xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision 55e43d6abd078ed6d219902ce8cb4d68e3c993ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19 
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31 
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38 
39 struct cpuid_xstate_sizes {
40 	u32 eax;
41 	u32 ebx;
42 	u32 ecx;
43 };
44 
45 static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
46 
kvm_init_xstate_sizes(void)47 void __init kvm_init_xstate_sizes(void)
48 {
49 	u32 ign;
50 	int i;
51 
52 	for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
53 		struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
54 
55 		cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
56 	}
57 }
58 
xstate_required_size(u64 xstate_bv,bool compacted)59 u32 xstate_required_size(u64 xstate_bv, bool compacted)
60 {
61 	int feature_bit = 0;
62 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
63 
64 	xstate_bv &= XFEATURE_MASK_EXTEND;
65 	while (xstate_bv) {
66 		if (xstate_bv & 0x1) {
67 			struct cpuid_xstate_sizes *xs = &xstate_sizes[feature_bit];
68 			u32 offset;
69 
70 			/* ECX[1]: 64B alignment in compacted form */
71 			if (compacted)
72 				offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
73 			else
74 				offset = xs->ebx;
75 			ret = max(ret, offset + xs->eax);
76 		}
77 
78 		xstate_bv >>= 1;
79 		feature_bit++;
80 	}
81 
82 	return ret;
83 }
84 
85 #define F feature_bit
86 
87 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
88 #define SF(name)						\
89 ({								\
90 	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
91 	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
92 })
93 
94 /*
95  * Magic value used by KVM when querying userspace-provided CPUID entries and
96  * doesn't care about the CPIUD index because the index of the function in
97  * question is not significant.  Note, this magic value must have at least one
98  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
99  * to avoid false positives when processing guest CPUID input.
100  */
101 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
102 
cpuid_entry2_find(struct kvm_cpuid_entry2 * entries,int nent,u32 function,u64 index)103 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
104 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
105 {
106 	struct kvm_cpuid_entry2 *e;
107 	int i;
108 
109 	/*
110 	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
111 	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
112 	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
113 	 * typically disabled in KVM only when KVM is in a performance critical
114 	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
115 	 * if this rule is violated, this assertion is purely to flag potential
116 	 * performance issues.  If this fires, consider moving the lookup out
117 	 * of the hotpath, e.g. by caching information during CPUID updates.
118 	 */
119 	lockdep_assert_irqs_enabled();
120 
121 	for (i = 0; i < nent; i++) {
122 		e = &entries[i];
123 
124 		if (e->function != function)
125 			continue;
126 
127 		/*
128 		 * If the index isn't significant, use the first entry with a
129 		 * matching function.  It's userspace's responsibilty to not
130 		 * provide "duplicate" entries in all cases.
131 		 */
132 		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
133 			return e;
134 
135 
136 		/*
137 		 * Similarly, use the first matching entry if KVM is doing a
138 		 * lookup (as opposed to emulating CPUID) for a function that's
139 		 * architecturally defined as not having a significant index.
140 		 */
141 		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
142 			/*
143 			 * Direct lookups from KVM should not diverge from what
144 			 * KVM defines internally (the architectural behavior).
145 			 */
146 			WARN_ON_ONCE(cpuid_function_is_indexed(function));
147 			return e;
148 		}
149 	}
150 
151 	return NULL;
152 }
153 
kvm_check_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entries,int nent)154 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
155 			   struct kvm_cpuid_entry2 *entries,
156 			   int nent)
157 {
158 	struct kvm_cpuid_entry2 *best;
159 	u64 xfeatures;
160 
161 	/*
162 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
163 	 * canonical address checks; exit if it is ever changed.
164 	 */
165 	best = cpuid_entry2_find(entries, nent, 0x80000008,
166 				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
167 	if (best) {
168 		int vaddr_bits = (best->eax & 0xff00) >> 8;
169 
170 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
171 			return -EINVAL;
172 	}
173 
174 	/*
175 	 * Exposing dynamic xfeatures to the guest requires additional
176 	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
177 	 */
178 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
179 	if (!best)
180 		return 0;
181 
182 	xfeatures = best->eax | ((u64)best->edx << 32);
183 	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
184 	if (!xfeatures)
185 		return 0;
186 
187 	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
188 }
189 
190 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
kvm_cpuid_check_equal(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)191 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
192 				 int nent)
193 {
194 	struct kvm_cpuid_entry2 *orig;
195 	int i;
196 
197 	if (nent != vcpu->arch.cpuid_nent)
198 		return -EINVAL;
199 
200 	for (i = 0; i < nent; i++) {
201 		orig = &vcpu->arch.cpuid_entries[i];
202 		if (e2[i].function != orig->function ||
203 		    e2[i].index != orig->index ||
204 		    e2[i].flags != orig->flags ||
205 		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
206 		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
207 			return -EINVAL;
208 	}
209 
210 	return 0;
211 }
212 
kvm_get_hypervisor_cpuid(struct kvm_vcpu * vcpu,const char * sig)213 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
214 							    const char *sig)
215 {
216 	struct kvm_hypervisor_cpuid cpuid = {};
217 	struct kvm_cpuid_entry2 *entry;
218 	u32 base;
219 
220 	for_each_possible_hypervisor_cpuid_base(base) {
221 		entry = kvm_find_cpuid_entry(vcpu, base);
222 
223 		if (entry) {
224 			u32 signature[3];
225 
226 			signature[0] = entry->ebx;
227 			signature[1] = entry->ecx;
228 			signature[2] = entry->edx;
229 
230 			if (!memcmp(signature, sig, sizeof(signature))) {
231 				cpuid.base = base;
232 				cpuid.limit = entry->eax;
233 				break;
234 			}
235 		}
236 	}
237 
238 	return cpuid;
239 }
240 
__kvm_find_kvm_cpuid_features(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entries,int nent)241 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
242 					      struct kvm_cpuid_entry2 *entries, int nent)
243 {
244 	u32 base = vcpu->arch.kvm_cpuid.base;
245 
246 	if (!base)
247 		return NULL;
248 
249 	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
250 				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
251 }
252 
kvm_find_kvm_cpuid_features(struct kvm_vcpu * vcpu)253 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
254 {
255 	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
256 					     vcpu->arch.cpuid_nent);
257 }
258 
