1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32
33 struct bpf_verifier_env;
34 struct bpf_verifier_log;
35 struct perf_event;
36 struct bpf_prog;
37 struct bpf_prog_aux;
38 struct bpf_map;
39 struct sock;
40 struct seq_file;
41 struct btf;
42 struct btf_type;
43 struct exception_table_entry;
44 struct seq_operations;
45 struct bpf_iter_aux_info;
46 struct bpf_local_storage;
47 struct bpf_local_storage_map;
48 struct kobject;
49 struct mem_cgroup;
50 struct module;
51 struct bpf_func_state;
52 struct ftrace_ops;
53 struct cgroup;
54
55 extern struct idr btf_idr;
56 extern spinlock_t btf_idr_lock;
57 extern struct kobject *btf_kobj;
58 extern struct bpf_mem_alloc bpf_global_ma;
59 extern bool bpf_global_ma_set;
60
61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 struct bpf_iter_aux_info *aux);
64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65 typedef unsigned int (*bpf_func_t)(const void *,
66 const struct bpf_insn *);
67 struct bpf_iter_seq_info {
68 const struct seq_operations *seq_ops;
69 bpf_iter_init_seq_priv_t init_seq_private;
70 bpf_iter_fini_seq_priv_t fini_seq_private;
71 u32 seq_priv_size;
72 };
73
74 /* map is generic key/value storage optionally accessible by eBPF programs */
75 struct bpf_map_ops {
76 /* funcs callable from userspace (via syscall) */
77 int (*map_alloc_check)(union bpf_attr *attr);
78 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 void (*map_release)(struct bpf_map *map, struct file *map_file);
80 void (*map_free)(struct bpf_map *map);
81 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 void (*map_release_uref)(struct bpf_map *map);
83 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 union bpf_attr __user *uattr);
86 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 void *value, u64 flags);
88 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 const union bpf_attr *attr,
90 union bpf_attr __user *uattr);
91 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 const union bpf_attr *attr,
93 union bpf_attr __user *uattr);
94 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 union bpf_attr __user *uattr);
96
97 /* funcs callable from userspace and from eBPF programs */
98 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 long (*map_delete_elem)(struct bpf_map *map, void *key);
101 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 long (*map_pop_elem)(struct bpf_map *map, void *value);
103 long (*map_peek_elem)(struct bpf_map *map, void *value);
104 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105
106 /* funcs called by prog_array and perf_event_array map */
107 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 int fd);
109 /* If need_defer is true, the implementation should guarantee that
110 * the to-be-put element is still alive before the bpf program, which
111 * may manipulate it, exists.
112 */
113 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
114 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
115 u32 (*map_fd_sys_lookup_elem)(void *ptr);
116 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
117 struct seq_file *m);
118 int (*map_check_btf)(const struct bpf_map *map,
119 const struct btf *btf,
120 const struct btf_type *key_type,
121 const struct btf_type *value_type);
122
123 /* Prog poke tracking helpers. */
124 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
125 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
126 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
127 struct bpf_prog *new);
128
129 /* Direct value access helpers. */
130 int (*map_direct_value_addr)(const struct bpf_map *map,
131 u64 *imm, u32 off);
132 int (*map_direct_value_meta)(const struct bpf_map *map,
133 u64 imm, u32 *off);
134 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
135 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
136 struct poll_table_struct *pts);
137
138 /* Functions called by bpf_local_storage maps */
139 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
140 void *owner, u32 size);
141 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
142 void *owner, u32 size);
143 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
144
145 /* Misc helpers.*/
146 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
147
148 /* map_meta_equal must be implemented for maps that can be
149 * used as an inner map. It is a runtime check to ensure
150 * an inner map can be inserted to an outer map.
151 *
152 * Some properties of the inner map has been used during the
153 * verification time. When inserting an inner map at the runtime,
154 * map_meta_equal has to ensure the inserting map has the same
155 * properties that the verifier has used earlier.
