xref: /openbmc/linux/mm/page_alloc.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
get_pcppage_migratetype(struct page * page)215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
set_pcppage_migratetype(struct page * page,int migratetype)220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 int min_free_kbytes = 1024;
288 int user_min_free_kbytes = -1;
289 static int watermark_boost_factor __read_mostly = 15000;
290 static int watermark_scale_factor = 10;
291 
292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
293 int movable_zone;
294 EXPORT_SYMBOL(movable_zone);
295 
296 #if MAX_NUMNODES > 1
297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
298 unsigned int nr_online_nodes __read_mostly = 1;
299 EXPORT_SYMBOL(nr_node_ids);
300 EXPORT_SYMBOL(nr_online_nodes);
301 #endif
302 
303 static bool page_contains_unaccepted(struct page *page, unsigned int order);
304 static void accept_page(struct page *page, unsigned int order);
305 static bool cond_accept_memory(struct zone *zone, unsigned int order);
306 static inline bool has_unaccepted_memory(void);
307 static bool __free_unaccepted(struct page *page);
308 
309 int page_group_by_mobility_disabled __read_mostly;
310 
311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
312 /*
313  * During boot we initialize deferred pages on-demand, as needed, but once
314  * page_alloc_init_late() has finished, the deferred pages are all initialized,
315  * and we can permanently disable that path.
316  */
317 DEFINE_STATIC_KEY_TRUE(deferred_pages);
318 
deferred_pages_enabled(void)319 static inline bool deferred_pages_enabled(void)
320 {
321 	return static_branch_unlikely(&deferred_pages);
322 }
323 
324 /*
325  * deferred_grow_zone() is __init, but it is called from
326  * get_page_from_freelist() during early boot until deferred_pages permanently
327  * disables this call. This is why we have refdata wrapper to avoid warning,
328  * and to ensure that the function body gets unloaded.
329  */
330 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)331 _deferred_grow_zone(struct zone *zone, unsigned int order)
332 {
333        return deferred_grow_zone(zone, order);
334 }
335 #else
deferred_pages_enabled(void)336 static inline bool deferred_pages_enabled(void)
337 {
338 	return false;
339 }
340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
341 
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)343 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
344 							unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 	return section_to_usemap(__pfn_to_section(pfn));
348 #else
349 	return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352 
pfn_to_bitidx(const struct page * page,unsigned long pfn)353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 	pfn &= (PAGES_PER_SECTION-1);
357 #else
358 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
359 #endif /* CONFIG_SPARSEMEM */
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 }
362 
363 /**
364  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
365  * @page: The page within the block of interest
366  * @pfn: The target page frame number
367  * @mask: mask of bits that the caller is interested in
368  *
369  * Return: pageblock_bits flags
370  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)371 unsigned long get_pfnblock_flags_mask(const struct page *page,
372 					unsigned long pfn, unsigned long mask)
373 {
374 	unsigned long *bitmap;
375 	unsigned long bitidx, word_bitidx;
376 	unsigned long word;
377 
378 	bitmap = get_pageblock_bitmap(page, pfn);
379 	bitidx = pfn_to_bitidx(page, pfn);
380 	word_bitidx = bitidx / BITS_PER_LONG;
381 	bitidx &= (BITS_PER_LONG-1);
382 	/*
383 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
384 	 * a consistent read of the memory array, so that results, even though
385 	 * racy, are not corrupted.
386 	 */
387 	word = READ_ONCE(bitmap[word_bitidx]);
388 	return (word >> bitidx) & mask;
389 }
390 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)391 static __always_inline int get_pfnblock_migratetype(const struct page *page,
392 					unsigned long pfn)
393 {
394 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
395 }
396 
397 /**
398  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
399  * @page: The page within the block of interest
400  * @flags: The flags to set
401  * @pfn: The target page frame number
402  * @mask: mask of bits that the caller is interested in
403  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
405 					unsigned long pfn,
406 					unsigned long mask)
407 {
408 	unsigned long *bitmap;
409 	unsigned long bitidx, word_bitidx;
410 	unsigned long word;
411 
412 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
413 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
414 
415 	bitmap = get_pageblock_bitmap(page, pfn);
416 	bitidx = pfn_to_bitidx(page, pfn);
417 	word_bitidx = bitidx / BITS_PER_LONG;
418 	bitidx &= (BITS_PER_LONG-1);
419 
420 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
421 
422 	mask <<= bitidx;
423 	flags <<= bitidx;
424 
425 	word = READ_ONCE(bitmap[word_bitidx]);
426 	do {
427 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
428 }
429 
set_pageblock_migratetype(struct page * page,int migratetype)430 void set_pageblock_migratetype(struct page *page, int migratetype)
431 {
432 	if (unlikely(page_group_by_mobility_disabled &&
433 		     migratetype < MIGRATE_PCPTYPES))
434 		migratetype = MIGRATE_UNMOVABLE;
435 
436 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
437 				page_to_pfn(page), MIGRATETYPE_MASK);
438 }
439 
440 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
442 {
443 	int ret;
444 	unsigned seq;
445 	unsigned long pfn = page_to_pfn(page);
446 	unsigned long sp, start_pfn;
447 
448 	do {
449 		seq = zone_span_seqbegin(zone);
450 		start_pfn = zone->zone_start_pfn;
451 		sp = zone->spanned_pages;
452 		ret = !zone_spans_pfn(zone, pfn);
453 	} while (zone_span_seqretry(zone, seq));
454 
455 	if (ret)
456 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
457 			pfn, zone_to_nid(zone), zone->name,
458 			start_pfn, start_pfn + sp);
459 
460 	return ret;
461 }
462 
463 /*
464  * Temporary debugging check for pages not lying within a given zone.
465  */
bad_range(struct zone * zone,struct page * page)466 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
467 {
468 	if (page_outside_zone_boundaries(zone, page))
469 		return 1;
470 	if (zone != page_zone(page))
471 		return 1;
472 
473 	return 0;
474 }
475 #else
bad_range(struct zone * zone,struct page * page)476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
477 {
478 	return 0;
479 }
480 #endif
481 
bad_page(struct page * page,const char * reason)482 static void bad_page(struct page *page, const char *reason)
483 {
484 	static unsigned long resume;
485 	static unsigned long nr_shown;
486 	static unsigned long nr_unshown;
487 
488 	/*
489 	 * Allow a burst of 60 reports, then keep quiet for that minute;
490 	 * or allow a steady drip of one report per second.
491 	 */
492 	if (nr_shown == 60) {
493 		if (time_before(jiffies, resume)) {
494 			nr_unshown++;
495 			goto out;
496 		}
497 		if (nr_unshown) {
498 			pr_alert(
499 			      "BUG: Bad page state: %lu messages suppressed\n",
500 				nr_unshown);
501 			nr_unshown = 0;
502 		}
503 		nr_shown = 0;
504 	}
505 	if (nr_shown++ == 0)
506 		resume = jiffies + 60 * HZ;
507 
508 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
509 		current->comm, page_to_pfn(page));
510 	dump_page(page, reason);
511 
512 	print_modules();
513 	dump_stack();
514 out:
515 	/* Leave bad fields for debug, except PageBuddy could make trouble */
516 	page_mapcount_reset(page); /* remove PageBuddy */
517 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
518 }
519 
order_to_pindex(int migratetype,int order)520 static inline unsigned int order_to_pindex(int migratetype, int order)
521 {
522 	bool __maybe_unused movable;
523 
524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
525 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
526 		VM_BUG_ON(order != pageblock_order);
527 
528 		movable = migratetype == MIGRATE_MOVABLE;
529 
530 		return NR_LOWORDER_PCP_LISTS + movable;
531 	}
532 #else
533 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
534 #endif
535 
536 	return (MIGRATE_PCPTYPES * order) + migratetype;
537 }
538 
pindex_to_order(unsigned int pindex)539 static inline int pindex_to_order(unsigned int pindex)
540 {
541 	int order = pindex / MIGRATE_PCPTYPES;
542 
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 	if (pindex >= NR_LOWORDER_PCP_LISTS)
545 		order = pageblock_order;
546 #else
547 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
548 #endif
549 
550 	return order;
551 }
552 
pcp_allowed_order(unsigned int order)553 static inline bool pcp_allowed_order(unsigned int order)
554 {
555 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
556 		return true;
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
558 	if (order == pageblock_order)
559 		return true;
560 #endif
561 	return false;
562 }
563 
free_the_page(struct page * page,unsigned int order)564 static inline void free_the_page(struct page *page, unsigned int order)
565 {
566 	if (pcp_allowed_order(order))		/* Via pcp? */
567 		free_unref_page(page, order);
568 	else
569 		__free_pages_ok(page, order, FPI_NONE);
570 }
571 
572 /*
573  * Higher-order pages are called "compound pages".  They are structured thusly:
574  *
575  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
576  *
577  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
579  *
580  * The first tail page's ->compound_order holds the order of allocation.
581  * This usage means that zero-order pages may not be compound.
582  */
583 
prep_compound_page(struct page * page,unsigned int order)584 void prep_compound_page(struct page *page, unsigned int order)
585 {
586 	int i;
587 	int nr_pages = 1 << order;
588 
589 	__SetPageHead(page);
590 	for (i = 1; i < nr_pages; i++)
591 		prep_compound_tail(page, i);
592 
593 	prep_compound_head(page, order);
594 }
595 
destroy_large_folio(struct folio * folio)596 void destroy_large_folio(struct folio *folio)
597 {
598 	if (folio_test_hugetlb(folio)) {
599 		free_huge_folio(folio);
600 		return;
601 	}
602 
603 	folio_unqueue_deferred_split(folio);
604 	mem_cgroup_uncharge(folio);
605 	free_the_page(&folio->page, folio_order(folio));
606 }
607 
set_buddy_order(struct page * page,unsigned int order)608 static inline void set_buddy_order(struct page *page, unsigned int order)
609 {
610 	set_page_private(page, order);
611 	__SetPageBuddy(page);
612 }
613 
614 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)615 static inline struct capture_control *task_capc(struct zone *zone)
616 {
617 	struct capture_control *capc = current->capture_control;
618 
619 	return unlikely(capc) &&
620 		!(current->flags & PF_KTHREAD) &&
621 		!capc->page &&
622 		capc->cc->zone == zone ? capc : NULL;
623 }
624 
625 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)626 compaction_capture(struct capture_control *capc, struct page *page,
627 		   int order, int migratetype)
628 {
629 	if (!capc || order != capc->cc->order)
630 		return false;
631 
632 	/* Do not accidentally pollute CMA or isolated regions*/
633 	if (is_migrate_cma(migratetype) ||
634 	    is_migrate_isolate(migratetype))
635 		return false;
636 
637 	/*
638 	 * Do not let lower order allocations pollute a movable pageblock.
639 	 * This might let an unmovable request use a reclaimable pageblock
640 	 * and vice-versa but no more than normal fallback logic which can
641 	 * have trouble finding a high-order free page.
642 	 */
643 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
644 		return false;
645 
646 	capc->page = page;
647 	return true;
648 }
649 
650 #else
task_capc(struct zone * zone)651 static inline struct capture_control *task_capc(struct zone *zone)
652 {
653 	return NULL;
654 }
655 
656 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)657 compaction_capture(struct capture_control *capc, struct page *page,
658 		   int order, int migratetype)
659 {
660 	return false;
661 }
662 #endif /* CONFIG_COMPACTION */
663 
664 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)665 static inline void add_to_free_list(struct page *page, struct zone *zone,
666 				    unsigned int order, int migratetype)
667 {
668 	struct free_area *area = &zone->free_area[order];
669 
670 	list_add(&page->buddy_list, &area->free_list[migratetype]);
671 	area->nr_free++;
672 }
673 
674 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)675 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
676 					 unsigned int order, int migratetype)
677 {
678 	struct free_area *area = &zone->free_area[order];
679 
680 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
681 	area->nr_free++;
682 }
683 
684 /*
685  * Used for pages which are on another list. Move the pages to the tail
686  * of the list - so the moved pages won't immediately be considered for
687  * allocation again (e.g., optimization for memory onlining).
688  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)689 static inline void move_to_free_list(struct page *page, struct zone *zone,
690 				     unsigned int order, int migratetype)
691 {
692 	struct free_area *area = &zone->free_area[order];
693 
694 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
695 }
696 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)697 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
698 					   unsigned int order)
699 {
700 	/* clear reported state and update reported page count */
701 	if (page_reported(page))
702 		__ClearPageReported(page);
703 
704 	list_del(&page->buddy_list);
705 	__ClearPageBuddy(page);
706 	set_page_private(page, 0);
707 	zone->free_area[order].nr_free--;
708 }
709 
get_page_from_free_area(struct free_area * area,int migratetype)710 static inline struct page *get_page_from_free_area(struct free_area *area,
711 					    int migratetype)
712 {
713 	return list_first_entry_or_null(&area->free_list[migratetype],
714 					struct page, buddy_list);
715 }
716 
717 /*
718  * If this is not the largest possible page, check if the buddy
719  * of the next-highest order is free. If it is, it's possible
720  * that pages are being freed that will coalesce soon. In case,
721  * that is happening, add the free page to the tail of the list
722  * so it's less likely to be used soon and more likely to be merged
723  * as a higher order page
724  */
725 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
727 		   struct page *page, unsigned int order)
728 {
729 	unsigned long higher_page_pfn;
730 	struct page *higher_page;
731 
732 	if (order >= MAX_ORDER - 1)
733 		return false;
734 
735 	higher_page_pfn = buddy_pfn & pfn;
736 	higher_page = page + (higher_page_pfn - pfn);
737 
738 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
739 			NULL) != NULL;
740 }
741 
742 /*
743  * Freeing function for a buddy system allocator.
744  *
745  * The concept of a buddy system is to maintain direct-mapped table
746  * (containing bit values) for memory blocks of various "orders".
747  * The bottom level table contains the map for the smallest allocatable
748  * units of memory (here, pages), and each level above it describes
749  * pairs of units from the levels below, hence, "buddies".
750  * At a high level, all that happens here is marking the table entry
751  * at the bottom level available, and propagating the changes upward
752  * as necessary, plus some accounting needed to play nicely with other
753  * parts of the VM system.
754  * At each level, we keep a list of pages, which are heads of continuous
755  * free pages of length of (1 << order) and marked with PageBuddy.
756  * Page's order is recorded in page_private(page) field.
757  * So when we are allocating or freeing one, we can derive the state of the
758  * other.  That is, if we allocate a small block, and both were
759  * free, the remainder of the region must be split into blocks.
760  * If a block is freed, and its buddy is also free, then this
761  * triggers coalescing into a block of larger size.
762  *
763  * -- nyc
764  */
765 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)766 static inline void __free_one_page(struct page *page,
767 		unsigned long pfn,
768 		struct zone *zone, unsigned int order,
769 		int migratetype, fpi_t fpi_flags)
770 {
771 	struct capture_control *capc = task_capc(zone);
772 	unsigned long buddy_pfn = 0;
773 	unsigned long combined_pfn;
774 	struct page *buddy;
775 	bool to_tail;
776 
777 	VM_BUG_ON(!zone_is_initialized(zone));
778 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
779 
780 	VM_BUG_ON(migratetype == -1);
781 	if (likely(!is_migrate_isolate(migratetype)))
782 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
783 
784 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
785 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
786 
787 	while (order < MAX_ORDER) {
788 		if (compaction_capture(capc, page, order, migratetype)) {
789 			__mod_zone_freepage_state(zone, -(1 << order),
790 								migratetype);
791 			return;
792 		}
793 
794 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
795 		if (!buddy)
796 			goto done_merging;
797 
798 		if (unlikely(order >= pageblock_order)) {
799 			/*
800 			 * We want to prevent merge between freepages on pageblock
801 			 * without fallbacks and normal pageblock. Without this,
802 			 * pageblock isolation could cause incorrect freepage or CMA
803 			 * accounting or HIGHATOMIC accounting.
804 			 */
805 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
806 
807 			if (migratetype != buddy_mt
808 					&& (!migratetype_is_mergeable(migratetype) ||
809 						!migratetype_is_mergeable(buddy_mt)))
810 				goto done_merging;
811 		}
812 
813 		/*
814 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 		 * merge with it and move up one order.
816 		 */
817 		if (page_is_guard(buddy))
818 			clear_page_guard(zone, buddy, order, migratetype);
819 		else
820 			del_page_from_free_list(buddy, zone, order);
821 		combined_pfn = buddy_pfn & pfn;
822 		page = page + (combined_pfn - pfn);
823 		pfn = combined_pfn;
824 		order++;
825 	}
826 
827 done_merging:
828 	set_buddy_order(page, order);
829 
830 	if (fpi_flags & FPI_TO_TAIL)
831 		to_tail = true;
832 	else if (is_shuffle_order(order))
833 		to_tail = shuffle_pick_tail();
834 	else
835 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
836 
837 	if (to_tail)
838 		add_to_free_list_tail(page, zone, order, migratetype);
839 	else
840 		add_to_free_list(page, zone, order, migratetype);
841 
842 	/* Notify page reporting subsystem of freed page */
843 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
844 		page_reporting_notify_free(order);
845 }
846 
847 /**
848  * split_free_page() -- split a free page at split_pfn_offset
849  * @free_page:		the original free page
850  * @order:		the order of the page
851  * @split_pfn_offset:	split offset within the page
852  *
853  * Return -ENOENT if the free page is changed, otherwise 0
854  *
855  * It is used when the free page crosses two pageblocks with different migratetypes
856  * at split_pfn_offset within the page. The split free page will be put into
857  * separate migratetype lists afterwards. Otherwise, the function achieves
858  * nothing.
859  */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)860 int split_free_page(struct page *free_page,
861 			unsigned int order, unsigned long split_pfn_offset)
862 {
863 	struct zone *zone = page_zone(free_page);
864 	unsigned long free_page_pfn = page_to_pfn(free_page);
865 	unsigned long pfn;
866 	unsigned long flags;
867 	int free_page_order;
868 	int mt;
869 	int ret = 0;
870 
871 	if (split_pfn_offset == 0)
872 		return ret;
873 
874 	spin_lock_irqsave(&zone->lock, flags);
875 
876 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
877 		ret = -ENOENT;
878 		goto out;
879 	}
880 
881 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
882 	if (likely(!is_migrate_isolate(mt)))
883 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
884 
885 	del_page_from_free_list(free_page, zone, order);
886 	for (pfn = free_page_pfn;
887 	     pfn < free_page_pfn + (1UL << order);) {
888 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
889 
890 		free_page_order = min_t(unsigned int,
891 					pfn ? __ffs(pfn) : order,
892 					__fls(split_pfn_offset));
893 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
894 				mt, FPI_NONE);
895 		pfn += 1UL << free_page_order;
896 		split_pfn_offset -= (1UL << free_page_order);
897 		/* we have done the first part, now switch to second part */
898 		if (split_pfn_offset == 0)
899 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
900 	}
901 out:
902 	spin_unlock_irqrestore(&zone->lock, flags);
903 	return ret;
904 }
905 /*
906  * A bad page could be due to a number of fields. Instead of multiple branches,
907  * try and check multiple fields with one check. The caller must do a detailed
908  * check if necessary.
909  */
page_expected_state(struct page * page,unsigned long check_flags)910 static inline bool page_expected_state(struct page *page,
911 					unsigned long check_flags)
912 {
913 	if (unlikely(atomic_read(&page->_mapcount) != -1))
914 		return false;
915 
916 	if (unlikely((unsigned long)page->mapping |
917 			page_ref_count(page) |
918 #ifdef CONFIG_MEMCG
919 			page->memcg_data |
920 #endif
921 			(page->flags & check_flags)))
922 		return false;
923 
924 	return true;
925 }
926 
page_bad_reason(struct page * page,unsigned long flags)927 static const char *page_bad_reason(struct page *page, unsigned long flags)
928 {
929 	const char *bad_reason = NULL;
930 
931 	if (unlikely(atomic_read(&page->_mapcount) != -1))
932 		bad_reason = "nonzero mapcount";
933 	if (unlikely(page->mapping != NULL))
934 		bad_reason = "non-NULL mapping";
935 	if (unlikely(page_ref_count(page) != 0))
936 		bad_reason = "nonzero _refcount";
937 	if (unlikely(page->flags & flags)) {
938 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
939 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
940 		else
941 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
942 	}
943 #ifdef CONFIG_MEMCG
944 	if (unlikely(page->memcg_data))
945 		bad_reason = "page still charged to cgroup";
946 #endif
947 	return bad_reason;
948 }
949 
free_page_is_bad_report(struct page * page)950 static void free_page_is_bad_report(struct page *page)
951 {
952 	bad_page(page,
953 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
954 }
955 
free_page_is_bad(struct page * page)956 static inline bool free_page_is_bad(struct page *page)
957 {
958 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
959 		return false;
960 
961 	/* Something has gone sideways, find it */
962 	free_page_is_bad_report(page);
963 	return true;
964 }
965 
is_check_pages_enabled(void)966 static inline bool is_check_pages_enabled(void)
967 {
968 	return static_branch_unlikely(&check_pages_enabled);
969 }
970 
free_tail_page_prepare(struct page * head_page,struct page * page)971 static int free_tail_page_prepare(struct page *head_page, struct page *page)
972 {
973 	struct folio *folio = (struct folio *)head_page;
974 	int ret = 1;
975 
976 	/*
977 	 * We rely page->lru.next never has bit 0 set, unless the page
978 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 	 */
980 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981 
982 	if (!is_check_pages_enabled()) {
983 		ret = 0;
984 		goto out;
985 	}
986 	switch (page - head_page) {
987 	case 1:
988 		/* the first tail page: these may be in place of ->mapping */
989 		if (unlikely(folio_entire_mapcount(folio))) {
990 			bad_page(page, "nonzero entire_mapcount");
991 			goto out;
992 		}
993 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
994 			bad_page(page, "nonzero nr_pages_mapped");
995 			goto out;
996 		}
997 		if (unlikely(atomic_read(&folio->_pincount))) {
998 			bad_page(page, "nonzero pincount");
999 			goto out;
1000 		}
1001 		break;
1002 	case 2:
1003 		/* the second tail page: deferred_list overlaps ->mapping */
1004 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1005 			bad_page(page, "on deferred list");
1006 			goto out;
1007 		}
1008 		break;
1009 	default:
1010 		if (page->mapping != TAIL_MAPPING) {
1011 			bad_page(page, "corrupted mapping in tail page");
1012 			goto out;
1013 		}
1014 		break;
1015 	}
1016 	if (unlikely(!PageTail(page))) {
1017 		bad_page(page, "PageTail not set");
1018 		goto out;
1019 	}
1020 	if (unlikely(compound_head(page) != head_page)) {
1021 		bad_page(page, "compound_head not consistent");
1022 		goto out;
1023 	}
1024 	ret = 0;
1025 out:
1026 	page->mapping = NULL;
1027 	clear_compound_head(page);
1028 	return ret;
1029 }
1030 
1031 /*
1032  * Skip KASAN memory poisoning when either:
1033  *
1034  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1035  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1036  *    using page tags instead (see below).
1037  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1038  *    that error detection is disabled for accesses via the page address.
1039  *
1040  * Pages will have match-all tags in the following circumstances:
1041  *
1042  * 1. Pages are being initialized for the first time, including during deferred
1043  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1044  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1045  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1046  * 3. The allocation was excluded from being checked due to sampling,
1047  *    see the call to kasan_unpoison_pages.
1048  *
1049  * Poisoning pages during deferred memory init will greatly lengthen the
1050  * process and cause problem in large memory systems as the deferred pages
1051  * initialization is done with interrupt disabled.
1052  *
1053  * Assuming that there will be no reference to those newly initialized
1054  * pages before they are ever allocated, this should have no effect on
1055  * KASAN memory tracking as the poison will be properly inserted at page
1056  * allocation time. The only corner case is when pages are allocated by
1057  * on-demand allocation and then freed again before the deferred pages
1058  * initialization is done, but this is not likely to happen.
1059  */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1060 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1061 {
1062 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1063 		return deferred_pages_enabled();
1064 
1065 	return page_kasan_tag(page) == 0xff;
1066 }
1067 
kernel_init_pages(struct page * page,int numpages)1068 static void kernel_init_pages(struct page *page, int numpages)
1069 {
1070 	int i;
1071 
1072 	/* s390's use of memset() could override KASAN redzones. */
1073 	kasan_disable_current();
1074 	for (i = 0; i < numpages; i++)
1075 		clear_highpage_kasan_tagged(page + i);
1076 	kasan_enable_current();
1077 }
1078 
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1079 static __always_inline bool free_pages_prepare(struct page *page,
1080 			unsigned int order, fpi_t fpi_flags)
1081 {
1082 	int bad = 0;
1083 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1084 	bool init = want_init_on_free();
1085 	struct folio *folio = page_folio(page);
1086 
1087 	VM_BUG_ON_PAGE(PageTail(page), page);
1088 
1089 	trace_mm_page_free(page, order);
1090 	kmsan_free_page(page, order);
1091 
1092 	/*
1093 	 * In rare cases, when truncation or holepunching raced with
1094 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1095 	 * found set here.  This does not indicate a problem, unless
1096 	 * "unevictable_pgs_cleared" appears worryingly large.