kvm_update_pv_runtime(struct kvm_vcpu * vcpu)259 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
260 {
261 	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
262 
263 	/*
264 	 * save the feature bitmap to avoid cpuid lookup for every PV
265 	 * operation
266 	 */
267 	if (best)
268 		vcpu->arch.pv_cpuid.features = best->eax;
269 }
270 
271 /*
272  * Calculate guest's supported XCR0 taking into account guest CPUID data and
273  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
274  */
cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 * entries,int nent)275 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
276 {
277 	struct kvm_cpuid_entry2 *best;
278 
279 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
280 	if (!best)
281 		return 0;
282 
283 	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
284 }
285 
__kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entries,int nent)286 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
287 				       int nent)
288 {
289 	struct kvm_cpuid_entry2 *best;
290 
291 	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
292 	if (best) {
293 		/* Update OSXSAVE bit */
294 		if (boot_cpu_has(X86_FEATURE_XSAVE))
295 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
296 					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
297 
298 		cpuid_entry_change(best, X86_FEATURE_APIC,
299 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
300 	}
301 
302 	best = cpuid_entry2_find(entries, nent, 7, 0);
303 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
304 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
305 				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
306 
307 	best = cpuid_entry2_find(entries, nent, 0xD, 0);
308 	if (best)
309 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
310 
311 	best = cpuid_entry2_find(entries, nent, 0xD, 1);
312 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
313 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
314 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
315 
316 	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
317 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
318 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
319 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
320 
321 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
322 		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
323 		if (best)
324 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
325 					   vcpu->arch.ia32_misc_enable_msr &
326 					   MSR_IA32_MISC_ENABLE_MWAIT);
327 	}
328 }
329 
kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu)330 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
331 {
332 	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
333 }
334 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
335 
kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 * entries,int nent)336 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
337 {
338 	struct kvm_cpuid_entry2 *entry;
339 
340 	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
341 				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
342 	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
343 }
344 
kvm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)345 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
346 {
347 	struct kvm_lapic *apic = vcpu->arch.apic;
348 	struct kvm_cpuid_entry2 *best;
349 	bool allow_gbpages;
350 
351 	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
352 	bitmap_zero(vcpu->arch.governed_features.enabled,
353 		    KVM_MAX_NR_GOVERNED_FEATURES);
354 
355 	/*
356 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
357 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
358 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
359 	 * walk for performance and complexity reasons.  Not to mention KVM
360 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
361 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
362 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
363 	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
364 	 * and can install smaller shadow pages if the host lacks 1GiB support.
365 	 */
366 	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
367 				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
368 	if (allow_gbpages)
369 		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
370 
371 	best = kvm_find_cpuid_entry(vcpu, 1);
372 	if (best && apic) {
373 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
374 			apic->lapic_timer.timer_mode_mask = 3 << 17;
375 		else
376 			apic->lapic_timer.timer_mode_mask = 1 << 17;
377 
378 		kvm_apic_set_version(vcpu);
379 	}
380 
381 	vcpu->arch.guest_supported_xcr0 =
382 		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
383 
384 	kvm_update_pv_runtime(vcpu);
385 
386 	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
387 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
388 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
389 
390 	kvm_pmu_refresh(vcpu);
391 	vcpu->arch.cr4_guest_rsvd_bits =
392 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
393 
394 	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
395 						    vcpu->arch.cpuid_nent));
396 
397 	/* Invoke the vendor callback only after the above state is updated. */
398 	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
399 
400 	/*
401 	 * Except for the MMU, which needs to do its thing any vendor specific
402 	 * adjustments to the reserved GPA bits.
403 	 */
404 	kvm_mmu_after_set_cpuid(vcpu);
405 }
406 
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)407 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
408 {
409 	struct kvm_cpuid_entry2 *best;
410 
411 	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
412 	if (!best || best->eax < 0x80000008)
413 		goto not_found;
414 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
415 	if (best)
416 		return best->eax & 0xff;
417 not_found:
418 	return 36;
419 }
420 
421 /*
422  * This "raw" version returns the reserved GPA bits without any adjustments for
423  * encryption technologies that usurp bits.  The raw mask should be used if and
424  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
425  */
kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu * vcpu)426 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
427 {
428 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
429 }
430 
kvm_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)431 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
432                         int nent)
433 {
434 	int r;
435 
436 	__kvm_update_cpuid_runtime(vcpu, e2, nent);
437 
438 	/*
439 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
440 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
441 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
442 	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
443 	 * the core vCPU model on the fly. It would've been better to forbid any
444 	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
445 	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
446 	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
447 	 * whether the supplied CPUID data is equal to what's already set.
