		if (!debug_locks_off_graph_unlock())
3714 			return 0;
3715 
3716 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3717 		dump_stack();
3718 		return 0;
3719 	}
3720 	chain->chain_key = chain_key;
3721 	chain->irq_context = hlock->irq_context;
3722 	i = get_first_held_lock(curr, hlock);
3723 	chain->depth = curr->lockdep_depth + 1 - i;
3724 
3725 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3726 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3727 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3728 
3729 	j = alloc_chain_hlocks(chain->depth);
3730 	if (j < 0) {
3731 		if (!debug_locks_off_graph_unlock())
3732 			return 0;
3733 
3734 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3735 		dump_stack();
3736 		return 0;
3737 	}
3738 
3739 	chain->base = j;
3740 	for (j = 0; j < chain->depth - 1; j++, i++) {
3741 		int lock_id = hlock_id(curr->held_locks + i);
3742 
3743 		chain_hlocks[chain->base + j] = lock_id;
3744 	}
3745 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3746 	hlist_add_head_rcu(&chain->entry, hash_head);
3747 	debug_atomic_inc(chain_lookup_misses);
3748 	inc_chains(chain->irq_context);
3749 
3750 	return 1;
3751 }
3752 
3753 /*
3754  * Look up a dependency chain. Must be called with either the graph lock or
3755  * the RCU read lock held.
3756  */
lookup_chain_cache(u64 chain_key)3757 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3758 {
3759 	struct hlist_head *hash_head = chainhashentry(chain_key);
3760 	struct lock_chain *chain;
3761 
3762 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3763 		if (READ_ONCE(chain->chain_key) == chain_key) {
3764 			debug_atomic_inc(chain_lookup_hits);
3765 			return chain;
3766 		}
3767 	}
3768 	return NULL;
3769 }
3770 
3771 /*
3772  * If the key is not present yet in dependency chain cache then
3773  * add it and return 1 - in this case the new dependency chain is
3774  * validated. If the key is already hashed, return 0.
3775  * (On return with 1 graph_lock is held.)
3776  */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3777 static inline int lookup_chain_cache_add(struct task_struct *curr,
3778 					 struct held_lock *hlock,
3779 					 u64 chain_key)
3780 {
3781 	struct lock_class *class = hlock_class(hlock);
3782 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3783 
3784 	if (chain) {
3785 cache_hit:
3786 		if (!check_no_collision(curr, hlock, chain))
3787 			return 0;
3788 
3789 		if (very_verbose(class)) {
3790 			printk("\nhash chain already cached, key: "
3791 					"%016Lx tail class: [%px] %s\n",
3792 					(unsigned long long)chain_key,
3793 					class->key, class->name);
3794 		}
3795 
3796 		return 0;
3797 	}
3798 
3799 	if (very_verbose(class)) {
3800 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3801 			(unsigned long long)chain_key, class->key, class->name);
3802 	}
3803 
3804 	if (!graph_lock())
3805 		return 0;
3806 
3807 	/*
3808 	 * We have to walk the chain again locked - to avoid duplicates:
3809 	 */
3810 	chain = lookup_chain_cache(chain_key);
3811 	if (chain) {
3812 		graph_unlock();
3813 		goto cache_hit;
3814 	}
3815 
3816 	if (!add_chain_cache(curr, hlock, chain_key))
3817 		return 0;
3818 
3819 	return 1;
3820 }
3821 
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3822 static int validate_chain(struct task_struct *curr,
3823 			  struct held_lock *hlock,
3824 			  int chain_head, u64 chain_key)
3825 {
3826 	/*
3827 	 * Trylock needs to maintain the stack of held locks, but it
3828 	 * does not add new dependencies, because trylock can be done
3829 	 * in any order.
3830 	 *
3831 	 * We look up the chain_key and do the O(N^2) check and update of
3832 	 * the dependencies only if this is a new dependency chain.
3833 	 * (If lookup_chain_cache_add() return with 1 it acquires
3834 	 * graph_lock for us)
3835 	 */
3836 	if (!hlock->trylock && hlock->check &&
3837 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3838 		/*
3839 		 * Check whether last held lock:
3840 		 *
3841 		 * - is irq-safe, if this lock is irq-unsafe
3842 		 * - is softirq-safe, if this lock is hardirq-unsafe
3843 		 *
3844 		 * And check whether the new lock's dependency graph
3845 		 * could lead back to the previous lock:
3846 		 *
3847 		 * - within the current held-lock stack
3848 		 * - across our accumulated lock dependency records
3849 		 *
3850 		 * any of these scenarios could lead to a deadlock.
3851 		 */
3852 		/*
3853 		 * The simple case: does the current hold the same lock
3854 		 * already?
3855 		 */
3856 		int ret = check_deadlock(curr, hlock);
3857 
3858 		if (!ret)
3859 			return 0;
3860 		/*
3861 		 * Add dependency only if this lock is not the head
3862 		 * of the chain, and if the new lock introduces no more
3863 		 * lock dependency (because we already hold a lock with the
3864 		 * same lock class) nor deadlock (because the nest_lock
3865 		 * serializes nesting locks), see the comments for
3866 		 * check_deadlock().
3867 		 */
3868 		if (!chain_head && ret != 2) {
3869 			if (!check_prevs_add(curr, hlock))
3870 				return 0;
3871 		}
3872 
3873 		graph_unlock();
3874 	} else {
3875 		/* after lookup_chain_cache_add(): */
3876 		if (unlikely(!debug_locks))
3877 			return 0;
3878 	}
3879 
3880 	return 1;
3881 }
3882 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3883 static inline int validate_chain(struct task_struct *curr,
3884 				 struct held_lock *hlock,
3885 				 int chain_head, u64 chain_key)
3886 {
3887 	return 1;
3888 }
3889 
init_chain_block_buckets(void)3890 static void init_chain_block_buckets(void)	{ }
3891 #endif /* CONFIG_PROVE_LOCKING */
3892 
3893 /*
3894  * We are building curr_chain_key incrementally, so double-check
3895  * it from scratch, to make sure that it's done correctly:
3896  */
check_chain_key(struct task_struct * curr)3897 static void check_chain_key(struct task_struct *curr)
3898 {
3899 #ifdef CONFIG_DEBUG_LOCKDEP
3900 	struct held_lock *hlock, *prev_hlock = NULL;
3901 	unsigned int i;
3902 	u64 chain_key = INITIAL_CHAIN_KEY;
3903 
3904 	for (i = 0; i < curr->lockdep_depth; i++) {
3905 		hlock = curr->held_locks + i;
3906 		if (chain_key != hlock->prev_chain_key) {
3907 			debug_locks_off();
3908 			/*
3909 			 * We got mighty confused, our chain keys don't match
3910 			 * with what we expect, someone trample on our task state?
3911 			 */
3912 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3913 				curr->lockdep_depth, i,
3914 				(unsigned long long)chain_key,
3915 				(unsigned long long)hlock->prev_chain_key);
3916 			return;
3917 		}
3918 
3919 		/*
3920 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3921 		 * it registered lock class index?
3922 		 */
3923 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3924 			return;
3925 
3926 		if (prev_hlock && (prev_hlock->irq_context !=
3927 							hlock->irq_context))
3928 			chain_key = INITIAL_CHAIN_KEY;
3929 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3930 		prev_hlock = hlock;
3931 	}
3932 	if (chain_key != curr->curr_chain_key) {
3933 		debug_locks_off();
3934 		/*
3935 		 * More smoking hash instead of calculating it, damn see these
3936 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3937 		 */
3938 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3939 			curr->lockdep_depth, i,
3940 			(unsigned long long)chain_key,
3941 			(unsigned long long)curr->curr_chain_key);
3942 	}
3943 #endif
3944 }
3945 
3946 #ifdef CONFIG_PROVE_LOCKING
3947 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3948 		     enum lock_usage_bit new_bit);
3949 
print_usage_bug_scenario(struct held_lock * lock)3950 static void print_usage_bug_scenario(struct held_lock *lock)
3951 {
3952 	struct lock_class *class = hlock_class(lock);
3953 
3954 	printk(" Possible unsafe locking scenario:\n\n");
3955 	printk("       CPU0\n");
3956 	printk("       ----\n");
3957 	printk("  lock(");
3958 	__print_lock_name(lock, class);
3959 	printk(KERN_CONT ");\n");
3960 	printk("  <Interrupt>\n");
3961 	printk("    lock(");
3962 	__print_lock_name(lock, class);
3963 	printk(KERN_CONT ");\n");
3964 	printk("\n *** DEADLOCK ***\n\n");
3965 }
3966 
3967 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3968 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3969 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3970 {
3971 	if (!debug_locks_off() || debug_locks_silent)
3972 		return;
3973 
3974 	pr_warn("\n");
3975 	pr_warn("================================\n");
3976 	pr_warn("WARNING: inconsistent lock state\n");
3977 	print_kernel_ident();
3978 	pr_warn("--------------------------------\n");
3979 
3980 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3981 		usage_str[prev_bit], usage_str[new_bit]);
3982 
3983 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3984 		curr->comm, task_pid_nr(curr),
3985 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3986 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3987 		lockdep_hardirqs_enabled(),
3988 		lockdep_softirqs_enabled(curr));
3989 	print_lock(this);
3990 
3991 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3992 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3993 
3994 	print_irqtrace_events(curr);
3995 	pr_warn("\nother info that might help us debug this:\n");
3996 	print_usage_bug_scenario(this);
3997 
3998 	lockdep_print_held_locks(curr);
3999 
4000 	pr_warn("\nstack backtrace:\n");
4001 	dump_stack();
4002 }
4003 
4004 /*
4005  * Print out an error if an invalid bit is set:
4006  */
4007 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)4008 valid_state(struct task_struct *curr, struct held_lock *this,
4009 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4010 {
4011 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4012 		graph_unlock();
4013 		print_usage_bug(curr, this, bad_bit, new_bit);
4014 		return 0;
4015 	}
4016 	return 1;
4017 }
4018 
4019 
4020 /*
4021  * print irq inversion bug:
4022  */
4023 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)4024 print_irq_inversion_bug(struct task_struct *curr,
4025 			struct lock_list *root, struct lock_list *other,
4026 			struct held_lock *this, int forwards,
4027 			const char *irqclass)
4028 {
4029 	struct lock_list *entry = other;
4030 	struct lock_list *middle = NULL;
4031 	int depth;
4032 
4033 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4034 		return;
4035 
4036 	pr_warn("\n");
4037 	pr_warn("========================================================\n");
4038 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4039 	print_kernel_ident();
4040 	pr_warn("--------------------------------------------------------\n");
4041 	pr_warn("%s/%d just changed the state of lock:\n",
4042 		curr->comm, task_pid_nr(curr));
4043 	print_lock(this);
4044 	if (forwards)
4045 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4046 	else
4047 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4048 	print_lock_name(NULL, other->class);
4049 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4050 
4051 	pr_warn("\nother info that might help us debug this:\n");
4052 
4053 	/* Find a middle lock (if one exists) */
4054 	depth = get_lock_depth(other);
4055 	do {
4056 		if (depth == 0 && (entry != root)) {
4057 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4058 			break;
4059 		}
4060 		middle = entry;
4061 		entry = get_lock_parent(entry);
4062 		depth--;
4063 	} while (entry && entry != root && (depth >= 0));
4064 	if (forwards)
4065 		print_irq_lock_scenario(root, other,
4066 			middle ? middle->class : root->class, other->class);
4067 	else
4068 		print_irq_lock_scenario(other, root,
4069 			middle ? middle->class : other->class, root->class);
4070 
4071 	lockdep_print_held_locks(curr);
4072 
4073 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4074 	root->trace = save_trace();
4075 	if (!root->trace)
4076 		return;
4077 	print_shortest_lock_dependencies(other, root);
4078 
4079 	pr_warn("\nstack backtrace:\n");
4080 	dump_stack();
4081 }
4082 
4083 /*
4084  * Prove that in the forwards-direction subgraph starting at <this>
4085  * there is no lock matching <mask>:
4086  */
4087 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4088 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4089 		     enum lock_usage_bit bit)