1097 	 */
1098 	if (unlikely(folio_test_mlocked(folio))) {
1099 		long nr_pages = folio_nr_pages(folio);
1100 
1101 		__folio_clear_mlocked(folio);
1102 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1103 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1104 	}
1105 
1106 	if (unlikely(PageHWPoison(page)) && !order) {
1107 		/*
1108 		 * Do not let hwpoison pages hit pcplists/buddy
1109 		 * Untie memcg state and reset page's owner
1110 		 */
1111 		if (memcg_kmem_online() && PageMemcgKmem(page))
1112 			__memcg_kmem_uncharge_page(page, order);
1113 		reset_page_owner(page, order);
1114 		page_table_check_free(page, order);
1115 		return false;
1116 	}
1117 
1118 	/*
1119 	 * Check tail pages before head page information is cleared to
1120 	 * avoid checking PageCompound for order-0 pages.
1121 	 */
1122 	if (unlikely(order)) {
1123 		bool compound = PageCompound(page);
1124 		int i;
1125 
1126 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1127 
1128 		if (compound)
1129 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1130 		for (i = 1; i < (1 << order); i++) {
1131 			if (compound)
1132 				bad += free_tail_page_prepare(page, page + i);
1133 			if (is_check_pages_enabled()) {
1134 				if (free_page_is_bad(page + i)) {
1135 					bad++;
1136 					continue;
1137 				}
1138 			}
1139 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1140 		}
1141 	}
1142 	if (PageMappingFlags(page))
1143 		page->mapping = NULL;
1144 	if (memcg_kmem_online() && PageMemcgKmem(page))
1145 		__memcg_kmem_uncharge_page(page, order);
1146 	if (is_check_pages_enabled()) {
1147 		if (free_page_is_bad(page))
1148 			bad++;
1149 		if (bad)
1150 			return false;
1151 	}
1152 
1153 	page_cpupid_reset_last(page);
1154 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1155 	reset_page_owner(page, order);
1156 	page_table_check_free(page, order);
1157 
1158 	if (!PageHighMem(page)) {
1159 		debug_check_no_locks_freed(page_address(page),
1160 					   PAGE_SIZE << order);
1161 		debug_check_no_obj_freed(page_address(page),
1162 					   PAGE_SIZE << order);
1163 	}
1164 
1165 	kernel_poison_pages(page, 1 << order);
1166 
1167 	/*
1168 	 * As memory initialization might be integrated into KASAN,
1169 	 * KASAN poisoning and memory initialization code must be
1170 	 * kept together to avoid discrepancies in behavior.
1171 	 *
1172 	 * With hardware tag-based KASAN, memory tags must be set before the
1173 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1174 	 */
1175 	if (!skip_kasan_poison) {
1176 		kasan_poison_pages(page, order, init);
1177 
1178 		/* Memory is already initialized if KASAN did it internally. */
1179 		if (kasan_has_integrated_init())
1180 			init = false;
1181 	}
1182 	if (init)
1183 		kernel_init_pages(page, 1 << order);
1184 
1185 	/*
1186 	 * arch_free_page() can make the page's contents inaccessible.  s390
1187 	 * does this.  So nothing which can access the page's contents should
1188 	 * happen after this.
1189 	 */
1190 	arch_free_page(page, order);
1191 
1192 	debug_pagealloc_unmap_pages(page, 1 << order);
1193 
1194 	return true;
1195 }
1196 
1197 /*
1198  * Frees a number of pages from the PCP lists
1199  * Assumes all pages on list are in same zone.
1200  * count is the number of pages to free.
1201  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1202 static void free_pcppages_bulk(struct zone *zone, int count,
1203 					struct per_cpu_pages *pcp,
1204 					int pindex)
1205 {
1206 	unsigned long flags;
1207 	unsigned int order;
1208 	bool isolated_pageblocks;
1209 	struct page *page;
1210 
1211 	/*
1212 	 * Ensure proper count is passed which otherwise would stuck in the
1213 	 * below while (list_empty(list)) loop.
1214 	 */
1215 	count = min(pcp->count, count);
1216 
1217 	/* Ensure requested pindex is drained first. */
1218 	pindex = pindex - 1;
1219 
1220 	spin_lock_irqsave(&zone->lock, flags);
1221 	isolated_pageblocks = has_isolate_pageblock(zone);
1222 
1223 	while (count > 0) {
1224 		struct list_head *list;
1225 		int nr_pages;
1226 
1227 		/* Remove pages from lists in a round-robin fashion. */
1228 		do {
1229 			if (++pindex > NR_PCP_LISTS - 1)
1230 				pindex = 0;
1231 			list = &pcp->lists[pindex];
1232 		} while (list_empty(list));
1233 
1234 		order = pindex_to_order(pindex);
1235 		nr_pages = 1 << order;
1236 		do {
1237 			int mt;
1238 
1239 			page = list_last_entry(list, struct page, pcp_list);
1240 			mt = get_pcppage_migratetype(page);
1241 
1242 			/* must delete to avoid corrupting pcp list */
1243 			list_del(&page->pcp_list);
1244 			count -= nr_pages;
1245 			pcp->count -= nr_pages;
1246 
1247 			/* MIGRATE_ISOLATE page should not go to pcplists */
1248 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1249 			/* Pageblock could have been isolated meanwhile */
1250 			if (unlikely(isolated_pageblocks))
1251 				mt = get_pageblock_migratetype(page);
1252 
1253 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1254 			trace_mm_page_pcpu_drain(page, order, mt);
1255 		} while (count > 0 && !list_empty(list));
1256 	}
1257 
1258 	spin_unlock_irqrestore(&zone->lock, flags);
1259 }
1260 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1261 static void free_one_page(struct zone *zone,
1262 				struct page *page, unsigned long pfn,
1263 				unsigned int order,
1264 				int migratetype, fpi_t fpi_flags)
1265 {
1266 	unsigned long flags;
1267 
1268 	spin_lock_irqsave(&zone->lock, flags);
1269 	if (unlikely(has_isolate_pageblock(zone) ||
1270 		is_migrate_isolate(migratetype))) {
1271 		migratetype = get_pfnblock_migratetype(page, pfn);
1272 	}
1273 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1274 	spin_unlock_irqrestore(&zone->lock, flags);
1275 }
1276 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1277 static void __free_pages_ok(struct page *page, unsigned int order,
1278 			    fpi_t fpi_flags)
1279 {
1280 	unsigned long flags;
1281 	int migratetype;
1282 	unsigned long pfn = page_to_pfn(page);
1283 	struct zone *zone = page_zone(page);
1284 
1285 	if (!free_pages_prepare(page, order, fpi_flags))
1286 		return;
1287 
1288 	/*
1289 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1290 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1291 	 * This will reduce the lock holding time.
1292 	 */
1293 	migratetype = get_pfnblock_migratetype(page, pfn);
1294 
1295 	spin_lock_irqsave(&zone->lock, flags);
1296 	if (unlikely(has_isolate_pageblock(zone) ||
1297 		is_migrate_isolate(migratetype))) {
1298 		migratetype = get_pfnblock_migratetype(page, pfn);
1299 	}
1300 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1301 	spin_unlock_irqrestore(&zone->lock, flags);
1302 
1303 	__count_vm_events(PGFREE, 1 << order);
1304 }
1305 
__free_pages_core(struct page * page,unsigned int order)1306 void __free_pages_core(struct page *page, unsigned int order)
1307 {
1308 	unsigned int nr_pages = 1 << order;
1309 	struct page *p = page;
1310 	unsigned int loop;
1311 
1312 	/*
1313 	 * When initializing the memmap, __init_single_page() sets the refcount
1314 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1315 	 * refcount of all involved pages to 0.
1316 	 */
1317 	prefetchw(p);
1318 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1319 		prefetchw(p + 1);
1320 		__ClearPageReserved(p);
1321 		set_page_count(p, 0);
1322 	}
1323 	__ClearPageReserved(p);
1324 	set_page_count(p, 0);
1325 
1326 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1327 
1328 	if (page_contains_unaccepted(page, order)) {
1329 		if (order == MAX_ORDER && __free_unaccepted(page))
1330 			return;
1331 
1332 		accept_page(page, order);
1333 	}
1334 
1335 	/*
1336 	 * Bypass PCP and place fresh pages right to the tail, primarily
1337 	 * relevant for memory onlining.
1338 	 */
1339 	__free_pages_ok(page, order, FPI_TO_TAIL);
1340 }
1341 
1342 /*
1343  * Check that the whole (or subset of) a pageblock given by the interval of
1344  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1345  * with the migration of free compaction scanner.
1346  *
1347  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348  *
1349  * It's possible on some configurations to have a setup like node0 node1 node0
1350  * i.e. it's possible that all pages within a zones range of pages do not
1351  * belong to a single zone. We assume that a border between node0 and node1
1352  * can occur within a single pageblock, but not a node0 node1 node0
1353  * interleaving within a single pageblock. It is therefore sufficient to check
1354  * the first and last page of a pageblock and avoid checking each individual
1355  * page in a pageblock.
1356  *
1357  * Note: the function may return non-NULL struct page even for a page block
1358  * which contains a memory hole (i.e. there is no physical memory for a subset
1359  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1360  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1361  * even though the start pfn is online and valid. This should be safe most of
1362  * the time because struct pages are still initialized via init_unavailable_range()
1363  * and pfn walkers shouldn't touch any physical memory range for which they do
1364  * not recognize any specific metadata in struct pages.
1365  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1366 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1367 				     unsigned long end_pfn, struct zone *zone)
1368 {
1369 	struct page *start_page;
1370 	struct page *end_page;
1371 
1372 	/* end_pfn is one past the range we are checking */
1373 	end_pfn--;
1374 
1375 	if (!pfn_valid(end_pfn))
1376 		return NULL;
1377 
1378 	start_page = pfn_to_online_page(start_pfn);
1379 	if (!start_page)
1380 		return NULL;
1381 
1382 	if (page_zone(start_page) != zone)
1383 		return NULL;
1384 
1385 	end_page = pfn_to_page(end_pfn);
1386 
1387 	/* This gives a shorter code than deriving page_zone(end_page) */
1388 	if (page_zone_id(start_page) != page_zone_id(end_page))
1389 		return NULL;
1390 
1391 	return start_page;
1392 }
1393 
1394 /*
1395  * The order of subdivision here is critical for the IO subsystem.
1396  * Please do not alter this order without good reasons and regression
1397  * testing. Specifically, as large blocks of memory are subdivided,
1398  * the order in which smaller blocks are delivered depends on the order
1399  * they're subdivided in this function. This is the primary factor
1400  * influencing the order in which pages are delivered to the IO
1401  * subsystem according to empirical testing, and this is also justified
1402  * by considering the behavior of a buddy system containing a single
1403  * large block of memory acted on by a series of small allocations.
1404  * This behavior is a critical factor in sglist merging's success.
1405  *
1406  * -- nyc
1407  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1408 static inline void expand(struct zone *zone, struct page *page,
1409 	int low, int high, int migratetype)
1410 {
1411 	unsigned long size = 1 << high;
1412 
1413 	while (high > low) {
1414 		high--;
1415 		size >>= 1;
1416 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1417 
1418 		/*
1419 		 * Mark as guard pages (or page), that will allow to
1420 		 * merge back to allocator when buddy will be freed.
1421 		 * Corresponding page table entries will not be touched,
1422 		 * pages will stay not present in virtual address space
1423 		 */
1424 		if (set_page_guard(zone, &page[size], high, migratetype))
1425 			continue;
1426 
1427 		add_to_free_list(&page[size], zone, high, migratetype);
1428 		set_buddy_order(&page[size], high);
1429 	}
1430 }
1431 
check_new_page_bad(struct page * page)1432 static void check_new_page_bad(struct page *page)
1433 {
1434 	if (unlikely(page->flags & __PG_HWPOISON)) {
1435 		/* Don't complain about hwpoisoned pages */
1436 		page_mapcount_reset(page); /* remove PageBuddy */
1437 		return;
1438 	}
1439 
1440 	bad_page(page,
1441 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1442 }
1443 
1444 /*
1445  * This page is about to be returned from the page allocator
1446  */
check_new_page(struct page * page)1447 static int check_new_page(struct page *page)
1448 {
1449 	if (likely(page_expected_state(page,
1450 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1451 		return 0;
1452 
1453 	check_new_page_bad(page);
1454 	return 1;
1455 }
1456 
check_new_pages(struct page * page,unsigned int order)1457 static inline bool check_new_pages(struct page *page, unsigned int order)
1458 {
1459 	if (is_check_pages_enabled()) {
1460 		for (int i = 0; i < (1 << order); i++) {
1461 			struct page *p = page + i;
1462 
1463 			if (check_new_page(p))
1464 				return true;
1465 		}
1466 	}
1467 
1468 	return false;
1469 }
1470 
should_skip_kasan_unpoison(gfp_t flags)1471 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1472 {
1473 	/* Don't skip if a software KASAN mode is enabled. */
1474 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1475 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1476 		return false;
1477 
1478 	/* Skip, if hardware tag-based KASAN is not enabled. */
1479 	if (!kasan_hw_tags_enabled())
1480 		return true;
1481 
1482 	/*
1483 	 * With hardware tag-based KASAN enabled, skip if this has been
1484 	 * requested via __GFP_SKIP_KASAN.
1485 	 */
1486 	return flags & __GFP_SKIP_KASAN;
1487 }
1488 
should_skip_init(gfp_t flags)1489 static inline bool should_skip_init(gfp_t flags)
1490 {
1491 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1492 	if (!kasan_hw_tags_enabled())
1493 		return false;
1494 
1495 	/* For hardware tag-based KASAN, skip if requested. */
1496 	return (flags & __GFP_SKIP_ZERO);
1497 }
1498 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1499 inline void post_alloc_hook(struct page *page, unsigned int order,
1500 				gfp_t gfp_flags)
1501 {
1502 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1503 			!should_skip_init(gfp_flags);
1504 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1505 	int i;
1506 
1507 	set_page_private(page, 0);
1508 	set_page_refcounted(page);
1509 
1510 	arch_alloc_page(page, order);
1511 	debug_pagealloc_map_pages(page, 1 << order);
1512 
1513 	/*
1514 	 * Page unpoisoning must happen before memory initialization.
1515 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1516 	 * allocations and the page unpoisoning code will complain.
1517 	 */
1518 	kernel_unpoison_pages(page, 1 << order);
1519 
1520 	/*
1521 	 * As memory initialization might be integrated into KASAN,
1522 	 * KASAN unpoisoning and memory initializion code must be
1523 	 * kept together to avoid discrepancies in behavior.
1524 	 */
1525 
1526 	/*
1527 	 * If memory tags should be zeroed
1528 	 * (which happens only when memory should be initialized as well).
1529 	 */
1530 	if (zero_tags) {
1531 		/* Initialize both memory and memory tags. */
1532 		for (i = 0; i != 1 << order; ++i)
1533 			tag_clear_highpage(page + i);
1534 
1535 		/* Take note that memory was initialized by the loop above. */
1536 		init = false;
1537 	}
1538 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1539 	    kasan_unpoison_pages(page, order, init)) {
1540 		/* Take note that memory was initialized by KASAN. */
1541 		if (kasan_has_integrated_init())
1542 			init = false;
1543 	} else {
1544 		/*
1545 		 * If memory tags have not been set by KASAN, reset the page
1546 		 * tags to ensure page_address() dereferencing does not fault.
1547 		 */
1548 		for (i = 0; i != 1 << order; ++i)
1549 			page_kasan_tag_reset(page + i);
1550 	}
1551 	/* If memory is still not initialized, initialize it now. */
1552 	if (init)
1553 		kernel_init_pages(page, 1 << order);
1554 
1555 	set_page_owner(page, order, gfp_flags);
1556 	page_table_check_alloc(page, order);
1557 }
1558 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1559 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1560 							unsigned int alloc_flags)
1561 {
1562 	post_alloc_hook(page, order, gfp_flags);
1563 
1564 	if (order && (gfp_flags & __GFP_COMP))
1565 		prep_compound_page(page, order);
1566 
1567 	/*
1568 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1569 	 * allocate the page. The expectation is that the caller is taking
1570 	 * steps that will free more memory. The caller should avoid the page
1571 	 * being used for !PFMEMALLOC purposes.
1572 	 */
1573 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1574 		set_page_pfmemalloc(page);
1575 	else
1576 		clear_page_pfmemalloc(page);
1577 }
1578 
1579 /*
1580  * Go through the free lists for the given migratetype and remove
1581  * the smallest available page from the freelists
1582  */
1583 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1584 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1585 						int migratetype)
1586 {
1587 	unsigned int current_order;
1588 	struct free_area *area;
1589 	struct page *page;
1590 
1591 	/* Find a page of the appropriate size in the preferred list */
1592 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1593 		area = &(zone->free_area[current_order]);
1594 		page = get_page_from_free_area(area, migratetype);
1595 		if (!page)
1596 			continue;
1597 		del_page_from_free_list(page, zone, current_order);
1598 		expand(zone, page, order, current_order, migratetype);
1599 		set_pcppage_migratetype(page, migratetype);
1600 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1601 				pcp_allowed_order(order) &&
1602 				migratetype < MIGRATE_PCPTYPES);
1603 		return page;
1604 	}
1605 
1606 	return NULL;
1607 }
1608 
1609 
1610 /*
1611  * This array describes the order lists are fallen back to when
1612  * the free lists for the desirable migrate type are depleted
1613  *
1614  * The other migratetypes do not have fallbacks.
1615  */
1616 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1617 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1618 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1619 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1620 };
1621 
1622 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1623 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1624 					unsigned int order)
1625 {
1626 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1627 }
1628 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1629 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1630 					unsigned int order) { return NULL; }
1631 #endif
1632 
1633 /*
1634  * Move the free pages in a range to the freelist tail of the requested type.
1635  * Note that start_page and end_pages are not aligned on a pageblock
1636  * boundary. If alignment is required, use move_freepages_block()
1637  */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1638 static int move_freepages(struct zone *zone,
1639 			  unsigned long start_pfn, unsigned long end_pfn,
1640 			  int migratetype, int *num_movable)
1641 {
1642 	struct page *page;
1643 	unsigned long pfn;
1644 	unsigned int order;
1645 	int pages_moved = 0;
1646 
1647 	for (pfn = start_pfn; pfn <= end_pfn;) {
1648 		page = pfn_to_page(pfn);
1649 		if (!PageBuddy(page)) {
1650 			/*
1651 			 * We assume that pages that could be isolated for
1652 			 * migration are movable. But we don't actually try
1653 			 * isolating, as that would be expensive.
1654 			 */
1655 			if (num_movable &&
1656 					(PageLRU(page) || __PageMovable(page)))
1657 				(*num_movable)++;
1658 			pfn++;
1659 			continue;
1660 		}
1661 
1662 		/* Make sure we are not inadvertently changing nodes */
1663 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1664 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1665 
1666 		order = buddy_order(page);
1667 		move_to_free_list(page, zone, order, migratetype);
1668 		pfn += 1 << order;
1669 		pages_moved += 1 << order;
1670 	}
1671 
1672 	return pages_moved;
1673 }
1674 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1675 int move_freepages_block(struct zone *zone, struct page *page,
1676 				int migratetype, int *num_movable)
1677 {
1678 	unsigned long start_pfn, end_pfn, pfn;
1679 
1680 	if (num_movable)
1681 		*num_movable = 0;
1682 
1683 	pfn = page_to_pfn(page);
1684 	start_pfn = pageblock_start_pfn(pfn);
1685 	end_pfn = pageblock_end_pfn(pfn) - 1;
1686 
1687 	/* Do not cross zone boundaries */
1688 	if (!zone_spans_pfn(zone, start_pfn))
1689 		start_pfn = pfn;
1690 	if (!zone_spans_pfn(zone, end_pfn))
1691 		return 0;
1692 
1693 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1694 								num_movable);
1695 }
1696 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1697 static void change_pageblock_range(struct page *pageblock_page,
1698 					int start_order, int migratetype)
1699 {
1700 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1701 
1702 	while (nr_pageblocks--) {
1703 		set_pageblock_migratetype(pageblock_page, migratetype);
1704 		pageblock_page += pageblock_nr_pages;
1705 	}
1706 }
1707 
1708 /*
1709  * When we are falling back to another migratetype during allocation, try to
1710  * steal extra free pages from the same pageblocks to satisfy further
1711  * allocations, instead of polluting multiple pageblocks.
1712  *
1713  * If we are stealing a relatively large buddy page, it is likely there will
1714  * be more free pages in the pageblock, so try to steal them all. For
1715  * reclaimable and unmovable allocations, we steal regardless of page size,
1716  * as fragmentation caused by those allocations polluting movable pageblocks
1717  * is worse than movable allocations stealing from unmovable and reclaimable
1718  * pageblocks.
1719  */
can_steal_fallback(unsigned int order,int start_mt)1720 static bool can_steal_fallback(unsigned int order, int start_mt)
1721 {
1722 	/*
1723 	 * Leaving this order check is intended, although there is
1724 	 * relaxed order check in next check. The reason is that
1725 	 * we can actually steal whole pageblock if this condition met,
1726 	 * but, below check doesn't guarantee it and that is just heuristic
1727 	 * so could be changed anytime.
1728 	 */
1729 	if (order >= pageblock_order)
1730 		return true;
1731 
1732 	if (order >= pageblock_order / 2 ||
1733 		start_mt == MIGRATE_RECLAIMABLE ||
1734 		start_mt == MIGRATE_UNMOVABLE ||
1735 		page_group_by_mobility_disabled)
1736 		return true;
1737 
1738 	return false;
1739 }
1740 
boost_watermark(struct zone * zone)1741 static inline bool boost_watermark(struct zone *zone)
1742 {
1743 	unsigned long max_boost;
1744 
1745 	if (!watermark_boost_factor)
1746 		return false;
1747 	/*
1748 	 * Don't bother in zones that are unlikely to produce results.
1749 	 * On small machines, including kdump capture kernels running
1750 	 * in a small area, boosting the watermark can cause an out of
1751 	 * memory situation immediately.
1752 	 */
1753 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1754 		return false;
1755 
1756 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1757 			watermark_boost_factor, 10000);
1758 
1759 	/*
1760 	 * high watermark may be uninitialised if fragmentation occurs
1761 	 * very early in boot so do not boost. We do not fall
1762 	 * through and boost by pageblock_nr_pages as failing
1763 	 * allocations that early means that reclaim is not going
1764 	 * to help and it may even be impossible to reclaim the
1765 	 * boosted watermark resulting in a hang.
1766 	 */
1767 	if (!max_boost)
1768 		return false;
1769 
1770 	max_boost = max(pageblock_nr_pages, max_boost);
1771 
1772 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1773 		max_boost);
1774 
1775 	return true;
1776 }
1777 
1778 /*
1779  * This function implements actual steal behaviour. If order is large enough,
1780  * we can steal whole pageblock. If not, we first move freepages in this
1781  * pageblock to our migratetype and determine how many already-allocated pages
1782  * are there in the pageblock with a compatible migratetype. If at least half
1783  * of pages are free or compatible, we can change migratetype of the pageblock
1784  * itself, so pages freed in the future will be put on the correct free list.
1785  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1786 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1787 		unsigned int alloc_flags, int start_type, bool whole_block)
1788 {
1789 	unsigned int current_order = buddy_order(page);
1790 	int free_pages, movable_pages, alike_pages;
1791 	int old_block_type;
1792 
1793 	old_block_type = get_pageblock_migratetype(page);
1794 
1795 	/*
1796 	 * This can happen due to races and we want to prevent broken
1797 	 * highatomic accounting.
1798 	 */
1799 	if (is_migrate_highatomic(old_block_type))
1800 		goto single_page;
1801 
1802 	/* Take ownership for orders >= pageblock_order */
1803 	if (current_order >= pageblock_order) {
1804 		change_pageblock_range(page, current_order, start_type);
1805 		goto single_page;
1806 	}
1807 
1808 	/*
1809 	 * Boost watermarks to increase reclaim pressure to reduce the
1810 	 * likelihood of future fallbacks. Wake kswapd now as the node
1811 	 * may be balanced overall and kswapd will not wake naturally.
1812 	 */
1813 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1814 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1815 
1816 	/* We are not allowed to try stealing from the whole block */
1817 	if (!whole_block)
1818 		goto single_page;
1819 
1820 	free_pages = move_freepages_block(zone, page, start_type,
1821 						&movable_pages);
1822 	/* moving whole block can fail due to zone boundary conditions */
1823 	if (!free_pages)
1824 		goto single_page;
1825 
1826 	/*
1827 	 * Determine how many pages are compatible with our allocation.
1828 	 * For movable allocation, it's the number of movable pages which
1829 	 * we just obtained. For other types it's a bit more tricky.
1830 	 */
1831 	if (start_type == MIGRATE_MOVABLE) {
1832 		alike_pages = movable_pages;
1833 	} else {
1834 		/*
1835 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1836 		 * to MOVABLE pageblock, consider all non-movable pages as
1837 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1838 		 * vice versa, be conservative since we can't distinguish the
1839 		 * exact migratetype of non-movable pages.
1840 		 */
1841 		if (old_block_type == MIGRATE_MOVABLE)
1842 			alike_pages = pageblock_nr_pages
1843 						- (free_pages + movable_pages);
1844 		else
1845 			alike_pages = 0;
1846 	}
1847 	/*
1848 	 * If a sufficient number of pages in the block are either free or of
1849 	 * compatible migratability as our allocation, claim the whole block.
1850 	 */
1851 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1852 			page_group_by_mobility_disabled)
1853 		set_pageblock_migratetype(page, start_type);
1854 
1855 	return;
1856 
1857 single_page:
1858 	move_to_free_list(page, zone, current_order, start_type);
1859 }
1860 
1861 /*
1862  * Check whether there is a suitable fallback freepage with requested order.