156 */
157 bool (*map_meta_equal)(const struct bpf_map *meta0,
158 const struct bpf_map *meta1);
159
160
161 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
162 struct bpf_func_state *caller,
163 struct bpf_func_state *callee);
164 long (*map_for_each_callback)(struct bpf_map *map,
165 bpf_callback_t callback_fn,
166 void *callback_ctx, u64 flags);
167
168 u64 (*map_mem_usage)(const struct bpf_map *map);
169
170 /* BTF id of struct allocated by map_alloc */
171 int *map_btf_id;
172
173 /* bpf_iter info used to open a seq_file */
174 const struct bpf_iter_seq_info *iter_seq_info;
175 };
176
177 enum {
178 /* Support at most 10 fields in a BTF type */
179 BTF_FIELDS_MAX = 10,
180 };
181
182 enum btf_field_type {
183 BPF_SPIN_LOCK = (1 << 0),
184 BPF_TIMER = (1 << 1),
185 BPF_KPTR_UNREF = (1 << 2),
186 BPF_KPTR_REF = (1 << 3),
187 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF,
188 BPF_LIST_HEAD = (1 << 4),
189 BPF_LIST_NODE = (1 << 5),
190 BPF_RB_ROOT = (1 << 6),
191 BPF_RB_NODE = (1 << 7),
192 BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
193 BPF_RB_NODE | BPF_RB_ROOT,
194 BPF_REFCOUNT = (1 << 8),
195 };
196
197 typedef void (*btf_dtor_kfunc_t)(void *);
198
199 struct btf_field_kptr {
200 struct btf *btf;
201 struct module *module;
202 /* dtor used if btf_is_kernel(btf), otherwise the type is
203 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
204 */
205 btf_dtor_kfunc_t dtor;
206 u32 btf_id;
207 };
208
209 struct btf_field_graph_root {
210 struct btf *btf;
211 u32 value_btf_id;
212 u32 node_offset;
213 struct btf_record *value_rec;
214 };
215
216 struct btf_field {
217 u32 offset;
218 u32 size;
219 enum btf_field_type type;
220 union {
221 struct btf_field_kptr kptr;
222 struct btf_field_graph_root graph_root;
223 };
224 };
225
226 struct btf_record {
227 u32 cnt;
228 u32 field_mask;
229 int spin_lock_off;
230 int timer_off;
231 int refcount_off;
232 struct btf_field fields[];
233 };
234
235 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
236 struct bpf_rb_node_kern {
237 struct rb_node rb_node;
238 void *owner;
239 } __attribute__((aligned(8)));
240
241 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
242 struct bpf_list_node_kern {
243 struct list_head list_head;
244 void *owner;
245 } __attribute__((aligned(8)));
246
247 struct bpf_map {
248 /* The first two cachelines with read-mostly members of which some
249 * are also accessed in fast-path (e.g. ops, max_entries).
250 */
251 const struct bpf_map_ops *ops ____cacheline_aligned;
252 struct bpf_map *inner_map_meta;
253 #ifdef CONFIG_SECURITY
254 void *security;
255 #endif
256 enum bpf_map_type map_type;
257 u32 key_size;
258 u32 value_size;
259 u32 max_entries;
260 u64 map_extra; /* any per-map-type extra fields */
261 u32 map_flags;
262 u32 id;
263 struct btf_record *record;
264 int numa_node;
265 u32 btf_key_type_id;
266 u32 btf_value_type_id;
267 u32 btf_vmlinux_value_type_id;
268 struct btf *btf;
269 #ifdef CONFIG_MEMCG_KMEM
270 struct obj_cgroup *objcg;
271 #endif
272 char name[BPF_OBJ_NAME_LEN];
273 /* The 3rd and 4th cacheline with misc members to avoid false sharing
274 * particularly with refcounting.
275 */
276 atomic64_t refcnt ____cacheline_aligned;
277 atomic64_t usercnt;
278 /* rcu is used before freeing and work is only used during freeing */
279 union {
280 struct work_struct work;
281 struct rcu_head rcu;
282 };
283 struct mutex freeze_mutex;
284 atomic64_t writecnt;
285 /* 'Ownership' of program-containing map is claimed by the first program
286 * that is going to use this map or by the first program which FD is
287 * stored in the map to make sure that all callers and callees have the
288 * same prog type, JITed flag and xdp_has_frags flag.