448 	 */
449 	if (kvm_vcpu_has_run(vcpu)) {
450 		r = kvm_cpuid_check_equal(vcpu, e2, nent);
451 		if (r)
452 			return r;
453 
454 		kvfree(e2);
455 		return 0;
456 	}
457 
458 	if (kvm_cpuid_has_hyperv(e2, nent)) {
459 		r = kvm_hv_vcpu_init(vcpu);
460 		if (r)
461 			return r;
462 	}
463 
464 	r = kvm_check_cpuid(vcpu, e2, nent);
465 	if (r)
466 		return r;
467 
468 	kvfree(vcpu->arch.cpuid_entries);
469 	vcpu->arch.cpuid_entries = e2;
470 	vcpu->arch.cpuid_nent = nent;
471 
472 	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
473 	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
474 	kvm_vcpu_after_set_cpuid(vcpu);
475 
476 	return 0;
477 }
478 
479 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)480 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
481 			     struct kvm_cpuid *cpuid,
482 			     struct kvm_cpuid_entry __user *entries)
483 {
484 	int r, i;
485 	struct kvm_cpuid_entry *e = NULL;
486 	struct kvm_cpuid_entry2 *e2 = NULL;
487 
488 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
489 		return -E2BIG;
490 
491 	if (cpuid->nent) {
492 		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
493 		if (IS_ERR(e))
494 			return PTR_ERR(e);
495 
496 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
497 		if (!e2) {
498 			r = -ENOMEM;
499 			goto out_free_cpuid;
500 		}
501 	}
502 	for (i = 0; i < cpuid->nent; i++) {
503 		e2[i].function = e[i].function;
504 		e2[i].eax = e[i].eax;
505 		e2[i].ebx = e[i].ebx;
506 		e2[i].ecx = e[i].ecx;
507 		e2[i].edx = e[i].edx;
508 		e2[i].index = 0;
509 		e2[i].flags = 0;
510 		e2[i].padding[0] = 0;
511 		e2[i].padding[1] = 0;
512 		e2[i].padding[2] = 0;
513 	}
514 
515 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
516 	if (r)
517 		kvfree(e2);
518 
519 out_free_cpuid:
520 	kvfree(e);
521 
522 	return r;
523 }
524 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)525 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
526 			      struct kvm_cpuid2 *cpuid,
527 			      struct kvm_cpuid_entry2 __user *entries)
528 {
529 	struct kvm_cpuid_entry2 *e2 = NULL;
530 	int r;
531 
532 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
533 		return -E2BIG;
534 
535 	if (cpuid->nent) {
536 		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
537 		if (IS_ERR(e2))
538 			return PTR_ERR(e2);
539 	}
540 
541 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
542 	if (r)
543 		kvfree(e2);
544 
545 	return r;
546 }
547 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)548 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
549 			      struct kvm_cpuid2 *cpuid,
550 			      struct kvm_cpuid_entry2 __user *entries)
551 {
552 	if (cpuid->nent < vcpu->arch.cpuid_nent)
553 		return -E2BIG;
554 
555 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
556 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
557 		return -EFAULT;
558 
559 	cpuid->nent = vcpu->arch.cpuid_nent;
560 	return 0;
561 }
562 
563 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
__kvm_cpu_cap_mask(unsigned int leaf)564 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
565 {
566 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
567 	struct kvm_cpuid_entry2 entry;
568 
569 	reverse_cpuid_check(leaf);
570 
571 	cpuid_count(cpuid.function, cpuid.index,
572 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
573 
574 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
575 }
576 
577 static __always_inline
kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf,u32 mask)578 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
579 {
580 	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
581 	BUILD_BUG_ON(leaf < NCAPINTS);
582 
583 	kvm_cpu_caps[leaf] = mask;
584 
585 	__kvm_cpu_cap_mask(leaf);
586 }
587 
kvm_cpu_cap_mask(enum cpuid_leafs leaf,u32 mask)588 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
589 {
590 	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
591 	BUILD_BUG_ON(leaf >= NCAPINTS);
592 
593 	kvm_cpu_caps[leaf] &= mask;
594 
595 	__kvm_cpu_cap_mask(leaf);
596 }
597 
kvm_set_cpu_caps(void)598 void kvm_set_cpu_caps(void)
599 {
600 #ifdef CONFIG_X86_64
601 	unsigned int f_gbpages = F(GBPAGES);
602 	unsigned int f_lm = F(LM);
603 	unsigned int f_xfd = F(XFD);
604 #else
605 	unsigned int f_gbpages = 0;
606 	unsigned int f_lm = 0;
607 	unsigned int f_xfd = 0;
608 #endif
609 	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
610 
611 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
612 		     sizeof(boot_cpu_data.x86_capability));
613 
614 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
615 	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
616 
617 	kvm_cpu_cap_mask(CPUID_1_ECX,
618 		/*
619 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
620 		 * advertised to guests via CPUID!