1863  * If only_stealable is true, this function returns fallback_mt only if
1864  * we can steal other freepages all together. This would help to reduce
1865  * fragmentation due to mixed migratetype pages in one pageblock.
1866  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1867 int find_suitable_fallback(struct free_area *area, unsigned int order,
1868 			int migratetype, bool only_stealable, bool *can_steal)
1869 {
1870 	int i;
1871 	int fallback_mt;
1872 
1873 	if (area->nr_free == 0)
1874 		return -1;
1875 
1876 	*can_steal = false;
1877 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1878 		fallback_mt = fallbacks[migratetype][i];
1879 		if (free_area_empty(area, fallback_mt))
1880 			continue;
1881 
1882 		if (can_steal_fallback(order, migratetype))
1883 			*can_steal = true;
1884 
1885 		if (!only_stealable)
1886 			return fallback_mt;
1887 
1888 		if (*can_steal)
1889 			return fallback_mt;
1890 	}
1891 
1892 	return -1;
1893 }
1894 
1895 /*
1896  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1897  * there are no empty page blocks that contain a page with a suitable order
1898  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)1899 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1900 {
1901 	int mt;
1902 	unsigned long max_managed, flags;
1903 
1904 	/*
1905 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1906 	 * Check is race-prone but harmless.
1907 	 */
1908 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1909 	if (zone->nr_reserved_highatomic >= max_managed)
1910 		return;
1911 
1912 	spin_lock_irqsave(&zone->lock, flags);
1913 
1914 	/* Recheck the nr_reserved_highatomic limit under the lock */
1915 	if (zone->nr_reserved_highatomic >= max_managed)
1916 		goto out_unlock;
1917 
1918 	/* Yoink! */
1919 	mt = get_pageblock_migratetype(page);
1920 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1921 	if (migratetype_is_mergeable(mt)) {
1922 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1923 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1924 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1925 	}
1926 
1927 out_unlock:
1928 	spin_unlock_irqrestore(&zone->lock, flags);
1929 }
1930 
1931 /*
1932  * Used when an allocation is about to fail under memory pressure. This
1933  * potentially hurts the reliability of high-order allocations when under
1934  * intense memory pressure but failed atomic allocations should be easier
1935  * to recover from than an OOM.
1936  *
1937  * If @force is true, try to unreserve a pageblock even though highatomic
1938  * pageblock is exhausted.
1939  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)1940 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1941 						bool force)
1942 {
1943 	struct zonelist *zonelist = ac->zonelist;
1944 	unsigned long flags;
1945 	struct zoneref *z;
1946 	struct zone *zone;
1947 	struct page *page;
1948 	int order;
1949 	bool ret;
1950 
1951 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1952 								ac->nodemask) {
1953 		/*
1954 		 * Preserve at least one pageblock unless memory pressure
1955 		 * is really high.
1956 		 */
1957 		if (!force && zone->nr_reserved_highatomic <=
1958 					pageblock_nr_pages)
1959 			continue;
1960 
1961 		spin_lock_irqsave(&zone->lock, flags);
1962 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1963 			struct free_area *area = &(zone->free_area[order]);
1964 
1965 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1966 			if (!page)
1967 				continue;
1968 
1969 			/*
1970 			 * In page freeing path, migratetype change is racy so
1971 			 * we can counter several free pages in a pageblock
1972 			 * in this loop although we changed the pageblock type
1973 			 * from highatomic to ac->migratetype. So we should
1974 			 * adjust the count once.
1975 			 */
1976 			if (is_migrate_highatomic_page(page)) {
1977 				/*
1978 				 * It should never happen but changes to
1979 				 * locking could inadvertently allow a per-cpu
1980 				 * drain to add pages to MIGRATE_HIGHATOMIC
1981 				 * while unreserving so be safe and watch for
1982 				 * underflows.
1983 				 */
1984 				zone->nr_reserved_highatomic -= min(
1985 						pageblock_nr_pages,
1986 						zone->nr_reserved_highatomic);
1987 			}
1988 
1989 			/*
1990 			 * Convert to ac->migratetype and avoid the normal
1991 			 * pageblock stealing heuristics. Minimally, the caller
1992 			 * is doing the work and needs the pages. More
1993 			 * importantly, if the block was always converted to
1994 			 * MIGRATE_UNMOVABLE or another type then the number
1995 			 * of pageblocks that cannot be completely freed
1996 			 * may increase.
1997 			 */
1998 			set_pageblock_migratetype(page, ac->migratetype);
1999 			ret = move_freepages_block(zone, page, ac->migratetype,
2000 									NULL);
2001 			if (ret) {
2002 				spin_unlock_irqrestore(&zone->lock, flags);
2003 				return ret;
2004 			}
2005 		}
2006 		spin_unlock_irqrestore(&zone->lock, flags);
2007 	}
2008 
2009 	return false;
2010 }
2011 
2012 /*
2013  * Try finding a free buddy page on the fallback list and put it on the free
2014  * list of requested migratetype, possibly along with other pages from the same
2015  * block, depending on fragmentation avoidance heuristics. Returns true if
2016  * fallback was found so that __rmqueue_smallest() can grab it.
2017  *
2018  * The use of signed ints for order and current_order is a deliberate
2019  * deviation from the rest of this file, to make the for loop
2020  * condition simpler.
2021  */
2022 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2023 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2024 						unsigned int alloc_flags)
2025 {
2026 	struct free_area *area;
2027 	int current_order;
2028 	int min_order = order;
2029 	struct page *page;
2030 	int fallback_mt;
2031 	bool can_steal;
2032 
2033 	/*
2034 	 * Do not steal pages from freelists belonging to other pageblocks
2035 	 * i.e. orders < pageblock_order. If there are no local zones free,
2036 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2037 	 */
2038 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2039 		min_order = pageblock_order;
2040 
2041 	/*
2042 	 * Find the largest available free page in the other list. This roughly
2043 	 * approximates finding the pageblock with the most free pages, which
2044 	 * would be too costly to do exactly.
2045 	 */
2046 	for (current_order = MAX_ORDER; current_order >= min_order;
2047 				--current_order) {
2048 		area = &(zone->free_area[current_order]);
2049 		fallback_mt = find_suitable_fallback(area, current_order,
2050 				start_migratetype, false, &can_steal);
2051 		if (fallback_mt == -1)
2052 			continue;
2053 
2054 		/*
2055 		 * We cannot steal all free pages from the pageblock and the
2056 		 * requested migratetype is movable. In that case it's better to
2057 		 * steal and split the smallest available page instead of the
2058 		 * largest available page, because even if the next movable
2059 		 * allocation falls back into a different pageblock than this
2060 		 * one, it won't cause permanent fragmentation.
2061 		 */
2062 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2063 					&& current_order > order)
2064 			goto find_smallest;
2065 
2066 		goto do_steal;
2067 	}
2068 
2069 	return false;
2070 
2071 find_smallest:
2072 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2073 		area = &(zone->free_area[current_order]);
2074 		fallback_mt = find_suitable_fallback(area, current_order,
2075 				start_migratetype, false, &can_steal);
2076 		if (fallback_mt != -1)
2077 			break;
2078 	}
2079 
2080 	/*
2081 	 * This should not happen - we already found a suitable fallback
2082 	 * when looking for the largest page.
2083 	 */
2084 	VM_BUG_ON(current_order > MAX_ORDER);
2085 
2086 do_steal:
2087 	page = get_page_from_free_area(area, fallback_mt);
2088 
2089 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2090 								can_steal);
2091 
2092 	trace_mm_page_alloc_extfrag(page, order, current_order,
2093 		start_migratetype, fallback_mt);
2094 
2095 	return true;
2096 
2097 }
2098 
2099 /*
2100  * Do the hard work of removing an element from the buddy allocator.
2101  * Call me with the zone->lock already held.
2102  */
2103 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2104 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2105 						unsigned int alloc_flags)
2106 {
2107 	struct page *page;
2108 
2109 	if (IS_ENABLED(CONFIG_CMA)) {
2110 		/*
2111 		 * Balance movable allocations between regular and CMA areas by
2112 		 * allocating from CMA when over half of the zone's free memory
2113 		 * is in the CMA area.
2114 		 */
2115 		if (alloc_flags & ALLOC_CMA &&
2116 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2117 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2118 			page = __rmqueue_cma_fallback(zone, order);
2119 			if (page)
2120 				return page;
2121 		}
2122 	}
2123 retry:
2124 	page = __rmqueue_smallest(zone, order, migratetype);
2125 	if (unlikely(!page)) {
2126 		if (alloc_flags & ALLOC_CMA)
2127 			page = __rmqueue_cma_fallback(zone, order);
2128 
2129 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2130 								alloc_flags))
2131 			goto retry;
2132 	}
2133 	return page;
2134 }
2135 
2136 /*
2137  * Obtain a specified number of elements from the buddy allocator, all under
2138  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2139  * Returns the number of new pages which were placed at *list.
2140  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2141 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2142 			unsigned long count, struct list_head *list,
2143 			int migratetype, unsigned int alloc_flags)
2144 {
2145 	unsigned long flags;
2146 	int i;
2147 
2148 	spin_lock_irqsave(&zone->lock, flags);
2149 	for (i = 0; i < count; ++i) {
2150 		struct page *page = __rmqueue(zone, order, migratetype,
2151 								alloc_flags);
2152 		if (unlikely(page == NULL))
2153 			break;
2154 
2155 		/*
2156 		 * Split buddy pages returned by expand() are received here in
2157 		 * physical page order. The page is added to the tail of
2158 		 * caller's list. From the callers perspective, the linked list
2159 		 * is ordered by page number under some conditions. This is
2160 		 * useful for IO devices that can forward direction from the
2161 		 * head, thus also in the physical page order. This is useful
2162 		 * for IO devices that can merge IO requests if the physical
2163 		 * pages are ordered properly.
2164 		 */
2165 		list_add_tail(&page->pcp_list, list);
2166 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2167 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2168 					      -(1 << order));
2169 	}
2170 
2171 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2172 	spin_unlock_irqrestore(&zone->lock, flags);
2173 
2174 	return i;
2175 }
2176 
2177 #ifdef CONFIG_NUMA
2178 /*
2179  * Called from the vmstat counter updater to drain pagesets of this
2180  * currently executing processor on remote nodes after they have
2181  * expired.
2182  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2183 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2184 {
2185 	int to_drain, batch;
2186 
2187 	batch = READ_ONCE(pcp->batch);
2188 	to_drain = min(pcp->count, batch);
2189 	if (to_drain > 0) {
2190 		spin_lock(&pcp->lock);
2191 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2192 		spin_unlock(&pcp->lock);
2193 	}
2194 }
2195 #endif
2196 
2197 /*
2198  * Drain pcplists of the indicated processor and zone.
2199  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2200 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2201 {
2202 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2203 	int count;
2204 
2205 	do {
2206 		spin_lock(&pcp->lock);
2207 		count = pcp->count;
2208 		if (count) {
2209 			int to_drain = min(count,
2210 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2211 
2212 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2213 			count -= to_drain;
2214 		}
2215 		spin_unlock(&pcp->lock);
2216 	} while (count);
2217 }
2218 
2219 /*
2220  * Drain pcplists of all zones on the indicated processor.
2221  */
drain_pages(unsigned int cpu)2222 static void drain_pages(unsigned int cpu)
2223 {
2224 	struct zone *zone;
2225 
2226 	for_each_populated_zone(zone) {
2227 		drain_pages_zone(cpu, zone);
2228 	}
2229 }
2230 
2231 /*
2232  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2233  */
drain_local_pages(struct zone * zone)2234 void drain_local_pages(struct zone *zone)
2235 {
2236 	int cpu = smp_processor_id();
2237 
2238 	if (zone)
2239 		drain_pages_zone(cpu, zone);
2240 	else
2241 		drain_pages(cpu);
2242 }
2243 
2244 /*
2245  * The implementation of drain_all_pages(), exposing an extra parameter to
2246  * drain on all cpus.
2247  *
2248  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2249  * not empty. The check for non-emptiness can however race with a free to
2250  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2251  * that need the guarantee that every CPU has drained can disable the
2252  * optimizing racy check.
2253  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2254 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2255 {
2256 	int cpu;
2257 
2258 	/*
2259 	 * Allocate in the BSS so we won't require allocation in
2260 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2261 	 */
2262 	static cpumask_t cpus_with_pcps;
2263 
2264 	/*
2265 	 * Do not drain if one is already in progress unless it's specific to
2266 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2267 	 * the drain to be complete when the call returns.
2268 	 */
2269 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2270 		if (!zone)
2271 			return;
2272 		mutex_lock(&pcpu_drain_mutex);
2273 	}
2274 
2275 	/*
2276 	 * We don't care about racing with CPU hotplug event
2277 	 * as offline notification will cause the notified
2278 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2279 	 * disables preemption as part of its processing
2280 	 */
2281 	for_each_online_cpu(cpu) {
2282 		struct per_cpu_pages *pcp;
2283 		struct zone *z;
2284 		bool has_pcps = false;
2285 
2286 		if (force_all_cpus) {
2287 			/*
2288 			 * The pcp.count check is racy, some callers need a
2289 			 * guarantee that no cpu is missed.
2290 			 */
2291 			has_pcps = true;
2292 		} else if (zone) {
2293 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2294 			if (pcp->count)
2295 				has_pcps = true;
2296 		} else {
2297 			for_each_populated_zone(z) {
2298 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2299 				if (pcp->count) {
2300 					has_pcps = true;
2301 					break;
2302 				}
2303 			}
2304 		}
2305 
2306 		if (has_pcps)
2307 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2308 		else
2309 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2310 	}
2311 
2312 	for_each_cpu(cpu, &cpus_with_pcps) {
2313 		if (zone)
2314 			drain_pages_zone(cpu, zone);
2315 		else
2316 			drain_pages(cpu);
2317 	}
2318 
2319 	mutex_unlock(&pcpu_drain_mutex);
2320 }
2321 
2322 /*
2323  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2324  *
2325  * When zone parameter is non-NULL, spill just the single zone's pages.
2326  */
drain_all_pages(struct zone * zone)2327 void drain_all_pages(struct zone *zone)
2328 {
2329 	__drain_all_pages(zone, false);
2330 }
2331 
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2332 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2333 							unsigned int order)
2334 {
2335 	int migratetype;
2336 
2337 	if (!free_pages_prepare(page, order, FPI_NONE))
2338 		return false;
2339 
2340 	migratetype = get_pfnblock_migratetype(page, pfn);
2341 	set_pcppage_migratetype(page, migratetype);
2342 	return true;
2343 }
2344 
nr_pcp_free(struct per_cpu_pages * pcp,int high,bool free_high)2345 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2346 {
2347 	int min_nr_free, max_nr_free;
2348 	int batch = READ_ONCE(pcp->batch);
2349 
2350 	/* Free everything if batch freeing high-order pages. */
2351 	if (unlikely(free_high))
2352 		return pcp->count;
2353 
2354 	/* Check for PCP disabled or boot pageset */
2355 	if (unlikely(high < batch))
2356 		return 1;
2357 
2358 	/* Leave at least pcp->batch pages on the list */
2359 	min_nr_free = batch;
2360 	max_nr_free = high - batch;
2361 
2362 	/*
2363 	 * Double the number of pages freed each time there is subsequent
2364 	 * freeing of pages without any allocation.
2365 	 */
2366 	batch <<= pcp->free_factor;
2367 	if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2368 		pcp->free_factor++;
2369 	batch = clamp(batch, min_nr_free, max_nr_free);
2370 
2371 	return batch;
2372 }
2373 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)2374 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2375 		       bool free_high)
2376 {
2377 	int high = READ_ONCE(pcp->high);
2378 
2379 	if (unlikely(!high || free_high))
2380 		return 0;
2381 
2382 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2383 		return high;
2384 
2385 	/*
2386 	 * If reclaim is active, limit the number of pages that can be
2387 	 * stored on pcp lists
2388 	 */
2389 	return min(READ_ONCE(pcp->batch) << 2, high);
2390 }
2391 
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2392 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2393 				   struct page *page, int migratetype,
2394 				   unsigned int order)
2395 {
2396 	int high;
2397 	int pindex;
2398 	bool free_high;
2399 
2400 	__count_vm_events(PGFREE, 1 << order);
2401 	pindex = order_to_pindex(migratetype, order);
2402 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2403 	pcp->count += 1 << order;
2404 
2405 	/*
2406 	 * As high-order pages other than THP's stored on PCP can contribute
2407 	 * to fragmentation, limit the number stored when PCP is heavily
2408 	 * freeing without allocation. The remainder after bulk freeing
2409 	 * stops will be drained from vmstat refresh context.
2410 	 */
2411 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2412 
2413 	high = nr_pcp_high(pcp, zone, free_high);
2414 	if (pcp->count >= high) {
2415 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2416 	}
2417 }
2418 
2419 /*
2420  * Free a pcp page
2421  */
free_unref_page(struct page * page,unsigned int order)2422 void free_unref_page(struct page *page, unsigned int order)
2423 {
2424 	unsigned long __maybe_unused UP_flags;
2425 	struct per_cpu_pages *pcp;
2426 	struct zone *zone;
2427 	unsigned long pfn = page_to_pfn(page);
2428 	int migratetype, pcpmigratetype;
2429 
2430 	if (!free_unref_page_prepare(page, pfn, order))
2431 		return;
2432 
2433 	/*
2434 	 * We only track unmovable, reclaimable and movable on pcp lists.
2435 	 * Place ISOLATE pages on the isolated list because they are being
2436 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2437 	 * get those areas back if necessary. Otherwise, we may have to free
2438 	 * excessively into the page allocator
2439 	 */
2440 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2441 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2442 		if (unlikely(is_migrate_isolate(migratetype))) {
2443 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2444 			return;
2445 		}
2446 		pcpmigratetype = MIGRATE_MOVABLE;
2447 	}
2448 
2449 	zone = page_zone(page);
2450 	pcp_trylock_prepare(UP_flags);
2451 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2452 	if (pcp) {
2453 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2454 		pcp_spin_unlock(pcp);
2455 	} else {
2456 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2457 	}
2458 	pcp_trylock_finish(UP_flags);
2459 }
2460 
2461 /*
2462  * Free a list of 0-order pages
2463  */
free_unref_page_list(struct list_head * list)2464 void free_unref_page_list(struct list_head *list)
2465 {
2466 	unsigned long __maybe_unused UP_flags;
2467 	struct page *page, *next;
2468 	struct per_cpu_pages *pcp = NULL;
2469 	struct zone *locked_zone = NULL;
2470 	int batch_count = 0;
2471 	int migratetype;
2472 
2473 	/* Prepare pages for freeing */
2474 	list_for_each_entry_safe(page, next, list, lru) {
2475 		unsigned long pfn = page_to_pfn(page);
2476 		if (!free_unref_page_prepare(page, pfn, 0)) {
2477 			list_del(&page->lru);
2478 			continue;
2479 		}
2480 
2481 		/*
2482 		 * Free isolated pages directly to the allocator, see
2483 		 * comment in free_unref_page.
2484 		 */
2485 		migratetype = get_pcppage_migratetype(page);
2486 		if (unlikely(is_migrate_isolate(migratetype))) {
2487 			list_del(&page->lru);
2488 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2489 			continue;
2490 		}
2491 	}
2492 
2493 	list_for_each_entry_safe(page, next, list, lru) {
2494 		struct zone *zone = page_zone(page);
2495 
2496 		list_del(&page->lru);
2497 		migratetype = get_pcppage_migratetype(page);
2498 
2499 		/*
2500 		 * Either different zone requiring a different pcp lock or
2501 		 * excessive lock hold times when freeing a large list of
2502 		 * pages.
2503 		 */
2504 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2505 			if (pcp) {
2506 				pcp_spin_unlock(pcp);
2507 				pcp_trylock_finish(UP_flags);
2508 			}
2509 
2510 			batch_count = 0;
2511 
2512 			/*
2513 			 * trylock is necessary as pages may be getting freed
2514 			 * from IRQ or SoftIRQ context after an IO completion.
2515 			 */
2516 			pcp_trylock_prepare(UP_flags);
2517 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2518 			if (unlikely(!pcp)) {
2519 				pcp_trylock_finish(UP_flags);
2520 				free_one_page(zone, page, page_to_pfn(page),
2521 					      0, migratetype, FPI_NONE);
2522 				locked_zone = NULL;
2523 				continue;
2524 			}
2525 			locked_zone = zone;
2526 		}
2527 
2528 		/*
2529 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2530 		 * to the MIGRATE_MOVABLE pcp list.
2531 		 */
2532 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2533 			migratetype = MIGRATE_MOVABLE;
2534 
2535 		trace_mm_page_free_batched(page);
2536 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2537 		batch_count++;
2538 	}
2539 
2540 	if (pcp) {
2541 		pcp_spin_unlock(pcp);
2542 		pcp_trylock_finish(UP_flags);
2543 	}
2544 }
2545 
2546 /*
2547  * split_page takes a non-compound higher-order page, and splits it into
2548  * n (1<<order) sub-pages: page[0..n]
2549  * Each sub-page must be freed individually.
2550  *
2551  * Note: this is probably too low level an operation for use in drivers.
2552  * Please consult with lkml before using this in your driver.
2553  */
split_page(struct page * page,unsigned int order)2554 void split_page(struct page *page, unsigned int order)
2555 {
2556 	int i;
2557 
2558 	VM_BUG_ON_PAGE(PageCompound(page), page);
2559 	VM_BUG_ON_PAGE(!page_count(page), page);
2560 
2561 	for (i = 1; i < (1 << order); i++)
2562 		set_page_refcounted(page + i);
2563 	split_page_owner(page, 1 << order);
2564 	split_page_memcg(page, 1 << order);
2565 }
2566 EXPORT_SYMBOL_GPL(split_page);
2567 
__isolate_free_page(struct page * page,unsigned int order)2568 int __isolate_free_page(struct page *page, unsigned int order)
2569 {
2570 	struct zone *zone = page_zone(page);
2571 	int mt = get_pageblock_migratetype(page);
2572 
2573 	if (!is_migrate_isolate(mt)) {
2574 		unsigned long watermark;
2575 		/*
2576 		 * Obey watermarks as if the page was being allocated. We can
2577 		 * emulate a high-order watermark check with a raised order-0
2578 		 * watermark, because we already know our high-order page
2579 		 * exists.
2580 		 */
2581 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2582 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2583 			return 0;
2584 
2585 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2586 	}
2587 
2588 	del_page_from_free_list(page, zone, order);
2589 
2590 	/*
2591 	 * Set the pageblock if the isolated page is at least half of a
2592 	 * pageblock
2593 	 */
2594 	if (order >= pageblock_order - 1) {
2595 		struct page *endpage = page + (1 << order) - 1;
2596 		for (; page < endpage; page += pageblock_nr_pages) {
2597 			int mt = get_pageblock_migratetype(page);
2598 			/*
2599 			 * Only change normal pageblocks (i.e., they can merge
2600 			 * with others)
2601 			 */
2602 			if (migratetype_is_mergeable(mt))
2603 				set_pageblock_migratetype(page,
2604 							  MIGRATE_MOVABLE);
2605 		}
2606 	}
2607 
2608 	return 1UL << order;
2609 }
2610 
2611 /**
2612  * __putback_isolated_page - Return a now-isolated page back where we got it
2613  * @page: Page that was isolated
2614  * @order: Order of the isolated page
2615  * @mt: The page's pageblock's migratetype
2616  *
2617  * This function is meant to return a page pulled from the free lists via
2618  * __isolate_free_page back to the free lists they were pulled from.
2619  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2620 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2621 {
2622 	struct zone *zone = page_zone(page);
2623 
2624 	/* zone lock should be held when this function is called */
2625 	lockdep_assert_held(&zone->lock);
2626 
2627 	/* Return isolated page to tail of freelist. */
2628 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2629 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2630 }
2631 
2632 /*
2633  * Update NUMA hit/miss statistics
2634  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2635 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2636 				   long nr_account)
2637 {
2638 #ifdef CONFIG_NUMA
2639 	enum numa_stat_item local_stat = NUMA_LOCAL;
2640 
2641 	/* skip numa counters update if numa stats is disabled */
2642 	if (!static_branch_likely(&vm_numa_stat_key))
2643 		return;
2644 
2645 	if (zone_to_nid(z) != numa_node_id())
2646 		local_stat = NUMA_OTHER;
2647 
2648 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2649 		__count_numa_events(z, NUMA_HIT, nr_account);
2650 	else {
2651 		__count_numa_events(z, NUMA_MISS, nr_account);
2652 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2653 	}
2654 	__count_numa_events(z, local_stat, nr_account);
2655 #endif
2656 }
2657 
2658 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2659 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2660 			   unsigned int order, unsigned int alloc_flags,
2661 			   int migratetype)
2662 {
2663 	struct page *page;
2664 	unsigned long flags;
2665 
2666 	do {
2667 		page = NULL;
2668 		spin_lock_irqsave(&zone->lock, flags);
2669 		if (alloc_flags & ALLOC_HIGHATOMIC)
2670 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2671 		if (!page) {
2672 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2673 
2674 			/*
2675 			 * If the allocation fails, allow OOM handling and
2676 			 * order-0 (atomic) allocs access to HIGHATOMIC
2677 			 * reserves as failing now is worse than failing a
2678 			 * high-order atomic allocation in the future.