289 */
290 struct {
291 const struct btf_type *attach_func_proto;
292 spinlock_t lock;
293 enum bpf_prog_type type;
294 bool jited;
295 bool xdp_has_frags;
296 } owner;
297 bool bypass_spec_v1;
298 bool frozen; /* write-once; write-protected by freeze_mutex */
299 bool free_after_mult_rcu_gp;
300 bool free_after_rcu_gp;
301 atomic64_t sleepable_refcnt;
302 s64 __percpu *elem_count;
303 };
304
btf_field_type_name(enum btf_field_type type)305 static inline const char *btf_field_type_name(enum btf_field_type type)
306 {
307 switch (type) {
308 case BPF_SPIN_LOCK:
309 return "bpf_spin_lock";
310 case BPF_TIMER:
311 return "bpf_timer";
312 case BPF_KPTR_UNREF:
313 case BPF_KPTR_REF:
314 return "kptr";
315 case BPF_LIST_HEAD:
316 return "bpf_list_head";
317 case BPF_LIST_NODE:
318 return "bpf_list_node";
319 case BPF_RB_ROOT:
320 return "bpf_rb_root";
321 case BPF_RB_NODE:
322 return "bpf_rb_node";
323 case BPF_REFCOUNT:
324 return "bpf_refcount";
325 default:
326 WARN_ON_ONCE(1);
327 return "unknown";
328 }
329 }
330
btf_field_type_size(enum btf_field_type type)331 static inline u32 btf_field_type_size(enum btf_field_type type)
332 {
333 switch (type) {
334 case BPF_SPIN_LOCK:
335 return sizeof(struct bpf_spin_lock);
336 case BPF_TIMER:
337 return sizeof(struct bpf_timer);
338 case BPF_KPTR_UNREF:
339 case BPF_KPTR_REF:
340 return sizeof(u64);
341 case BPF_LIST_HEAD:
342 return sizeof(struct bpf_list_head);
343 case BPF_LIST_NODE:
344 return sizeof(struct bpf_list_node);
345 case BPF_RB_ROOT:
346 return sizeof(struct bpf_rb_root);
347 case BPF_RB_NODE:
348 return sizeof(struct bpf_rb_node);
349 case BPF_REFCOUNT:
350 return sizeof(struct bpf_refcount);
351 default:
352 WARN_ON_ONCE(1);
353 return 0;
354 }
355 }
356
btf_field_type_align(enum btf_field_type type)357 static inline u32 btf_field_type_align(enum btf_field_type type)
358 {
359 switch (type) {
360 case BPF_SPIN_LOCK:
361 return __alignof__(struct bpf_spin_lock);
362 case BPF_TIMER:
363 return __alignof__(struct bpf_timer);
364 case BPF_KPTR_UNREF:
365 case BPF_KPTR_REF:
366 return __alignof__(u64);
367 case BPF_LIST_HEAD:
368 return __alignof__(struct bpf_list_head);
369 case BPF_LIST_NODE:
370 return __alignof__(struct bpf_list_node);
371 case BPF_RB_ROOT:
372 return __alignof__(struct bpf_rb_root);
373 case BPF_RB_NODE:
374 return __alignof__(struct bpf_rb_node);
375 case BPF_REFCOUNT:
376 return __alignof__(struct bpf_refcount);
377 default:
378 WARN_ON_ONCE(1);
379 return 0;
380 }
381 }
382
bpf_obj_init_field(const struct btf_field * field,void * addr)383 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
384 {
385 memset(addr, 0, field->size);
386
387 switch (field->type) {
388 case BPF_REFCOUNT:
389 refcount_set((refcount_t *)addr, 1);
390 break;
391 case BPF_RB_NODE:
392 RB_CLEAR_NODE((struct rb_node *)addr);
393 break;
394 case BPF_LIST_HEAD:
395 case BPF_LIST_NODE:
396 INIT_LIST_HEAD((struct list_head *)addr);
397 break;
398 case BPF_RB_ROOT:
399 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
400 case BPF_SPIN_LOCK:
401 case BPF_TIMER:
402 case BPF_KPTR_UNREF:
403 case BPF_KPTR_REF:
404 break;
405 default:
406 WARN_ON_ONCE(1);
407 return;
408 }
409 }
410
btf_record_has_field(const struct btf_record * rec,enum btf_field_type type)411 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
412 {
413 if (IS_ERR_OR_NULL(rec))
414 return false;
415 return rec->field_mask & type;
416 }
417
bpf_obj_init(const struct btf_record * rec,void * obj)418 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
419 {
420 int i;
421
422 if (IS_ERR_OR_NULL(rec))
423 return;
424 for (i = 0; i < rec->cnt; i++)
425 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
426 }
427
428 /* 'dst' must be a temporary buffer and should not point to memory that is being
429 * used in parallel by a bpf program or bpf syscall, otherwise the access from
430 * the bpf program or bpf syscall may be corrupted by the reinitialization,
431 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
432 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
433 * program or bpf syscall.