621 		 */
622 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
623 		0 /* DS-CPL, VMX, SMX, EST */ |
624 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
625 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
626 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
627 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
628 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
629 		F(F16C) | F(RDRAND)
630 	);
631 	/* KVM emulates x2apic in software irrespective of host support. */
632 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
633 
634 	kvm_cpu_cap_mask(CPUID_1_EDX,
635 		F(FPU) | F(VME) | F(DE) | F(PSE) |
636 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
637 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
638 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
639 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
640 		0 /* Reserved, DS, ACPI */ | F(MMX) |
641 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
642 		0 /* HTT, TM, Reserved, PBE */
643 	);
644 
645 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
646 		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
647 		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
648 		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
649 		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
650 		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
651 		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
652 		F(AVX512VL));
653 
654 	kvm_cpu_cap_mask(CPUID_7_ECX,
655 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
656 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
657 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
658 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
659 		F(SGX_LC) | F(BUS_LOCK_DETECT)
660 	);
661 	/* Set LA57 based on hardware capability. */
662 	if (cpuid_ecx(7) & F(LA57))
663 		kvm_cpu_cap_set(X86_FEATURE_LA57);
664 
665 	/*
666 	 * PKU not yet implemented for shadow paging and requires OSPKE
667 	 * to be set on the host. Clear it if that is not the case
668 	 */
669 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
670 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
671 
672 	kvm_cpu_cap_mask(CPUID_7_EDX,
673 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
674 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
675 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
676 		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
677 		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
678 	);
679 
680 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
681 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
682 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
683 
684 	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
685 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
686 	if (boot_cpu_has(X86_FEATURE_STIBP))
687 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
688 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
689 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
690 
691 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
692 		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
693 		F(FZRM) | F(FSRS) | F(FSRC) |
694 		F(AMX_FP16) | F(AVX_IFMA)
695 	);
696 
697 	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
698 		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
699 		F(AMX_COMPLEX)
700 	);
701 
702 	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
703 		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
704 		F(BHI_CTRL) | F(MCDT_NO)
705 	);
706 
707 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
708 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
709 	);
710 
711 	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
712 		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
713 	);
714 
715 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
716 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
717 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
718 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
719 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
720 		F(TOPOEXT) | 0 /* PERFCTR_CORE */
721 	);
722 
723 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
724 		F(FPU) | F(VME) | F(DE) | F(PSE) |
725 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
726 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
727 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
728 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
729 		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
730 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
731 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
732 	);
733 
734 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
735 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
736 
737 	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
738 		SF(CONSTANT_TSC)
739 	);
740 
741 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
742 		F(CLZERO) | F(XSAVEERPTR) |
743 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
744 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
745 		F(AMD_PSFD)
746 	);
747 
748 	/*
749 	 * AMD has separate bits for each SPEC_CTRL bit.
750 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
751 	 * record that in cpufeatures so use them.
752 	 */
753 	if (boot_cpu_has(X86_FEATURE_IBPB))
754 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
755 	if (boot_cpu_has(X86_FEATURE_IBRS))
756 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
757 	if (boot_cpu_has(X86_FEATURE_STIBP))
758 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
759 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
760 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
761 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
762 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
763 	/*
764 	 * The preference is to use SPEC CTRL MSR instead of the
765 	 * VIRT_SPEC MSR.
766 	 */
767 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
768 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
769 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
770 
771 	/*
772 	 * Hide all SVM features by default, SVM will set the cap bits for
773 	 * features it emulates and/or exposes for L1.
774 	 */
775 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
776 
777 	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
778 		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
779 		F(SME_COHERENT));
780 
781 	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
782 		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
783 		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */
784 	);
785 
786 	if (cpu_feature_enabled(X86_FEATURE_SRSO_NO))
787 		kvm_cpu_cap_set(X86_FEATURE_SRSO_NO);
788 
789 	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
790 		F(PERFMON_V2)
791 	);
792 
793 	/*
794 	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
795 	 * KVM's supported CPUID if the feature is reported as supported by the
796 	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
797 	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
798 	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
799 	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
800 	 * the mask with the raw host CPUID, and reporting support in AMD's
801 	 * leaf can make it easier for userspace to detect the feature.
802 	 */
803 	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
804 		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
805 	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
806 		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
807 	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
808 
809 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
810 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
811 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
812 		F(PMM) | F(PMM_EN)
813 	);
814 
815 	/*
816 	 * Hide RDTSCP and RDPID if either feature is reported as supported but
817 	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
818 	 * should never happen, but the guest will likely crash if RDTSCP or
819 	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
820 	 * the past.  For example, the sanity check may fire if this instance of
821 	 * KVM is running as L1 on top of an older, broken KVM.
822 	 */
823 	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
824 		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
825 		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
826 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
827 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
828 	}
829 }
830 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
831 
832 struct kvm_cpuid_array {
833 	struct kvm_cpuid_entry2 *entries;
834 	int maxnent;
835 	int nent;
836 };
837 
get_next_cpuid(struct kvm_cpuid_array * array)838 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
839 {
840 	if (array->nent >= array->maxnent)
841 		return NULL;
842 
843 	return &array->entries[array->nent++];
844 }
845 
do_host_cpuid(struct kvm_cpuid_array * array,u32 function,u32 index)846 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
847 					      u32 function, u32 index)
848 {
849 	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
850 
851 	if (!entry)
852 		return NULL;
853 
854 	memset(entry, 0, sizeof(*entry));
855 	entry->function = function;
856 	entry->index = index;
857 	switch (function & 0xC0000000) {
858 	case 0x40000000:
859 		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
860 		return entry;
861 
862 	case 0x80000000:
863 		/*
864 		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
865 		 * would result in out-of-bounds calls to do_host_cpuid.