2679 			 */
2680 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2681 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2682 
2683 			if (!page) {
2684 				spin_unlock_irqrestore(&zone->lock, flags);
2685 				return NULL;
2686 			}
2687 		}
2688 		__mod_zone_freepage_state(zone, -(1 << order),
2689 					  get_pcppage_migratetype(page));
2690 		spin_unlock_irqrestore(&zone->lock, flags);
2691 	} while (check_new_pages(page, order));
2692 
2693 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2694 	zone_statistics(preferred_zone, zone, 1);
2695 
2696 	return page;
2697 }
2698 
2699 /* Remove page from the per-cpu list, caller must protect the list */
2700 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2701 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2702 			int migratetype,
2703 			unsigned int alloc_flags,
2704 			struct per_cpu_pages *pcp,
2705 			struct list_head *list)
2706 {
2707 	struct page *page;
2708 
2709 	do {
2710 		if (list_empty(list)) {
2711 			int batch = READ_ONCE(pcp->batch);
2712 			int alloced;
2713 
2714 			/*
2715 			 * Scale batch relative to order if batch implies
2716 			 * free pages can be stored on the PCP. Batch can
2717 			 * be 1 for small zones or for boot pagesets which
2718 			 * should never store free pages as the pages may
2719 			 * belong to arbitrary zones.
2720 			 */
2721 			if (batch > 1)
2722 				batch = max(batch >> order, 2);
2723 			alloced = rmqueue_bulk(zone, order,
2724 					batch, list,
2725 					migratetype, alloc_flags);
2726 
2727 			pcp->count += alloced << order;
2728 			if (unlikely(list_empty(list)))
2729 				return NULL;
2730 		}
2731 
2732 		page = list_first_entry(list, struct page, pcp_list);
2733 		list_del(&page->pcp_list);
2734 		pcp->count -= 1 << order;
2735 	} while (check_new_pages(page, order));
2736 
2737 	return page;
2738 }
2739 
2740 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2741 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2742 			struct zone *zone, unsigned int order,
2743 			int migratetype, unsigned int alloc_flags)
2744 {
2745 	struct per_cpu_pages *pcp;
2746 	struct list_head *list;
2747 	struct page *page;
2748 	unsigned long __maybe_unused UP_flags;
2749 
2750 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2751 	pcp_trylock_prepare(UP_flags);
2752 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2753 	if (!pcp) {
2754 		pcp_trylock_finish(UP_flags);
2755 		return NULL;
2756 	}
2757 
2758 	/*
2759 	 * On allocation, reduce the number of pages that are batch freed.
2760 	 * See nr_pcp_free() where free_factor is increased for subsequent
2761 	 * frees.
2762 	 */
2763 	pcp->free_factor >>= 1;
2764 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2765 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2766 	pcp_spin_unlock(pcp);
2767 	pcp_trylock_finish(UP_flags);
2768 	if (page) {
2769 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2770 		zone_statistics(preferred_zone, zone, 1);
2771 	}
2772 	return page;
2773 }
2774 
2775 /*
2776  * Allocate a page from the given zone.
2777  * Use pcplists for THP or "cheap" high-order allocations.
2778  */
2779 
2780 /*
2781  * Do not instrument rmqueue() with KMSAN. This function may call
2782  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2783  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2784  * may call rmqueue() again, which will result in a deadlock.
2785  */
2786 __no_sanitize_memory
2787 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2788 struct page *rmqueue(struct zone *preferred_zone,
2789 			struct zone *zone, unsigned int order,
2790 			gfp_t gfp_flags, unsigned int alloc_flags,
2791 			int migratetype)
2792 {
2793 	struct page *page;
2794 
2795 	/*
2796 	 * We most definitely don't want callers attempting to
2797 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2798 	 */
2799 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2800 
2801 	if (likely(pcp_allowed_order(order))) {
2802 		page = rmqueue_pcplist(preferred_zone, zone, order,
2803 				       migratetype, alloc_flags);
2804 		if (likely(page))
2805 			goto out;
2806 	}
2807 
2808 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2809 							migratetype);
2810 
2811 out:
2812 	/* Separate test+clear to avoid unnecessary atomics */
2813 	if ((alloc_flags & ALLOC_KSWAPD) &&
2814 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2815 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2816 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2817 	}
2818 
2819 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2820 	return page;
2821 }
2822 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2823 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2824 {
2825 	return __should_fail_alloc_page(gfp_mask, order);
2826 }
2827 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2828 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)2829 static inline long __zone_watermark_unusable_free(struct zone *z,
2830 				unsigned int order, unsigned int alloc_flags)
2831 {
2832 	long unusable_free = (1 << order) - 1;
2833 
2834 	/*
2835 	 * If the caller does not have rights to reserves below the min
2836 	 * watermark then subtract the high-atomic reserves. This will
2837 	 * over-estimate the size of the atomic reserve but it avoids a search.
2838 	 */
2839 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2840 		unusable_free += z->nr_reserved_highatomic;
2841 
2842 #ifdef CONFIG_CMA
2843 	/* If allocation can't use CMA areas don't use free CMA pages */
2844 	if (!(alloc_flags & ALLOC_CMA))
2845 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2846 #endif
2847 
2848 	return unusable_free;
2849 }
2850 
2851 /*
2852  * Return true if free base pages are above 'mark'. For high-order checks it
2853  * will return true of the order-0 watermark is reached and there is at least
2854  * one free page of a suitable size. Checking now avoids taking the zone lock
2855  * to check in the allocation paths if no pages are free.
2856  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)2857 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2858 			 int highest_zoneidx, unsigned int alloc_flags,
2859 			 long free_pages)
2860 {
2861 	long min = mark;
2862 	int o;
2863 
2864 	/* free_pages may go negative - that's OK */
2865 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2866 
2867 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2868 		/*
2869 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2870 		 * as OOM.
2871 		 */
2872 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2873 			min -= min / 2;
2874 
2875 			/*
2876 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2877 			 * access more reserves than just __GFP_HIGH. Other
2878 			 * non-blocking allocations requests such as GFP_NOWAIT
2879 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2880 			 * access to the min reserve.
2881 			 */
2882 			if (alloc_flags & ALLOC_NON_BLOCK)
2883 				min -= min / 4;
2884 		}
2885 
2886 		/*
2887 		 * OOM victims can try even harder than the normal reserve
2888 		 * users on the grounds that it's definitely going to be in
2889 		 * the exit path shortly and free memory. Any allocation it
2890 		 * makes during the free path will be small and short-lived.
2891 		 */
2892 		if (alloc_flags & ALLOC_OOM)
2893 			min -= min / 2;
2894 	}
2895 
2896 	/*
2897 	 * Check watermarks for an order-0 allocation request. If these
2898 	 * are not met, then a high-order request also cannot go ahead
2899 	 * even if a suitable page happened to be free.
2900 	 */
2901 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2902 		return false;
2903 
2904 	/* If this is an order-0 request then the watermark is fine */
2905 	if (!order)
2906 		return true;
2907 
2908 	/* For a high-order request, check at least one suitable page is free */
2909 	for (o = order; o < NR_PAGE_ORDERS; o++) {
2910 		struct free_area *area = &z->free_area[o];
2911 		int mt;
2912 
2913 		if (!area->nr_free)
2914 			continue;
2915 
2916 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2917 			if (!free_area_empty(area, mt))
2918 				return true;
2919 		}
2920 
2921 #ifdef CONFIG_CMA
2922 		if ((alloc_flags & ALLOC_CMA) &&
2923 		    !free_area_empty(area, MIGRATE_CMA)) {
2924 			return true;
2925 		}
2926 #endif
2927 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2928 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2929 			return true;
2930 		}
2931 	}
2932 	return false;
2933 }
2934 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)2935 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2936 		      int highest_zoneidx, unsigned int alloc_flags)
2937 {
2938 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2939 					zone_page_state(z, NR_FREE_PAGES));
2940 }
2941 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)2942 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2943 				unsigned long mark, int highest_zoneidx,
2944 				unsigned int alloc_flags, gfp_t gfp_mask)
2945 {
2946 	long free_pages;
2947 
2948 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2949 
2950 	/*
2951 	 * Fast check for order-0 only. If this fails then the reserves
2952 	 * need to be calculated.
2953 	 */
2954 	if (!order) {
2955 		long usable_free;
2956 		long reserved;
2957 
2958 		usable_free = free_pages;
2959 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2960 
2961 		/* reserved may over estimate high-atomic reserves. */
2962 		usable_free -= min(usable_free, reserved);
2963 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2964 			return true;
2965 	}
2966 
2967 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2968 					free_pages))
2969 		return true;
2970 
2971 	/*
2972 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2973 	 * when checking the min watermark. The min watermark is the
2974 	 * point where boosting is ignored so that kswapd is woken up
2975 	 * when below the low watermark.
2976 	 */
2977 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2978 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2979 		mark = z->_watermark[WMARK_MIN];
2980 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2981 					alloc_flags, free_pages);
2982 	}
2983 
2984 	return false;
2985 }
2986 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)2987 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2988 			unsigned long mark, int highest_zoneidx)
2989 {
2990 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2991 
2992 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2993 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2994 
2995 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
2996 								free_pages);
2997 }
2998 
2999 #ifdef CONFIG_NUMA
3000 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3001 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3002 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3003 {
3004 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3005 				node_reclaim_distance;
3006 }
3007 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3008 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3009 {
3010 	return true;
3011 }
3012 #endif	/* CONFIG_NUMA */
3013 
3014 /*
3015  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3016  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3017  * premature use of a lower zone may cause lowmem pressure problems that
3018  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3019  * probably too small. It only makes sense to spread allocations to avoid
3020  * fragmentation between the Normal and DMA32 zones.
3021  */
3022 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3023 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3024 {
3025 	unsigned int alloc_flags;
3026 
3027 	/*
3028 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3029 	 * to save a branch.
3030 	 */
3031 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3032 
3033 #ifdef CONFIG_ZONE_DMA32
3034 	if (!zone)
3035 		return alloc_flags;
3036 
3037 	if (zone_idx(zone) != ZONE_NORMAL)
3038 		return alloc_flags;
3039 
3040 	/*
3041 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3042 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3043 	 * on UMA that if Normal is populated then so is DMA32.
3044 	 */
3045 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3046 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3047 		return alloc_flags;
3048 
3049 	alloc_flags |= ALLOC_NOFRAGMENT;
3050 #endif /* CONFIG_ZONE_DMA32 */
3051 	return alloc_flags;
3052 }
3053 
3054 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3055 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3056 						  unsigned int alloc_flags)
3057 {
3058 #ifdef CONFIG_CMA
3059 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3060 		alloc_flags |= ALLOC_CMA;
3061 #endif
3062 	return alloc_flags;
3063 }
3064 
3065 /*
3066  * get_page_from_freelist goes through the zonelist trying to allocate
3067  * a page.
3068  */
3069 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3070 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3071 						const struct alloc_context *ac)
3072 {
3073 	struct zoneref *z;
3074 	struct zone *zone;
3075 	struct pglist_data *last_pgdat = NULL;
3076 	bool last_pgdat_dirty_ok = false;
3077 	bool no_fallback;
3078 
3079 retry:
3080 	/*
3081 	 * Scan zonelist, looking for a zone with enough free.
3082 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3083 	 */
3084 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3085 	z = ac->preferred_zoneref;
3086 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3087 					ac->nodemask) {
3088 		struct page *page;
3089 		unsigned long mark;
3090 
3091 		if (cpusets_enabled() &&
3092 			(alloc_flags & ALLOC_CPUSET) &&
3093 			!__cpuset_zone_allowed(zone, gfp_mask))
3094 				continue;
3095 		/*
3096 		 * When allocating a page cache page for writing, we
3097 		 * want to get it from a node that is within its dirty
3098 		 * limit, such that no single node holds more than its
3099 		 * proportional share of globally allowed dirty pages.
3100 		 * The dirty limits take into account the node's
3101 		 * lowmem reserves and high watermark so that kswapd
3102 		 * should be able to balance it without having to
3103 		 * write pages from its LRU list.
3104 		 *
3105 		 * XXX: For now, allow allocations to potentially
3106 		 * exceed the per-node dirty limit in the slowpath
3107 		 * (spread_dirty_pages unset) before going into reclaim,
3108 		 * which is important when on a NUMA setup the allowed
3109 		 * nodes are together not big enough to reach the
3110 		 * global limit.  The proper fix for these situations
3111 		 * will require awareness of nodes in the
3112 		 * dirty-throttling and the flusher threads.
3113 		 */
3114 		if (ac->spread_dirty_pages) {
3115 			if (last_pgdat != zone->zone_pgdat) {
3116 				last_pgdat = zone->zone_pgdat;
3117 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3118 			}
3119 
3120 			if (!last_pgdat_dirty_ok)
3121 				continue;
3122 		}
3123 
3124 		if (no_fallback && nr_online_nodes > 1 &&
3125 		    zone != ac->preferred_zoneref->zone) {
3126 			int local_nid;
3127 
3128 			/*
3129 			 * If moving to a remote node, retry but allow
3130 			 * fragmenting fallbacks. Locality is more important
3131 			 * than fragmentation avoidance.
3132 			 */
3133 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3134 			if (zone_to_nid(zone) != local_nid) {
3135 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3136 				goto retry;
3137 			}
3138 		}
3139 
3140 		cond_accept_memory(zone, order);
3141 
3142 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3143 		if (!zone_watermark_fast(zone, order, mark,
3144 				       ac->highest_zoneidx, alloc_flags,
3145 				       gfp_mask)) {
3146 			int ret;
3147 
3148 			if (cond_accept_memory(zone, order))
3149 				goto try_this_zone;
3150 
3151 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3152 			/*
3153 			 * Watermark failed for this zone, but see if we can
3154 			 * grow this zone if it contains deferred pages.
3155 			 */
3156 			if (deferred_pages_enabled()) {
3157 				if (_deferred_grow_zone(zone, order))
3158 					goto try_this_zone;
3159 			}
3160 #endif
3161 			/* Checked here to keep the fast path fast */
3162 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3163 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3164 				goto try_this_zone;
3165 
3166 			if (!node_reclaim_enabled() ||
3167 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3168 				continue;
3169 
3170 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3171 			switch (ret) {
3172 			case NODE_RECLAIM_NOSCAN:
3173 				/* did not scan */
3174 				continue;
3175 			case NODE_RECLAIM_FULL:
3176 				/* scanned but unreclaimable */
3177 				continue;
3178 			default:
3179 				/* did we reclaim enough */
3180 				if (zone_watermark_ok(zone, order, mark,
3181 					ac->highest_zoneidx, alloc_flags))
3182 					goto try_this_zone;
3183 
3184 				continue;
3185 			}
3186 		}
3187 
3188 try_this_zone:
3189 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3190 				gfp_mask, alloc_flags, ac->migratetype);
3191 		if (page) {
3192 			prep_new_page(page, order, gfp_mask, alloc_flags);
3193 
3194 			/*
3195 			 * If this is a high-order atomic allocation then check
3196 			 * if the pageblock should be reserved for the future
3197 			 */
3198 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3199 				reserve_highatomic_pageblock(page, zone);
3200 
3201 			return page;
3202 		} else {
3203 			if (cond_accept_memory(zone, order))
3204 				goto try_this_zone;
3205 
3206 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3207 			/* Try again if zone has deferred pages */
3208 			if (deferred_pages_enabled()) {
3209 				if (_deferred_grow_zone(zone, order))
3210 					goto try_this_zone;
3211 			}
3212 #endif
3213 		}
3214 	}
3215 
3216 	/*
3217 	 * It's possible on a UMA machine to get through all zones that are
3218 	 * fragmented. If avoiding fragmentation, reset and try again.
3219 	 */
3220 	if (no_fallback) {
3221 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3222 		goto retry;
3223 	}
3224 
3225 	return NULL;
3226 }
3227 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3228 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3229 {
3230 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3231 
3232 	/*
3233 	 * This documents exceptions given to allocations in certain
3234 	 * contexts that are allowed to allocate outside current's set
3235 	 * of allowed nodes.
3236 	 */
3237 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3238 		if (tsk_is_oom_victim(current) ||
3239 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3240 			filter &= ~SHOW_MEM_FILTER_NODES;
3241 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3242 		filter &= ~SHOW_MEM_FILTER_NODES;
3243 
3244 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3245 }
3246 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3247 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3248 {
3249 	struct va_format vaf;
3250 	va_list args;
3251 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3252 
3253 	if ((gfp_mask & __GFP_NOWARN) ||
3254 	     !__ratelimit(&nopage_rs) ||
3255 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3256 		return;
3257 
3258 	va_start(args, fmt);
3259 	vaf.fmt = fmt;
3260 	vaf.va = &args;
3261 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3262 			current->comm, &vaf, gfp_mask, &gfp_mask,
3263 			nodemask_pr_args(nodemask));
3264 	va_end(args);
3265 
3266 	cpuset_print_current_mems_allowed();
3267 	pr_cont("\n");
3268 	dump_stack();
3269 	warn_alloc_show_mem(gfp_mask, nodemask);
3270 }
3271 
3272 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3273 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3274 			      unsigned int alloc_flags,
3275 			      const struct alloc_context *ac)
3276 {
3277 	struct page *page;
3278 
3279 	page = get_page_from_freelist(gfp_mask, order,
3280 			alloc_flags|ALLOC_CPUSET, ac);
3281 	/*
3282 	 * fallback to ignore cpuset restriction if our nodes
3283 	 * are depleted
3284 	 */
3285 	if (!page)
3286 		page = get_page_from_freelist(gfp_mask, order,
3287 				alloc_flags, ac);
3288 
3289 	return page;
3290 }
3291 
3292 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3293 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3294 	const struct alloc_context *ac, unsigned long *did_some_progress)
3295 {
3296 	struct oom_control oc = {
3297 		.zonelist = ac->zonelist,
3298 		.nodemask = ac->nodemask,
3299 		.memcg = NULL,
3300 		.gfp_mask = gfp_mask,
3301 		.order = order,
3302 	};
3303 	struct page *page;
3304 
3305 	*did_some_progress = 0;
3306 
3307 	/*
3308 	 * Acquire the oom lock.  If that fails, somebody else is
3309 	 * making progress for us.
3310 	 */
3311 	if (!mutex_trylock(&oom_lock)) {
3312 		*did_some_progress = 1;
3313 		schedule_timeout_uninterruptible(1);
3314 		return NULL;
3315 	}
3316 
3317 	/*
3318 	 * Go through the zonelist yet one more time, keep very high watermark
3319 	 * here, this is only to catch a parallel oom killing, we must fail if
3320 	 * we're still under heavy pressure. But make sure that this reclaim
3321 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3322 	 * allocation which will never fail due to oom_lock already held.
3323 	 */
3324 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3325 				      ~__GFP_DIRECT_RECLAIM, order,
3326 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3327 	if (page)
3328 		goto out;
3329 
3330 	/* Coredumps can quickly deplete all memory reserves */
3331 	if (current->flags & PF_DUMPCORE)
3332 		goto out;
3333 	/* The OOM killer will not help higher order allocs */
3334 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3335 		goto out;
3336 	/*
3337 	 * We have already exhausted all our reclaim opportunities without any
3338 	 * success so it is time to admit defeat. We will skip the OOM killer
3339 	 * because it is very likely that the caller has a more reasonable
3340 	 * fallback than shooting a random task.
3341 	 *
3342 	 * The OOM killer may not free memory on a specific node.
3343 	 */
3344 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3345 		goto out;
3346 	/* The OOM killer does not needlessly kill tasks for lowmem */
3347 	if (ac->highest_zoneidx < ZONE_NORMAL)
3348 		goto out;
3349 	if (pm_suspended_storage())
3350 		goto out;
3351 	/*
3352 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3353 	 * other request to make a forward progress.
3354 	 * We are in an unfortunate situation where out_of_memory cannot
3355 	 * do much for this context but let's try it to at least get
3356 	 * access to memory reserved if the current task is killed (see
3357 	 * out_of_memory). Once filesystems are ready to handle allocation
3358 	 * failures more gracefully we should just bail out here.
3359 	 */
3360 
3361 	/* Exhausted what can be done so it's blame time */
3362 	if (out_of_memory(&oc) ||
3363 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3364 		*did_some_progress = 1;
3365 
3366 		/*
3367 		 * Help non-failing allocations by giving them access to memory
3368 		 * reserves
3369 		 */
3370 		if (gfp_mask & __GFP_NOFAIL)
3371 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3372 					ALLOC_NO_WATERMARKS, ac);
3373 	}
3374 out:
3375 	mutex_unlock(&oom_lock);
3376 	return page;
3377 }
3378 
3379 /*
3380  * Maximum number of compaction retries with a progress before OOM
3381  * killer is consider as the only way to move forward.
3382  */
3383 #define MAX_COMPACT_RETRIES 16
3384 
3385 #ifdef CONFIG_COMPACTION
3386 /* Try memory compaction for high-order allocations before reclaim */
3387 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3388 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3389 		unsigned int alloc_flags, const struct alloc_context *ac,
3390 		enum compact_priority prio, enum compact_result *compact_result)
3391 {
3392 	struct page *page = NULL;
3393 	unsigned long pflags;
3394 	unsigned int noreclaim_flag;
3395 
3396 	if (!order)
3397 		return NULL;
3398 
3399 	psi_memstall_enter(&pflags);
3400 	delayacct_compact_start();
3401 	noreclaim_flag = memalloc_noreclaim_save();
3402 
3403 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3404 								prio, &page);
3405 
3406 	memalloc_noreclaim_restore(noreclaim_flag);
3407 	psi_memstall_leave(&pflags);
3408 	delayacct_compact_end();
3409 
3410 	if (*compact_result == COMPACT_SKIPPED)
3411 		return NULL;
3412 	/*
3413 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3414 	 * count a compaction stall
3415 	 */
3416 	count_vm_event(COMPACTSTALL);
3417 
3418 	/* Prep a captured page if available */
3419 	if (page)
3420 		prep_new_page(page, order, gfp_mask, alloc_flags);
3421 
3422 	/* Try get a page from the freelist if available */
3423 	if (!page)
3424 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3425 
3426 	if (page) {
3427 		struct zone *zone = page_zone(page);
3428 
3429 		zone->compact_blockskip_flush = false;
3430 		compaction_defer_reset(zone, order, true);
3431 		count_vm_event(COMPACTSUCCESS);
3432 		return page;
3433 	}
3434 
3435 	/*
3436 	 * It's bad if compaction run occurs and fails. The most likely reason
3437 	 * is that pages exist, but not enough to satisfy watermarks.
3438 	 */
3439 	count_vm_event(COMPACTFAIL);
3440 
3441 	cond_resched();
3442 
3443 	return NULL;
3444 }
3445 
3446 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3447 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3448 		     enum compact_result compact_result,
3449 		     enum compact_priority *compact_priority,
3450 		     int *compaction_retries)
3451 {
3452 	int max_retries = MAX_COMPACT_RETRIES;
3453 	int min_priority;
3454 	bool ret = false;
3455 	int retries = *compaction_retries;
3456 	enum compact_priority priority = *compact_priority;
3457 
3458 	if (!order)
3459 		return false;
3460 
3461 	if (fatal_signal_pending(current))
3462 		return false;
3463 
3464 	/*
3465 	 * Compaction was skipped due to a lack of free order-0
3466 	 * migration targets. Continue if reclaim can help.
3467 	 */
3468 	if (compact_result == COMPACT_SKIPPED) {
3469 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3470 		goto out;
3471 	}
3472 
3473 	/*
3474 	 * Compaction managed to coalesce some page blocks, but the
3475 	 * allocation failed presumably due to a race. Retry some.
3476 	 */
3477 	if (compact_result == COMPACT_SUCCESS) {
3478 		/*
3479 		 * !costly requests are much more important than
3480 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3481 		 * facto nofail and invoke OOM killer to move on while
3482 		 * costly can fail and users are ready to cope with
3483 		 * that. 1/4 retries is rather arbitrary but we would
3484 		 * need much more detailed feedback from compaction to
3485 		 * make a better decision.
3486 		 */
3487 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3488 			max_retries /= 4;
3489 
3490 		if (++(*compaction_retries) <= max_retries) {
3491 			ret = true;
3492 			goto out;
3493 		}
3494 	}
3495 
3496 	/*
3497 	 * Compaction failed. Retry with increasing priority.
3498 	 */
3499 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3500 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3501 
3502 	if (*compact_priority > min_priority) {
3503 		(*compact_priority)--;
3504 		*compaction_retries = 0;
3505 		ret = true;
3506 	}
3507 out:
3508 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3509 	return ret;
3510 }
3511 #else
3512 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3513 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3514 		unsigned int alloc_flags, const struct alloc_context *ac,
3515 		enum compact_priority prio, enum compact_result *compact_result)
3516 {
3517 	*compact_result = COMPACT_SKIPPED;
3518 	return NULL;
3519 }
3520 
3521 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3522 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3523 		     enum compact_result compact_result,
3524 		     enum compact_priority *compact_priority,
3525 		     int *compaction_retries)
3526 {
3527 	struct zone *zone;
3528 	struct zoneref *z;
3529 
3530 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3531 		return false;
3532 
3533 	/*
3534 	 * There are setups with compaction disabled which would prefer to loop
3535 	 * inside the allocator rather than hit the oom killer prematurely.
3536 	 * Let's give them a good hope and keep retrying while the order-0
3537 	 * watermarks are OK.