434 */
check_and_init_map_value(struct bpf_map * map,void * dst)435 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
436 {
437 bpf_obj_init(map->record, dst);
438 }
439
440 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
441 * forced to use 'long' read/writes to try to atomically copy long counters.
442 * Best-effort only. No barriers here, since it _will_ race with concurrent
443 * updates from BPF programs. Called from bpf syscall and mostly used with
444 * size 8 or 16 bytes, so ask compiler to inline it.
445 */
bpf_long_memcpy(void * dst,const void * src,u32 size)446 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
447 {
448 const long *lsrc = src;
449 long *ldst = dst;
450
451 size /= sizeof(long);
452 while (size--)
453 data_race(*ldst++ = *lsrc++);
454 }
455
456 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
bpf_obj_memcpy(struct btf_record * rec,void * dst,void * src,u32 size,bool long_memcpy)457 static inline void bpf_obj_memcpy(struct btf_record *rec,
458 void *dst, void *src, u32 size,
459 bool long_memcpy)
460 {
461 u32 curr_off = 0;
462 int i;
463
464 if (IS_ERR_OR_NULL(rec)) {
465 if (long_memcpy)
466 bpf_long_memcpy(dst, src, round_up(size, 8));
467 else
468 memcpy(dst, src, size);
469 return;
470 }
471
472 for (i = 0; i < rec->cnt; i++) {
473 u32 next_off = rec->fields[i].offset;
474 u32 sz = next_off - curr_off;
475
476 memcpy(dst + curr_off, src + curr_off, sz);
477 curr_off += rec->fields[i].size + sz;
478 }
479 memcpy(dst + curr_off, src + curr_off, size - curr_off);
480 }
481
copy_map_value(struct bpf_map * map,void * dst,void * src)482 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
483 {
484 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
485 }
486
copy_map_value_long(struct bpf_map * map,void * dst,void * src)487 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
488 {
489 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
490 }
491
bpf_obj_memzero(struct btf_record * rec,void * dst,u32 size)492 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
493 {
494 u32 curr_off = 0;
495 int i;
496
497 if (IS_ERR_OR_NULL(rec)) {
498 memset(dst, 0, size);
499 return;
500 }
501
502 for (i = 0; i < rec->cnt; i++) {
503 u32 next_off = rec->fields[i].offset;
504 u32 sz = next_off - curr_off;
505
506 memset(dst + curr_off, 0, sz);
507 curr_off += rec->fields[i].size + sz;
508 }
509 memset(dst + curr_off, 0, size - curr_off);
510 }
511
zero_map_value(struct bpf_map * map,void * dst)512 static inline void zero_map_value(struct bpf_map *map, void *dst)
513 {
514 bpf_obj_memzero(map->record, dst, map->value_size);
515 }
516
517 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
518 bool lock_src);
519 void bpf_timer_cancel_and_free(void *timer);
520 void bpf_list_head_free(const struct btf_field *field, void *list_head,
521 struct bpf_spin_lock *spin_lock);
522 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
523 struct bpf_spin_lock *spin_lock);
524
525
526 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
527
528 struct bpf_offload_dev;
529 struct bpf_offloaded_map;
530
531 struct bpf_map_dev_ops {
532 int (*map_get_next_key)(struct bpf_offloaded_map *map,
533 void *key, void *next_key);
534 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
535 void *key, void *value);
536 int (*map_update_elem)(struct bpf_offloaded_map *map,
537 void *key, void *value, u64 flags);
538 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
539 };
540
541 struct bpf_offloaded_map {
542 struct bpf_map map;
543 struct net_device *netdev;
544 const struct bpf_map_dev_ops *dev_ops;
545 void *dev_priv;
546 struct list_head offloads;
547 };
548
map_to_offmap(struct bpf_map * map)549 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
550 {
551 return container_of(map, struct bpf_offloaded_map, map);
552 }
553
bpf_map_offload_neutral(const struct bpf_map * map)554 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
555 {
556 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
557 }
558
bpf_map_support_seq_show(const struct bpf_map * map)559 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
560 {
561 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
562 map->ops->map_seq_show_elem;
563 }
564
565 int map_check_no_btf(const struct bpf_map *map,
566 const struct btf *btf,
567 const struct btf_type *key_type,
568 const struct btf_type *value_type);
569
570 bool bpf_map_meta_equal(const struct bpf_map *meta0,
571 const struct bpf_map *meta1);
572
573 extern const struct bpf_map_ops bpf_map_offload_ops;
574
575 /* bpf_type_flag contains a set of flags that are applicable to the values of
576 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
577 * or a memory is read-only. We classify types into two categories: base types
578 * and extended types. Extended types are base types combined with a type flag.