866 		 */
867 		{
868 			static int max_cpuid_80000000;
869 			if (!READ_ONCE(max_cpuid_80000000))
870 				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
871 			if (function > READ_ONCE(max_cpuid_80000000))
872 				return entry;
873 		}
874 		break;
875 
876 	default:
877 		break;
878 	}
879 
880 	cpuid_count(entry->function, entry->index,
881 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
882 
883 	if (cpuid_function_is_indexed(function))
884 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
885 
886 	return entry;
887 }
888 
__do_cpuid_func_emulated(struct kvm_cpuid_array * array,u32 func)889 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
890 {
891 	struct kvm_cpuid_entry2 *entry;
892 
893 	if (array->nent >= array->maxnent)
894 		return -E2BIG;
895 
896 	entry = &array->entries[array->nent];
897 	entry->function = func;
898 	entry->index = 0;
899 	entry->flags = 0;
900 
901 	switch (func) {
902 	case 0:
903 		entry->eax = 7;
904 		++array->nent;
905 		break;
906 	case 1:
907 		entry->ecx = F(MOVBE);
908 		++array->nent;
909 		break;
910 	case 7:
911 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
912 		entry->eax = 0;
913 		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
914 			entry->ecx = F(RDPID);
915 		++array->nent;
916 		break;
917 	default:
918 		break;
919 	}
920 
921 	return 0;
922 }
923 
__do_cpuid_func(struct kvm_cpuid_array * array,u32 function)924 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
925 {
926 	struct kvm_cpuid_entry2 *entry;
927 	int r, i, max_idx;
928 
929 	/* all calls to cpuid_count() should be made on the same cpu */
930 	get_cpu();
931 
932 	r = -E2BIG;
933 
934 	entry = do_host_cpuid(array, function, 0);
935 	if (!entry)
936 		goto out;
937 
938 	switch (function) {
939 	case 0:
940 		/* Limited to the highest leaf implemented in KVM. */
941 		entry->eax = min(entry->eax, 0x1fU);
942 		break;
943 	case 1:
944 		cpuid_entry_override(entry, CPUID_1_EDX);
945 		cpuid_entry_override(entry, CPUID_1_ECX);
946 		break;
947 	case 2:
948 		/*
949 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
950 		 * CPUID(function=2, index=0) may return different results each
951 		 * time, with the least-significant byte in EAX enumerating the
952 		 * number of times software should do CPUID(2, 0).
953 		 *
954 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
955 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
956 		 * return 01H. Software should ignore this value and not
957 		 * interpret it as an informational descriptor", while AMD's
958 		 * APM states that CPUID(2) is reserved.
959 		 *
960 		 * WARN if a frankenstein CPU that supports virtualization and
961 		 * a stateful CPUID.0x2 is encountered.
962 		 */
963 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
964 		break;
965 	/* functions 4 and 0x8000001d have additional index. */
966 	case 4:
967 	case 0x8000001d:
968 		/*
969 		 * Read entries until the cache type in the previous entry is
970 		 * zero, i.e. indicates an invalid entry.
971 		 */
972 		for (i = 1; entry->eax & 0x1f; ++i) {
973 			entry = do_host_cpuid(array, function, i);
974 			if (!entry)
975 				goto out;
976 		}
977 		break;
978 	case 6: /* Thermal management */
979 		entry->eax = 0x4; /* allow ARAT */
980 		entry->ebx = 0;
981 		entry->ecx = 0;
982 		entry->edx = 0;
983 		break;
984 	/* function 7 has additional index. */
985 	case 7:
986 		max_idx = entry->eax = min(entry->eax, 2u);
987 		cpuid_entry_override(entry, CPUID_7_0_EBX);
988 		cpuid_entry_override(entry, CPUID_7_ECX);
989 		cpuid_entry_override(entry, CPUID_7_EDX);
990 
991 		/* KVM only supports up to 0x7.2, capped above via min(). */
992 		if (max_idx >= 1) {
993 			entry = do_host_cpuid(array, function, 1);
994 			if (!entry)
995 				goto out;
996 
997 			cpuid_entry_override(entry, CPUID_7_1_EAX);
998 			cpuid_entry_override(entry, CPUID_7_1_EDX);
999 			entry->ebx = 0;
1000 			entry->ecx = 0;
1001 		}
1002 		if (max_idx >= 2) {
1003 			entry = do_host_cpuid(array, function, 2);
1004 			if (!entry)
1005 				goto out;
1006 
1007 			cpuid_entry_override(entry, CPUID_7_2_EDX);
1008 			entry->ecx = 0;
1009 			entry->ebx = 0;
1010 			entry->eax = 0;
1011 		}
1012 		break;
1013 	case 0xa: { /* Architectural Performance Monitoring */
1014 		union cpuid10_eax eax;
1015 		union cpuid10_edx edx;
1016 
1017 		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1018 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1019 			break;
1020 		}
1021 
1022 		eax.split.version_id = kvm_pmu_cap.version;
1023 		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1024 		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1025 		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1026 		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1027 		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1028 
1029 		if (kvm_pmu_cap.version)
1030 			edx.split.anythread_deprecated = 1;
1031 		edx.split.reserved1 = 0;
1032 		edx.split.reserved2 = 0;
1033 
1034 		entry->eax = eax.full;
1035 		entry->ebx = kvm_pmu_cap.events_mask;
1036 		entry->ecx = 0;
1037 		entry->edx = edx.full;
1038 		break;
1039 	}
1040 	case 0x1f:
1041 	case 0xb:
1042 		/*
1043 		 * No topology; a valid topology is indicated by the presence
1044 		 * of subleaf 1.