3538 	 */
3539 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3540 				ac->highest_zoneidx, ac->nodemask) {
3541 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3542 					ac->highest_zoneidx, alloc_flags))
3543 			return true;
3544 	}
3545 	return false;
3546 }
3547 #endif /* CONFIG_COMPACTION */
3548 
3549 #ifdef CONFIG_LOCKDEP
3550 static struct lockdep_map __fs_reclaim_map =
3551 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3552 
__need_reclaim(gfp_t gfp_mask)3553 static bool __need_reclaim(gfp_t gfp_mask)
3554 {
3555 	/* no reclaim without waiting on it */
3556 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3557 		return false;
3558 
3559 	/* this guy won't enter reclaim */
3560 	if (current->flags & PF_MEMALLOC)
3561 		return false;
3562 
3563 	if (gfp_mask & __GFP_NOLOCKDEP)
3564 		return false;
3565 
3566 	return true;
3567 }
3568 
__fs_reclaim_acquire(unsigned long ip)3569 void __fs_reclaim_acquire(unsigned long ip)
3570 {
3571 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3572 }
3573 
__fs_reclaim_release(unsigned long ip)3574 void __fs_reclaim_release(unsigned long ip)
3575 {
3576 	lock_release(&__fs_reclaim_map, ip);
3577 }
3578 
fs_reclaim_acquire(gfp_t gfp_mask)3579 void fs_reclaim_acquire(gfp_t gfp_mask)
3580 {
3581 	gfp_mask = current_gfp_context(gfp_mask);
3582 
3583 	if (__need_reclaim(gfp_mask)) {
3584 		if (gfp_mask & __GFP_FS)
3585 			__fs_reclaim_acquire(_RET_IP_);
3586 
3587 #ifdef CONFIG_MMU_NOTIFIER
3588 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3589 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3590 #endif
3591 
3592 	}
3593 }
3594 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3595 
fs_reclaim_release(gfp_t gfp_mask)3596 void fs_reclaim_release(gfp_t gfp_mask)
3597 {
3598 	gfp_mask = current_gfp_context(gfp_mask);
3599 
3600 	if (__need_reclaim(gfp_mask)) {
3601 		if (gfp_mask & __GFP_FS)
3602 			__fs_reclaim_release(_RET_IP_);
3603 	}
3604 }
3605 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3606 #endif
3607 
3608 /*
3609  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3610  * have been rebuilt so allocation retries. Reader side does not lock and
3611  * retries the allocation if zonelist changes. Writer side is protected by the
3612  * embedded spin_lock.
3613  */
3614 static DEFINE_SEQLOCK(zonelist_update_seq);
3615 
zonelist_iter_begin(void)3616 static unsigned int zonelist_iter_begin(void)
3617 {
3618 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3619 		return read_seqbegin(&zonelist_update_seq);
3620 
3621 	return 0;
3622 }
3623 
check_retry_zonelist(unsigned int seq)3624 static unsigned int check_retry_zonelist(unsigned int seq)
3625 {
3626 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3627 		return read_seqretry(&zonelist_update_seq, seq);
3628 
3629 	return seq;
3630 }
3631 
3632 /* Perform direct synchronous page reclaim */
3633 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3634 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3635 					const struct alloc_context *ac)
3636 {
3637 	unsigned int noreclaim_flag;
3638 	unsigned long progress;
3639 
3640 	cond_resched();
3641 
3642 	/* We now go into synchronous reclaim */
3643 	cpuset_memory_pressure_bump();
3644 	fs_reclaim_acquire(gfp_mask);
3645 	noreclaim_flag = memalloc_noreclaim_save();
3646 
3647 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3648 								ac->nodemask);
3649 
3650 	memalloc_noreclaim_restore(noreclaim_flag);
3651 	fs_reclaim_release(gfp_mask);
3652 
3653 	cond_resched();
3654 
3655 	return progress;
3656 }
3657 
3658 /* The really slow allocator path where we enter direct reclaim */
3659 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3660 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3661 		unsigned int alloc_flags, const struct alloc_context *ac,
3662 		unsigned long *did_some_progress)
3663 {
3664 	struct page *page = NULL;
3665 	unsigned long pflags;
3666 	bool drained = false;
3667 
3668 	psi_memstall_enter(&pflags);
3669 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3670 	if (unlikely(!(*did_some_progress)))
3671 		goto out;
3672 
3673 retry:
3674 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3675 
3676 	/*
3677 	 * If an allocation failed after direct reclaim, it could be because
3678 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3679 	 * Shrink them and try again
3680 	 */
3681 	if (!page && !drained) {
3682 		unreserve_highatomic_pageblock(ac, false);
3683 		drain_all_pages(NULL);
3684 		drained = true;
3685 		goto retry;
3686 	}
3687 out:
3688 	psi_memstall_leave(&pflags);
3689 
3690 	return page;
3691 }
3692 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3693 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3694 			     const struct alloc_context *ac)
3695 {
3696 	struct zoneref *z;
3697 	struct zone *zone;
3698 	pg_data_t *last_pgdat = NULL;
3699 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3700 
3701 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3702 					ac->nodemask) {
3703 		if (!managed_zone(zone))
3704 			continue;
3705 		if (last_pgdat != zone->zone_pgdat) {
3706 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3707 			last_pgdat = zone->zone_pgdat;
3708 		}
3709 	}
3710 }
3711 
3712 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3713 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3714 {
3715 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3716 
3717 	/*
3718 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3719 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3720 	 * to save two branches.
3721 	 */
3722 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3723 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3724 
3725 	/*
3726 	 * The caller may dip into page reserves a bit more if the caller
3727 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3728 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3729 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3730 	 */
3731 	alloc_flags |= (__force int)
3732 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3733 
3734 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3735 		/*
3736 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3737 		 * if it can't schedule.
3738 		 */
3739 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3740 			alloc_flags |= ALLOC_NON_BLOCK;
3741 
3742 			if (order > 0)
3743 				alloc_flags |= ALLOC_HIGHATOMIC;
3744 		}
3745 
3746 		/*
3747 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3748 		 * GFP_ATOMIC) rather than fail, see the comment for
3749 		 * cpuset_node_allowed().
3750 		 */
3751 		if (alloc_flags & ALLOC_MIN_RESERVE)
3752 			alloc_flags &= ~ALLOC_CPUSET;
3753 	} else if (unlikely(rt_task(current)) && in_task())
3754 		alloc_flags |= ALLOC_MIN_RESERVE;
3755 
3756 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3757 
3758 	return alloc_flags;
3759 }
3760 
oom_reserves_allowed(struct task_struct * tsk)3761 static bool oom_reserves_allowed(struct task_struct *tsk)
3762 {
3763 	if (!tsk_is_oom_victim(tsk))
3764 		return false;
3765 
3766 	/*
3767 	 * !MMU doesn't have oom reaper so give access to memory reserves
3768 	 * only to the thread with TIF_MEMDIE set
3769 	 */
3770 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3771 		return false;
3772 
3773 	return true;
3774 }
3775 
3776 /*
3777  * Distinguish requests which really need access to full memory
3778  * reserves from oom victims which can live with a portion of it
3779  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3780 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3781 {
3782 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3783 		return 0;
3784 	if (gfp_mask & __GFP_MEMALLOC)
3785 		return ALLOC_NO_WATERMARKS;
3786 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3787 		return ALLOC_NO_WATERMARKS;
3788 	if (!in_interrupt()) {
3789 		if (current->flags & PF_MEMALLOC)
3790 			return ALLOC_NO_WATERMARKS;
3791 		else if (oom_reserves_allowed(current))
3792 			return ALLOC_OOM;
3793 	}
3794 
3795 	return 0;
3796 }
3797 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3798 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3799 {
3800 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3801 }
3802 
3803 /*
3804  * Checks whether it makes sense to retry the reclaim to make a forward progress
3805  * for the given allocation request.
3806  *
3807  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3808  * without success, or when we couldn't even meet the watermark if we
3809  * reclaimed all remaining pages on the LRU lists.
3810  *
3811  * Returns true if a retry is viable or false to enter the oom path.
3812  */
3813 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3814 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3815 		     struct alloc_context *ac, int alloc_flags,
3816 		     bool did_some_progress, int *no_progress_loops)
3817 {
3818 	struct zone *zone;
3819 	struct zoneref *z;
3820 	bool ret = false;
3821 
3822 	/*
3823 	 * Costly allocations might have made a progress but this doesn't mean
3824 	 * their order will become available due to high fragmentation so
3825 	 * always increment the no progress counter for them
3826 	 */
3827 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3828 		*no_progress_loops = 0;
3829 	else
3830 		(*no_progress_loops)++;
3831 
3832 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3833 		goto out;
3834 
3835 
3836 	/*
3837 	 * Keep reclaiming pages while there is a chance this will lead
3838 	 * somewhere.  If none of the target zones can satisfy our allocation
3839 	 * request even if all reclaimable pages are considered then we are
3840 	 * screwed and have to go OOM.
3841 	 */
3842 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3843 				ac->highest_zoneidx, ac->nodemask) {
3844 		unsigned long available;
3845 		unsigned long reclaimable;
3846 		unsigned long min_wmark = min_wmark_pages(zone);
3847 		bool wmark;
3848 
3849 		available = reclaimable = zone_reclaimable_pages(zone);
3850 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3851 
3852 		/*
3853 		 * Would the allocation succeed if we reclaimed all
3854 		 * reclaimable pages?
3855 		 */
3856 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3857 				ac->highest_zoneidx, alloc_flags, available);
3858 		trace_reclaim_retry_zone(z, order, reclaimable,
3859 				available, min_wmark, *no_progress_loops, wmark);
3860 		if (wmark) {
3861 			ret = true;
3862 			break;
3863 		}
3864 	}
3865 
3866 	/*
3867 	 * Memory allocation/reclaim might be called from a WQ context and the
3868 	 * current implementation of the WQ concurrency control doesn't
3869 	 * recognize that a particular WQ is congested if the worker thread is
3870 	 * looping without ever sleeping. Therefore we have to do a short sleep
3871 	 * here rather than calling cond_resched().
3872 	 */
3873 	if (current->flags & PF_WQ_WORKER)
3874 		schedule_timeout_uninterruptible(1);
3875 	else
3876 		cond_resched();
3877 out:
3878 	/* Before OOM, exhaust highatomic_reserve */
3879 	if (!ret)
3880 		return unreserve_highatomic_pageblock(ac, true);
3881 
3882 	return ret;
3883 }
3884 
3885 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)3886 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3887 {
3888 	/*
3889 	 * It's possible that cpuset's mems_allowed and the nodemask from
3890 	 * mempolicy don't intersect. This should be normally dealt with by
3891 	 * policy_nodemask(), but it's possible to race with cpuset update in
3892 	 * such a way the check therein was true, and then it became false
3893 	 * before we got our cpuset_mems_cookie here.
3894 	 * This assumes that for all allocations, ac->nodemask can come only
3895 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3896 	 * when it does not intersect with the cpuset restrictions) or the
3897 	 * caller can deal with a violated nodemask.
3898 	 */
3899 	if (cpusets_enabled() && ac->nodemask &&
3900 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3901 		ac->nodemask = NULL;
3902 		return true;
3903 	}
3904 
3905 	/*
3906 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3907 	 * possible to race with parallel threads in such a way that our
3908 	 * allocation can fail while the mask is being updated. If we are about
3909 	 * to fail, check if the cpuset changed during allocation and if so,
3910 	 * retry.
3911 	 */
3912 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3913 		return true;
3914 
3915 	return false;
3916 }
3917 
3918 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3919 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3920 						struct alloc_context *ac)
3921 {
3922 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3923 	bool can_compact = gfp_compaction_allowed(gfp_mask);
3924 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3925 	struct page *page = NULL;
3926 	unsigned int alloc_flags;
3927 	unsigned long did_some_progress;
3928 	enum compact_priority compact_priority;
3929 	enum compact_result compact_result;
3930 	int compaction_retries;
3931 	int no_progress_loops;
3932 	unsigned int cpuset_mems_cookie;
3933 	unsigned int zonelist_iter_cookie;
3934 	int reserve_flags;
3935 
3936 restart:
3937 	compaction_retries = 0;
3938 	no_progress_loops = 0;
3939 	compact_priority = DEF_COMPACT_PRIORITY;
3940 	cpuset_mems_cookie = read_mems_allowed_begin();
3941 	zonelist_iter_cookie = zonelist_iter_begin();
3942 
3943 	/*
3944 	 * The fast path uses conservative alloc_flags to succeed only until
3945 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3946 	 * alloc_flags precisely. So we do that now.
3947 	 */
3948 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3949 
3950 	/*
3951 	 * We need to recalculate the starting point for the zonelist iterator
3952 	 * because we might have used different nodemask in the fast path, or
3953 	 * there was a cpuset modification and we are retrying - otherwise we
3954 	 * could end up iterating over non-eligible zones endlessly.
3955 	 */
3956 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3957 					ac->highest_zoneidx, ac->nodemask);
3958 	if (!ac->preferred_zoneref->zone)
3959 		goto nopage;
3960 
3961 	/*
3962 	 * Check for insane configurations where the cpuset doesn't contain
3963 	 * any suitable zone to satisfy the request - e.g. non-movable
3964 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3965 	 */
3966 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3967 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3968 					ac->highest_zoneidx,
3969 					&cpuset_current_mems_allowed);
3970 		if (!z->zone)
3971 			goto nopage;
3972 	}
3973 
3974 	if (alloc_flags & ALLOC_KSWAPD)
3975 		wake_all_kswapds(order, gfp_mask, ac);
3976 
3977 	/*
3978 	 * The adjusted alloc_flags might result in immediate success, so try
3979 	 * that first
3980 	 */
3981 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3982 	if (page)
3983 		goto got_pg;
3984 
3985 	/*
3986 	 * For costly allocations, try direct compaction first, as it's likely
3987 	 * that we have enough base pages and don't need to reclaim. For non-
3988 	 * movable high-order allocations, do that as well, as compaction will
3989 	 * try prevent permanent fragmentation by migrating from blocks of the
3990 	 * same migratetype.
3991 	 * Don't try this for allocations that are allowed to ignore
3992 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3993 	 */
3994 	if (can_direct_reclaim && can_compact &&
3995 			(costly_order ||
3996 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3997 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3998 		page = __alloc_pages_direct_compact(gfp_mask, order,
3999 						alloc_flags, ac,
4000 						INIT_COMPACT_PRIORITY,
4001 						&compact_result);
4002 		if (page)
4003 			goto got_pg;
4004 
4005 		/*
4006 		 * Checks for costly allocations with __GFP_NORETRY, which
4007 		 * includes some THP page fault allocations
4008 		 */
4009 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4010 			/*
4011 			 * If allocating entire pageblock(s) and compaction
4012 			 * failed because all zones are below low watermarks
4013 			 * or is prohibited because it recently failed at this
4014 			 * order, fail immediately unless the allocator has
4015 			 * requested compaction and reclaim retry.
4016 			 *
4017 			 * Reclaim is
4018 			 *  - potentially very expensive because zones are far
4019 			 *    below their low watermarks or this is part of very
4020 			 *    bursty high order allocations,
4021 			 *  - not guaranteed to help because isolate_freepages()
4022 			 *    may not iterate over freed pages as part of its
4023 			 *    linear scan, and
4024 			 *  - unlikely to make entire pageblocks free on its
4025 			 *    own.
4026 			 */
4027 			if (compact_result == COMPACT_SKIPPED ||
4028 			    compact_result == COMPACT_DEFERRED)
4029 				goto nopage;
4030 
4031 			/*
4032 			 * Looks like reclaim/compaction is worth trying, but
4033 			 * sync compaction could be very expensive, so keep
4034 			 * using async compaction.
4035 			 */
4036 			compact_priority = INIT_COMPACT_PRIORITY;
4037 		}
4038 	}
4039 
4040 retry:
4041 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4042 	if (alloc_flags & ALLOC_KSWAPD)
4043 		wake_all_kswapds(order, gfp_mask, ac);
4044 
4045 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4046 	if (reserve_flags)
4047 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4048 					  (alloc_flags & ALLOC_KSWAPD);
4049 
4050 	/*
4051 	 * Reset the nodemask and zonelist iterators if memory policies can be
4052 	 * ignored. These allocations are high priority and system rather than
4053 	 * user oriented.
4054 	 */
4055 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4056 		ac->nodemask = NULL;
4057 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4058 					ac->highest_zoneidx, ac->nodemask);
4059 	}
4060 
4061 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4062 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4063 	if (page)
4064 		goto got_pg;
4065 
4066 	/* Caller is not willing to reclaim, we can't balance anything */
4067 	if (!can_direct_reclaim)
4068 		goto nopage;
4069 
4070 	/* Avoid recursion of direct reclaim */
4071 	if (current->flags & PF_MEMALLOC)
4072 		goto nopage;
4073 
4074 	/* Try direct reclaim and then allocating */
4075 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4076 							&did_some_progress);
4077 	if (page)
4078 		goto got_pg;
4079 
4080 	/* Try direct compaction and then allocating */
4081 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4082 					compact_priority, &compact_result);
4083 	if (page)
4084 		goto got_pg;
4085 
4086 	/* Do not loop if specifically requested */
4087 	if (gfp_mask & __GFP_NORETRY)
4088 		goto nopage;
4089 
4090 	/*
4091 	 * Do not retry costly high order allocations unless they are
4092 	 * __GFP_RETRY_MAYFAIL and we can compact
4093 	 */
4094 	if (costly_order && (!can_compact ||
4095 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4096 		goto nopage;
4097 
4098 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4099 				 did_some_progress > 0, &no_progress_loops))
4100 		goto retry;
4101 
4102 	/*
4103 	 * It doesn't make any sense to retry for the compaction if the order-0
4104 	 * reclaim is not able to make any progress because the current
4105 	 * implementation of the compaction depends on the sufficient amount
4106 	 * of free memory (see __compaction_suitable)
4107 	 */
4108 	if (did_some_progress > 0 && can_compact &&
4109 			should_compact_retry(ac, order, alloc_flags,
4110 				compact_result, &compact_priority,
4111 				&compaction_retries))
4112 		goto retry;
4113 
4114 
4115 	/*
4116 	 * Deal with possible cpuset update races or zonelist updates to avoid
4117 	 * a unnecessary OOM kill.
4118 	 */
4119 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4120 	    check_retry_zonelist(zonelist_iter_cookie))
4121 		goto restart;
4122 
4123 	/* Reclaim has failed us, start killing things */
4124 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4125 	if (page)
4126 		goto got_pg;
4127 
4128 	/* Avoid allocations with no watermarks from looping endlessly */
4129 	if (tsk_is_oom_victim(current) &&
4130 	    (alloc_flags & ALLOC_OOM ||
4131 	     (gfp_mask & __GFP_NOMEMALLOC)))
4132 		goto nopage;
4133 
4134 	/* Retry as long as the OOM killer is making progress */
4135 	if (did_some_progress) {
4136 		no_progress_loops = 0;
4137 		goto retry;
4138 	}
4139 
4140 nopage:
4141 	/*
4142 	 * Deal with possible cpuset update races or zonelist updates to avoid
4143 	 * a unnecessary OOM kill.
4144 	 */
4145 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4146 	    check_retry_zonelist(zonelist_iter_cookie))
4147 		goto restart;
4148 
4149 	/*
4150 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4151 	 * we always retry
4152 	 */
4153 	if (gfp_mask & __GFP_NOFAIL) {
4154 		/*
4155 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4156 		 * of any new users that actually require GFP_NOWAIT
4157 		 */
4158 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4159 			goto fail;
4160 
4161 		/*
4162 		 * PF_MEMALLOC request from this context is rather bizarre
4163 		 * because we cannot reclaim anything and only can loop waiting
4164 		 * for somebody to do a work for us
4165 		 */
4166 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4167 
4168 		/*
4169 		 * non failing costly orders are a hard requirement which we
4170 		 * are not prepared for much so let's warn about these users
4171 		 * so that we can identify them and convert them to something
4172 		 * else.
4173 		 */
4174 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4175 
4176 		/*
4177 		 * Help non-failing allocations by giving some access to memory
4178 		 * reserves normally used for high priority non-blocking
4179 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4180 		 * could deplete whole memory reserves which would just make
4181 		 * the situation worse.
4182 		 */
4183 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4184 		if (page)
4185 			goto got_pg;
4186 
4187 		cond_resched();
4188 		goto retry;
4189 	}
4190 fail:
4191 	warn_alloc(gfp_mask, ac->nodemask,
4192 			"page allocation failure: order:%u", order);
4193 got_pg:
4194 	return page;
4195 }
4196 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4197 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4198 		int preferred_nid, nodemask_t *nodemask,
4199 		struct alloc_context *ac, gfp_t *alloc_gfp,
4200 		unsigned int *alloc_flags)
4201 {
4202 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4203 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4204 	ac->nodemask = nodemask;
4205 	ac->migratetype = gfp_migratetype(gfp_mask);
4206 
4207 	if (cpusets_enabled()) {
4208 		*alloc_gfp |= __GFP_HARDWALL;
4209 		/*
4210 		 * When we are in the interrupt context, it is irrelevant
4211 		 * to the current task context. It means that any node ok.
4212 		 */
4213 		if (in_task() && !ac->nodemask)
4214 			ac->nodemask = &cpuset_current_mems_allowed;
4215 		else
4216 			*alloc_flags |= ALLOC_CPUSET;
4217 	}
4218 
4219 	might_alloc(gfp_mask);
4220 
4221 	if (should_fail_alloc_page(gfp_mask, order))
4222 		return false;
4223 
4224 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4225 
4226 	/* Dirty zone balancing only done in the fast path */
4227 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4228 
4229 	/*
4230 	 * The preferred zone is used for statistics but crucially it is
4231 	 * also used as the starting point for the zonelist iterator. It
4232 	 * may get reset for allocations that ignore memory policies.
4233 	 */
4234 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4235 					ac->highest_zoneidx, ac->nodemask);
4236 
4237 	return true;
4238 }
4239 
4240 /*
4241  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4242  * @gfp: GFP flags for the allocation
4243  * @preferred_nid: The preferred NUMA node ID to allocate from
4244  * @nodemask: Set of nodes to allocate from, may be NULL
4245  * @nr_pages: The number of pages desired on the list or array
4246  * @page_list: Optional list to store the allocated pages
4247  * @page_array: Optional array to store the pages
4248  *
4249  * This is a batched version of the page allocator that attempts to
4250  * allocate nr_pages quickly. Pages are added to page_list if page_list
4251  * is not NULL, otherwise it is assumed that the page_array is valid.
4252  *
4253  * For lists, nr_pages is the number of pages that should be allocated.
4254  *
4255  * For arrays, only NULL elements are populated with pages and nr_pages
4256  * is the maximum number of pages that will be stored in the array.
4257  *
4258  * Returns the number of pages on the list or array.
4259  */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4260 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4261 			nodemask_t *nodemask, int nr_pages,
4262 			struct list_head *page_list,
4263 			struct page **page_array)
4264 {
4265 	struct page *page;
4266 	unsigned long __maybe_unused UP_flags;
4267 	struct zone *zone;
4268 	struct zoneref *z;
4269 	struct per_cpu_pages *pcp;
4270 	struct list_head *pcp_list;
4271 	struct alloc_context ac;
4272 	gfp_t alloc_gfp;
4273 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4274 	int nr_populated = 0, nr_account = 0;
4275 
4276 	/*
4277 	 * Skip populated array elements to determine if any pages need
4278 	 * to be allocated before disabling IRQs.
4279 	 */
4280 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4281 		nr_populated++;
4282 
4283 	/* No pages requested? */
4284 	if (unlikely(nr_pages <= 0))
4285 		goto out;
4286 
4287 	/* Already populated array? */
4288 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4289 		goto out;
4290 
4291 	/* Bulk allocator does not support memcg accounting. */
4292 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4293 		goto failed;
4294 
4295 	/* Use the single page allocator for one page. */
4296 	if (nr_pages - nr_populated == 1)
4297 		goto failed;
4298 
4299 #ifdef CONFIG_PAGE_OWNER
4300 	/*
4301 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4302 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4303 	 * removes much of the performance benefit of bulk allocation so
4304 	 * force the caller to allocate one page at a time as it'll have
4305 	 * similar performance to added complexity to the bulk allocator.
4306 	 */
4307 	if (static_branch_unlikely(&page_owner_inited))
4308 		goto failed;
4309 #endif
4310 
4311 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4312 	gfp &= gfp_allowed_mask;
4313 	alloc_gfp = gfp;
4314 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4315 		goto out;
4316 	gfp = alloc_gfp;
4317 
4318 	/* Find an allowed local zone that meets the low watermark. */
4319 	z = ac.preferred_zoneref;
4320 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4321 		unsigned long mark;
4322 
4323 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4324 		    !__cpuset_zone_allowed(zone, gfp)) {
4325 			continue;
4326 		}
4327 
4328 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4329 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4330 			goto failed;
4331 		}
4332 
4333 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4334 		if (zone_watermark_fast(zone, 0,  mark,
4335 				zonelist_zone_idx(ac.preferred_zoneref),
4336 				alloc_flags, gfp)) {
4337 			break;
4338 		}
4339 	}
4340 
4341 	/*
4342 	 * If there are no allowed local zones that meets the watermarks then
4343 	 * try to allocate a single page and reclaim if necessary.