4090 {
4091 	enum bfs_result ret;
4092 	struct lock_list root;
4093 	struct lock_list *target_entry;
4094 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4095 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4096 
4097 	bfs_init_root(&root, this);
4098 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4099 	if (bfs_error(ret)) {
4100 		print_bfs_bug(ret);
4101 		return 0;
4102 	}
4103 	if (ret == BFS_RNOMATCH)
4104 		return 1;
4105 
4106 	/* Check whether write or read usage is the match */
4107 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4108 		print_irq_inversion_bug(curr, &root, target_entry,
4109 					this, 1, state_name(bit));
4110 	} else {
4111 		print_irq_inversion_bug(curr, &root, target_entry,
4112 					this, 1, state_name(read_bit));
4113 	}
4114 
4115 	return 0;
4116 }
4117 
4118 /*
4119  * Prove that in the backwards-direction subgraph starting at <this>
4120  * there is no lock matching <mask>:
4121  */
4122 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4123 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4124 		      enum lock_usage_bit bit)
4125 {
4126 	enum bfs_result ret;
4127 	struct lock_list root;
4128 	struct lock_list *target_entry;
4129 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4130 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4131 
4132 	bfs_init_rootb(&root, this);
4133 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4134 	if (bfs_error(ret)) {
4135 		print_bfs_bug(ret);
4136 		return 0;
4137 	}
4138 	if (ret == BFS_RNOMATCH)
4139 		return 1;
4140 
4141 	/* Check whether write or read usage is the match */
4142 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4143 		print_irq_inversion_bug(curr, &root, target_entry,
4144 					this, 0, state_name(bit));
4145 	} else {
4146 		print_irq_inversion_bug(curr, &root, target_entry,
4147 					this, 0, state_name(read_bit));
4148 	}
4149 
4150 	return 0;
4151 }
4152 
print_irqtrace_events(struct task_struct * curr)4153 void print_irqtrace_events(struct task_struct *curr)
4154 {
4155 	const struct irqtrace_events *trace = &curr->irqtrace;
4156 
4157 	printk("irq event stamp: %u\n", trace->irq_events);
4158 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4159 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4160 		(void *)trace->hardirq_enable_ip);
4161 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4162 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4163 		(void *)trace->hardirq_disable_ip);
4164 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4165 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4166 		(void *)trace->softirq_enable_ip);
4167 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4168 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4169 		(void *)trace->softirq_disable_ip);
4170 }
4171 
HARDIRQ_verbose(struct lock_class * class)4172 static int HARDIRQ_verbose(struct lock_class *class)
4173 {
4174 #if HARDIRQ_VERBOSE
4175 	return class_filter(class);
4176 #endif
4177 	return 0;
4178 }
4179 
SOFTIRQ_verbose(struct lock_class * class)4180 static int SOFTIRQ_verbose(struct lock_class *class)
4181 {
4182 #if SOFTIRQ_VERBOSE
4183 	return class_filter(class);
4184 #endif
4185 	return 0;
4186 }
4187 
4188 static int (*state_verbose_f[])(struct lock_class *class) = {
4189 #define LOCKDEP_STATE(__STATE) \
4190 	__STATE##_verbose,
4191 #include "lockdep_states.h"
4192 #undef LOCKDEP_STATE
4193 };
4194 
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4195 static inline int state_verbose(enum lock_usage_bit bit,
4196 				struct lock_class *class)
4197 {
4198 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4199 }
4200 
4201 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4202 			     enum lock_usage_bit bit, const char *name);
4203 
4204 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4205 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4206 		enum lock_usage_bit new_bit)
4207 {
4208 	int excl_bit = exclusive_bit(new_bit);
4209 	int read = new_bit & LOCK_USAGE_READ_MASK;
4210 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4211 
4212 	/*
4213 	 * Validate that this particular lock does not have conflicting
4214 	 * usage states.
4215 	 */
4216 	if (!valid_state(curr, this, new_bit, excl_bit))
4217 		return 0;
4218 
4219 	/*
4220 	 * Check for read in write conflicts
4221 	 */
4222 	if (!read && !valid_state(curr, this, new_bit,
4223 				  excl_bit + LOCK_USAGE_READ_MASK))
4224 		return 0;
4225 
4226 
4227 	/*
4228 	 * Validate that the lock dependencies don't have conflicting usage
4229 	 * states.
4230 	 */
4231 	if (dir) {
4232 		/*
4233 		 * mark ENABLED has to look backwards -- to ensure no dependee
4234 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4235 		 */
4236 		if (!check_usage_backwards(curr, this, excl_bit))
4237 			return 0;
4238 	} else {
4239 		/*
4240 		 * mark USED_IN has to look forwards -- to ensure no dependency
4241 		 * has ENABLED state, which would allow recursion deadlocks.
4242 		 */
4243 		if (!check_usage_forwards(curr, this, excl_bit))
4244 			return 0;
4245 	}
4246 
4247 	if (state_verbose(new_bit, hlock_class(this)))
4248 		return 2;
4249 
4250 	return 1;
4251 }
4252 
4253 /*
4254  * Mark all held locks with a usage bit:
4255  */
4256 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4257 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4258 {
4259 	struct held_lock *hlock;
4260 	int i;
4261 
4262 	for (i = 0; i < curr->lockdep_depth; i++) {
4263 		enum lock_usage_bit hlock_bit = base_bit;
4264 		hlock = curr->held_locks + i;
4265 
4266 		if (hlock->read)
4267 			hlock_bit += LOCK_USAGE_READ_MASK;
4268 
4269 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4270 
4271 		if (!hlock->check)
4272 			continue;
4273 
4274 		if (!mark_lock(curr, hlock, hlock_bit))
4275 			return 0;
4276 	}
4277 
4278 	return 1;
4279 }
4280 
4281 /*
4282  * Hardirqs will be enabled:
4283  */
__trace_hardirqs_on_caller(void)4284 static void __trace_hardirqs_on_caller(void)
4285 {
4286 	struct task_struct *curr = current;
4287 
4288 	/*
4289 	 * We are going to turn hardirqs on, so set the
4290 	 * usage bit for all held locks:
4291 	 */
4292 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4293 		return;
4294 	/*
4295 	 * If we have softirqs enabled, then set the usage
4296 	 * bit for all held locks. (disabled hardirqs prevented
4297 	 * this bit from being set before)
4298 	 */
4299 	if (curr->softirqs_enabled)
4300 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4301 }
4302 
4303 /**
4304  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4305  *
4306  * Invoked before a possible transition to RCU idle from exit to user or
4307  * guest mode. This ensures that all RCU operations are done before RCU
4308  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4309  * invoked to set the final state.
4310  */
lockdep_hardirqs_on_prepare(void)4311 void lockdep_hardirqs_on_prepare(void)
4312 {
4313 	if (unlikely(!debug_locks))
4314 		return;
4315 
4316 	/*
4317 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4318 	 */
4319 	if (unlikely(in_nmi()))
4320 		return;
4321 
4322 	if (unlikely(this_cpu_read(lockdep_recursion)))
4323 		return;
4324 
4325 	if (unlikely(lockdep_hardirqs_enabled())) {
4326 		/*
4327 		 * Neither irq nor preemption are disabled here
4328 		 * so this is racy by nature but losing one hit
4329 		 * in a stat is not a big deal.
4330 		 */
4331 		__debug_atomic_inc(redundant_hardirqs_on);
4332 		return;
4333 	}
4334 
4335 	/*
4336 	 * We're enabling irqs and according to our state above irqs weren't
4337 	 * already enabled, yet we find the hardware thinks they are in fact
4338 	 * enabled.. someone messed up their IRQ state tracing.
4339 	 */
4340 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4341 		return;
4342 
4343 	/*
4344 	 * See the fine text that goes along with this variable definition.
4345 	 */
4346 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4347 		return;
4348 
4349 	/*
4350 	 * Can't allow enabling interrupts while in an interrupt handler,
4351 	 * that's general bad form and such. Recursion, limited stack etc..
4352 	 */
4353 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4354 		return;
4355 
4356 	current->hardirq_chain_key = current->curr_chain_key;
4357 
4358 	lockdep_recursion_inc();
4359 	__trace_hardirqs_on_caller();
4360 	lockdep_recursion_finish();
4361 }
4362 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4363 
lockdep_hardirqs_on(unsigned long ip)4364 void noinstr lockdep_hardirqs_on(unsigned long ip)
4365 {
4366 	struct irqtrace_events *trace = &current->irqtrace;
4367 
4368 	if (unlikely(!debug_locks))
4369 		return;
4370 
4371 	/*
4372 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4373 	 * tracking state and hardware state are out of sync.
4374 	 *
4375 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4376 	 * and not rely on hardware state like normal interrupts.
4377 	 */
4378 	if (unlikely(in_nmi())) {
4379 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4380 			return;
4381 
4382 		/*
4383 		 * Skip:
4384 		 *  - recursion check, because NMI can hit lockdep;
4385 		 *  - hardware state check, because above;
4386 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4387 		 */
4388 		goto skip_checks;
4389 	}
4390 
4391 	if (unlikely(this_cpu_read(lockdep_recursion)))
4392 		return;
4393 
4394 	if (lockdep_hardirqs_enabled()) {
4395 		/*
4396 		 * Neither irq nor preemption are disabled here
4397 		 * so this is racy by nature but losing one hit
4398 		 * in a stat is not a big deal.
4399 		 */
4400 		__debug_atomic_inc(redundant_hardirqs_on);
4401 		return;
4402 	}
4403 
4404 	/*
4405 	 * We're enabling irqs and according to our state above irqs weren't
4406 	 * already enabled, yet we find the hardware thinks they are in fact
4407 	 * enabled.. someone messed up their IRQ state tracing.
4408 	 */
4409 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4410 		return;
4411 
4412 	/*
4413 	 * Ensure the lock stack remained unchanged between
4414 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4415 	 */
4416 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4417 			    current->curr_chain_key);
4418 
4419 skip_checks:
4420 	/* we'll do an OFF -> ON transition: */
4421 	__this_cpu_write(hardirqs_enabled, 1);
4422 	trace->hardirq_enable_ip = ip;
4423 	trace->hardirq_enable_event = ++trace->irq_events;
4424 	debug_atomic_inc(hardirqs_on_events);
4425 }
4426 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4427 
4428 /*
4429  * Hardirqs were disabled:
4430  */
lockdep_hardirqs_off(unsigned long ip)4431 void noinstr lockdep_hardirqs_off(unsigned long ip)
4432 {
4433 	if (unlikely(!debug_locks))
4434 		return;
4435 
4436 	/*
4437 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4438 	 * they will restore the software state. This ensures the software
4439 	 * state is consistent inside NMIs as well.
4440 	 */
4441 	if (in_nmi()) {
4442 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4443 			return;
4444 	} else if (__this_cpu_read(lockdep_recursion))
4445 		return;
4446 
4447 	/*
4448 	 * So we're supposed to get called after you mask local IRQs, but for
4449 	 * some reason the hardware doesn't quite think you did a proper job.
4450 	 */
4451 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4452 		return;
4453 
4454 	if (lockdep_hardirqs_enabled()) {
4455 		struct irqtrace_events *trace = &current->irqtrace;
4456 
4457 		/*
4458 		 * We have done an ON -> OFF transition:
4459 		 */
4460 		__this_cpu_write(hardirqs_enabled, 0);
4461 		trace->hardirq_disable_ip = ip;
4462 		trace->hardirq_disable_event = ++trace->irq_events;
4463 		debug_atomic_inc(hardirqs_off_events);
4464 	} else {
4465 		debug_atomic_inc(redundant_hardirqs_off);
4466 	}
4467 }
4468 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4469 
4470 /*
4471  * Softirqs will be enabled:
4472  */
lockdep_softirqs_on(unsigned long ip)4473 void lockdep_softirqs_on(unsigned long ip)
4474 {
4475 	struct irqtrace_events *trace = &current->irqtrace;
4476 
4477 	if (unlikely(!lockdep_enabled()))
4478 		return;
4479 
4480 	/*
4481 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4482 	 * funny state and nesting things.