579 *
580 * Currently there are no more than 32 base types in arg_type, ret_type and
581 * reg_types.
582 */
583 #define BPF_BASE_TYPE_BITS 8
584
585 enum bpf_type_flag {
586 /* PTR may be NULL. */
587 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
588
589 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
590 * compatible with both mutable and immutable memory.
591 */
592 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
593
594 /* MEM points to BPF ring buffer reservation. */
595 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
596
597 /* MEM is in user address space. */
598 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
599
600 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
601 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
602 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
603 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
604 * to the specified cpu.
605 */
606 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
607
608 /* Indicates that the argument will be released. */
609 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
610
611 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
612 * unreferenced and referenced kptr loaded from map value using a load
613 * instruction, so that they can only be dereferenced but not escape the
614 * BPF program into the kernel (i.e. cannot be passed as arguments to
615 * kfunc or bpf helpers).
616 */
617 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
618
619 /* MEM can be uninitialized. */
620 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
621
622 /* DYNPTR points to memory local to the bpf program. */
623 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
624
625 /* DYNPTR points to a kernel-produced ringbuf record. */
626 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
627
628 /* Size is known at compile time. */
629 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
630
631 /* MEM is of an allocated object of type in program BTF. This is used to
632 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
633 */
634 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
635
636 /* PTR was passed from the kernel in a trusted context, and may be
637 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
638 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
639 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
640 * without invoking bpf_kptr_xchg(). What we really need to know is
641 * whether a pointer is safe to pass to a kfunc or BPF helper function.
642 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
643 * helpers, they do not cover all possible instances of unsafe
644 * pointers. For example, a pointer that was obtained from walking a
645 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
646 * fact that it may be NULL, invalid, etc. This is due to backwards
647 * compatibility requirements, as this was the behavior that was first
648 * introduced when kptrs were added. The behavior is now considered
649 * deprecated, and PTR_UNTRUSTED will eventually be removed.
650 *
651 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
652 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
653 * For example, pointers passed to tracepoint arguments are considered
654 * PTR_TRUSTED, as are pointers that are passed to struct_ops
655 * callbacks. As alluded to above, pointers that are obtained from
656 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
657 * struct task_struct *task is PTR_TRUSTED, then accessing
658 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
659 * in a BPF register. Similarly, pointers passed to certain programs
660 * types such as kretprobes are not guaranteed to be valid, as they may
661 * for example contain an object that was recently freed.
662 */
663 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
664
665 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
666 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
667
668 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
669 * Currently only valid for linked-list and rbtree nodes. If the nodes
670 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
671 */
672 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
673
674 /* DYNPTR points to sk_buff */
675 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
676
677 /* DYNPTR points to xdp_buff */
678 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
679
680 /* Memory must be aligned on some architectures, used in combination with
681 * MEM_FIXED_SIZE.
682 */
683 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS),
684
685 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence
686 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
687 * MEM_UNINIT means that memory needs to be initialized since it is also
688 * read.
689 */
690 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS),
691
692 __BPF_TYPE_FLAG_MAX,
693 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
694 };
695
696 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
697 | DYNPTR_TYPE_XDP)
698
699 /* Max number of base types. */
700 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
701
702 /* Max number of all types. */
703 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
704
705 /* function argument constraints */
706 enum bpf_arg_type {
707 ARG_DONTCARE = 0, /* unused argument in helper function */
708
709 /* the following constraints used to prototype
710 * bpf_map_lookup/update/delete_elem() functions
711 */
712 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
713 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
714 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
715
716 /* Used to prototype bpf_memcmp() and other functions that access data
717 * on eBPF program stack
718 */
719 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
720
721 ARG_CONST_SIZE, /* number of bytes accessed from memory */
722 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
723
724 ARG_PTR_TO_CTX, /* pointer to context */
725 ARG_ANYTHING, /* any (initialized) argument is ok */
726 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
727 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
728 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
729 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
730 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
731 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
732 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
733 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
734 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
735 ARG_PTR_TO_STACK, /* pointer to stack */
736 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
737 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
738 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */
739 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
740 __BPF_ARG_TYPE_MAX,
741
742 /* Extended arg_types. */
743 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
744 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
745 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
746 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
747 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
748 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
749 /* Pointer to memory does not need to be initialized, since helper function
750 * fills all bytes or clears them in error case.