4344 	 */
4345 	if (unlikely(!zone))
4346 		goto failed;
4347 
4348 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4349 	pcp_trylock_prepare(UP_flags);
4350 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4351 	if (!pcp)
4352 		goto failed_irq;
4353 
4354 	/* Attempt the batch allocation */
4355 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4356 	while (nr_populated < nr_pages) {
4357 
4358 		/* Skip existing pages */
4359 		if (page_array && page_array[nr_populated]) {
4360 			nr_populated++;
4361 			continue;
4362 		}
4363 
4364 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4365 								pcp, pcp_list);
4366 		if (unlikely(!page)) {
4367 			/* Try and allocate at least one page */
4368 			if (!nr_account) {
4369 				pcp_spin_unlock(pcp);
4370 				goto failed_irq;
4371 			}
4372 			break;
4373 		}
4374 		nr_account++;
4375 
4376 		prep_new_page(page, 0, gfp, 0);
4377 		if (page_list)
4378 			list_add(&page->lru, page_list);
4379 		else
4380 			page_array[nr_populated] = page;
4381 		nr_populated++;
4382 	}
4383 
4384 	pcp_spin_unlock(pcp);
4385 	pcp_trylock_finish(UP_flags);
4386 
4387 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4388 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4389 
4390 out:
4391 	return nr_populated;
4392 
4393 failed_irq:
4394 	pcp_trylock_finish(UP_flags);
4395 
4396 failed:
4397 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4398 	if (page) {
4399 		if (page_list)
4400 			list_add(&page->lru, page_list);
4401 		else
4402 			page_array[nr_populated] = page;
4403 		nr_populated++;
4404 	}
4405 
4406 	goto out;
4407 }
4408 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4409 
4410 /*
4411  * This is the 'heart' of the zoned buddy allocator.
4412  */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4413 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4414 							nodemask_t *nodemask)
4415 {
4416 	struct page *page;
4417 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4418 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4419 	struct alloc_context ac = { };
4420 
4421 	/*
4422 	 * There are several places where we assume that the order value is sane
4423 	 * so bail out early if the request is out of bound.
4424 	 */
4425 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4426 		return NULL;
4427 
4428 	gfp &= gfp_allowed_mask;
4429 	/*
4430 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4431 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4432 	 * from a particular context which has been marked by
4433 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4434 	 * movable zones are not used during allocation.
4435 	 */
4436 	gfp = current_gfp_context(gfp);
4437 	alloc_gfp = gfp;
4438 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4439 			&alloc_gfp, &alloc_flags))
4440 		return NULL;
4441 
4442 	/*
4443 	 * Forbid the first pass from falling back to types that fragment
4444 	 * memory until all local zones are considered.
4445 	 */
4446 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4447 
4448 	/* First allocation attempt */
4449 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4450 	if (likely(page))
4451 		goto out;
4452 
4453 	alloc_gfp = gfp;
4454 	ac.spread_dirty_pages = false;
4455 
4456 	/*
4457 	 * Restore the original nodemask if it was potentially replaced with
4458 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4459 	 */
4460 	ac.nodemask = nodemask;
4461 
4462 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4463 
4464 out:
4465 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4466 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4467 		__free_pages(page, order);
4468 		page = NULL;
4469 	}
4470 
4471 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4472 	kmsan_alloc_page(page, order, alloc_gfp);
4473 
4474 	return page;
4475 }
4476 EXPORT_SYMBOL(__alloc_pages);
4477 
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4478 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4479 		nodemask_t *nodemask)
4480 {
4481 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4482 					preferred_nid, nodemask);
4483 	return page_rmappable_folio(page);
4484 }
4485 EXPORT_SYMBOL(__folio_alloc);
4486 
4487 /*
4488  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4489  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4490  * you need to access high mem.
4491  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4492 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4493 {
4494 	struct page *page;
4495 
4496 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4497 	if (!page)
4498 		return 0;
4499 	return (unsigned long) page_address(page);
4500 }
4501 EXPORT_SYMBOL(__get_free_pages);
4502 
get_zeroed_page(gfp_t gfp_mask)4503 unsigned long get_zeroed_page(gfp_t gfp_mask)
4504 {
4505 	return __get_free_page(gfp_mask | __GFP_ZERO);
4506 }
4507 EXPORT_SYMBOL(get_zeroed_page);
4508 
4509 /**
4510  * __free_pages - Free pages allocated with alloc_pages().
4511  * @page: The page pointer returned from alloc_pages().
4512  * @order: The order of the allocation.
4513  *
4514  * This function can free multi-page allocations that are not compound
4515  * pages.  It does not check that the @order passed in matches that of
4516  * the allocation, so it is easy to leak memory.  Freeing more memory
4517  * than was allocated will probably emit a warning.
4518  *
4519  * If the last reference to this page is speculative, it will be released
4520  * by put_page() which only frees the first page of a non-compound
4521  * allocation.  To prevent the remaining pages from being leaked, we free
4522  * the subsequent pages here.  If you want to use the page's reference
4523  * count to decide when to free the allocation, you should allocate a
4524  * compound page, and use put_page() instead of __free_pages().
4525  *
4526  * Context: May be called in interrupt context or while holding a normal
4527  * spinlock, but not in NMI context or while holding a raw spinlock.
4528  */
__free_pages(struct page * page,unsigned int order)4529 void __free_pages(struct page *page, unsigned int order)
4530 {
4531 	/* get PageHead before we drop reference */
4532 	int head = PageHead(page);
4533 
4534 	if (put_page_testzero(page))
4535 		free_the_page(page, order);
4536 	else if (!head)
4537 		while (order-- > 0)
4538 			free_the_page(page + (1 << order), order);
4539 }
4540 EXPORT_SYMBOL(__free_pages);
4541 
free_pages(unsigned long addr,unsigned int order)4542 void free_pages(unsigned long addr, unsigned int order)
4543 {
4544 	if (addr != 0) {
4545 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4546 		__free_pages(virt_to_page((void *)addr), order);
4547 	}
4548 }
4549 
4550 EXPORT_SYMBOL(free_pages);
4551 
4552 /*
4553  * Page Fragment:
4554  *  An arbitrary-length arbitrary-offset area of memory which resides
4555  *  within a 0 or higher order page.  Multiple fragments within that page
4556  *  are individually refcounted, in the page's reference counter.
4557  *
4558  * The page_frag functions below provide a simple allocation framework for
4559  * page fragments.  This is used by the network stack and network device
4560  * drivers to provide a backing region of memory for use as either an
4561  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4562  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4563 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4564 					     gfp_t gfp_mask)
4565 {
4566 	struct page *page = NULL;
4567 	gfp_t gfp = gfp_mask;
4568 
4569 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4570 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4571 		    __GFP_NOMEMALLOC;
4572 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4573 				PAGE_FRAG_CACHE_MAX_ORDER);
4574 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4575 #endif
4576 	if (unlikely(!page))
4577 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4578 
4579 	nc->va = page ? page_address(page) : NULL;
4580 
4581 	return page;
4582 }
4583 
__page_frag_cache_drain(struct page * page,unsigned int count)4584 void __page_frag_cache_drain(struct page *page, unsigned int count)
4585 {
4586 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4587 
4588 	if (page_ref_sub_and_test(page, count))
4589 		free_the_page(page, compound_order(page));
4590 }
4591 EXPORT_SYMBOL(__page_frag_cache_drain);
4592 
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4593 void *page_frag_alloc_align(struct page_frag_cache *nc,
4594 		      unsigned int fragsz, gfp_t gfp_mask,
4595 		      unsigned int align_mask)
4596 {
4597 	unsigned int size = PAGE_SIZE;
4598 	struct page *page;
4599 	int offset;
4600 
4601 	if (unlikely(!nc->va)) {
4602 refill:
4603 		page = __page_frag_cache_refill(nc, gfp_mask);
4604 		if (!page)
4605 			return NULL;
4606 
4607 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4608 		/* if size can vary use size else just use PAGE_SIZE */
4609 		size = nc->size;
4610 #endif
4611 		/* Even if we own the page, we do not use atomic_set().
4612 		 * This would break get_page_unless_zero() users.
4613 		 */
4614 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4615 
4616 		/* reset page count bias and offset to start of new frag */
4617 		nc->pfmemalloc = page_is_pfmemalloc(page);
4618 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4619 		nc->offset = size;
4620 	}
4621 
4622 	offset = nc->offset - fragsz;
4623 	if (unlikely(offset < 0)) {
4624 		page = virt_to_page(nc->va);
4625 
4626 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4627 			goto refill;
4628 
4629 		if (unlikely(nc->pfmemalloc)) {
4630 			free_the_page(page, compound_order(page));
4631 			goto refill;
4632 		}
4633 
4634 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4635 		/* if size can vary use size else just use PAGE_SIZE */
4636 		size = nc->size;
4637 #endif
4638 		/* OK, page count is 0, we can safely set it */
4639 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4640 
4641 		/* reset page count bias and offset to start of new frag */
4642 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4643 		offset = size - fragsz;
4644 		if (unlikely(offset < 0)) {
4645 			/*
4646 			 * The caller is trying to allocate a fragment
4647 			 * with fragsz > PAGE_SIZE but the cache isn't big
4648 			 * enough to satisfy the request, this may
4649 			 * happen in low memory conditions.
4650 			 * We don't release the cache page because
4651 			 * it could make memory pressure worse
4652 			 * so we simply return NULL here.
4653 			 */
4654 			return NULL;
4655 		}
4656 	}
4657 
4658 	nc->pagecnt_bias--;
4659 	offset &= align_mask;
4660 	nc->offset = offset;
4661 
4662 	return nc->va + offset;
4663 }
4664 EXPORT_SYMBOL(page_frag_alloc_align);
4665 
4666 /*
4667  * Frees a page fragment allocated out of either a compound or order 0 page.
4668  */
page_frag_free(void * addr)4669 void page_frag_free(void *addr)
4670 {
4671 	struct page *page = virt_to_head_page(addr);
4672 
4673 	if (unlikely(put_page_testzero(page)))
4674 		free_the_page(page, compound_order(page));
4675 }
4676 EXPORT_SYMBOL(page_frag_free);
4677 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4678 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4679 		size_t size)
4680 {
4681 	if (addr) {
4682 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4683 		struct page *page = virt_to_page((void *)addr);
4684 		struct page *last = page + nr;
4685 
4686 		split_page_owner(page, 1 << order);
4687 		split_page_memcg(page, 1 << order);
4688 		while (page < --last)
4689 			set_page_refcounted(last);
4690 
4691 		last = page + (1UL << order);
4692 		for (page += nr; page < last; page++)
4693 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4694 	}
4695 	return (void *)addr;
4696 }
4697 
4698 /**
4699  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4700  * @size: the number of bytes to allocate
4701  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4702  *
4703  * This function is similar to alloc_pages(), except that it allocates the
4704  * minimum number of pages to satisfy the request.  alloc_pages() can only
4705  * allocate memory in power-of-two pages.
4706  *
4707  * This function is also limited by MAX_ORDER.
4708  *
4709  * Memory allocated by this function must be released by free_pages_exact().
4710  *
4711  * Return: pointer to the allocated area or %NULL in case of error.
4712  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4713 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4714 {
4715 	unsigned int order = get_order(size);
4716 	unsigned long addr;
4717 
4718 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4719 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4720 
4721 	addr = __get_free_pages(gfp_mask, order);
4722 	return make_alloc_exact(addr, order, size);
4723 }
4724 EXPORT_SYMBOL(alloc_pages_exact);
4725 
4726 /**
4727  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4728  *			   pages on a node.
4729  * @nid: the preferred node ID where memory should be allocated
4730  * @size: the number of bytes to allocate
4731  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4732  *
4733  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4734  * back.
4735  *
4736  * Return: pointer to the allocated area or %NULL in case of error.
4737  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4738 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4739 {
4740 	unsigned int order = get_order(size);
4741 	struct page *p;
4742 
4743 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4744 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4745 
4746 	p = alloc_pages_node(nid, gfp_mask, order);
4747 	if (!p)
4748 		return NULL;
4749 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4750 }
4751 
4752 /**
4753  * free_pages_exact - release memory allocated via alloc_pages_exact()
4754  * @virt: the value returned by alloc_pages_exact.
4755  * @size: size of allocation, same value as passed to alloc_pages_exact().
4756  *
4757  * Release the memory allocated by a previous call to alloc_pages_exact.
4758  */
free_pages_exact(void * virt,size_t size)4759 void free_pages_exact(void *virt, size_t size)
4760 {
4761 	unsigned long addr = (unsigned long)virt;
4762 	unsigned long end = addr + PAGE_ALIGN(size);
4763 
4764 	while (addr < end) {
4765 		free_page(addr);
4766 		addr += PAGE_SIZE;
4767 	}
4768 }
4769 EXPORT_SYMBOL(free_pages_exact);
4770 
4771 /**
4772  * nr_free_zone_pages - count number of pages beyond high watermark
4773  * @offset: The zone index of the highest zone
4774  *
4775  * nr_free_zone_pages() counts the number of pages which are beyond the
4776  * high watermark within all zones at or below a given zone index.  For each
4777  * zone, the number of pages is calculated as:
4778  *
4779  *     nr_free_zone_pages = managed_pages - high_pages
4780  *
4781  * Return: number of pages beyond high watermark.
4782  */
nr_free_zone_pages(int offset)4783 static unsigned long nr_free_zone_pages(int offset)
4784 {
4785 	struct zoneref *z;
4786 	struct zone *zone;
4787 
4788 	/* Just pick one node, since fallback list is circular */
4789 	unsigned long sum = 0;
4790 
4791 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4792 
4793 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4794 		unsigned long size = zone_managed_pages(zone);
4795 		unsigned long high = high_wmark_pages(zone);
4796 		if (size > high)
4797 			sum += size - high;
4798 	}
4799 
4800 	return sum;
4801 }
4802 
4803 /**
4804  * nr_free_buffer_pages - count number of pages beyond high watermark
4805  *
4806  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4807  * watermark within ZONE_DMA and ZONE_NORMAL.
4808  *
4809  * Return: number of pages beyond high watermark within ZONE_DMA and
4810  * ZONE_NORMAL.
4811  */
nr_free_buffer_pages(void)4812 unsigned long nr_free_buffer_pages(void)
4813 {
4814 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4815 }
4816 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4817 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4818 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4819 {
4820 	zoneref->zone = zone;
4821 	zoneref->zone_idx = zone_idx(zone);
4822 }
4823 
4824 /*
4825  * Builds allocation fallback zone lists.
4826  *
4827  * Add all populated zones of a node to the zonelist.
4828  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4829 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4830 {
4831 	struct zone *zone;
4832 	enum zone_type zone_type = MAX_NR_ZONES;
4833 	int nr_zones = 0;
4834 
4835 	do {
4836 		zone_type--;
4837 		zone = pgdat->node_zones + zone_type;
4838 		if (populated_zone(zone)) {
4839 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4840 			check_highest_zone(zone_type);
4841 		}
4842 	} while (zone_type);
4843 
4844 	return nr_zones;
4845 }
4846 
4847 #ifdef CONFIG_NUMA
4848 
__parse_numa_zonelist_order(char * s)4849 static int __parse_numa_zonelist_order(char *s)
4850 {
4851 	/*
4852 	 * We used to support different zonelists modes but they turned
4853 	 * out to be just not useful. Let's keep the warning in place
4854 	 * if somebody still use the cmd line parameter so that we do
4855 	 * not fail it silently
4856 	 */
4857 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4858 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4859 		return -EINVAL;
4860 	}
4861 	return 0;
4862 }
4863 
4864 static char numa_zonelist_order[] = "Node";
4865 #define NUMA_ZONELIST_ORDER_LEN	16
4866 /*
4867  * sysctl handler for numa_zonelist_order
4868  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4869 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4870 		void *buffer, size_t *length, loff_t *ppos)
4871 {
4872 	if (write)
4873 		return __parse_numa_zonelist_order(buffer);
4874 	return proc_dostring(table, write, buffer, length, ppos);
4875 }
4876 
4877 static int node_load[MAX_NUMNODES];
4878 
4879 /**
4880  * find_next_best_node - find the next node that should appear in a given node's fallback list
4881  * @node: node whose fallback list we're appending
4882  * @used_node_mask: nodemask_t of already used nodes
4883  *
4884  * We use a number of factors to determine which is the next node that should
4885  * appear on a given node's fallback list.  The node should not have appeared
4886  * already in @node's fallback list, and it should be the next closest node
4887  * according to the distance array (which contains arbitrary distance values
4888  * from each node to each node in the system), and should also prefer nodes
4889  * with no CPUs, since presumably they'll have very little allocation pressure
4890  * on them otherwise.
4891  *
4892  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4893  */
find_next_best_node(int node,nodemask_t * used_node_mask)4894 int find_next_best_node(int node, nodemask_t *used_node_mask)
4895 {
4896 	int n, val;
4897 	int min_val = INT_MAX;
4898 	int best_node = NUMA_NO_NODE;
4899 
4900 	/* Use the local node if we haven't already */
4901 	if (!node_isset(node, *used_node_mask)) {
4902 		node_set(node, *used_node_mask);
4903 		return node;
4904 	}
4905 
4906 	for_each_node_state(n, N_MEMORY) {
4907 
4908 		/* Don't want a node to appear more than once */
4909 		if (node_isset(n, *used_node_mask))
4910 			continue;
4911 
4912 		/* Use the distance array to find the distance */
4913 		val = node_distance(node, n);
4914 
4915 		/* Penalize nodes under us ("prefer the next node") */
4916 		val += (n < node);
4917 
4918 		/* Give preference to headless and unused nodes */
4919 		if (!cpumask_empty(cpumask_of_node(n)))
4920 			val += PENALTY_FOR_NODE_WITH_CPUS;
4921 
4922 		/* Slight preference for less loaded node */
4923 		val *= MAX_NUMNODES;
4924 		val += node_load[n];
4925 
4926 		if (val < min_val) {
4927 			min_val = val;
4928 			best_node = n;
4929 		}
4930 	}
4931 
4932 	if (best_node >= 0)
4933 		node_set(best_node, *used_node_mask);
4934 
4935 	return best_node;
4936 }
4937 
4938 
4939 /*
4940  * Build zonelists ordered by node and zones within node.
4941  * This results in maximum locality--normal zone overflows into local
4942  * DMA zone, if any--but risks exhausting DMA zone.
4943  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)4944 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4945 		unsigned nr_nodes)
4946 {
4947 	struct zoneref *zonerefs;
4948 	int i;
4949 
4950 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4951 
4952 	for (i = 0; i < nr_nodes; i++) {
4953 		int nr_zones;
4954 
4955 		pg_data_t *node = NODE_DATA(node_order[i]);
4956 
4957 		nr_zones = build_zonerefs_node(node, zonerefs);
4958 		zonerefs += nr_zones;
4959 	}
4960 	zonerefs->zone = NULL;
4961 	zonerefs->zone_idx = 0;
4962 }
4963 
4964 /*
4965  * Build gfp_thisnode zonelists
4966  */
build_thisnode_zonelists(pg_data_t * pgdat)4967 static void build_thisnode_zonelists(pg_data_t *pgdat)
4968 {
4969 	struct zoneref *zonerefs;
4970 	int nr_zones;
4971 
4972 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4973 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4974 	zonerefs += nr_zones;
4975 	zonerefs->zone = NULL;
4976 	zonerefs->zone_idx = 0;
4977 }
4978 
4979 /*
4980  * Build zonelists ordered by zone and nodes within zones.
4981  * This results in conserving DMA zone[s] until all Normal memory is
4982  * exhausted, but results in overflowing to remote node while memory
4983  * may still exist in local DMA zone.
4984  */
4985 
build_zonelists(pg_data_t * pgdat)4986 static void build_zonelists(pg_data_t *pgdat)
4987 {
4988 	static int node_order[MAX_NUMNODES];
4989 	int node, nr_nodes = 0;
4990 	nodemask_t used_mask = NODE_MASK_NONE;
4991 	int local_node, prev_node;
4992 
4993 	/* NUMA-aware ordering of nodes */
4994 	local_node = pgdat->node_id;
4995 	prev_node = local_node;
4996 
4997 	memset(node_order, 0, sizeof(node_order));
4998 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4999 		/*
5000 		 * We don't want to pressure a particular node.
5001 		 * So adding penalty to the first node in same
5002 		 * distance group to make it round-robin.
5003 		 */
5004 		if (node_distance(local_node, node) !=
5005 		    node_distance(local_node, prev_node))
5006 			node_load[node] += 1;
5007 
5008 		node_order[nr_nodes++] = node;
5009 		prev_node = node;
5010 	}
5011 
5012 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5013 	build_thisnode_zonelists(pgdat);
5014 	pr_info("Fallback order for Node %d: ", local_node);
5015 	for (node = 0; node < nr_nodes; node++)
5016 		pr_cont("%d ", node_order[node]);
5017 	pr_cont("\n");
5018 }
5019 
5020 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5021 /*
5022  * Return node id of node used for "local" allocations.
5023  * I.e., first node id of first zone in arg node's generic zonelist.
5024  * Used for initializing percpu 'numa_mem', which is used primarily
5025  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5026  */
local_memory_node(int node)5027 int local_memory_node(int node)
5028 {
5029 	struct zoneref *z;
5030 
5031 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5032 				   gfp_zone(GFP_KERNEL),
5033 				   NULL);
5034 	return zone_to_nid(z->zone);
5035 }
5036 #endif
5037 
5038 static void setup_min_unmapped_ratio(void);
5039 static void setup_min_slab_ratio(void);
5040 #else	/* CONFIG_NUMA */
5041 
build_zonelists(pg_data_t * pgdat)5042 static void build_zonelists(pg_data_t *pgdat)
5043 {
5044 	int node, local_node;
5045 	struct zoneref *zonerefs;
5046 	int nr_zones;
5047 
5048 	local_node = pgdat->node_id;
5049 
5050 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5051 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5052 	zonerefs += nr_zones;
5053 
5054 	/*
5055 	 * Now we build the zonelist so that it contains the zones
5056 	 * of all the other nodes.
5057 	 * We don't want to pressure a particular node, so when
5058 	 * building the zones for node N, we make sure that the
5059 	 * zones coming right after the local ones are those from
5060 	 * node N+1 (modulo N)
5061 	 */
5062 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5063 		if (!node_online(node))
5064 			continue;
5065 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5066 		zonerefs += nr_zones;
5067 	}
5068 	for (node = 0; node < local_node; node++) {
5069 		if (!node_online(node))
5070 			continue;
5071 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5072 		zonerefs += nr_zones;
5073 	}
5074 
5075 	zonerefs->zone = NULL;
5076 	zonerefs->zone_idx = 0;
5077 }
5078 
5079 #endif	/* CONFIG_NUMA */
5080 
5081 /*
5082  * Boot pageset table. One per cpu which is going to be used for all
5083  * zones and all nodes. The parameters will be set in such a way
5084  * that an item put on a list will immediately be handed over to
5085  * the buddy list. This is safe since pageset manipulation is done
5086  * with interrupts disabled.
5087  *
5088  * The boot_pagesets must be kept even after bootup is complete for
5089  * unused processors and/or zones. They do play a role for bootstrapping
5090  * hotplugged processors.
5091  *
5092  * zoneinfo_show() and maybe other functions do
5093  * not check if the processor is online before following the pageset pointer.
5094  * Other parts of the kernel may not check if the zone is available.
5095  */
5096 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5097 /* These effectively disable the pcplists in the boot pageset completely */
5098 #define BOOT_PAGESET_HIGH	0
5099 #define BOOT_PAGESET_BATCH	1
5100 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5101 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5102 
__build_all_zonelists(void * data)5103 static void __build_all_zonelists(void *data)
5104 {
5105 	int nid;
5106 	int __maybe_unused cpu;
5107 	pg_data_t *self = data;
5108 	unsigned long flags;
5109 
5110 	/*
5111 	 * The zonelist_update_seq must be acquired with irqsave because the
5112 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5113 	 */
5114 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5115 	/*
5116 	 * Also disable synchronous printk() to prevent any printk() from
5117 	 * trying to hold port->lock, for
5118 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5119 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5120 	 */
5121 	printk_deferred_enter();
5122 
5123 #ifdef CONFIG_NUMA
5124 	memset(node_load, 0, sizeof(node_load));
5125 #endif
5126 
5127 	/*
5128 	 * This node is hotadded and no memory is yet present.   So just
5129 	 * building zonelists is fine - no need to touch other nodes.
5130 	 */
5131 	if (self && !node_online(self->node_id)) {
5132 		build_zonelists(self);
5133 	} else {
5134 		/*
5135 		 * All possible nodes have pgdat preallocated
5136 		 * in free_area_init
5137 		 */
5138 		for_each_node(nid) {
5139 			pg_data_t *pgdat = NODE_DATA(nid);
5140 
5141 			build_zonelists(pgdat);
5142 		}
5143 
5144 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5145 		/*
5146 		 * We now know the "local memory node" for each node--
5147 		 * i.e., the node of the first zone in the generic zonelist.
5148 		 * Set up numa_mem percpu variable for on-line cpus.  During
5149 		 * boot, only the boot cpu should be on-line;  we'll init the
5150 		 * secondary cpus' numa_mem as they come on-line.  During
5151 		 * node/memory hotplug, we'll fixup all on-line cpus.
5152 		 */
5153 		for_each_online_cpu(cpu)
5154 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5155 #endif
5156 	}
5157 
5158 	printk_deferred_exit();
5159 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5160 }
5161 
5162 static noinline void __init
build_all_zonelists_init(void)5163 build_all_zonelists_init(void)
5164 {
5165 	int cpu;
5166 
5167 	__build_all_zonelists(NULL);
5168 
5169 	/*
5170 	 * Initialize the boot_pagesets that are going to be used
5171 	 * for bootstrapping processors. The real pagesets for
5172 	 * each zone will be allocated later when the per cpu
5173 	 * allocator is available.
5174 	 *
5175 	 * boot_pagesets are used also for bootstrapping offline
5176 	 * cpus if the system is already booted because the pagesets
5177 	 * are needed to initialize allocators on a specific cpu too.
5178 	 * F.e. the percpu allocator needs the page allocator which
5179 	 * needs the percpu allocator in order to allocate its pagesets
5180 	 * (a chicken-egg dilemma).