4483 	 */
4484 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4485 		return;
4486 
4487 	if (current->softirqs_enabled) {
4488 		debug_atomic_inc(redundant_softirqs_on);
4489 		return;
4490 	}
4491 
4492 	lockdep_recursion_inc();
4493 	/*
4494 	 * We'll do an OFF -> ON transition:
4495 	 */
4496 	current->softirqs_enabled = 1;
4497 	trace->softirq_enable_ip = ip;
4498 	trace->softirq_enable_event = ++trace->irq_events;
4499 	debug_atomic_inc(softirqs_on_events);
4500 	/*
4501 	 * We are going to turn softirqs on, so set the
4502 	 * usage bit for all held locks, if hardirqs are
4503 	 * enabled too:
4504 	 */
4505 	if (lockdep_hardirqs_enabled())
4506 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4507 	lockdep_recursion_finish();
4508 }
4509 
4510 /*
4511  * Softirqs were disabled:
4512  */
lockdep_softirqs_off(unsigned long ip)4513 void lockdep_softirqs_off(unsigned long ip)
4514 {
4515 	if (unlikely(!lockdep_enabled()))
4516 		return;
4517 
4518 	/*
4519 	 * We fancy IRQs being disabled here, see softirq.c
4520 	 */
4521 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4522 		return;
4523 
4524 	if (current->softirqs_enabled) {
4525 		struct irqtrace_events *trace = &current->irqtrace;
4526 
4527 		/*
4528 		 * We have done an ON -> OFF transition:
4529 		 */
4530 		current->softirqs_enabled = 0;
4531 		trace->softirq_disable_ip = ip;
4532 		trace->softirq_disable_event = ++trace->irq_events;
4533 		debug_atomic_inc(softirqs_off_events);
4534 		/*
4535 		 * Whoops, we wanted softirqs off, so why aren't they?
4536 		 */
4537 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4538 	} else
4539 		debug_atomic_inc(redundant_softirqs_off);
4540 }
4541 
4542 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4543 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4544 {
4545 	if (!check)
4546 		goto lock_used;
4547 
4548 	/*
4549 	 * If non-trylock use in a hardirq or softirq context, then
4550 	 * mark the lock as used in these contexts:
4551 	 */
4552 	if (!hlock->trylock) {
4553 		if (hlock->read) {
4554 			if (lockdep_hardirq_context())
4555 				if (!mark_lock(curr, hlock,
4556 						LOCK_USED_IN_HARDIRQ_READ))
4557 					return 0;
4558 			if (curr->softirq_context)
4559 				if (!mark_lock(curr, hlock,
4560 						LOCK_USED_IN_SOFTIRQ_READ))
4561 					return 0;
4562 		} else {
4563 			if (lockdep_hardirq_context())
4564 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4565 					return 0;
4566 			if (curr->softirq_context)
4567 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4568 					return 0;
4569 		}
4570 	}
4571 
4572 	/*
4573 	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4574 	 * creates no critical section and no extra dependency can be introduced
4575 	 * by interrupts
4576 	 */
4577 	if (!hlock->hardirqs_off && !hlock->sync) {
4578 		if (hlock->read) {
4579 			if (!mark_lock(curr, hlock,
4580 					LOCK_ENABLED_HARDIRQ_READ))
4581 				return 0;
4582 			if (curr->softirqs_enabled)
4583 				if (!mark_lock(curr, hlock,
4584 						LOCK_ENABLED_SOFTIRQ_READ))
4585 					return 0;
4586 		} else {
4587 			if (!mark_lock(curr, hlock,
4588 					LOCK_ENABLED_HARDIRQ))
4589 				return 0;
4590 			if (curr->softirqs_enabled)
4591 				if (!mark_lock(curr, hlock,
4592 						LOCK_ENABLED_SOFTIRQ))
4593 					return 0;
4594 		}
4595 	}
4596 
4597 lock_used:
4598 	/* mark it as used: */
4599 	if (!mark_lock(curr, hlock, LOCK_USED))
4600 		return 0;
4601 
4602 	return 1;
4603 }
4604 
task_irq_context(struct task_struct * task)4605 static inline unsigned int task_irq_context(struct task_struct *task)
4606 {
4607 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4608 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4609 }
4610 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4611 static int separate_irq_context(struct task_struct *curr,
4612 		struct held_lock *hlock)
4613 {
4614 	unsigned int depth = curr->lockdep_depth;
4615 
4616 	/*
4617 	 * Keep track of points where we cross into an interrupt context:
4618 	 */
4619 	if (depth) {
4620 		struct held_lock *prev_hlock;
4621 
4622 		prev_hlock = curr->held_locks + depth-1;
4623 		/*
4624 		 * If we cross into another context, reset the
4625 		 * hash key (this also prevents the checking and the
4626 		 * adding of the dependency to 'prev'):
4627 		 */
4628 		if (prev_hlock->irq_context != hlock->irq_context)
4629 			return 1;
4630 	}
4631 	return 0;
4632 }
4633 
4634 /*
4635  * Mark a lock with a usage bit, and validate the state transition:
4636  */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4637 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4638 			     enum lock_usage_bit new_bit)
4639 {
4640 	unsigned int new_mask, ret = 1;
4641 
4642 	if (new_bit >= LOCK_USAGE_STATES) {
4643 		DEBUG_LOCKS_WARN_ON(1);
4644 		return 0;
4645 	}
4646 
4647 	if (new_bit == LOCK_USED && this->read)
4648 		new_bit = LOCK_USED_READ;
4649 
4650 	new_mask = 1 << new_bit;
4651 
4652 	/*
4653 	 * If already set then do not dirty the cacheline,
4654 	 * nor do any checks:
4655 	 */
4656 	if (likely(hlock_class(this)->usage_mask & new_mask))
4657 		return 1;
4658 
4659 	if (!graph_lock())
4660 		return 0;
4661 	/*
4662 	 * Make sure we didn't race:
4663 	 */
4664 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4665 		goto unlock;
4666 
4667 	if (!hlock_class(this)->usage_mask)
4668 		debug_atomic_dec(nr_unused_locks);
4669 
4670 	hlock_class(this)->usage_mask |= new_mask;
4671 
4672 	if (new_bit < LOCK_TRACE_STATES) {
4673 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4674 			return 0;
4675 	}
4676 
4677 	if (new_bit < LOCK_USED) {
4678 		ret = mark_lock_irq(curr, this, new_bit);
4679 		if (!ret)
4680 			return 0;
4681 	}
4682 
4683 unlock:
4684 	graph_unlock();
4685 
4686 	/*
4687 	 * We must printk outside of the graph_lock:
4688 	 */
4689 	if (ret == 2) {
4690 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4691 		print_lock(this);
4692 		print_irqtrace_events(curr);
4693 		dump_stack();
4694 	}
4695 
4696 	return ret;
4697 }
4698 
task_wait_context(struct task_struct * curr)4699 static inline short task_wait_context(struct task_struct *curr)
4700 {
4701 	/*
4702 	 * Set appropriate wait type for the context; for IRQs we have to take
4703 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4704 	 */
4705 	if (lockdep_hardirq_context()) {
4706 		/*
4707 		 * Check if force_irqthreads will run us threaded.
4708 		 */
4709 		if (curr->hardirq_threaded || curr->irq_config)
4710 			return LD_WAIT_CONFIG;
4711 
4712 		return LD_WAIT_SPIN;
4713 	} else if (curr->softirq_context) {
4714 		/*
4715 		 * Softirqs are always threaded.
4716 		 */
4717 		return LD_WAIT_CONFIG;
4718 	}
4719 
4720 	return LD_WAIT_MAX;
4721 }
4722 
4723 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4724 print_lock_invalid_wait_context(struct task_struct *curr,
4725 				struct held_lock *hlock)
4726 {
4727 	short curr_inner;
4728 
4729 	if (!debug_locks_off())
4730 		return 0;
4731 	if (debug_locks_silent)
4732 		return 0;
4733 
4734 	pr_warn("\n");
4735 	pr_warn("=============================\n");
4736 	pr_warn("[ BUG: Invalid wait context ]\n");
4737 	print_kernel_ident();
4738 	pr_warn("-----------------------------\n");
4739 
4740 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4741 	print_lock(hlock);
4742 
4743 	pr_warn("other info that might help us debug this:\n");
4744 
4745 	curr_inner = task_wait_context(curr);
4746 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4747 
4748 	lockdep_print_held_locks(curr);
4749 
4750 	pr_warn("stack backtrace:\n");
4751 	dump_stack();
4752 
4753 	return 0;
4754 }
4755 
4756 /*
4757  * Verify the wait_type context.
4758  *
4759  * This check validates we take locks in the right wait-type order; that is it
4760  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4761  * acquire spinlocks inside raw_spinlocks and the sort.
4762  *
4763  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4764  * can be taken from (pretty much) any context but also has constraints.
4765  * However when taken in a stricter environment the RCU lock does not loosen
4766  * the constraints.
4767  *
4768  * Therefore we must look for the strictest environment in the lock stack and
4769  * compare that to the lock we're trying to acquire.
4770  */
check_wait_context(struct task_struct * curr,struct held_lock * next)4771 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4772 {
4773 	u8 next_inner = hlock_class(next)->wait_type_inner;
4774 	u8 next_outer = hlock_class(next)->wait_type_outer;
4775 	u8 curr_inner;
4776 	int depth;
4777 
4778 	if (!next_inner || next->trylock)
4779 		return 0;
4780 
4781 	if (!next_outer)
4782 		next_outer = next_inner;
4783 
4784 	/*
4785 	 * Find start of current irq_context..
4786 	 */
4787 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4788 		struct held_lock *prev = curr->held_locks + depth;
4789 		if (prev->irq_context != next->irq_context)
4790 			break;
4791 	}
4792 	depth++;
4793 
4794 	curr_inner = task_wait_context(curr);
4795 
4796 	for (; depth < curr->lockdep_depth; depth++) {
4797 		struct held_lock *prev = curr->held_locks + depth;
4798 		struct lock_class *class = hlock_class(prev);
4799 		u8 prev_inner = class->wait_type_inner;
4800 
4801 		if (prev_inner) {
4802 			/*
4803 			 * We can have a bigger inner than a previous one
4804 			 * when outer is smaller than inner, as with RCU.
4805 			 *
4806 			 * Also due to trylocks.
4807 			 */
4808 			curr_inner = min(curr_inner, prev_inner);
4809 
4810 			/*
4811 			 * Allow override for annotations -- this is typically
4812 			 * only valid/needed for code that only exists when
4813 			 * CONFIG_PREEMPT_RT=n.
4814 			 */
4815 			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4816 				curr_inner = prev_inner;
4817 		}
4818 	}
4819 
4820 	if (next_outer > curr_inner)
4821 		return print_lock_invalid_wait_context(curr, next);
4822 
4823 	return 0;
4824 }
4825 
4826 #else /* CONFIG_PROVE_LOCKING */
4827 
4828 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4829 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4830 {
4831 	return 1;
4832 }
4833 
task_irq_context(struct task_struct * task)4834 static inline unsigned int task_irq_context(struct task_struct *task)
4835 {
4836 	return 0;
4837 }
4838 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4839 static inline int separate_irq_context(struct task_struct *curr,
4840 		struct held_lock *hlock)
4841 {
4842 	return 0;
4843 }
4844 
check_wait_context(struct task_struct * curr,struct held_lock * next)4845 static inline int check_wait_context(struct task_struct *curr,
4846 				     struct held_lock *next)
4847 {
4848 	return 0;
4849 }
4850 
4851 #endif /* CONFIG_PROVE_LOCKING */
4852 
4853 /*
4854  * Initialize a lock instance's lock-class mapping info:
4855  */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4856 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4857 			    struct lock_class_key *key, int subclass,
4858 			    u8 inner, u8 outer, u8 lock_type)
4859 {
4860 	int i;
4861 
4862 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4863 		lock->class_cache[i] = NULL;
4864 
4865 #ifdef CONFIG_LOCK_STAT
4866 	lock->cpu = raw_smp_processor_id();
4867 #endif
4868 
4869 	/*
4870 	 * Can't be having no nameless bastards around this place!