1045 		 */
1046 		entry->eax = entry->ebx = entry->ecx = 0;
1047 		break;
1048 	case 0xd: {
1049 		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1050 		u64 permitted_xss = kvm_caps.supported_xss;
1051 
1052 		entry->eax &= permitted_xcr0;
1053 		entry->ebx = xstate_required_size(permitted_xcr0, false);
1054 		entry->ecx = entry->ebx;
1055 		entry->edx &= permitted_xcr0 >> 32;
1056 		if (!permitted_xcr0)
1057 			break;
1058 
1059 		entry = do_host_cpuid(array, function, 1);
1060 		if (!entry)
1061 			goto out;
1062 
1063 		cpuid_entry_override(entry, CPUID_D_1_EAX);
1064 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1065 			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1066 							  true);
1067 		else {
1068 			WARN_ON_ONCE(permitted_xss != 0);
1069 			entry->ebx = 0;
1070 		}
1071 		entry->ecx &= permitted_xss;
1072 		entry->edx &= permitted_xss >> 32;
1073 
1074 		for (i = 2; i < 64; ++i) {
1075 			bool s_state;
1076 			if (permitted_xcr0 & BIT_ULL(i))
1077 				s_state = false;
1078 			else if (permitted_xss & BIT_ULL(i))
1079 				s_state = true;
1080 			else
1081 				continue;
1082 
1083 			entry = do_host_cpuid(array, function, i);
1084 			if (!entry)
1085 				goto out;
1086 
1087 			/*
1088 			 * The supported check above should have filtered out
1089 			 * invalid sub-leafs.  Only valid sub-leafs should
1090 			 * reach this point, and they should have a non-zero
1091 			 * save state size.  Furthermore, check whether the
1092 			 * processor agrees with permitted_xcr0/permitted_xss
1093 			 * on whether this is an XCR0- or IA32_XSS-managed area.
1094 			 */
1095 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1096 				--array->nent;
1097 				continue;
1098 			}
1099 
1100 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1101 				entry->ecx &= ~BIT_ULL(2);
1102 			entry->edx = 0;
1103 		}
1104 		break;
1105 	}
1106 	case 0x12:
1107 		/* Intel SGX */
1108 		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1109 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1110 			break;
1111 		}
1112 
1113 		/*
1114 		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1115 		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1116 		 * are restricted by kernel and KVM capabilities (like most
1117 		 * feature flags), while enclave size is unrestricted.
1118 		 */
1119 		cpuid_entry_override(entry, CPUID_12_EAX);
1120 		entry->ebx &= SGX_MISC_EXINFO;
1121 
1122 		entry = do_host_cpuid(array, function, 1);
1123 		if (!entry)
1124 			goto out;
1125 
1126 		/*
1127 		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1128 		 * feature flags.  Advertise all supported flags, including
1129 		 * privileged attributes that require explicit opt-in from
1130 		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1131 		 * expected to derive it from supported XCR0.
1132 		 */
1133 		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1134 		entry->ebx &= 0;
1135 		break;
1136 	/* Intel PT */
1137 	case 0x14:
1138 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1139 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1140 			break;
1141 		}
1142 
1143 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1144 			if (!do_host_cpuid(array, function, i))
1145 				goto out;
1146 		}
1147 		break;
1148 	/* Intel AMX TILE */
1149 	case 0x1d:
1150 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1151 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1152 			break;
1153 		}
1154 
1155 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1156 			if (!do_host_cpuid(array, function, i))
1157 				goto out;
1158 		}
1159 		break;
1160 	case 0x1e: /* TMUL information */
1161 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1162 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1163 			break;
1164 		}
1165 		break;
1166 	case KVM_CPUID_SIGNATURE: {
1167 		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1168 		entry->eax = KVM_CPUID_FEATURES;
1169 		entry->ebx = sigptr[0];
1170 		entry->ecx = sigptr[1];
1171 		entry->edx = sigptr[2];
1172 		break;
1173 	}
1174 	case KVM_CPUID_FEATURES:
1175 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1176 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1177 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1178 			     (1 << KVM_FEATURE_ASYNC_PF) |
1179 			     (1 << KVM_FEATURE_PV_EOI) |
1180 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1181 			     (1 << KVM_FEATURE_PV_UNHALT) |
1182 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1183 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1184 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1185 			     (1 << KVM_FEATURE_POLL_CONTROL) |
1186 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1187 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1188 
1189 		if (sched_info_on())
1190 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1191 
1192 		entry->ebx = 0;
1193 		entry->ecx = 0;
1194 		entry->edx = 0;
1195 		break;
1196 	case 0x80000000:
1197 		entry->eax = min(entry->eax, 0x80000022);
1198 		/*
1199 		 * Serializing LFENCE is reported in a multitude of ways, and
1200 		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1201 		 * userspace by providing the CPUID leaf ourselves.
1202 		 *
1203 		 * However, only do it if the host has CPUID leaf 0x8000001d.
1204 		 * QEMU thinks that it can query the host blindly for that
1205 		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1206 		 * above.  The processor merrily returns values from the
1207 		 * highest Intel leaf which QEMU tries to use as the guest's
1208 		 * 0x8000001d.  Even worse, this can result in an infinite
1209 		 * loop if said highest leaf has no subleaves indexed by ECX.
1210 		 */
1211 		if (entry->eax >= 0x8000001d &&
1212 		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1213 		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1214 			entry->eax = max(entry->eax, 0x80000021);
1215 		break;
1216 	case 0x80000001:
1217 		entry->ebx &= ~GENMASK(27, 16);
1218 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1219 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1220 		break;
1221 	case 0x80000005:
1222 		/*  Pass host L1 cache and TLB info. */
1223 		break;
1224 	case 0x80000006:
1225 		/* Drop reserved bits, pass host L2 cache and TLB info. */
1226 		entry->edx &= ~GENMASK(17, 16);
1227 		break;
1228 	case 0x80000007: /* Advanced power management */
1229 		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1230 
1231 		/* mask against host */
1232 		entry->edx &= boot_cpu_data.x86_power;
1233 		entry->eax = entry->ebx = entry->ecx = 0;
1234 		break;
1235 	case 0x80000008: {
1236 		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1237 		unsigned int phys_as;
1238 
1239 		/*
1240 		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1241 		 * the guest operates in the same PA space as the host, i.e.