5181 	 */
5182 	for_each_possible_cpu(cpu)
5183 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5184 
5185 	mminit_verify_zonelist();
5186 	cpuset_init_current_mems_allowed();
5187 }
5188 
5189 /*
5190  * unless system_state == SYSTEM_BOOTING.
5191  *
5192  * __ref due to call of __init annotated helper build_all_zonelists_init
5193  * [protected by SYSTEM_BOOTING].
5194  */
build_all_zonelists(pg_data_t * pgdat)5195 void __ref build_all_zonelists(pg_data_t *pgdat)
5196 {
5197 	unsigned long vm_total_pages;
5198 
5199 	if (system_state == SYSTEM_BOOTING) {
5200 		build_all_zonelists_init();
5201 	} else {
5202 		__build_all_zonelists(pgdat);
5203 		/* cpuset refresh routine should be here */
5204 	}
5205 	/* Get the number of free pages beyond high watermark in all zones. */
5206 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5207 	/*
5208 	 * Disable grouping by mobility if the number of pages in the
5209 	 * system is too low to allow the mechanism to work. It would be
5210 	 * more accurate, but expensive to check per-zone. This check is
5211 	 * made on memory-hotadd so a system can start with mobility
5212 	 * disabled and enable it later
5213 	 */
5214 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5215 		page_group_by_mobility_disabled = 1;
5216 	else
5217 		page_group_by_mobility_disabled = 0;
5218 
5219 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5220 		nr_online_nodes,
5221 		page_group_by_mobility_disabled ? "off" : "on",
5222 		vm_total_pages);
5223 #ifdef CONFIG_NUMA
5224 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5225 #endif
5226 }
5227 
zone_batchsize(struct zone * zone)5228 static int zone_batchsize(struct zone *zone)
5229 {
5230 #ifdef CONFIG_MMU
5231 	int batch;
5232 
5233 	/*
5234 	 * The number of pages to batch allocate is either ~0.1%
5235 	 * of the zone or 1MB, whichever is smaller. The batch
5236 	 * size is striking a balance between allocation latency
5237 	 * and zone lock contention.
5238 	 */
5239 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5240 	batch /= 4;		/* We effectively *= 4 below */
5241 	if (batch < 1)
5242 		batch = 1;
5243 
5244 	/*
5245 	 * Clamp the batch to a 2^n - 1 value. Having a power
5246 	 * of 2 value was found to be more likely to have
5247 	 * suboptimal cache aliasing properties in some cases.
5248 	 *
5249 	 * For example if 2 tasks are alternately allocating
5250 	 * batches of pages, one task can end up with a lot
5251 	 * of pages of one half of the possible page colors
5252 	 * and the other with pages of the other colors.
5253 	 */
5254 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5255 
5256 	return batch;
5257 
5258 #else
5259 	/* The deferral and batching of frees should be suppressed under NOMMU
5260 	 * conditions.
5261 	 *
5262 	 * The problem is that NOMMU needs to be able to allocate large chunks
5263 	 * of contiguous memory as there's no hardware page translation to
5264 	 * assemble apparent contiguous memory from discontiguous pages.
5265 	 *
5266 	 * Queueing large contiguous runs of pages for batching, however,
5267 	 * causes the pages to actually be freed in smaller chunks.  As there
5268 	 * can be a significant delay between the individual batches being
5269 	 * recycled, this leads to the once large chunks of space being
5270 	 * fragmented and becoming unavailable for high-order allocations.
5271 	 */
5272 	return 0;
5273 #endif
5274 }
5275 
5276 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online)5277 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5278 {
5279 #ifdef CONFIG_MMU
5280 	int high;
5281 	int nr_split_cpus;
5282 	unsigned long total_pages;
5283 
5284 	if (!percpu_pagelist_high_fraction) {
5285 		/*
5286 		 * By default, the high value of the pcp is based on the zone
5287 		 * low watermark so that if they are full then background
5288 		 * reclaim will not be started prematurely.
5289 		 */
5290 		total_pages = low_wmark_pages(zone);
5291 	} else {
5292 		/*
5293 		 * If percpu_pagelist_high_fraction is configured, the high
5294 		 * value is based on a fraction of the managed pages in the
5295 		 * zone.
5296 		 */
5297 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5298 	}
5299 
5300 	/*
5301 	 * Split the high value across all online CPUs local to the zone. Note
5302 	 * that early in boot that CPUs may not be online yet and that during
5303 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5304 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5305 	 * all online CPUs to mitigate the risk that reclaim is triggered
5306 	 * prematurely due to pages stored on pcp lists.
5307 	 */
5308 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5309 	if (!nr_split_cpus)
5310 		nr_split_cpus = num_online_cpus();
5311 	high = total_pages / nr_split_cpus;
5312 
5313 	/*
5314 	 * Ensure high is at least batch*4. The multiple is based on the
5315 	 * historical relationship between high and batch.
5316 	 */
5317 	high = max(high, batch << 2);
5318 
5319 	return high;
5320 #else
5321 	return 0;
5322 #endif
5323 }
5324 
5325 /*
5326  * pcp->high and pcp->batch values are related and generally batch is lower
5327  * than high. They are also related to pcp->count such that count is lower
5328  * than high, and as soon as it reaches high, the pcplist is flushed.
5329  *
5330  * However, guaranteeing these relations at all times would require e.g. write
5331  * barriers here but also careful usage of read barriers at the read side, and
5332  * thus be prone to error and bad for performance. Thus the update only prevents
5333  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5334  * can cope with those fields changing asynchronously, and fully trust only the
5335  * pcp->count field on the local CPU with interrupts disabled.
5336  *
5337  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5338  * outside of boot time (or some other assurance that no concurrent updaters
5339  * exist).
5340  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5341 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5342 		unsigned long batch)
5343 {
5344 	WRITE_ONCE(pcp->batch, batch);
5345 	WRITE_ONCE(pcp->high, high);
5346 }
5347 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5348 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5349 {
5350 	int pindex;
5351 
5352 	memset(pcp, 0, sizeof(*pcp));
5353 	memset(pzstats, 0, sizeof(*pzstats));
5354 
5355 	spin_lock_init(&pcp->lock);
5356 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5357 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5358 
5359 	/*
5360 	 * Set batch and high values safe for a boot pageset. A true percpu
5361 	 * pageset's initialization will update them subsequently. Here we don't
5362 	 * need to be as careful as pageset_update() as nobody can access the
5363 	 * pageset yet.
5364 	 */
5365 	pcp->high = BOOT_PAGESET_HIGH;
5366 	pcp->batch = BOOT_PAGESET_BATCH;
5367 	pcp->free_factor = 0;
5368 }
5369 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)5370 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5371 		unsigned long batch)
5372 {
5373 	struct per_cpu_pages *pcp;
5374 	int cpu;
5375 
5376 	for_each_possible_cpu(cpu) {
5377 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5378 		pageset_update(pcp, high, batch);
5379 	}
5380 }
5381 
5382 /*
5383  * Calculate and set new high and batch values for all per-cpu pagesets of a
5384  * zone based on the zone's size.
5385  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5386 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5387 {
5388 	int new_high, new_batch;
5389 
5390 	new_batch = max(1, zone_batchsize(zone));
5391 	new_high = zone_highsize(zone, new_batch, cpu_online);
5392 
5393 	if (zone->pageset_high == new_high &&
5394 	    zone->pageset_batch == new_batch)
5395 		return;
5396 
5397 	zone->pageset_high = new_high;
5398 	zone->pageset_batch = new_batch;
5399 
5400 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5401 }
5402 
setup_zone_pageset(struct zone * zone)5403 void __meminit setup_zone_pageset(struct zone *zone)
5404 {
5405 	int cpu;
5406 
5407 	/* Size may be 0 on !SMP && !NUMA */
5408 	if (sizeof(struct per_cpu_zonestat) > 0)
5409 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5410 
5411 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5412 	for_each_possible_cpu(cpu) {
5413 		struct per_cpu_pages *pcp;
5414 		struct per_cpu_zonestat *pzstats;
5415 
5416 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5417 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5418 		per_cpu_pages_init(pcp, pzstats);
5419 	}
5420 
5421 	zone_set_pageset_high_and_batch(zone, 0);
5422 }
5423 
5424 /*
5425  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5426  * page high values need to be recalculated.
5427  */
zone_pcp_update(struct zone * zone,int cpu_online)5428 static void zone_pcp_update(struct zone *zone, int cpu_online)
5429 {
5430 	mutex_lock(&pcp_batch_high_lock);
5431 	zone_set_pageset_high_and_batch(zone, cpu_online);
5432 	mutex_unlock(&pcp_batch_high_lock);
5433 }
5434 
5435 /*
5436  * Allocate per cpu pagesets and initialize them.
5437  * Before this call only boot pagesets were available.
5438  */
setup_per_cpu_pageset(void)5439 void __init setup_per_cpu_pageset(void)
5440 {
5441 	struct pglist_data *pgdat;
5442 	struct zone *zone;
5443 	int __maybe_unused cpu;
5444 
5445 	for_each_populated_zone(zone)
5446 		setup_zone_pageset(zone);
5447 
5448 #ifdef CONFIG_NUMA
5449 	/*
5450 	 * Unpopulated zones continue using the boot pagesets.
5451 	 * The numa stats for these pagesets need to be reset.
5452 	 * Otherwise, they will end up skewing the stats of
5453 	 * the nodes these zones are associated with.
5454 	 */
5455 	for_each_possible_cpu(cpu) {
5456 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5457 		memset(pzstats->vm_numa_event, 0,
5458 		       sizeof(pzstats->vm_numa_event));
5459 	}
5460 #endif
5461 
5462 	for_each_online_pgdat(pgdat)
5463 		pgdat->per_cpu_nodestats =
5464 			alloc_percpu(struct per_cpu_nodestat);
5465 }
5466 
zone_pcp_init(struct zone * zone)5467 __meminit void zone_pcp_init(struct zone *zone)
5468 {
5469 	/*
5470 	 * per cpu subsystem is not up at this point. The following code
5471 	 * relies on the ability of the linker to provide the
5472 	 * offset of a (static) per cpu variable into the per cpu area.
5473 	 */
5474 	zone->per_cpu_pageset = &boot_pageset;
5475 	zone->per_cpu_zonestats = &boot_zonestats;
5476 	zone->pageset_high = BOOT_PAGESET_HIGH;
5477 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5478 
5479 	if (populated_zone(zone))
5480 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5481 			 zone->present_pages, zone_batchsize(zone));
5482 }
5483 
adjust_managed_page_count(struct page * page,long count)5484 void adjust_managed_page_count(struct page *page, long count)
5485 {
5486 	atomic_long_add(count, &page_zone(page)->managed_pages);
5487 	totalram_pages_add(count);
5488 #ifdef CONFIG_HIGHMEM
5489 	if (PageHighMem(page))
5490 		totalhigh_pages_add(count);
5491 #endif
5492 }
5493 EXPORT_SYMBOL(adjust_managed_page_count);
5494 
free_reserved_area(void * start,void * end,int poison,const char * s)5495 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5496 {
5497 	void *pos;
5498 	unsigned long pages = 0;
5499 
5500 	start = (void *)PAGE_ALIGN((unsigned long)start);
5501 	end = (void *)((unsigned long)end & PAGE_MASK);
5502 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5503 		struct page *page = virt_to_page(pos);
5504 		void *direct_map_addr;
5505 
5506 		/*
5507 		 * 'direct_map_addr' might be different from 'pos'
5508 		 * because some architectures' virt_to_page()
5509 		 * work with aliases.  Getting the direct map
5510 		 * address ensures that we get a _writeable_
5511 		 * alias for the memset().
5512 		 */
5513 		direct_map_addr = page_address(page);
5514 		/*
5515 		 * Perform a kasan-unchecked memset() since this memory
5516 		 * has not been initialized.
5517 		 */
5518 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5519 		if ((unsigned int)poison <= 0xFF)
5520 			memset(direct_map_addr, poison, PAGE_SIZE);
5521 
5522 		free_reserved_page(page);
5523 	}
5524 
5525 	if (pages && s)
5526 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5527 
5528 	return pages;
5529 }
5530 
page_alloc_cpu_dead(unsigned int cpu)5531 static int page_alloc_cpu_dead(unsigned int cpu)
5532 {
5533 	struct zone *zone;
5534 
5535 	lru_add_drain_cpu(cpu);
5536 	mlock_drain_remote(cpu);
5537 	drain_pages(cpu);
5538 
5539 	/*
5540 	 * Spill the event counters of the dead processor
5541 	 * into the current processors event counters.
5542 	 * This artificially elevates the count of the current
5543 	 * processor.
5544 	 */
5545 	vm_events_fold_cpu(cpu);
5546 
5547 	/*
5548 	 * Zero the differential counters of the dead processor
5549 	 * so that the vm statistics are consistent.
5550 	 *
5551 	 * This is only okay since the processor is dead and cannot
5552 	 * race with what we are doing.
5553 	 */
5554 	cpu_vm_stats_fold(cpu);
5555 
5556 	for_each_populated_zone(zone)
5557 		zone_pcp_update(zone, 0);
5558 
5559 	return 0;
5560 }
5561 
page_alloc_cpu_online(unsigned int cpu)5562 static int page_alloc_cpu_online(unsigned int cpu)
5563 {
5564 	struct zone *zone;
5565 
5566 	for_each_populated_zone(zone)
5567 		zone_pcp_update(zone, 1);
5568 	return 0;
5569 }
5570 
page_alloc_init_cpuhp(void)5571 void __init page_alloc_init_cpuhp(void)
5572 {
5573 	int ret;
5574 
5575 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5576 					"mm/page_alloc:pcp",
5577 					page_alloc_cpu_online,
5578 					page_alloc_cpu_dead);
5579 	WARN_ON(ret < 0);
5580 }
5581 
5582 /*
5583  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5584  *	or min_free_kbytes changes.
5585  */
calculate_totalreserve_pages(void)5586 static void calculate_totalreserve_pages(void)
5587 {
5588 	struct pglist_data *pgdat;
5589 	unsigned long reserve_pages = 0;
5590 	enum zone_type i, j;
5591 
5592 	for_each_online_pgdat(pgdat) {
5593 
5594 		pgdat->totalreserve_pages = 0;
5595 
5596 		for (i = 0; i < MAX_NR_ZONES; i++) {
5597 			struct zone *zone = pgdat->node_zones + i;
5598 			long max = 0;
5599 			unsigned long managed_pages = zone_managed_pages(zone);
5600 
5601 			/* Find valid and maximum lowmem_reserve in the zone */
5602 			for (j = i; j < MAX_NR_ZONES; j++) {
5603 				if (zone->lowmem_reserve[j] > max)
5604 					max = zone->lowmem_reserve[j];
5605 			}
5606 
5607 			/* we treat the high watermark as reserved pages. */
5608 			max += high_wmark_pages(zone);
5609 
5610 			if (max > managed_pages)
5611 				max = managed_pages;
5612 
5613 			pgdat->totalreserve_pages += max;
5614 
5615 			reserve_pages += max;
5616 		}
5617 	}
5618 	totalreserve_pages = reserve_pages;
5619 }
5620 
5621 /*
5622  * setup_per_zone_lowmem_reserve - called whenever
5623  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5624  *	has a correct pages reserved value, so an adequate number of
5625  *	pages are left in the zone after a successful __alloc_pages().
5626  */
setup_per_zone_lowmem_reserve(void)5627 static void setup_per_zone_lowmem_reserve(void)
5628 {
5629 	struct pglist_data *pgdat;
5630 	enum zone_type i, j;
5631 
5632 	for_each_online_pgdat(pgdat) {
5633 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5634 			struct zone *zone = &pgdat->node_zones[i];
5635 			int ratio = sysctl_lowmem_reserve_ratio[i];
5636 			bool clear = !ratio || !zone_managed_pages(zone);
5637 			unsigned long managed_pages = 0;
5638 
5639 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5640 				struct zone *upper_zone = &pgdat->node_zones[j];
5641 
5642 				managed_pages += zone_managed_pages(upper_zone);
5643 
5644 				if (clear)
5645 					zone->lowmem_reserve[j] = 0;
5646 				else
5647 					zone->lowmem_reserve[j] = managed_pages / ratio;
5648 			}
5649 		}
5650 	}
5651 
5652 	/* update totalreserve_pages */
5653 	calculate_totalreserve_pages();
5654 }
5655 
__setup_per_zone_wmarks(void)5656 static void __setup_per_zone_wmarks(void)
5657 {
5658 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5659 	unsigned long lowmem_pages = 0;
5660 	struct zone *zone;
5661 	unsigned long flags;
5662 
5663 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5664 	for_each_zone(zone) {
5665 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5666 			lowmem_pages += zone_managed_pages(zone);
5667 	}
5668 
5669 	for_each_zone(zone) {
5670 		u64 tmp;
5671 
5672 		spin_lock_irqsave(&zone->lock, flags);
5673 		tmp = (u64)pages_min * zone_managed_pages(zone);
5674 		do_div(tmp, lowmem_pages);
5675 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5676 			/*
5677 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5678 			 * need highmem and movable zones pages, so cap pages_min
5679 			 * to a small  value here.
5680 			 *
5681 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5682 			 * deltas control async page reclaim, and so should
5683 			 * not be capped for highmem and movable zones.
5684 			 */
5685 			unsigned long min_pages;
5686 
5687 			min_pages = zone_managed_pages(zone) / 1024;
5688 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5689 			zone->_watermark[WMARK_MIN] = min_pages;
5690 		} else {
5691 			/*
5692 			 * If it's a lowmem zone, reserve a number of pages
5693 			 * proportionate to the zone's size.
5694 			 */
5695 			zone->_watermark[WMARK_MIN] = tmp;
5696 		}
5697 
5698 		/*
5699 		 * Set the kswapd watermarks distance according to the
5700 		 * scale factor in proportion to available memory, but
5701 		 * ensure a minimum size on small systems.
5702 		 */
5703 		tmp = max_t(u64, tmp >> 2,
5704 			    mult_frac(zone_managed_pages(zone),
5705 				      watermark_scale_factor, 10000));
5706 
5707 		zone->watermark_boost = 0;
5708 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5709 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5710 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5711 
5712 		spin_unlock_irqrestore(&zone->lock, flags);
5713 	}
5714 
5715 	/* update totalreserve_pages */
5716 	calculate_totalreserve_pages();
5717 }
5718 
5719 /**
5720  * setup_per_zone_wmarks - called when min_free_kbytes changes
5721  * or when memory is hot-{added|removed}
5722  *
5723  * Ensures that the watermark[min,low,high] values for each zone are set
5724  * correctly with respect to min_free_kbytes.
5725  */
setup_per_zone_wmarks(void)5726 void setup_per_zone_wmarks(void)
5727 {
5728 	struct zone *zone;
5729 	static DEFINE_SPINLOCK(lock);
5730 
5731 	spin_lock(&lock);
5732 	__setup_per_zone_wmarks();
5733 	spin_unlock(&lock);
5734 
5735 	/*
5736 	 * The watermark size have changed so update the pcpu batch
5737 	 * and high limits or the limits may be inappropriate.
5738 	 */
5739 	for_each_zone(zone)
5740 		zone_pcp_update(zone, 0);
5741 }
5742 
5743 /*
5744  * Initialise min_free_kbytes.
5745  *
5746  * For small machines we want it small (128k min).  For large machines
5747  * we want it large (256MB max).  But it is not linear, because network
5748  * bandwidth does not increase linearly with machine size.  We use
5749  *
5750  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5751  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5752  *
5753  * which yields
5754  *
5755  * 16MB:	512k
5756  * 32MB:	724k
5757  * 64MB:	1024k
5758  * 128MB:	1448k
5759  * 256MB:	2048k
5760  * 512MB:	2896k
5761  * 1024MB:	4096k
5762  * 2048MB:	5792k
5763  * 4096MB:	8192k
5764  * 8192MB:	11584k
5765  * 16384MB:	16384k
5766  */
calculate_min_free_kbytes(void)5767 void calculate_min_free_kbytes(void)
5768 {
5769 	unsigned long lowmem_kbytes;
5770 	int new_min_free_kbytes;
5771 
5772 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5773 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5774 
5775 	if (new_min_free_kbytes > user_min_free_kbytes)
5776 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5777 	else
5778 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5779 				new_min_free_kbytes, user_min_free_kbytes);
5780 
5781 }
5782 
init_per_zone_wmark_min(void)5783 int __meminit init_per_zone_wmark_min(void)
5784 {
5785 	calculate_min_free_kbytes();
5786 	setup_per_zone_wmarks();
5787 	refresh_zone_stat_thresholds();
5788 	setup_per_zone_lowmem_reserve();
5789 
5790 #ifdef CONFIG_NUMA
5791 	setup_min_unmapped_ratio();
5792 	setup_min_slab_ratio();
5793 #endif
5794 
5795 	khugepaged_min_free_kbytes_update();
5796 
5797 	return 0;
5798 }
postcore_initcall(init_per_zone_wmark_min)5799 postcore_initcall(init_per_zone_wmark_min)
5800 
5801 /*
5802  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5803  *	that we can call two helper functions whenever min_free_kbytes
5804  *	changes.
5805  */
5806 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5807 		void *buffer, size_t *length, loff_t *ppos)
5808 {
5809 	int rc;
5810 
5811 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5812 	if (rc)
5813 		return rc;
5814 
5815 	if (write) {
5816 		user_min_free_kbytes = min_free_kbytes;
5817 		setup_per_zone_wmarks();
5818 	}
5819 	return 0;
5820 }
5821 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5822 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5823 		void *buffer, size_t *length, loff_t *ppos)
5824 {
5825 	int rc;
5826 
5827 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5828 	if (rc)
5829 		return rc;
5830 
5831 	if (write)
5832 		setup_per_zone_wmarks();
5833 
5834 	return 0;
5835 }
5836 
5837 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)5838 static void setup_min_unmapped_ratio(void)
5839 {
5840 	pg_data_t *pgdat;
5841 	struct zone *zone;
5842 
5843 	for_each_online_pgdat(pgdat)
5844 		pgdat->min_unmapped_pages = 0;
5845 
5846 	for_each_zone(zone)
5847 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5848 						         sysctl_min_unmapped_ratio) / 100;
5849 }
5850 
5851 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5852 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5853 		void *buffer, size_t *length, loff_t *ppos)
5854 {
5855 	int rc;
5856 
5857 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5858 	if (rc)
5859 		return rc;
5860 
5861 	setup_min_unmapped_ratio();
5862 
5863 	return 0;
5864 }
5865 
setup_min_slab_ratio(void)5866 static void setup_min_slab_ratio(void)
5867 {
5868 	pg_data_t *pgdat;
5869 	struct zone *zone;
5870 
5871 	for_each_online_pgdat(pgdat)
5872 		pgdat->min_slab_pages = 0;
5873 
5874 	for_each_zone(zone)
5875 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5876 						     sysctl_min_slab_ratio) / 100;
5877 }
5878 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5879 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5880 		void *buffer, size_t *length, loff_t *ppos)
5881 {
5882 	int rc;
5883 
5884 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5885 	if (rc)
5886 		return rc;
5887 
5888 	setup_min_slab_ratio();
5889 
5890 	return 0;
5891 }
5892 #endif
5893 
5894 /*
5895  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5896  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5897  *	whenever sysctl_lowmem_reserve_ratio changes.
5898  *
5899  * The reserve ratio obviously has absolutely no relation with the
5900  * minimum watermarks. The lowmem reserve ratio can only make sense
5901  * if in function of the boot time zone sizes.
5902  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5903 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5904 		int write, void *buffer, size_t *length, loff_t *ppos)
5905 {
5906 	int i;
5907 
5908 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5909 
5910 	for (i = 0; i < MAX_NR_ZONES; i++) {
5911 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5912 			sysctl_lowmem_reserve_ratio[i] = 0;
5913 	}
5914 
5915 	setup_per_zone_lowmem_reserve();
5916 	return 0;
5917 }
5918 
5919 /*
5920  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5921  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5922  * pagelist can have before it gets flushed back to buddy allocator.