4871 	 */
4872 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4873 		lock->name = "NULL";
4874 		return;
4875 	}
4876 
4877 	lock->name = name;
4878 
4879 	lock->wait_type_outer = outer;
4880 	lock->wait_type_inner = inner;
4881 	lock->lock_type = lock_type;
4882 
4883 	/*
4884 	 * No key, no joy, we need to hash something.
4885 	 */
4886 	if (DEBUG_LOCKS_WARN_ON(!key))
4887 		return;
4888 	/*
4889 	 * Sanity check, the lock-class key must either have been allocated
4890 	 * statically or must have been registered as a dynamic key.
4891 	 */
4892 	if (!static_obj(key) && !is_dynamic_key(key)) {
4893 		if (debug_locks)
4894 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4895 		DEBUG_LOCKS_WARN_ON(1);
4896 		return;
4897 	}
4898 	lock->key = key;
4899 
4900 	if (unlikely(!debug_locks))
4901 		return;
4902 
4903 	if (subclass) {
4904 		unsigned long flags;
4905 
4906 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4907 			return;
4908 
4909 		raw_local_irq_save(flags);
4910 		lockdep_recursion_inc();
4911 		register_lock_class(lock, subclass, 1);
4912 		lockdep_recursion_finish();
4913 		raw_local_irq_restore(flags);
4914 	}
4915 }
4916 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4917 
4918 struct lock_class_key __lockdep_no_validate__;
4919 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4920 
4921 #ifdef CONFIG_PROVE_LOCKING
lockdep_set_lock_cmp_fn(struct lockdep_map * lock,lock_cmp_fn cmp_fn,lock_print_fn print_fn)4922 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
4923 			     lock_print_fn print_fn)
4924 {
4925 	struct lock_class *class = lock->class_cache[0];
4926 	unsigned long flags;
4927 
4928 	raw_local_irq_save(flags);
4929 	lockdep_recursion_inc();
4930 
4931 	if (!class)
4932 		class = register_lock_class(lock, 0, 0);
4933 
4934 	if (class) {
4935 		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
4936 		WARN_ON(class->print_fn && class->print_fn != print_fn);
4937 
4938 		class->cmp_fn	= cmp_fn;
4939 		class->print_fn = print_fn;
4940 	}
4941 
4942 	lockdep_recursion_finish();
4943 	raw_local_irq_restore(flags);
4944 }
4945 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
4946 #endif
4947 
4948 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock)4949 print_lock_nested_lock_not_held(struct task_struct *curr,
4950 				struct held_lock *hlock)
4951 {
4952 	if (!debug_locks_off())
4953 		return;
4954 	if (debug_locks_silent)
4955 		return;
4956 
4957 	pr_warn("\n");
4958 	pr_warn("==================================\n");
4959 	pr_warn("WARNING: Nested lock was not taken\n");
4960 	print_kernel_ident();
4961 	pr_warn("----------------------------------\n");
4962 
4963 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4964 	print_lock(hlock);
4965 
4966 	pr_warn("\nbut this task is not holding:\n");
4967 	pr_warn("%s\n", hlock->nest_lock->name);
4968 
4969 	pr_warn("\nstack backtrace:\n");
4970 	dump_stack();
4971 
4972 	pr_warn("\nother info that might help us debug this:\n");
4973 	lockdep_print_held_locks(curr);
4974 
4975 	pr_warn("\nstack backtrace:\n");
4976 	dump_stack();
4977 }
4978 
4979 static int __lock_is_held(const struct lockdep_map *lock, int read);
4980 
4981 /*
4982  * This gets called for every mutex_lock*()/spin_lock*() operation.
4983  * We maintain the dependency maps and validate the locking attempt:
4984  *
4985  * The callers must make sure that IRQs are disabled before calling it,
4986  * otherwise we could get an interrupt which would want to take locks,
4987  * which would end up in lockdep again.
4988  */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count,int sync)4989 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4990 			  int trylock, int read, int check, int hardirqs_off,
4991 			  struct lockdep_map *nest_lock, unsigned long ip,
4992 			  int references, int pin_count, int sync)
4993 {
4994 	struct task_struct *curr = current;
4995 	struct lock_class *class = NULL;
4996 	struct held_lock *hlock;
4997 	unsigned int depth;
4998 	int chain_head = 0;
4999 	int class_idx;
5000 	u64 chain_key;
5001 
5002 	if (unlikely(!debug_locks))
5003 		return 0;
5004 
5005 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
5006 		check = 0;
5007 
5008 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5009 		class = lock->class_cache[subclass];
5010 	/*
5011 	 * Not cached?
5012 	 */
5013 	if (unlikely(!class)) {
5014 		class = register_lock_class(lock, subclass, 0);
5015 		if (!class)
5016 			return 0;
5017 	}
5018 
5019 	debug_class_ops_inc(class);
5020 
5021 	if (very_verbose(class)) {
5022 		printk("\nacquire class [%px] %s", class->key, class->name);
5023 		if (class->name_version > 1)
5024 			printk(KERN_CONT "#%d", class->name_version);
5025 		printk(KERN_CONT "\n");
5026 		dump_stack();
5027 	}
5028 
5029 	/*
5030 	 * Add the lock to the list of currently held locks.
5031 	 * (we dont increase the depth just yet, up until the
5032 	 * dependency checks are done)
5033 	 */
5034 	depth = curr->lockdep_depth;
5035 	/*
5036 	 * Ran out of static storage for our per-task lock stack again have we?
5037 	 */
5038 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5039 		return 0;
5040 
5041 	class_idx = class - lock_classes;
5042 
5043 	if (depth && !sync) {
5044 		/* we're holding locks and the new held lock is not a sync */
5045 		hlock = curr->held_locks + depth - 1;
5046 		if (hlock->class_idx == class_idx && nest_lock) {
5047 			if (!references)
5048 				references++;
5049 
5050 			if (!hlock->references)
5051 				hlock->references++;
5052 
5053 			hlock->references += references;
5054 
5055 			/* Overflow */
5056 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5057 				return 0;
5058 
5059 			return 2;
5060 		}
5061 	}
5062 
5063 	hlock = curr->held_locks + depth;
5064 	/*
5065 	 * Plain impossible, we just registered it and checked it weren't no
5066 	 * NULL like.. I bet this mushroom I ate was good!
5067 	 */
5068 	if (DEBUG_LOCKS_WARN_ON(!class))
5069 		return 0;
5070 	hlock->class_idx = class_idx;
5071 	hlock->acquire_ip = ip;
5072 	hlock->instance = lock;
5073 	hlock->nest_lock = nest_lock;
5074 	hlock->irq_context = task_irq_context(curr);
5075 	hlock->trylock = trylock;
5076 	hlock->read = read;
5077 	hlock->check = check;
5078 	hlock->sync = !!sync;
5079 	hlock->hardirqs_off = !!hardirqs_off;
5080 	hlock->references = references;
5081 #ifdef CONFIG_LOCK_STAT
5082 	hlock->waittime_stamp = 0;
5083 	hlock->holdtime_stamp = lockstat_clock();
5084 #endif
5085 	hlock->pin_count = pin_count;
5086 
5087 	if (check_wait_context(curr, hlock))
5088 		return 0;
5089 
5090 	/* Initialize the lock usage bit */
5091 	if (!mark_usage(curr, hlock, check))
5092 		return 0;
5093 
5094 	/*
5095 	 * Calculate the chain hash: it's the combined hash of all the
5096 	 * lock keys along the dependency chain. We save the hash value
5097 	 * at every step so that we can get the current hash easily
5098 	 * after unlock. The chain hash is then used to cache dependency
5099 	 * results.
5100 	 *
5101 	 * The 'key ID' is what is the most compact key value to drive
5102 	 * the hash, not class->key.
5103 	 */
5104 	/*
5105 	 * Whoops, we did it again.. class_idx is invalid.
5106 	 */
5107 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5108 		return 0;
5109 
5110 	chain_key = curr->curr_chain_key;
5111 	if (!depth) {
5112 		/*
5113 		 * How can we have a chain hash when we ain't got no keys?!
5114 		 */
5115 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5116 			return 0;
5117 		chain_head = 1;
5118 	}
5119 
5120 	hlock->prev_chain_key = chain_key;
5121 	if (separate_irq_context(curr, hlock)) {
5122 		chain_key = INITIAL_CHAIN_KEY;
5123 		chain_head = 1;
5124 	}
5125 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5126 
5127 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5128 		print_lock_nested_lock_not_held(curr, hlock);
5129 		return 0;
5130 	}
5131 
5132 	if (!debug_locks_silent) {
5133 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5134 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5135 	}
5136 
5137 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5138 		return 0;
5139 
5140 	/* For lock_sync(), we are done here since no actual critical section */
5141 	if (hlock->sync)
5142 		return 1;
5143 
5144 	curr->curr_chain_key = chain_key;
5145 	curr->lockdep_depth++;
5146 	check_chain_key(curr);
5147 #ifdef CONFIG_DEBUG_LOCKDEP
5148 	if (unlikely(!debug_locks))
5149 		return 0;
5150 #endif
5151 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5152 		debug_locks_off();
5153 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5154 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5155 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5156 
5157 		lockdep_print_held_locks(current);
5158 		debug_show_all_locks();
5159 		dump_stack();
5160 
5161 		return 0;
5162 	}
5163 
5164 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5165 		max_lockdep_depth = curr->lockdep_depth;
5166 
5167 	return 1;
5168 }
5169 
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5170 static void print_unlock_imbalance_bug(struct task_struct *curr,
5171 				       struct lockdep_map *lock,
5172 				       unsigned long ip)
5173 {
5174 	if (!debug_locks_off())
5175 		return;
5176 	if (debug_locks_silent)
5177 		return;
5178 
5179 	pr_warn("\n");
5180 	pr_warn("=====================================\n");
5181 	pr_warn("WARNING: bad unlock balance detected!\n");
5182 	print_kernel_ident();
5183 	pr_warn("-------------------------------------\n");
5184 	pr_warn("%s/%d is trying to release lock (",
5185 		curr->comm, task_pid_nr(curr));
5186 	print_lockdep_cache(lock);
5187 	pr_cont(") at:\n");
5188 	print_ip_sym(KERN_WARNING, ip);
5189 	pr_warn("but there are no more locks to release!\n");
5190 	pr_warn("\nother info that might help us debug this:\n");
5191 	lockdep_print_held_locks(curr);
5192 
5193 	pr_warn("\nstack backtrace:\n");
5194 	dump_stack();
5195 }
5196 
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5197 static noinstr int match_held_lock(const struct held_lock *hlock,
5198 				   const struct lockdep_map *lock)
5199 {
5200 	if (hlock->instance == lock)
5201 		return 1;
5202 
5203 	if (hlock->references) {
5204 		const struct lock_class *class = lock->class_cache[0];
5205 
5206 		if (!class)
5207 			class = look_up_lock_class(lock, 0);
5208 
5209 		/*
5210 		 * If look_up_lock_class() failed to find a class, we're trying
5211 		 * to test if we hold a lock that has never yet been acquired.
5212 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5213 		 * holding it either, so report failure.
5214 		 */
5215 		if (!class)
5216 			return 0;
5217 
5218 		/*
5219 		 * References, but not a lock we're actually ref-counting?
5220 		 * State got messed up, follow the sites that change ->references
5221 		 * and try to make sense of it.