1242 		 * reductions in MAXPHYADDR for memory encryption affect shadow
1243 		 * paging, too.
1244 		 *
1245 		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1246 		 * reductions to the HPAs do not affect GPAs.
1247 		 */
1248 		if (!tdp_enabled) {
1249 			phys_as = boot_cpu_data.x86_phys_bits;
1250 		} else {
1251 			phys_as = entry->eax & 0xff;
1252 		}
1253 
1254 		entry->eax = phys_as | (virt_as << 8);
1255 		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1256 		entry->edx = 0;
1257 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1258 		break;
1259 	}
1260 	case 0x8000000A:
1261 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1262 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1263 			break;
1264 		}
1265 		entry->eax = 1; /* SVM revision 1 */
1266 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1267 				   ASID emulation to nested SVM */
1268 		entry->ecx = 0; /* Reserved */
1269 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1270 		break;
1271 	case 0x80000019:
1272 		entry->ecx = entry->edx = 0;
1273 		break;
1274 	case 0x8000001a:
1275 		entry->eax &= GENMASK(2, 0);
1276 		entry->ebx = entry->ecx = entry->edx = 0;
1277 		break;
1278 	case 0x8000001e:
1279 		/* Do not return host topology information.  */
1280 		entry->eax = entry->ebx = entry->ecx = 0;
1281 		entry->edx = 0; /* reserved */
1282 		break;
1283 	case 0x8000001F:
1284 		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1285 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1286 		} else {
1287 			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1288 			/* Clear NumVMPL since KVM does not support VMPL.  */
1289 			entry->ebx &= ~GENMASK(31, 12);
1290 			/*
1291 			 * Enumerate '0' for "PA bits reduction", the adjusted
1292 			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1293 			 */
1294 			entry->ebx &= ~GENMASK(11, 6);
1295 		}
1296 		break;
1297 	case 0x80000020:
1298 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1299 		break;
1300 	case 0x80000021:
1301 		entry->ebx = entry->ecx = entry->edx = 0;
1302 		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1303 		break;
1304 	/* AMD Extended Performance Monitoring and Debug */
1305 	case 0x80000022: {
1306 		union cpuid_0x80000022_ebx ebx;
1307 
1308 		entry->ecx = entry->edx = 0;
1309 		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1310 			entry->eax = entry->ebx;
1311 			break;
1312 		}
1313 
1314 		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1315 
1316 		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1317 			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1318 		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1319 			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1320 		else
1321 			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1322 
1323 		entry->ebx = ebx.full;
1324 		break;
1325 	}
1326 	/*Add support for Centaur's CPUID instruction*/
1327 	case 0xC0000000:
1328 		/*Just support up to 0xC0000004 now*/
1329 		entry->eax = min(entry->eax, 0xC0000004);
1330 		break;
1331 	case 0xC0000001:
1332 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1333 		break;
1334 	case 3: /* Processor serial number */
1335 	case 5: /* MONITOR/MWAIT */
1336 	case 0xC0000002:
1337 	case 0xC0000003:
1338 	case 0xC0000004:
1339 	default:
1340 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1341 		break;
1342 	}
1343 
1344 	r = 0;
1345 
1346 out:
1347 	put_cpu();
1348 
1349 	return r;
1350 }
1351 
do_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1352 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1353 			 unsigned int type)
1354 {
1355 	if (type == KVM_GET_EMULATED_CPUID)
1356 		return __do_cpuid_func_emulated(array, func);
1357 
1358 	return __do_cpuid_func(array, func);
1359 }
1360 
1361 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1362 
get_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1363 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1364 			  unsigned int type)
1365 {
1366 	u32 limit;
1367 	int r;
1368 
1369 	if (func == CENTAUR_CPUID_SIGNATURE &&
1370 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1371 		return 0;
1372 
1373 	r = do_cpuid_func(array, func, type);
1374 	if (r)
1375 		return r;
1376 
1377 	limit = array->entries[array->nent - 1].eax;
1378 	for (func = func + 1; func <= limit; ++func) {
1379 		r = do_cpuid_func(array, func, type);
1380 		if (r)
1381 			break;
1382 	}
1383 
1384 	return r;
1385 }
1386 
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)1387 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1388 				 __u32 num_entries, unsigned int ioctl_type)
1389 {
1390 	int i;
1391 	__u32 pad[3];
1392 
1393 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1394 		return false;
1395 
1396 	/*
1397 	 * We want to make sure that ->padding is being passed clean from
1398 	 * userspace in case we want to use it for something in the future.
1399 	 *
1400 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1401 	 * have to give ourselves satisfied only with the emulated side. /me
1402 	 * sheds a tear.