5923  */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5924 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5925 		int write, void *buffer, size_t *length, loff_t *ppos)
5926 {
5927 	struct zone *zone;
5928 	int old_percpu_pagelist_high_fraction;
5929 	int ret;
5930 
5931 	mutex_lock(&pcp_batch_high_lock);
5932 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5933 
5934 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5935 	if (!write || ret < 0)
5936 		goto out;
5937 
5938 	/* Sanity checking to avoid pcp imbalance */
5939 	if (percpu_pagelist_high_fraction &&
5940 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5941 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5942 		ret = -EINVAL;
5943 		goto out;
5944 	}
5945 
5946 	/* No change? */
5947 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5948 		goto out;
5949 
5950 	for_each_populated_zone(zone)
5951 		zone_set_pageset_high_and_batch(zone, 0);
5952 out:
5953 	mutex_unlock(&pcp_batch_high_lock);
5954 	return ret;
5955 }
5956 
5957 static struct ctl_table page_alloc_sysctl_table[] = {
5958 	{
5959 		.procname	= "min_free_kbytes",
5960 		.data		= &min_free_kbytes,
5961 		.maxlen		= sizeof(min_free_kbytes),
5962 		.mode		= 0644,
5963 		.proc_handler	= min_free_kbytes_sysctl_handler,
5964 		.extra1		= SYSCTL_ZERO,
5965 	},
5966 	{
5967 		.procname	= "watermark_boost_factor",
5968 		.data		= &watermark_boost_factor,
5969 		.maxlen		= sizeof(watermark_boost_factor),
5970 		.mode		= 0644,
5971 		.proc_handler	= proc_dointvec_minmax,
5972 		.extra1		= SYSCTL_ZERO,
5973 	},
5974 	{
5975 		.procname	= "watermark_scale_factor",
5976 		.data		= &watermark_scale_factor,
5977 		.maxlen		= sizeof(watermark_scale_factor),
5978 		.mode		= 0644,
5979 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5980 		.extra1		= SYSCTL_ONE,
5981 		.extra2		= SYSCTL_THREE_THOUSAND,
5982 	},
5983 	{
5984 		.procname	= "percpu_pagelist_high_fraction",
5985 		.data		= &percpu_pagelist_high_fraction,
5986 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5987 		.mode		= 0644,
5988 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
5989 		.extra1		= SYSCTL_ZERO,
5990 	},
5991 	{
5992 		.procname	= "lowmem_reserve_ratio",
5993 		.data		= &sysctl_lowmem_reserve_ratio,
5994 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
5995 		.mode		= 0644,
5996 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
5997 	},
5998 #ifdef CONFIG_NUMA
5999 	{
6000 		.procname	= "numa_zonelist_order",
6001 		.data		= &numa_zonelist_order,
6002 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6003 		.mode		= 0644,
6004 		.proc_handler	= numa_zonelist_order_handler,
6005 	},
6006 	{
6007 		.procname	= "min_unmapped_ratio",
6008 		.data		= &sysctl_min_unmapped_ratio,
6009 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6010 		.mode		= 0644,
6011 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6012 		.extra1		= SYSCTL_ZERO,
6013 		.extra2		= SYSCTL_ONE_HUNDRED,
6014 	},
6015 	{
6016 		.procname	= "min_slab_ratio",
6017 		.data		= &sysctl_min_slab_ratio,
6018 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6019 		.mode		= 0644,
6020 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6021 		.extra1		= SYSCTL_ZERO,
6022 		.extra2		= SYSCTL_ONE_HUNDRED,
6023 	},
6024 #endif
6025 	{}
6026 };
6027 
page_alloc_sysctl_init(void)6028 void __init page_alloc_sysctl_init(void)
6029 {
6030 	register_sysctl_init("vm", page_alloc_sysctl_table);
6031 }
6032 
6033 #ifdef CONFIG_CONTIG_ALLOC
6034 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6035 static void alloc_contig_dump_pages(struct list_head *page_list)
6036 {
6037 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6038 
6039 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6040 		struct page *page;
6041 
6042 		dump_stack();
6043 		list_for_each_entry(page, page_list, lru)
6044 			dump_page(page, "migration failure");
6045 	}
6046 }
6047 
6048 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6049 int __alloc_contig_migrate_range(struct compact_control *cc,
6050 					unsigned long start, unsigned long end)
6051 {
6052 	/* This function is based on compact_zone() from compaction.c. */
6053 	unsigned int nr_reclaimed;
6054 	unsigned long pfn = start;
6055 	unsigned int tries = 0;
6056 	int ret = 0;
6057 	struct migration_target_control mtc = {
6058 		.nid = zone_to_nid(cc->zone),
6059 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6060 	};
6061 
6062 	lru_cache_disable();
6063 
6064 	while (pfn < end || !list_empty(&cc->migratepages)) {
6065 		if (fatal_signal_pending(current)) {
6066 			ret = -EINTR;
6067 			break;
6068 		}
6069 
6070 		if (list_empty(&cc->migratepages)) {
6071 			cc->nr_migratepages = 0;
6072 			ret = isolate_migratepages_range(cc, pfn, end);
6073 			if (ret && ret != -EAGAIN)
6074 				break;
6075 			pfn = cc->migrate_pfn;
6076 			tries = 0;
6077 		} else if (++tries == 5) {
6078 			ret = -EBUSY;
6079 			break;
6080 		}
6081 
6082 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6083 							&cc->migratepages);
6084 		cc->nr_migratepages -= nr_reclaimed;
6085 
6086 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6087 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6088 
6089 		/*
6090 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6091 		 * to retry again over this error, so do the same here.
6092 		 */
6093 		if (ret == -ENOMEM)
6094 			break;
6095 	}
6096 
6097 	lru_cache_enable();
6098 	if (ret < 0) {
6099 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6100 			alloc_contig_dump_pages(&cc->migratepages);
6101 		putback_movable_pages(&cc->migratepages);
6102 		return ret;
6103 	}
6104 	return 0;
6105 }
6106 
6107 /**
6108  * alloc_contig_range() -- tries to allocate given range of pages
6109  * @start:	start PFN to allocate
6110  * @end:	one-past-the-last PFN to allocate
6111  * @migratetype:	migratetype of the underlying pageblocks (either
6112  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6113  *			in range must have the same migratetype and it must
6114  *			be either of the two.
6115  * @gfp_mask:	GFP mask to use during compaction
6116  *
6117  * The PFN range does not have to be pageblock aligned. The PFN range must
6118  * belong to a single zone.
6119  *
6120  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6121  * pageblocks in the range.  Once isolated, the pageblocks should not
6122  * be modified by others.
6123  *
6124  * Return: zero on success or negative error code.  On success all
6125  * pages which PFN is in [start, end) are allocated for the caller and
6126  * need to be freed with free_contig_range().
6127  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6128 int alloc_contig_range(unsigned long start, unsigned long end,
6129 		       unsigned migratetype, gfp_t gfp_mask)
6130 {
6131 	unsigned long outer_start, outer_end;
6132 	int order;
6133 	int ret = 0;
6134 
6135 	struct compact_control cc = {
6136 		.nr_migratepages = 0,
6137 		.order = -1,
6138 		.zone = page_zone(pfn_to_page(start)),
6139 		.mode = MIGRATE_SYNC,
6140 		.ignore_skip_hint = true,
6141 		.no_set_skip_hint = true,
6142 		.gfp_mask = current_gfp_context(gfp_mask),
6143 		.alloc_contig = true,
6144 	};
6145 	INIT_LIST_HEAD(&cc.migratepages);
6146 
6147 	/*
6148 	 * What we do here is we mark all pageblocks in range as
6149 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6150 	 * have different sizes, and due to the way page allocator
6151 	 * work, start_isolate_page_range() has special handlings for this.
6152 	 *
6153 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6154 	 * migrate the pages from an unaligned range (ie. pages that
6155 	 * we are interested in). This will put all the pages in
6156 	 * range back to page allocator as MIGRATE_ISOLATE.
6157 	 *
6158 	 * When this is done, we take the pages in range from page
6159 	 * allocator removing them from the buddy system.  This way
6160 	 * page allocator will never consider using them.
6161 	 *
6162 	 * This lets us mark the pageblocks back as
6163 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6164 	 * aligned range but not in the unaligned, original range are
6165 	 * put back to page allocator so that buddy can use them.
6166 	 */
6167 
6168 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6169 	if (ret)
6170 		goto done;
6171 
6172 	drain_all_pages(cc.zone);
6173 
6174 	/*
6175 	 * In case of -EBUSY, we'd like to know which page causes problem.
6176 	 * So, just fall through. test_pages_isolated() has a tracepoint
6177 	 * which will report the busy page.
6178 	 *
6179 	 * It is possible that busy pages could become available before
6180 	 * the call to test_pages_isolated, and the range will actually be
6181 	 * allocated.  So, if we fall through be sure to clear ret so that
6182 	 * -EBUSY is not accidentally used or returned to caller.
6183 	 */
6184 	ret = __alloc_contig_migrate_range(&cc, start, end);
6185 	if (ret && ret != -EBUSY)
6186 		goto done;
6187 	ret = 0;
6188 
6189 	/*
6190 	 * Pages from [start, end) are within a pageblock_nr_pages
6191 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6192 	 * more, all pages in [start, end) are free in page allocator.
6193 	 * What we are going to do is to allocate all pages from
6194 	 * [start, end) (that is remove them from page allocator).
6195 	 *
6196 	 * The only problem is that pages at the beginning and at the
6197 	 * end of interesting range may be not aligned with pages that
6198 	 * page allocator holds, ie. they can be part of higher order
6199 	 * pages.  Because of this, we reserve the bigger range and
6200 	 * once this is done free the pages we are not interested in.
6201 	 *
6202 	 * We don't have to hold zone->lock here because the pages are
6203 	 * isolated thus they won't get removed from buddy.
6204 	 */
6205 
6206 	order = 0;
6207 	outer_start = start;
6208 	while (!PageBuddy(pfn_to_page(outer_start))) {
6209 		if (++order > MAX_ORDER) {
6210 			outer_start = start;
6211 			break;
6212 		}
6213 		outer_start &= ~0UL << order;
6214 	}
6215 
6216 	if (outer_start != start) {
6217 		order = buddy_order(pfn_to_page(outer_start));
6218 
6219 		/*
6220 		 * outer_start page could be small order buddy page and
6221 		 * it doesn't include start page. Adjust outer_start
6222 		 * in this case to report failed page properly
6223 		 * on tracepoint in test_pages_isolated()
6224 		 */
6225 		if (outer_start + (1UL << order) <= start)
6226 			outer_start = start;
6227 	}
6228 
6229 	/* Make sure the range is really isolated. */
6230 	if (test_pages_isolated(outer_start, end, 0)) {
6231 		ret = -EBUSY;
6232 		goto done;
6233 	}
6234 
6235 	/* Grab isolated pages from freelists. */
6236 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6237 	if (!outer_end) {
6238 		ret = -EBUSY;
6239 		goto done;
6240 	}
6241 
6242 	/* Free head and tail (if any) */
6243 	if (start != outer_start)
6244 		free_contig_range(outer_start, start - outer_start);
6245 	if (end != outer_end)
6246 		free_contig_range(end, outer_end - end);
6247 
6248 done:
6249 	undo_isolate_page_range(start, end, migratetype);
6250 	return ret;
6251 }
6252 EXPORT_SYMBOL(alloc_contig_range);
6253 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6254 static int __alloc_contig_pages(unsigned long start_pfn,
6255 				unsigned long nr_pages, gfp_t gfp_mask)
6256 {
6257 	unsigned long end_pfn = start_pfn + nr_pages;
6258 
6259 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6260 				  gfp_mask);
6261 }
6262 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6263 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6264 				   unsigned long nr_pages)
6265 {
6266 	unsigned long i, end_pfn = start_pfn + nr_pages;
6267 	struct page *page;
6268 
6269 	for (i = start_pfn; i < end_pfn; i++) {
6270 		page = pfn_to_online_page(i);
6271 		if (!page)
6272 			return false;
6273 
6274 		if (page_zone(page) != z)
6275 			return false;
6276 
6277 		if (PageReserved(page))
6278 			return false;
6279 
6280 		if (PageHuge(page))
6281 			return false;
6282 	}
6283 	return true;
6284 }
6285 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6286 static bool zone_spans_last_pfn(const struct zone *zone,
6287 				unsigned long start_pfn, unsigned long nr_pages)
6288 {
6289 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6290 
6291 	return zone_spans_pfn(zone, last_pfn);
6292 }
6293 
6294 /**
6295  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6296  * @nr_pages:	Number of contiguous pages to allocate
6297  * @gfp_mask:	GFP mask to limit search and used during compaction
6298  * @nid:	Target node
6299  * @nodemask:	Mask for other possible nodes
6300  *
6301  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6302  * on an applicable zonelist to find a contiguous pfn range which can then be
6303  * tried for allocation with alloc_contig_range(). This routine is intended
6304  * for allocation requests which can not be fulfilled with the buddy allocator.
6305  *
6306  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6307  * power of two, then allocated range is also guaranteed to be aligned to same
6308  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6309  *
6310  * Allocated pages can be freed with free_contig_range() or by manually calling
6311  * __free_page() on each allocated page.
6312  *
6313  * Return: pointer to contiguous pages on success, or NULL if not successful.
6314  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6315 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6316 				int nid, nodemask_t *nodemask)
6317 {
6318 	unsigned long ret, pfn, flags;
6319 	struct zonelist *zonelist;
6320 	struct zone *zone;
6321 	struct zoneref *z;
6322 
6323 	zonelist = node_zonelist(nid, gfp_mask);
6324 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6325 					gfp_zone(gfp_mask), nodemask) {
6326 		spin_lock_irqsave(&zone->lock, flags);
6327 
6328 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6329 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6330 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6331 				/*
6332 				 * We release the zone lock here because
6333 				 * alloc_contig_range() will also lock the zone
6334 				 * at some point. If there's an allocation
6335 				 * spinning on this lock, it may win the race
6336 				 * and cause alloc_contig_range() to fail...
6337 				 */
6338 				spin_unlock_irqrestore(&zone->lock, flags);
6339 				ret = __alloc_contig_pages(pfn, nr_pages,
6340 							gfp_mask);
6341 				if (!ret)
6342 					return pfn_to_page(pfn);
6343 				spin_lock_irqsave(&zone->lock, flags);
6344 			}
6345 			pfn += nr_pages;
6346 		}
6347 		spin_unlock_irqrestore(&zone->lock, flags);
6348 	}
6349 	return NULL;
6350 }
6351 #endif /* CONFIG_CONTIG_ALLOC */
6352 
free_contig_range(unsigned long pfn,unsigned long nr_pages)6353 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6354 {
6355 	unsigned long count = 0;
6356 
6357 	for (; nr_pages--; pfn++) {
6358 		struct page *page = pfn_to_page(pfn);
6359 
6360 		count += page_count(page) != 1;
6361 		__free_page(page);
6362 	}
6363 	WARN(count != 0, "%lu pages are still in use!\n", count);
6364 }
6365 EXPORT_SYMBOL(free_contig_range);
6366 
6367 /*
6368  * Effectively disable pcplists for the zone by setting the high limit to 0
6369  * and draining all cpus. A concurrent page freeing on another CPU that's about
6370  * to put the page on pcplist will either finish before the drain and the page
6371  * will be drained, or observe the new high limit and skip the pcplist.
6372  *
6373  * Must be paired with a call to zone_pcp_enable().
6374  */
zone_pcp_disable(struct zone * zone)6375 void zone_pcp_disable(struct zone *zone)
6376 {
6377 	mutex_lock(&pcp_batch_high_lock);
6378 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6379 	__drain_all_pages(zone, true);
6380 }
6381 
zone_pcp_enable(struct zone * zone)6382 void zone_pcp_enable(struct zone *zone)
6383 {
6384 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6385 	mutex_unlock(&pcp_batch_high_lock);
6386 }
6387 
zone_pcp_reset(struct zone * zone)6388 void zone_pcp_reset(struct zone *zone)
6389 {
6390 	int cpu;
6391 	struct per_cpu_zonestat *pzstats;
6392 
6393 	if (zone->per_cpu_pageset != &boot_pageset) {
6394 		for_each_online_cpu(cpu) {
6395 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6396 			drain_zonestat(zone, pzstats);
6397 		}
6398 		free_percpu(zone->per_cpu_pageset);
6399 		zone->per_cpu_pageset = &boot_pageset;
6400 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6401 			free_percpu(zone->per_cpu_zonestats);
6402 			zone->per_cpu_zonestats = &boot_zonestats;
6403 		}
6404 	}
6405 }
6406 
6407 #ifdef CONFIG_MEMORY_HOTREMOVE
6408 /*
6409  * All pages in the range must be in a single zone, must not contain holes,
6410  * must span full sections, and must be isolated before calling this function.
6411  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6412 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6413 {
6414 	unsigned long pfn = start_pfn;
6415 	struct page *page;
6416 	struct zone *zone;
6417 	unsigned int order;
6418 	unsigned long flags;
6419 
6420 	offline_mem_sections(pfn, end_pfn);
6421 	zone = page_zone(pfn_to_page(pfn));
6422 	spin_lock_irqsave(&zone->lock, flags);
6423 	while (pfn < end_pfn) {
6424 		page = pfn_to_page(pfn);
6425 		/*
6426 		 * The HWPoisoned page may be not in buddy system, and
6427 		 * page_count() is not 0.
6428 		 */
6429 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6430 			pfn++;
6431 			continue;
6432 		}
6433 		/*
6434 		 * At this point all remaining PageOffline() pages have a
6435 		 * reference count of 0 and can simply be skipped.
6436 		 */
6437 		if (PageOffline(page)) {
6438 			BUG_ON(page_count(page));
6439 			BUG_ON(PageBuddy(page));
6440 			pfn++;
6441 			continue;
6442 		}
6443 
6444 		BUG_ON(page_count(page));
6445 		BUG_ON(!PageBuddy(page));
6446 		order = buddy_order(page);
6447 		del_page_from_free_list(page, zone, order);
6448 		pfn += (1 << order);
6449 	}
6450 	spin_unlock_irqrestore(&zone->lock, flags);
6451 }
6452 #endif
6453 
6454 /*
6455  * This function returns a stable result only if called under zone lock.
6456  */
is_free_buddy_page(struct page * page)6457 bool is_free_buddy_page(struct page *page)
6458 {
6459 	unsigned long pfn = page_to_pfn(page);
6460 	unsigned int order;
6461 
6462 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6463 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6464 
6465 		if (PageBuddy(page_head) &&
6466 		    buddy_order_unsafe(page_head) >= order)
6467 			break;
6468 	}
6469 
6470 	return order <= MAX_ORDER;
6471 }
6472 EXPORT_SYMBOL(is_free_buddy_page);
6473 
6474 #ifdef CONFIG_MEMORY_FAILURE
6475 /*
6476  * Break down a higher-order page in sub-pages, and keep our target out of
6477  * buddy allocator.
6478  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6479 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6480 				   struct page *target, int low, int high,
6481 				   int migratetype)
6482 {
6483 	unsigned long size = 1 << high;
6484 	struct page *current_buddy, *next_page;
6485 
6486 	while (high > low) {
6487 		high--;
6488 		size >>= 1;
6489 
6490 		if (target >= &page[size]) {
6491 			next_page = page + size;
6492 			current_buddy = page;
6493 		} else {
6494 			next_page = page;
6495 			current_buddy = page + size;
6496 		}
6497 		page = next_page;
6498 
6499 		if (set_page_guard(zone, current_buddy, high, migratetype))
6500 			continue;
6501 
6502 		if (current_buddy != target) {
6503 			add_to_free_list(current_buddy, zone, high, migratetype);
6504 			set_buddy_order(current_buddy, high);
6505 		}
6506 	}
6507 }
6508 
6509 /*
6510  * Take a page that will be marked as poisoned off the buddy allocator.
6511  */
take_page_off_buddy(struct page * page)6512 bool take_page_off_buddy(struct page *page)
6513 {
6514 	struct zone *zone = page_zone(page);
6515 	unsigned long pfn = page_to_pfn(page);
6516 	unsigned long flags;
6517 	unsigned int order;
6518 	bool ret = false;
6519 
6520 	spin_lock_irqsave(&zone->lock, flags);
6521 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6522 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6523 		int page_order = buddy_order(page_head);
6524 
6525 		if (PageBuddy(page_head) && page_order >= order) {
6526 			unsigned long pfn_head = page_to_pfn(page_head);
6527 			int migratetype = get_pfnblock_migratetype(page_head,
6528 								   pfn_head);
6529 
6530 			del_page_from_free_list(page_head, zone, page_order);
6531 			break_down_buddy_pages(zone, page_head, page, 0,
6532 						page_order, migratetype);
6533 			SetPageHWPoisonTakenOff(page);
6534 			if (!is_migrate_isolate(migratetype))
6535 				__mod_zone_freepage_state(zone, -1, migratetype);
6536 			ret = true;
6537 			break;
6538 		}
6539 		if (page_count(page_head) > 0)
6540 			break;
6541 	}
6542 	spin_unlock_irqrestore(&zone->lock, flags);
6543 	return ret;
6544 }
6545 
6546 /*
6547  * Cancel takeoff done by take_page_off_buddy().
6548  */
put_page_back_buddy(struct page * page)6549 bool put_page_back_buddy(struct page *page)
6550 {
6551 	struct zone *zone = page_zone(page);
6552 	unsigned long pfn = page_to_pfn(page);
6553 	unsigned long flags;
6554 	int migratetype = get_pfnblock_migratetype(page, pfn);
6555 	bool ret = false;
6556 
6557 	spin_lock_irqsave(&zone->lock, flags);
6558 	if (put_page_testzero(page)) {
6559 		ClearPageHWPoisonTakenOff(page);
6560 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6561 		if (TestClearPageHWPoison(page)) {
6562 			ret = true;
6563 		}
6564 	}
6565 	spin_unlock_irqrestore(&zone->lock, flags);
6566 
6567 	return ret;
6568 }
6569 #endif
6570 
6571 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6572 bool has_managed_dma(void)
6573 {
6574 	struct pglist_data *pgdat;
6575 
6576 	for_each_online_pgdat(pgdat) {
6577 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6578 
6579 		if (managed_zone(zone))
6580 			return true;
6581 	}
6582 	return false;
6583 }
6584 #endif /* CONFIG_ZONE_DMA */
6585 
6586 #ifdef CONFIG_UNACCEPTED_MEMORY
6587 
6588 /* Counts number of zones with unaccepted pages. */
6589 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6590 
6591 static bool lazy_accept = true;
6592 
accept_memory_parse(char * p)6593 static int __init accept_memory_parse(char *p)
6594 {
6595 	if (!strcmp(p, "lazy")) {
6596 		lazy_accept = true;
6597 		return 0;
6598 	} else if (!strcmp(p, "eager")) {
6599 		lazy_accept = false;
6600 		return 0;
6601 	} else {
6602 		return -EINVAL;
6603 	}
6604 }
6605 early_param("accept_memory", accept_memory_parse);
6606 
page_contains_unaccepted(struct page * page,unsigned int order)6607 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6608 {
6609 	phys_addr_t start = page_to_phys(page);
6610 	phys_addr_t end = start + (PAGE_SIZE << order);
6611 
6612 	return range_contains_unaccepted_memory(start, end);
6613 }
6614 
accept_page(struct page * page,unsigned int order)6615 static void accept_page(struct page *page, unsigned int order)
6616 {
6617 	phys_addr_t start = page_to_phys(page);
6618 
6619 	accept_memory(start, start + (PAGE_SIZE << order));
6620 }
6621 
try_to_accept_memory_one(struct zone * zone)6622 static bool try_to_accept_memory_one(struct zone *zone)
6623 {
6624 	unsigned long flags;
6625 	struct page *page;
6626 	bool last;
6627 
6628 	spin_lock_irqsave(&zone->lock, flags);
6629 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6630 					struct page, lru);
6631 	if (!page) {
6632 		spin_unlock_irqrestore(&zone->lock, flags);
6633 		return false;
6634 	}
6635 
6636 	list_del(&page->lru);
6637 	last = list_empty(&zone->unaccepted_pages);
6638 
6639 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6640 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6641 	spin_unlock_irqrestore(&zone->lock, flags);
6642 
6643 	accept_page(page, MAX_ORDER);
6644 
6645 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6646 
6647 	if (last)
6648 		static_branch_dec(&zones_with_unaccepted_pages);
6649 
6650 	return true;
6651 }
6652 
cond_accept_memory(struct zone * zone,unsigned int order)6653 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6654 {
6655 	long to_accept;
6656 	bool ret = false;
6657 
6658 	if (!has_unaccepted_memory())
6659 		return false;
6660 
6661 	if (list_empty(&zone->unaccepted_pages))
6662 		return false;
6663 
6664 	/* How much to accept to get to high watermark? */
6665 	to_accept = high_wmark_pages(zone) -
6666 		    (zone_page_state(zone, NR_FREE_PAGES) -
6667 		    __zone_watermark_unusable_free(zone, order, 0) -
6668 		    zone_page_state(zone, NR_UNACCEPTED));
6669 
6670 	while (to_accept > 0) {
6671 		if (!try_to_accept_memory_one(zone))
6672 			break;
6673 		ret = true;
6674 		to_accept -= MAX_ORDER_NR_PAGES;
6675 	}
6676 
6677 	return ret;
6678 }
6679 
has_unaccepted_memory(void)6680 static inline bool has_unaccepted_memory(void)
6681 {
6682 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6683 }
6684 
__free_unaccepted(struct page * page)6685 static bool __free_unaccepted(struct page *page)
6686 {
6687 	struct zone *zone = page_zone(page);
6688 	unsigned long flags;
6689 	bool first = false;
6690 
6691 	if (!lazy_accept)
6692 		return false;
6693 
6694 	spin_lock_irqsave(&zone->lock, flags);
6695 	first = list_empty(&zone->unaccepted_pages);
6696 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6697 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6698 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6699 	spin_unlock_irqrestore(&zone->lock, flags);
6700 
6701 	if (first)
6702 		static_branch_inc(&zones_with_unaccepted_pages);
6703 
6704 	return true;
6705 }
6706 
6707 #else
6708 
page_contains_unaccepted(struct page * page,unsigned int order)6709 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6710 {
6711 	return false;
6712 }
6713 
accept_page(struct page * page,unsigned int order)6714 static void accept_page(struct page *page, unsigned int order)
6715 {
6716 }
6717 
cond_accept_memory(struct zone * zone,unsigned int order)6718 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6719 {
6720 	return false;
6721 }
6722 
has_unaccepted_memory(void)6723 static inline bool has_unaccepted_memory(void)
6724 {
6725 	return false;
6726 }
6727 
__free_unaccepted(struct page * page)6728 static bool __free_unaccepted(struct page *page)
6729 {
6730 	BUILD_BUG();
6731 	return false;
6732 }
6733 
6734 #endif /* CONFIG_UNACCEPTED_MEMORY */
6735