5222 		 */
5223 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5224 			return 0;
5225 
5226 		if (hlock->class_idx == class - lock_classes)
5227 			return 1;
5228 	}
5229 
5230 	return 0;
5231 }
5232 
5233 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5234 static struct held_lock *find_held_lock(struct task_struct *curr,
5235 					struct lockdep_map *lock,
5236 					unsigned int depth, int *idx)
5237 {
5238 	struct held_lock *ret, *hlock, *prev_hlock;
5239 	int i;
5240 
5241 	i = depth - 1;
5242 	hlock = curr->held_locks + i;
5243 	ret = hlock;
5244 	if (match_held_lock(hlock, lock))
5245 		goto out;
5246 
5247 	ret = NULL;
5248 	for (i--, prev_hlock = hlock--;
5249 	     i >= 0;
5250 	     i--, prev_hlock = hlock--) {
5251 		/*
5252 		 * We must not cross into another context:
5253 		 */
5254 		if (prev_hlock->irq_context != hlock->irq_context) {
5255 			ret = NULL;
5256 			break;
5257 		}
5258 		if (match_held_lock(hlock, lock)) {
5259 			ret = hlock;
5260 			break;
5261 		}
5262 	}
5263 
5264 out:
5265 	*idx = i;
5266 	return ret;
5267 }
5268 
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5269 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5270 				int idx, unsigned int *merged)
5271 {
5272 	struct held_lock *hlock;
5273 	int first_idx = idx;
5274 
5275 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5276 		return 0;
5277 
5278 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5279 		switch (__lock_acquire(hlock->instance,
5280 				    hlock_class(hlock)->subclass,
5281 				    hlock->trylock,
5282 				    hlock->read, hlock->check,
5283 				    hlock->hardirqs_off,
5284 				    hlock->nest_lock, hlock->acquire_ip,
5285 				    hlock->references, hlock->pin_count, 0)) {
5286 		case 0:
5287 			return 1;
5288 		case 1:
5289 			break;
5290 		case 2:
5291 			*merged += (idx == first_idx);
5292 			break;
5293 		default:
5294 			WARN_ON(1);
5295 			return 0;
5296 		}
5297 	}
5298 	return 0;
5299 }
5300 
5301 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5302 __lock_set_class(struct lockdep_map *lock, const char *name,
5303 		 struct lock_class_key *key, unsigned int subclass,
5304 		 unsigned long ip)
5305 {
5306 	struct task_struct *curr = current;
5307 	unsigned int depth, merged = 0;
5308 	struct held_lock *hlock;
5309 	struct lock_class *class;
5310 	int i;
5311 
5312 	if (unlikely(!debug_locks))
5313 		return 0;
5314 
5315 	depth = curr->lockdep_depth;
5316 	/*
5317 	 * This function is about (re)setting the class of a held lock,
5318 	 * yet we're not actually holding any locks. Naughty user!
5319 	 */
5320 	if (DEBUG_LOCKS_WARN_ON(!depth))
5321 		return 0;
5322 
5323 	hlock = find_held_lock(curr, lock, depth, &i);
5324 	if (!hlock) {
5325 		print_unlock_imbalance_bug(curr, lock, ip);
5326 		return 0;
5327 	}
5328 
5329 	lockdep_init_map_type(lock, name, key, 0,
5330 			      lock->wait_type_inner,
5331 			      lock->wait_type_outer,
5332 			      lock->lock_type);
5333 	class = register_lock_class(lock, subclass, 0);
5334 	hlock->class_idx = class - lock_classes;
5335 
5336 	curr->lockdep_depth = i;
5337 	curr->curr_chain_key = hlock->prev_chain_key;
5338 
5339 	if (reacquire_held_locks(curr, depth, i, &merged))
5340 		return 0;
5341 
5342 	/*
5343 	 * I took it apart and put it back together again, except now I have
5344 	 * these 'spare' parts.. where shall I put them.
5345 	 */
5346 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5347 		return 0;
5348 	return 1;
5349 }
5350 
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5351 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5352 {
5353 	struct task_struct *curr = current;
5354 	unsigned int depth, merged = 0;
5355 	struct held_lock *hlock;
5356 	int i;
5357 
5358 	if (unlikely(!debug_locks))
5359 		return 0;
5360 
5361 	depth = curr->lockdep_depth;
5362 	/*
5363 	 * This function is about (re)setting the class of a held lock,
5364 	 * yet we're not actually holding any locks. Naughty user!
5365 	 */
5366 	if (DEBUG_LOCKS_WARN_ON(!depth))
5367 		return 0;
5368 
5369 	hlock = find_held_lock(curr, lock, depth, &i);
5370 	if (!hlock) {
5371 		print_unlock_imbalance_bug(curr, lock, ip);
5372 		return 0;
5373 	}
5374 
5375 	curr->lockdep_depth = i;
5376 	curr->curr_chain_key = hlock->prev_chain_key;
5377 
5378 	WARN(hlock->read, "downgrading a read lock");
5379 	hlock->read = 1;
5380 	hlock->acquire_ip = ip;
5381 
5382 	if (reacquire_held_locks(curr, depth, i, &merged))
5383 		return 0;
5384 
5385 	/* Merging can't happen with unchanged classes.. */
5386 	if (DEBUG_LOCKS_WARN_ON(merged))
5387 		return 0;
5388 
5389 	/*
5390 	 * I took it apart and put it back together again, except now I have
5391 	 * these 'spare' parts.. where shall I put them.
5392 	 */
5393 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5394 		return 0;
5395 
5396 	return 1;
5397 }
5398 
5399 /*
5400  * Remove the lock from the list of currently held locks - this gets
5401  * called on mutex_unlock()/spin_unlock*() (or on a failed
5402  * mutex_lock_interruptible()).
5403  */
5404 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5405 __lock_release(struct lockdep_map *lock, unsigned long ip)
5406 {
5407 	struct task_struct *curr = current;
5408 	unsigned int depth, merged = 1;
5409 	struct held_lock *hlock;
5410 	int i;
5411 
5412 	if (unlikely(!debug_locks))
5413 		return 0;
5414 
5415 	depth = curr->lockdep_depth;
5416 	/*
5417 	 * So we're all set to release this lock.. wait what lock? We don't
5418 	 * own any locks, you've been drinking again?
5419 	 */
5420 	if (depth <= 0) {
5421 		print_unlock_imbalance_bug(curr, lock, ip);
5422 		return 0;
5423 	}
5424 
5425 	/*
5426 	 * Check whether the lock exists in the current stack
5427 	 * of held locks:
5428 	 */
5429 	hlock = find_held_lock(curr, lock, depth, &i);
5430 	if (!hlock) {
5431 		print_unlock_imbalance_bug(curr, lock, ip);
5432 		return 0;
5433 	}
5434 
5435 	if (hlock->instance == lock)
5436 		lock_release_holdtime(hlock);
5437 
5438 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5439 
5440 	if (hlock->references) {
5441 		hlock->references--;
5442 		if (hlock->references) {
5443 			/*
5444 			 * We had, and after removing one, still have
5445 			 * references, the current lock stack is still
5446 			 * valid. We're done!
5447 			 */
5448 			return 1;
5449 		}
5450 	}
5451 
5452 	/*
5453 	 * We have the right lock to unlock, 'hlock' points to it.
5454 	 * Now we remove it from the stack, and add back the other
5455 	 * entries (if any), recalculating the hash along the way:
5456 	 */
5457 
5458 	curr->lockdep_depth = i;
5459 	curr->curr_chain_key = hlock->prev_chain_key;
5460 
5461 	/*
5462 	 * The most likely case is when the unlock is on the innermost
5463 	 * lock. In this case, we are done!
5464 	 */
5465 	if (i == depth-1)
5466 		return 1;
5467 
5468 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5469 		return 0;
5470 
5471 	/*
5472 	 * We had N bottles of beer on the wall, we drank one, but now
5473 	 * there's not N-1 bottles of beer left on the wall...
5474 	 * Pouring two of the bottles together is acceptable.
5475 	 */
5476 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5477 
5478 	/*
5479 	 * Since reacquire_held_locks() would have called check_chain_key()
5480 	 * indirectly via __lock_acquire(), we don't need to do it again
5481 	 * on return.
5482 	 */
5483 	return 0;
5484 }
5485 
5486 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5487 int __lock_is_held(const struct lockdep_map *lock, int read)
5488 {
5489 	struct task_struct *curr = current;
5490 	int i;
5491 
5492 	for (i = 0; i < curr->lockdep_depth; i++) {
5493 		struct held_lock *hlock = curr->held_locks + i;
5494 
5495 		if (match_held_lock(hlock, lock)) {
5496 			if (read == -1 || !!hlock->read == read)
5497 				return LOCK_STATE_HELD;
5498 
5499 			return LOCK_STATE_NOT_HELD;
5500 		}
5501 	}
5502 
5503 	return LOCK_STATE_NOT_HELD;
5504 }
5505 
__lock_pin_lock(struct lockdep_map * lock)5506 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5507 {
5508 	struct pin_cookie cookie = NIL_COOKIE;
5509 	struct task_struct *curr = current;
5510 	int i;
5511 
5512 	if (unlikely(!debug_locks))
5513 		return cookie;
5514 
5515 	for (i = 0; i < curr->lockdep_depth; i++) {
5516 		struct held_lock *hlock = curr->held_locks + i;
5517 
5518 		if (match_held_lock(hlock, lock)) {
5519 			/*
5520 			 * Grab 16bits of randomness; this is sufficient to not
5521 			 * be guessable and still allows some pin nesting in
5522 			 * our u32 pin_count.
5523 			 */
5524 			cookie.val = 1 + (sched_clock() & 0xffff);
5525 			hlock->pin_count += cookie.val;
5526 			return cookie;
5527 		}
5528 	}
5529 
5530 	WARN(1, "pinning an unheld lock\n");
5531 	return cookie;
5532 }
5533 
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5534 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5535 {
5536 	struct task_struct *curr = current;
5537 	int i;
5538 
5539 	if (unlikely(!debug_locks))
5540 		return;
5541 
5542 	for (i = 0; i < curr->lockdep_depth; i++) {
5543 		struct held_lock *hlock = curr->held_locks + i;
5544 
5545 		if (match_held_lock(hlock, lock)) {
5546 			hlock->pin_count += cookie.val;
5547 			return;
5548 		}
5549 	}
5550 
5551 	WARN(1, "pinning an unheld lock\n");
5552 }
5553 
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5554 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5555 {
5556 	struct task_struct *curr = current;
5557 	int i;
5558 
5559 	if (unlikely(!debug_locks))
5560 		return;
5561 
5562 	for (i = 0; i < curr->lockdep_depth; i++) {
5563 		struct held_lock *hlock = curr->held_locks + i;
5564 
5565 		if (match_held_lock(hlock, lock)) {
5566 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5567 				return;
5568 
5569 			hlock->pin_count -= cookie.val;
5570 
5571 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5572 				hlock->pin_count = 0;
5573 
5574 			return;
5575 		}
5576 	}
5577 
5578 	WARN(1, "unpinning an unheld lock\n");
5579 }
5580 
5581 /*
5582  * Check whether we follow the irq-flags state precisely:
5583  */
check_flags(unsigned long flags)5584 static noinstr void check_flags(unsigned long flags)
5585 {
5586 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5587 	if (!debug_locks)
5588 		return;
5589 
5590 	/* Get the warning out..  */
5591 	instrumentation_begin();
5592 
5593 	if (irqs_disabled_flags(flags)) {
5594 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5595 			printk("possible reason: unannotated irqs-off.\n");
5596 		}
5597 	} else {
5598 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5599 			printk("possible reason: unannotated irqs-on.\n");
5600 		}
5601 	}
5602 
5603 #ifndef CONFIG_PREEMPT_RT
5604 	/*
5605 	 * We dont accurately track softirq state in e.g.