751 */
752 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
753 /* Pointer to valid memory of size known at compile time. */
754 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
755
756 /* This must be the last entry. Its purpose is to ensure the enum is
757 * wide enough to hold the higher bits reserved for bpf_type_flag.
758 */
759 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
760 };
761 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
762
763 /* type of values returned from helper functions */
764 enum bpf_return_type {
765 RET_INTEGER, /* function returns integer */
766 RET_VOID, /* function doesn't return anything */
767 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
768 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
769 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
770 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
771 RET_PTR_TO_MEM, /* returns a pointer to memory */
772 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
773 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
774 __BPF_RET_TYPE_MAX,
775
776 /* Extended ret_types. */
777 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
778 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
779 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
780 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
781 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
782 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
783 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
784 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
785
786 /* This must be the last entry. Its purpose is to ensure the enum is
787 * wide enough to hold the higher bits reserved for bpf_type_flag.
788 */
789 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
790 };
791 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
792
793 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
794 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
795 * instructions after verifying
796 */
797 struct bpf_func_proto {
798 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
799 bool gpl_only;
800 bool pkt_access;
801 bool might_sleep;
802 enum bpf_return_type ret_type;
803 union {
804 struct {
805 enum bpf_arg_type arg1_type;
806 enum bpf_arg_type arg2_type;
807 enum bpf_arg_type arg3_type;
808 enum bpf_arg_type arg4_type;
809 enum bpf_arg_type arg5_type;
810 };
811 enum bpf_arg_type arg_type[5];
812 };
813 union {
814 struct {
815 u32 *arg1_btf_id;
816 u32 *arg2_btf_id;
817 u32 *arg3_btf_id;
818 u32 *arg4_btf_id;
819 u32 *arg5_btf_id;
820 };
821 u32 *arg_btf_id[5];
822 struct {
823 size_t arg1_size;
824 size_t arg2_size;
825 size_t arg3_size;
826 size_t arg4_size;
827 size_t arg5_size;
828 };
829 size_t arg_size[5];
830 };
831 int *ret_btf_id; /* return value btf_id */
832 bool (*allowed)(const struct bpf_prog *prog);
833 };
834
835 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
836 * the first argument to eBPF programs.
837 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
838 */
839 struct bpf_context;
840
841 enum bpf_access_type {
842 BPF_READ = 1,
843 BPF_WRITE = 2
844 };
845
846 /* types of values stored in eBPF registers */
847 /* Pointer types represent:
848 * pointer
849 * pointer + imm
850 * pointer + (u16) var
851 * pointer + (u16) var + imm
852 * if (range > 0) then [ptr, ptr + range - off) is safe to access
853 * if (id > 0) means that some 'var' was added
854 * if (off > 0) means that 'imm' was added
855 */
856 enum bpf_reg_type {
857 NOT_INIT = 0, /* nothing was written into register */
858 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
859 PTR_TO_CTX, /* reg points to bpf_context */
860 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
861 PTR_TO_MAP_VALUE, /* reg points to map element value */
862 PTR_TO_MAP_KEY, /* reg points to a map element key */
863 PTR_TO_STACK, /* reg == frame_pointer + offset */
864 PTR_TO_PACKET_META, /* skb->data - meta_len */
865 PTR_TO_PACKET, /* reg points to skb->data */
866 PTR_TO_PACKET_END, /* skb->data + headlen */
867 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
868 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
869 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
870 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
871 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
872 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
873 /* PTR_TO_BTF_ID points to a kernel struct that does not need
874 * to be null checked by the BPF program. This does not imply the
875 * pointer is _not_ null and in practice this can easily be a null
876 * pointer when reading pointer chains. The assumption is program
877 * context will handle null pointer dereference typically via fault
878 * handling. The verifier must keep this in mind and can make no
879 * assumptions about null or non-null when doing branch analysis.