1403 	 */
1404 	for (i = 0; i < num_entries; i++) {
1405 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1406 			return true;
1407 
1408 		if (pad[0] || pad[1] || pad[2])
1409 			return true;
1410 	}
1411 	return false;
1412 }
1413 
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)1414 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1415 			    struct kvm_cpuid_entry2 __user *entries,
1416 			    unsigned int type)
1417 {
1418 	static const u32 funcs[] = {
1419 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1420 	};
1421 
1422 	struct kvm_cpuid_array array = {
1423 		.nent = 0,
1424 	};
1425 	int r, i;
1426 
1427 	if (cpuid->nent < 1)
1428 		return -E2BIG;
1429 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1430 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1431 
1432 	if (sanity_check_entries(entries, cpuid->nent, type))
1433 		return -EINVAL;
1434 
1435 	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1436 	if (!array.entries)
1437 		return -ENOMEM;
1438 
1439 	array.maxnent = cpuid->nent;
1440 
1441 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1442 		r = get_cpuid_func(&array, funcs[i], type);
1443 		if (r)
1444 			goto out_free;
1445 	}
1446 	cpuid->nent = array.nent;
1447 
1448 	if (copy_to_user(entries, array.entries,
1449 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1450 		r = -EFAULT;
1451 
1452 out_free:
1453 	kvfree(array.entries);
1454 	return r;
1455 }
1456 
kvm_find_cpuid_entry_index(struct kvm_vcpu * vcpu,u32 function,u32 index)1457 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1458 						    u32 function, u32 index)
1459 {
1460 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1461 				 function, index);
1462 }
1463 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1464 
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function)1465 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1466 					      u32 function)
1467 {
1468 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1469 				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1472 
1473 /*
1474  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1475  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1476  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1477  * range.  Centaur/VIA follows Intel semantics.
1478  *
1479  * A leaf is considered out-of-range if its function is higher than the maximum
1480  * supported leaf of its associated class or if its associated class does not
1481  * exist.
1482  *
1483  * There are three primary classes to be considered, with their respective
1484  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1485  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1486  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1487  *
1488  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1489  *  - Hypervisor: 0x40000000 - 0x4fffffff
1490  *  - Extended:   0x80000000 - 0xbfffffff
1491  *  - Centaur:    0xc0000000 - 0xcfffffff
1492  *
1493  * The Hypervisor class is further subdivided into sub-classes that each act as
1494  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1495  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1496  * CPUID sub-classes are:
1497  *
1498  *  - HyperV:     0x40000000 - 0x400000ff
1499  *  - KVM:        0x40000100 - 0x400001ff
1500  */
1501 static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu * vcpu,u32 * fn_ptr,u32 index)1502 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1503 {
1504 	struct kvm_cpuid_entry2 *basic, *class;
1505 	u32 function = *fn_ptr;
1506 
1507 	basic = kvm_find_cpuid_entry(vcpu, 0);
1508 	if (!basic)
1509 		return NULL;
1510 
1511 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1512 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1513 		return NULL;
1514 
1515 	if (function >= 0x40000000 && function <= 0x4fffffff)
1516 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1517 	else if (function >= 0xc0000000)
1518 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1519 	else
1520 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1521 
1522 	if (class && function <= class->eax)
1523 		return NULL;
1524 
1525 	/*
1526 	 * Leaf specific adjustments are also applied when redirecting to the
1527 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1528 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1529 	 * needs to be pulled from CPUID.0xb.1.
1530 	 */
1531 	*fn_ptr = basic->eax;
1532 
1533 	/*
1534 	 * The class does not exist or the requested function is out of range;
1535 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1536 	 * the original requested leaf is observed!
1537 	 */
1538 	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1539 }
1540 
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)1541 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1542 	       u32 *ecx, u32 *edx, bool exact_only)
1543 {
1544 	u32 orig_function = *eax, function = *eax, index = *ecx;
1545 	struct kvm_cpuid_entry2 *entry;
1546 	bool exact, used_max_basic = false;
1547 
1548 	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1549 	exact = !!entry;
1550 
1551 	if (!entry && !exact_only) {
1552 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1553 		used_max_basic = !!entry;
1554 	}
1555 
1556 	if (entry) {
1557 		*eax = entry->eax;
1558 		*ebx = entry->ebx;
1559 		*ecx = entry->ecx;
1560 		*edx = entry->edx;
1561 		if (function == 7 && index == 0) {
1562 			u64 data;
1563 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1564 			    (data & TSX_CTRL_CPUID_CLEAR))
1565 				*ebx &= ~(F(RTM) | F(HLE));
1566 		} else if (function == 0x80000007) {
1567 			if (kvm_hv_invtsc_suppressed(vcpu))
1568 				*edx &= ~SF(CONSTANT_TSC);
1569 		}
1570 	} else {
1571 		*eax = *ebx = *ecx = *edx = 0;
1572 		/*
1573 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1574 		 * and EDX is always the x2APIC ID, even for undefined
1575 		 * subleaves. Index 1 will exist iff the leaf is
1576 		 * implemented, so we pass through CL iff leaf 1
1577 		 * exists. EDX can be copied from any existing index.
1578 		 */
1579 		if (function == 0xb || function == 0x1f) {
1580 			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1581 			if (entry) {
1582 				*ecx = index & 0xff;
1583 				*edx = entry->edx;
1584 			}
1585 		}
1586 	}
1587 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1588 			used_max_basic);
1589 	return exact;
1590 }
1591 EXPORT_SYMBOL_GPL(kvm_cpuid);
1592 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)1593 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1594 {
1595 	u32 eax, ebx, ecx, edx;
1596 
1597 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1598 		return 1;
1599 
1600 	eax = kvm_rax_read(vcpu);
1601 	ecx = kvm_rcx_read(vcpu);
1602 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1603 	kvm_rax_write(vcpu, eax);
1604 	kvm_rbx_write(vcpu, ebx);
1605 	kvm_rcx_write(vcpu, ecx);
1606 	kvm_rdx_write(vcpu, edx);
1607 	return kvm_skip_emulated_instruction(vcpu);
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1610