5606 	 * hardirq contexts (such as on 4KSTACKS), so only
5607 	 * check if not in hardirq contexts:
5608 	 */
5609 	if (!hardirq_count()) {
5610 		if (softirq_count()) {
5611 			/* like the above, but with softirqs */
5612 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5613 		} else {
5614 			/* lick the above, does it taste good? */
5615 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5616 		}
5617 	}
5618 #endif
5619 
5620 	if (!debug_locks)
5621 		print_irqtrace_events(current);
5622 
5623 	instrumentation_end();
5624 #endif
5625 }
5626 
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5627 void lock_set_class(struct lockdep_map *lock, const char *name,
5628 		    struct lock_class_key *key, unsigned int subclass,
5629 		    unsigned long ip)
5630 {
5631 	unsigned long flags;
5632 
5633 	if (unlikely(!lockdep_enabled()))
5634 		return;
5635 
5636 	raw_local_irq_save(flags);
5637 	lockdep_recursion_inc();
5638 	check_flags(flags);
5639 	if (__lock_set_class(lock, name, key, subclass, ip))
5640 		check_chain_key(current);
5641 	lockdep_recursion_finish();
5642 	raw_local_irq_restore(flags);
5643 }
5644 EXPORT_SYMBOL_GPL(lock_set_class);
5645 
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5646 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5647 {
5648 	unsigned long flags;
5649 
5650 	if (unlikely(!lockdep_enabled()))
5651 		return;
5652 
5653 	raw_local_irq_save(flags);
5654 	lockdep_recursion_inc();
5655 	check_flags(flags);
5656 	if (__lock_downgrade(lock, ip))
5657 		check_chain_key(current);
5658 	lockdep_recursion_finish();
5659 	raw_local_irq_restore(flags);
5660 }
5661 EXPORT_SYMBOL_GPL(lock_downgrade);
5662 
5663 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5664 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5665 {
5666 #ifdef CONFIG_PROVE_LOCKING
5667 	struct lock_class *class = look_up_lock_class(lock, subclass);
5668 	unsigned long mask = LOCKF_USED;
5669 
5670 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5671 	if (!class)
5672 		return;
5673 
5674 	/*
5675 	 * READ locks only conflict with USED, such that if we only ever use
5676 	 * READ locks, there is no deadlock possible -- RCU.
5677 	 */
5678 	if (!hlock->read)
5679 		mask |= LOCKF_USED_READ;
5680 
5681 	if (!(class->usage_mask & mask))
5682 		return;
5683 
5684 	hlock->class_idx = class - lock_classes;
5685 
5686 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5687 #endif
5688 }
5689 
lockdep_nmi(void)5690 static bool lockdep_nmi(void)
5691 {
5692 	if (raw_cpu_read(lockdep_recursion))
5693 		return false;
5694 
5695 	if (!in_nmi())
5696 		return false;
5697 
5698 	return true;
5699 }
5700 
5701 /*
5702  * read_lock() is recursive if:
5703  * 1. We force lockdep think this way in selftests or
5704  * 2. The implementation is not queued read/write lock or
5705  * 3. The locker is at an in_interrupt() context.
5706  */
read_lock_is_recursive(void)5707 bool read_lock_is_recursive(void)
5708 {
5709 	return force_read_lock_recursive ||
5710 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5711 	       in_interrupt();
5712 }
5713 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5714 
5715 /*
5716  * We are not always called with irqs disabled - do that here,
5717  * and also avoid lockdep recursion:
5718  */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5719 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5720 			  int trylock, int read, int check,
5721 			  struct lockdep_map *nest_lock, unsigned long ip)
5722 {
5723 	unsigned long flags;
5724 
5725 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5726 
5727 	if (!debug_locks)
5728 		return;
5729 
5730 	if (unlikely(!lockdep_enabled())) {
5731 		/* XXX allow trylock from NMI ?!? */
5732 		if (lockdep_nmi() && !trylock) {
5733 			struct held_lock hlock;
5734 
5735 			hlock.acquire_ip = ip;
5736 			hlock.instance = lock;
5737 			hlock.nest_lock = nest_lock;
5738 			hlock.irq_context = 2; // XXX
5739 			hlock.trylock = trylock;
5740 			hlock.read = read;
5741 			hlock.check = check;
5742 			hlock.hardirqs_off = true;
5743 			hlock.references = 0;
5744 
5745 			verify_lock_unused(lock, &hlock, subclass);
5746 		}
5747 		return;
5748 	}
5749 
5750 	raw_local_irq_save(flags);
5751 	check_flags(flags);
5752 
5753 	lockdep_recursion_inc();
5754 	__lock_acquire(lock, subclass, trylock, read, check,
5755 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5756 	lockdep_recursion_finish();
5757 	raw_local_irq_restore(flags);
5758 }
5759 EXPORT_SYMBOL_GPL(lock_acquire);
5760 
lock_release(struct lockdep_map * lock,unsigned long ip)5761 void lock_release(struct lockdep_map *lock, unsigned long ip)
5762 {
5763 	unsigned long flags;
5764 
5765 	trace_lock_release(lock, ip);
5766 
5767 	if (unlikely(!lockdep_enabled()))
5768 		return;
5769 
5770 	raw_local_irq_save(flags);
5771 	check_flags(flags);
5772 
5773 	lockdep_recursion_inc();
5774 	if (__lock_release(lock, ip))
5775 		check_chain_key(current);
5776 	lockdep_recursion_finish();
5777 	raw_local_irq_restore(flags);
5778 }
5779 EXPORT_SYMBOL_GPL(lock_release);
5780 
5781 /*
5782  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5783  *
5784  * No actual critical section is created by the APIs annotated with this: these
5785  * APIs are used to wait for one or multiple critical sections (on other CPUs
5786  * or threads), and it means that calling these APIs inside these critical
5787  * sections is potential deadlock.
5788  */
lock_sync(struct lockdep_map * lock,unsigned subclass,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5789 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5790 	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5791 {
5792 	unsigned long flags;
5793 
5794 	if (unlikely(!lockdep_enabled()))
5795 		return;
5796 
5797 	raw_local_irq_save(flags);
5798 	check_flags(flags);
5799 
5800 	lockdep_recursion_inc();
5801 	__lock_acquire(lock, subclass, 0, read, check,
5802 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5803 	check_chain_key(current);
5804 	lockdep_recursion_finish();
5805 	raw_local_irq_restore(flags);
5806 }
5807 EXPORT_SYMBOL_GPL(lock_sync);
5808 
lock_is_held_type(const struct lockdep_map * lock,int read)5809 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5810 {
5811 	unsigned long flags;
5812 	int ret = LOCK_STATE_NOT_HELD;
5813 
5814 	/*
5815 	 * Avoid false negative lockdep_assert_held() and
5816 	 * lockdep_assert_not_held().
5817 	 */
5818 	if (unlikely(!lockdep_enabled()))
5819 		return LOCK_STATE_UNKNOWN;
5820 
5821 	raw_local_irq_save(flags);
5822 	check_flags(flags);
5823 
5824 	lockdep_recursion_inc();
5825 	ret = __lock_is_held(lock, read);
5826 	lockdep_recursion_finish();
5827 	raw_local_irq_restore(flags);
5828 
5829 	return ret;
5830 }
5831 EXPORT_SYMBOL_GPL(lock_is_held_type);
5832 NOKPROBE_SYMBOL(lock_is_held_type);
5833 
lock_pin_lock(struct lockdep_map * lock)5834 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5835 {
5836 	struct pin_cookie cookie = NIL_COOKIE;
5837 	unsigned long flags;
5838 
5839 	if (unlikely(!lockdep_enabled()))
5840 		return cookie;
5841 
5842 	raw_local_irq_save(flags);
5843 	check_flags(flags);
5844 
5845 	lockdep_recursion_inc();
5846 	cookie = __lock_pin_lock(lock);
5847 	lockdep_recursion_finish();
5848 	raw_local_irq_restore(flags);
5849 
5850 	return cookie;
5851 }
5852 EXPORT_SYMBOL_GPL(lock_pin_lock);
5853 
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5854 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5855 {
5856 	unsigned long flags;
5857 
5858 	if (unlikely(!lockdep_enabled()))
5859 		return;
5860 
5861 	raw_local_irq_save(flags);
5862 	check_flags(flags);
5863 
5864 	lockdep_recursion_inc();
5865 	__lock_repin_lock(lock, cookie);
5866 	lockdep_recursion_finish();
5867 	raw_local_irq_restore(flags);
5868 }
5869 EXPORT_SYMBOL_GPL(lock_repin_lock);
5870 
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5871 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5872 {
5873 	unsigned long flags;
5874 
5875 	if (unlikely(!lockdep_enabled()))
5876 		return;
5877 
5878 	raw_local_irq_save(flags);
5879 	check_flags(flags);
5880 
5881 	lockdep_recursion_inc();
5882 	__lock_unpin_lock(lock, cookie);
5883 	lockdep_recursion_finish();
5884 	raw_local_irq_restore(flags);
5885 }
5886 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5887 
5888 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5889 static void print_lock_contention_bug(struct task_struct *curr,
5890 				      struct lockdep_map *lock,
5891 				      unsigned long ip)
5892 {
5893 	if (!debug_locks_off())
5894 		return;
5895 	if (debug_locks_silent)
5896 		return;
5897 
5898 	pr_warn("\n");
5899 	pr_warn("=================================\n");
5900 	pr_warn("WARNING: bad contention detected!\n");
5901 	print_kernel_ident();
5902 	pr_warn("---------------------------------\n");
5903 	pr_warn("%s/%d is trying to contend lock (",
5904 		curr->comm, task_pid_nr(curr));
5905 	print_lockdep_cache(lock);
5906 	pr_cont(") at:\n");
5907 	print_ip_sym(KERN_WARNING, ip);
5908 	pr_warn("but there are no locks held!\n");
5909 	pr_warn("\nother info that might help us debug this:\n");
5910 	lockdep_print_held_locks(curr);
5911 
5912 	pr_warn("\nstack backtrace:\n");
5913 	dump_stack();
5914 }
5915 
5916 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5917 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5918 {
5919 	struct task_struct *curr = current;
5920 	struct held_lock *hlock;
5921 	struct lock_class_stats *stats;
5922 	unsigned int depth;
5923 	int i, contention_point, contending_point;
5924 
5925 	depth = curr->lockdep_depth;
5926 	/*
5927 	 * Whee, we contended on this lock, except it seems we're not
5928 	 * actually trying to acquire anything much at all..
5929 	 */
5930 	if (DEBUG_LOCKS_WARN_ON(!depth))
5931 		return;
5932 
5933 	hlock = find_held_lock(curr, lock, depth, &i);
5934 	if (!hlock) {
5935 		print_lock_contention_bug(curr, lock, ip);
5936 		return;
5937 	}
5938 
5939 	if (hlock->instance != lock)
5940 		return;
5941 
5942 	hlock->waittime_stamp = lockstat_clock();
5943 
5944 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5945 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5946 				      lock->ip);
5947 
5948 	stats = get_lock_stats(hlock_class(hlock));
5949 	if (contention_point < LOCKSTAT_POINTS)
5950 		stats->contention_point[contention_point]++;
5951 	if (contending_point < LOCKSTAT_POINTS)
5952 		stats->contending_point[contending_point]++;
5953 	if (lock->cpu != smp_processor_id())
5954 		stats->bounces[bounce_contended + !!hlock->read]++;
5955 }
5956 
5957 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)5958 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5959 {
5960 	struct task_struct *curr = current;
5961 	struct held_lock *hlock;
5962 	struct lock_class_stats *stats;
5963 	unsigned int depth;
5964 	u64 now, waittime = 0;
5965 	int i, cpu;
5966 
5967 	depth = curr->lockdep_depth;
5968 	/*
5969 	 * Yay, we acquired ownership of this lock we didn't try to
5970 	 * acquire, how the heck did that happen?