880 * Further, when passed into helpers the helpers can not, without
881 * additional context, assume the value is non-null.
882 */
883 PTR_TO_BTF_ID,
884 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
885 * been checked for null. Used primarily to inform the verifier
886 * an explicit null check is required for this struct.
887 */
888 PTR_TO_MEM, /* reg points to valid memory region */
889 PTR_TO_BUF, /* reg points to a read/write buffer */
890 PTR_TO_FUNC, /* reg points to a bpf program function */
891 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
892 __BPF_REG_TYPE_MAX,
893
894 /* Extended reg_types. */
895 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
896 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
897 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
898 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
899 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
900
901 /* This must be the last entry. Its purpose is to ensure the enum is
902 * wide enough to hold the higher bits reserved for bpf_type_flag.
903 */
904 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
905 };
906 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
907
908 /* The information passed from prog-specific *_is_valid_access
909 * back to the verifier.
910 */
911 struct bpf_insn_access_aux {
912 enum bpf_reg_type reg_type;
913 union {
914 int ctx_field_size;
915 struct {
916 struct btf *btf;
917 u32 btf_id;
918 };
919 };
920 struct bpf_verifier_log *log; /* for verbose logs */
921 };
922
923 static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux * aux,u32 size)924 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
925 {
926 aux->ctx_field_size = size;
927 }
928
bpf_is_ldimm64(const struct bpf_insn * insn)929 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
930 {
931 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
932 }
933
bpf_pseudo_func(const struct bpf_insn * insn)934 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
935 {
936 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
937 }
938
939 struct bpf_prog_ops {
940 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
941 union bpf_attr __user *uattr);
942 };
943
944 struct bpf_reg_state;
945 struct bpf_verifier_ops {
946 /* return eBPF function prototype for verification */
947 const struct bpf_func_proto *
948 (*get_func_proto)(enum bpf_func_id func_id,
949 const struct bpf_prog *prog);
950
951 /* return true if 'size' wide access at offset 'off' within bpf_context
952 * with 'type' (read or write) is allowed
953 */
954 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
955 const struct bpf_prog *prog,
956 struct bpf_insn_access_aux *info);
957 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
958 const struct bpf_prog *prog);
959 int (*gen_ld_abs)(const struct bpf_insn *orig,
960 struct bpf_insn *insn_buf);
961 u32 (*convert_ctx_access)(enum bpf_access_type type,
962 const struct bpf_insn *src,
963 struct bpf_insn *dst,
964 struct bpf_prog *prog, u32 *target_size);
965 int (*btf_struct_access)(struct bpf_verifier_log *log,
966 const struct bpf_reg_state *reg,
967 int off, int size);
968 };
969
970 struct bpf_prog_offload_ops {
971 /* verifier basic callbacks */
972 int (*insn_hook)(struct bpf_verifier_env *env,
973 int insn_idx, int prev_insn_idx);
974 int (*finalize)(struct bpf_verifier_env *env);
975 /* verifier optimization callbacks (called after .finalize) */
976 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
977 struct bpf_insn *insn);
978 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
979 /* program management callbacks */
980 int (*prepare)(struct bpf_prog *prog);
981 int (*translate)(struct bpf_prog *prog);
982 void (*destroy)(struct bpf_prog *prog);
983 };
984
985 struct bpf_prog_offload {
986 struct bpf_prog *prog;
987 struct net_device *netdev;
988 struct bpf_offload_dev *offdev;
989 void *dev_priv;
990 struct list_head offloads;
991 bool dev_state;
992 bool opt_failed;
993 void *jited_image;
994 u32 jited_len;
995 };
996
997 enum bpf_cgroup_storage_type {
998 BPF_CGROUP_STORAGE_SHARED,
999 BPF_CGROUP_STORAGE_PERCPU,
1000 __BPF_CGROUP_STORAGE_MAX
1001 };
1002
1003 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1004
1005 /* The longest tracepoint has 12 args.
1006 * See include/trace/bpf_probe.h
1007 */
1008 #define MAX_BPF_FUNC_ARGS 12
1009
1010 /* The maximum number of arguments passed through registers
1011 * a single function may have.