5971 	 */
5972 	if (DEBUG_LOCKS_WARN_ON(!depth))
5973 		return;
5974 
5975 	hlock = find_held_lock(curr, lock, depth, &i);
5976 	if (!hlock) {
5977 		print_lock_contention_bug(curr, lock, _RET_IP_);
5978 		return;
5979 	}
5980 
5981 	if (hlock->instance != lock)
5982 		return;
5983 
5984 	cpu = smp_processor_id();
5985 	if (hlock->waittime_stamp) {
5986 		now = lockstat_clock();
5987 		waittime = now - hlock->waittime_stamp;
5988 		hlock->holdtime_stamp = now;
5989 	}
5990 
5991 	stats = get_lock_stats(hlock_class(hlock));
5992 	if (waittime) {
5993 		if (hlock->read)
5994 			lock_time_inc(&stats->read_waittime, waittime);
5995 		else
5996 			lock_time_inc(&stats->write_waittime, waittime);
5997 	}
5998 	if (lock->cpu != cpu)
5999 		stats->bounces[bounce_acquired + !!hlock->read]++;
6000 
6001 	lock->cpu = cpu;
6002 	lock->ip = ip;
6003 }
6004 
lock_contended(struct lockdep_map * lock,unsigned long ip)6005 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6006 {
6007 	unsigned long flags;
6008 
6009 	trace_lock_contended(lock, ip);
6010 
6011 	if (unlikely(!lock_stat || !lockdep_enabled()))
6012 		return;
6013 
6014 	raw_local_irq_save(flags);
6015 	check_flags(flags);
6016 	lockdep_recursion_inc();
6017 	__lock_contended(lock, ip);
6018 	lockdep_recursion_finish();
6019 	raw_local_irq_restore(flags);
6020 }
6021 EXPORT_SYMBOL_GPL(lock_contended);
6022 
lock_acquired(struct lockdep_map * lock,unsigned long ip)6023 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6024 {
6025 	unsigned long flags;
6026 
6027 	trace_lock_acquired(lock, ip);
6028 
6029 	if (unlikely(!lock_stat || !lockdep_enabled()))
6030 		return;
6031 
6032 	raw_local_irq_save(flags);
6033 	check_flags(flags);
6034 	lockdep_recursion_inc();
6035 	__lock_acquired(lock, ip);
6036 	lockdep_recursion_finish();
6037 	raw_local_irq_restore(flags);
6038 }
6039 EXPORT_SYMBOL_GPL(lock_acquired);
6040 #endif
6041 
6042 /*
6043  * Used by the testsuite, sanitize the validator state
6044  * after a simulated failure:
6045  */
6046 
lockdep_reset(void)6047 void lockdep_reset(void)
6048 {
6049 	unsigned long flags;
6050 	int i;
6051 
6052 	raw_local_irq_save(flags);
6053 	lockdep_init_task(current);
6054 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6055 	nr_hardirq_chains = 0;
6056 	nr_softirq_chains = 0;
6057 	nr_process_chains = 0;
6058 	debug_locks = 1;
6059 	for (i = 0; i < CHAINHASH_SIZE; i++)
6060 		INIT_HLIST_HEAD(chainhash_table + i);
6061 	raw_local_irq_restore(flags);
6062 }
6063 
6064 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)6065 static void remove_class_from_lock_chain(struct pending_free *pf,
6066 					 struct lock_chain *chain,
6067 					 struct lock_class *class)
6068 {
6069 #ifdef CONFIG_PROVE_LOCKING
6070 	int i;
6071 
6072 	for (i = chain->base; i < chain->base + chain->depth; i++) {
6073 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6074 			continue;
6075 		/*
6076 		 * Each lock class occurs at most once in a lock chain so once
6077 		 * we found a match we can break out of this loop.
6078 		 */
6079 		goto free_lock_chain;
6080 	}
6081 	/* Since the chain has not been modified, return. */
6082 	return;
6083 
6084 free_lock_chain:
6085 	free_chain_hlocks(chain->base, chain->depth);
6086 	/* Overwrite the chain key for concurrent RCU readers. */
6087 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6088 	dec_chains(chain->irq_context);
6089 
6090 	/*
6091 	 * Note: calling hlist_del_rcu() from inside a
6092 	 * hlist_for_each_entry_rcu() loop is safe.
6093 	 */
6094 	hlist_del_rcu(&chain->entry);
6095 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6096 	nr_zapped_lock_chains++;
6097 #endif
6098 }
6099 
6100 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)6101 static void remove_class_from_lock_chains(struct pending_free *pf,
6102 					  struct lock_class *class)
6103 {
6104 	struct lock_chain *chain;
6105 	struct hlist_head *head;
6106 	int i;
6107 
6108 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6109 		head = chainhash_table + i;
6110 		hlist_for_each_entry_rcu(chain, head, entry) {
6111 			remove_class_from_lock_chain(pf, chain, class);
6112 		}
6113 	}
6114 }
6115 
6116 /*
6117  * Remove all references to a lock class. The caller must hold the graph lock.
6118  */
zap_class(struct pending_free * pf,struct lock_class * class)6119 static void zap_class(struct pending_free *pf, struct lock_class *class)
6120 {
6121 	struct lock_list *entry;
6122 	int i;
6123 
6124 	WARN_ON_ONCE(!class->key);
6125 
6126 	/*
6127 	 * Remove all dependencies this lock is
6128 	 * involved in:
6129 	 */
6130 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6131 		entry = list_entries + i;
6132 		if (entry->class != class && entry->links_to != class)
6133 			continue;
6134 		__clear_bit(i, list_entries_in_use);
6135 		nr_list_entries--;
6136 		list_del_rcu(&entry->entry);
6137 	}
6138 	if (list_empty(&class->locks_after) &&
6139 	    list_empty(&class->locks_before)) {
6140 		list_move_tail(&class->lock_entry, &pf->zapped);
6141 		hlist_del_rcu(&class->hash_entry);
6142 		WRITE_ONCE(class->key, NULL);
6143 		WRITE_ONCE(class->name, NULL);
6144 		nr_lock_classes--;
6145 		__clear_bit(class - lock_classes, lock_classes_in_use);
6146 		if (class - lock_classes == max_lock_class_idx)
6147 			max_lock_class_idx--;
6148 	} else {
6149 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6150 			  class->name);
6151 	}
6152 
6153 	remove_class_from_lock_chains(pf, class);
6154 	nr_zapped_classes++;
6155 }
6156 
reinit_class(struct lock_class * class)6157 static void reinit_class(struct lock_class *class)
6158 {
6159 	WARN_ON_ONCE(!class->lock_entry.next);
6160 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6161 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6162 	memset_startat(class, 0, key);
6163 	WARN_ON_ONCE(!class->lock_entry.next);
6164 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6165 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6166 }
6167 
within(const void * addr,void * start,unsigned long size)6168 static inline int within(const void *addr, void *start, unsigned long size)
6169 {
6170 	return addr >= start && addr < start + size;
6171 }
6172 
inside_selftest(void)6173 static bool inside_selftest(void)
6174 {
6175 	return current == lockdep_selftest_task_struct;
6176 }
6177 
6178 /* The caller must hold the graph lock. */
get_pending_free(void)6179 static struct pending_free *get_pending_free(void)
6180 {
6181 	return delayed_free.pf + delayed_free.index;
6182 }
6183 
6184 static void free_zapped_rcu(struct rcu_head *cb);
6185 
6186 /*
6187 * See if we need to queue an RCU callback, must called with
6188 * the lockdep lock held, returns false if either we don't have
6189 * any pending free or the callback is already scheduled.
6190 * Otherwise, a call_rcu() must follow this function call.
6191 */
prepare_call_rcu_zapped(struct pending_free * pf)6192 static bool prepare_call_rcu_zapped(struct pending_free *pf)
6193 {
6194 	WARN_ON_ONCE(inside_selftest());
6195 
6196 	if (list_empty(&pf->zapped))
6197 		return false;
6198 
6199 	if (delayed_free.scheduled)
6200 		return false;
6201 
6202 	delayed_free.scheduled = true;
6203 
6204 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6205 	delayed_free.index ^= 1;
6206 
6207 	return true;
6208 }
6209 
6210 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)6211 static void __free_zapped_classes(struct pending_free *pf)
6212 {
6213 	struct lock_class *class;
6214 
6215 	check_data_structures();
6216 
6217 	list_for_each_entry(class, &pf->zapped, lock_entry)
6218 		reinit_class(class);
6219 
6220 	list_splice_init(&pf->zapped, &free_lock_classes);
6221 
6222 #ifdef CONFIG_PROVE_LOCKING
6223 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6224 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6225 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6226 #endif
6227 }
6228 
free_zapped_rcu(struct rcu_head * ch)6229 static void free_zapped_rcu(struct rcu_head *ch)
6230 {
6231 	struct pending_free *pf;
6232 	unsigned long flags;
6233 	bool need_callback;
6234 
6235 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6236 		return;
6237 
6238 	raw_local_irq_save(flags);
6239 	lockdep_lock();
6240 
6241 	/* closed head */
6242 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6243 	__free_zapped_classes(pf);
6244 	delayed_free.scheduled = false;
6245 	need_callback =
6246 		prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index);
6247 	lockdep_unlock();
6248 	raw_local_irq_restore(flags);
6249 
6250 	/*
6251 	* If there's pending free and its callback has not been scheduled,
6252 	* queue an RCU callback.
6253 	*/
6254 	if (need_callback)
6255 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6256 
6257 }
6258 
6259 /*
6260  * Remove all lock classes from the class hash table and from the
6261  * all_lock_classes list whose key or name is in the address range [start,
6262  * start + size). Move these lock classes to the zapped_classes list. Must
6263  * be called with the graph lock held.
6264  */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6265 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6266 				     unsigned long size)
6267 {
6268 	struct lock_class *class;
6269 	struct hlist_head *head;
6270 	int i;
6271 
6272 	/* Unhash all classes that were created by a module. */
6273 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6274 		head = classhash_table + i;
6275 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6276 			if (!within(class->key, start, size) &&
6277 			    !within(class->name, start, size))
6278 				continue;
6279 			zap_class(pf, class);
6280 		}
6281 	}
6282 }
6283 
6284 /*
6285  * Used in module.c to remove lock classes from memory that is going to be
6286  * freed; and possibly re-used by other modules.
6287  *
6288  * We will have had one synchronize_rcu() before getting here, so we're
6289  * guaranteed nobody will look up these exact classes -- they're properly dead
6290  * but still allocated.
6291  */
lockdep_free_key_range_reg(void * start,unsigned long size)6292 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6293 {
6294 	struct pending_free *pf;
6295 	unsigned long flags;
6296 	bool need_callback;
6297 
6298 	init_data_structures_once();
6299 
6300 	raw_local_irq_save(flags);
6301 	lockdep_lock();
6302 	pf = get_pending_free();
6303 	__lockdep_free_key_range(pf, start, size);
6304 	need_callback = prepare_call_rcu_zapped(pf);
6305 	lockdep_unlock();
6306 	raw_local_irq_restore(flags);
6307 	if (need_callback)
6308 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6309 	/*
6310 	 * Wait for any possible iterators from look_up_lock_class() to pass
6311 	 * before continuing to free the memory they refer to.
6312 	 */
6313 	synchronize_rcu();
6314 }
6315 
6316 /*
6317  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6318  * Ignores debug_locks. Must only be used by the lockdep selftests.
6319  */
lockdep_free_key_range_imm(void * start,unsigned long size)6320 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6321 {
6322 	struct pending_free *pf = delayed_free.pf;
6323 	unsigned long flags;
6324 
6325 	init_data_structures_once();
6326 
6327 	raw_local_irq_save(flags);
6328 	lockdep_lock();
6329 	__lockdep_free_key_range(pf, start, size);
6330 	__free_zapped_classes(pf);
6331 	lockdep_unlock();
6332 	raw_local_irq_restore(flags);
6333 }
6334 
lockdep_free_key_range(void * start,unsigned long size)6335 void lockdep_free_key_range(void *start, unsigned long size)
6336 {
6337 	init_data_structures_once();
6338 
6339 	if (inside_selftest())
6340 		lockdep_free_key_range_imm(start, size);
6341 	else
6342 		lockdep_free_key_range_reg(start, size);
6343 }
6344 
6345 /*
6346  * Check whether any element of the @lock->class_cache[] array refers to a
6347  * registered lock class. The caller must hold either the graph lock or the
6348  * RCU read lock.
6349  */
lock_class_cache_is_registered(struct lockdep_map * lock)6350 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6351 {
6352 	struct lock_class *class;
6353 	struct hlist_head *head;
6354 	int i, j;
6355 
6356 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6357 		head = classhash_table + i;
6358 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6359 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6360 				if (lock->class_cache[j] == class)
6361 					return true;
6362 		}
6363 	}
6364 	return false;
6365 }
6366 
6367 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6368 static void __lockdep_reset_lock(struct pending_free *pf,
6369 				 struct lockdep_map *lock)
6370 {
6371 	struct lock_class *class;
6372 	int j;
6373 
6374 	/*
6375 	 * Remove all classes this lock might have:
6376 	 */
6377 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6378 		/*
6379 		 * If the class exists we look it up and zap it:
6380 		 */
6381 		class = look_up_lock_class(lock, j);
6382 		if (class)
6383 			zap_class(pf, class);
6384 	}
6385 	/*
6386 	 * Debug check: in the end all mapped classes should
6387 	 * be gone.
6388 	 */
6389 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6390 		debug_locks_off();
6391 }
6392 
6393 /*
6394  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6395  * released data structures from RCU context.
6396  */
lockdep_reset_lock_reg(struct lockdep_map * lock)6397 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6398 {
6399 	struct pending_free *pf;
6400 	unsigned long flags;
6401 	int locked;
6402 	bool need_callback = false;
6403 
6404 	raw_local_irq_save(flags);
6405 	locked = graph_lock();
6406 	if (!locked)
6407 		goto out_irq;
6408 
6409 	pf = get_pending_free();
6410 	__lockdep_reset_lock(pf, lock);
6411 	need_callback = prepare_call_rcu_zapped(pf);
6412 
6413 	graph_unlock();
6414 out_irq:
6415 	raw_local_irq_restore(flags);
6416 	if (need_callback)
6417 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6418 }
6419 
6420 /*
6421  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6422  * lockdep selftests.
6423  */
lockdep_reset_lock_imm(struct lockdep_map * lock)6424 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6425 {
6426 	struct pending_free *pf = delayed_free.pf;
6427 	unsigned long flags;
6428 
6429 	raw_local_irq_save(flags);
6430 	lockdep_lock();
6431 	__lockdep_reset_lock(pf, lock);
6432 	__free_zapped_classes(pf);
6433 	lockdep_unlock();
6434 	raw_local_irq_restore(flags);
6435 }
6436 
lockdep_reset_lock(struct lockdep_map * lock)6437 void lockdep_reset_lock(struct lockdep_map *lock)
6438 {
6439 	init_data_structures_once();
6440 
6441 	if (inside_selftest())
6442 		lockdep_reset_lock_imm(lock);
6443 	else
6444 		lockdep_reset_lock_reg(lock);
6445 }
6446 
6447 /*
6448  * Unregister a dynamically allocated key.
6449  *
6450  * Unlike lockdep_register_key(), a search is always done to find a matching
6451  * key irrespective of debug_locks to avoid potential invalid access to freed
6452  * memory in lock_class entry.
6453  */
lockdep_unregister_key(struct lock_class_key * key)6454 void lockdep_unregister_key(struct lock_class_key *key)
6455 {
6456 	struct hlist_head *hash_head = keyhashentry(key);
6457 	struct lock_class_key *k;
6458 	struct pending_free *pf;
6459 	unsigned long flags;
6460 	bool found = false;
6461 	bool need_callback = false;
6462 
6463 	might_sleep();
6464 
6465 	if (WARN_ON_ONCE(static_obj(key)))
6466 		return;
6467 
6468 	raw_local_irq_save(flags);
6469 	lockdep_lock();
6470 
6471 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6472 		if (k == key) {
6473 			hlist_del_rcu(&k->hash_entry);
6474 			found = true;
6475 			break;
6476 		}
6477 	}
6478 	WARN_ON_ONCE(!found && debug_locks);
6479 	if (found) {
6480 		pf = get_pending_free();
6481 		__lockdep_free_key_range(pf, key, 1);
6482 		need_callback = prepare_call_rcu_zapped(pf);
6483 	}
6484 	lockdep_unlock();
6485 	raw_local_irq_restore(flags);
6486 
6487 	if (need_callback)
6488 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6489 
6490 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6491 	synchronize_rcu();
6492 }
6493 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6494 
lockdep_init(void)6495 void __init lockdep_init(void)
6496 {
6497 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6498 
6499 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6500 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6501 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6502 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6503 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6504 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6505 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6506 
6507 	printk(" memory used by lock dependency info: %zu kB\n",
6508 	       (sizeof(lock_classes) +
6509 		sizeof(lock_classes_in_use) +
6510 		sizeof(classhash_table) +
6511 		sizeof(list_entries) +
6512 		sizeof(list_entries_in_use) +
6513 		sizeof(chainhash_table) +
6514 		sizeof(delayed_free)
6515 #ifdef CONFIG_PROVE_LOCKING
6516 		+ sizeof(lock_cq)
6517 		+ sizeof(lock_chains)
6518 		+ sizeof(lock_chains_in_use)
6519 		+ sizeof(chain_hlocks)
6520 #endif
6521 		) / 1024
6522 		);
6523 
6524 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6525 	printk(" memory used for stack traces: %zu kB\n",
6526 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6527 	       );
6528 #endif
6529 
6530 	printk(" per task-struct memory footprint: %zu bytes\n",
6531 	       sizeof(((struct task_struct *)NULL)->held_locks));
6532 }
6533 
6534 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6535 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6536 		     const void *mem_to, struct held_lock *hlock)
6537 {
6538 	if (!debug_locks_off())
6539 		return;
6540 	if (debug_locks_silent)
6541 		return;
6542 
6543 	pr_warn("\n");
6544 	pr_warn("=========================\n");
6545 	pr_warn("WARNING: held lock freed!\n");
6546 	print_kernel_ident();
6547 	pr_warn("-------------------------\n");
6548 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6549 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6550 	print_lock(hlock);
6551 	lockdep_print_held_locks(curr);
6552 
6553 	pr_warn("\nstack backtrace:\n");
6554 	dump_stack();
6555 }
6556 
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6557 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6558 				const void* lock_from, unsigned long lock_len)
6559 {
6560 	return lock_from + lock_len <= mem_from ||
6561 		mem_from + mem_len <= lock_from;
6562 }
6563 
6564 /*
6565  * Called when kernel memory is freed (or unmapped), or if a lock
6566  * is destroyed or reinitialized - this code checks whether there is
6567  * any held lock in the memory range of <from> to <to>:
6568  */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6569 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6570 {
6571 	struct task_struct *curr = current;
6572 	struct held_lock *hlock;
6573 	unsigned long flags;
6574 	int i;
6575 
6576 	if (unlikely(!debug_locks))
6577 		return;
6578 
6579 	raw_local_irq_save(flags);
6580 	for (i = 0; i < curr->lockdep_depth; i++) {
6581 		hlock = curr->held_locks + i;
6582 
6583 		if (not_in_range(mem_from, mem_len, hlock->instance,
6584 					sizeof(*hlock->instance)))
6585 			continue;
6586 
6587 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6588 		break;
6589 	}
6590 	raw_local_irq_restore(flags);
6591 }
6592 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6593 
print_held_locks_bug(void)6594 static void print_held_locks_bug(void)
6595 {
6596 	if (!debug_locks_off())
6597 		return;
6598 	if (debug_locks_silent)
6599 		return;
6600 
6601 	pr_warn("\n");
6602 	pr_warn("====================================\n");
6603 	pr_warn("WARNING: %s/%d still has locks held!\n",
6604 	       current->comm, task_pid_nr(current));
6605 	print_kernel_ident();
6606 	pr_warn("------------------------------------\n");
6607 	lockdep_print_held_locks(current);
6608 	pr_warn("\nstack backtrace:\n");
6609 	dump_stack();
6610 }
6611 
debug_check_no_locks_held(void)6612 void debug_check_no_locks_held(void)
6613 {
6614 	if (unlikely(current->lockdep_depth > 0))
6615 		print_held_locks_bug();
6616 }
6617 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6618 
6619 #ifdef __KERNEL__
debug_show_all_locks(void)6620 void debug_show_all_locks(void)
6621 {
6622 	struct task_struct *g, *p;
6623 
6624 	if (unlikely(!debug_locks)) {
6625 		pr_warn("INFO: lockdep is turned off.\n");
6626 		return;
6627 	}
6628 	pr_warn("\nShowing all locks held in the system:\n");
6629 
6630 	rcu_read_lock();
6631 	for_each_process_thread(g, p) {
6632 		if (!p->lockdep_depth)
6633 			continue;
6634 		lockdep_print_held_locks(p);
6635 		touch_nmi_watchdog();
6636 		touch_all_softlockup_watchdogs();
6637 	}
6638 	rcu_read_unlock();
6639 
6640 	pr_warn("\n");
6641 	pr_warn("=============================================\n\n");
6642 }
6643 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6644 #endif
6645 
6646 /*
6647  * Careful: only use this function if you are sure that
6648  * the task cannot run in parallel!
6649  */
debug_show_held_locks(struct task_struct * task)6650 void debug_show_held_locks(struct task_struct *task)
6651 {
6652 	if (unlikely(!debug_locks)) {
6653 		printk("INFO: lockdep is turned off.\n");
6654 		return;
6655 	}
6656 	lockdep_print_held_locks(task);
6657 }
6658 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6659 
lockdep_sys_exit(void)6660 asmlinkage __visible void lockdep_sys_exit(void)
6661 {
6662 	struct task_struct *curr = current;
6663 
6664 	if (unlikely(curr->lockdep_depth)) {
6665 		if (!debug_locks_off())
6666 			return;
6667 		pr_warn("\n");
6668 		pr_warn("================================================\n");
6669 		pr_warn("WARNING: lock held when returning to user space!\n");
6670 		print_kernel_ident();
6671 		pr_warn("------------------------------------------------\n");
6672 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6673 				curr->comm, curr->pid);
6674 		lockdep_print_held_locks(curr);
6675 	}
6676 
6677 	/*
6678 	 * The lock history for each syscall should be independent. So wipe the
6679 	 * slate clean on return to userspace.
6680 	 */
6681 	lockdep_invariant_state(false);
6682 }
6683 
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6684 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6685 {
6686 	struct task_struct *curr = current;
6687 	int dl = READ_ONCE(debug_locks);
6688 	bool rcu = warn_rcu_enter();
6689 
6690 	/* Note: the following can be executed concurrently, so be careful. */
6691 	pr_warn("\n");
6692 	pr_warn("=============================\n");
6693 	pr_warn("WARNING: suspicious RCU usage\n");
6694 	print_kernel_ident();
6695 	pr_warn("-----------------------------\n");
6696 	pr_warn("%s:%d %s!\n", file, line, s);
6697 	pr_warn("\nother info that might help us debug this:\n\n");
6698 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6699 	       !rcu_lockdep_current_cpu_online()
6700 			? "RCU used illegally from offline CPU!\n"
6701 			: "",
6702 	       rcu_scheduler_active, dl,
6703 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6704 
6705 	/*
6706 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6707 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6708 	 * considers that CPU to be in an "extended quiescent state",
6709 	 * which means that RCU will be completely ignoring that CPU.
6710 	 * Therefore, rcu_read_lock() and friends have absolutely no
6711 	 * effect on a CPU running in that state. In other words, even if
6712 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6713 	 * delete data structures out from under it.  RCU really has no
6714 	 * choice here: we need to keep an RCU-free window in idle where
6715 	 * the CPU may possibly enter into low power mode. This way we can
6716 	 * notice an extended quiescent state to other CPUs that started a grace
6717 	 * period. Otherwise we would delay any grace period as long as we run
6718 	 * in the idle task.
6719 	 *
6720 	 * So complain bitterly if someone does call rcu_read_lock(),
6721 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6722 	 */
6723 	if (!rcu_is_watching())
6724 		pr_warn("RCU used illegally from extended quiescent state!\n");
6725 
6726 	lockdep_print_held_locks(curr);
6727 	pr_warn("\nstack backtrace:\n");
6728 	dump_stack();
6729 	warn_rcu_exit(rcu);
6730 }
6731 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6732