1012 */
1013 #define MAX_BPF_FUNC_REG_ARGS 5
1014
1015 /* The argument is a structure. */
1016 #define BTF_FMODEL_STRUCT_ARG BIT(0)
1017
1018 /* The argument is signed. */
1019 #define BTF_FMODEL_SIGNED_ARG BIT(1)
1020
1021 struct btf_func_model {
1022 u8 ret_size;
1023 u8 ret_flags;
1024 u8 nr_args;
1025 u8 arg_size[MAX_BPF_FUNC_ARGS];
1026 u8 arg_flags[MAX_BPF_FUNC_ARGS];
1027 };
1028
1029 /* Restore arguments before returning from trampoline to let original function
1030 * continue executing. This flag is used for fentry progs when there are no
1031 * fexit progs.
1032 */
1033 #define BPF_TRAMP_F_RESTORE_REGS BIT(0)
1034 /* Call original function after fentry progs, but before fexit progs.
1035 * Makes sense for fentry/fexit, normal calls and indirect calls.
1036 */
1037 #define BPF_TRAMP_F_CALL_ORIG BIT(1)
1038 /* Skip current frame and return to parent. Makes sense for fentry/fexit
1039 * programs only. Should not be used with normal calls and indirect calls.
1040 */
1041 #define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1042 /* Store IP address of the caller on the trampoline stack,
1043 * so it's available for trampoline's programs.
1044 */
1045 #define BPF_TRAMP_F_IP_ARG BIT(3)
1046 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1047 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1048
1049 /* Get original function from stack instead of from provided direct address.
1050 * Makes sense for trampolines with fexit or fmod_ret programs.
1051 */
1052 #define BPF_TRAMP_F_ORIG_STACK BIT(5)
1053
1054 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1055 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1056 */
1057 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1058
1059 /* Indicate that current trampoline is in a tail call context. Then, it has to
1060 * cache and restore tail_call_cnt to avoid infinite tail call loop.
1061 */
1062 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7)
1063
1064 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1065 * bytes on x86.
1066 */
1067 enum {
1068 #if defined(__s390x__)
1069 BPF_MAX_TRAMP_LINKS = 27,
1070 #else
1071 BPF_MAX_TRAMP_LINKS = 38,
1072 #endif
1073 };
1074
1075 struct bpf_tramp_links {
1076 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1077 int nr_links;
1078 };
1079
1080 struct bpf_tramp_run_ctx;
1081
1082 /* Different use cases for BPF trampoline:
1083 * 1. replace nop at the function entry (kprobe equivalent)
1084 * flags = BPF_TRAMP_F_RESTORE_REGS
1085 * fentry = a set of programs to run before returning from trampoline
1086 *
1087 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1088 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1089 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1090 * fentry = a set of program to run before calling original function
1091 * fexit = a set of program to run after original function
1092 *
1093 * 3. replace direct call instruction anywhere in the function body
1094 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1095 * With flags = 0
1096 * fentry = a set of programs to run before returning from trampoline
1097 * With flags = BPF_TRAMP_F_CALL_ORIG
1098 * orig_call = original callback addr or direct function addr
1099 * fentry = a set of program to run before calling original function
1100 * fexit = a set of program to run after original function
1101 */
1102 struct bpf_tramp_image;
1103 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1104 const struct btf_func_model *m, u32 flags,
1105 struct bpf_tramp_links *tlinks,
1106 void *orig_call);
1107 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1108 struct bpf_tramp_run_ctx *run_ctx);
1109 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1110 struct bpf_tramp_run_ctx *run_ctx);
1111 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1112 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1113 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1114 struct bpf_tramp_run_ctx *run_ctx);
1115 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1116 struct bpf_tramp_run_ctx *run_ctx);
1117 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1118 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1119
1120 struct bpf_ksym {
1121 unsigned long start;
1122 unsigned long end;
1123 char name[KSYM_NAME_LEN];
1124 struct list_head lnode;
1125 struct latch_tree_node tnode;
1126 bool prog;
1127 };
1128
1129 enum bpf_tramp_prog_type {
1130 BPF_TRAMP_FENTRY,
1131 BPF_TRAMP_FEXIT,
1132 BPF_TRAMP_MODIFY_RETURN,
1133 BPF_TRAMP_MAX,
1134 BPF_TRAMP_REPLACE, /* more than MAX */
1135 };
1136
1137 struct bpf_tramp_image {
1138 void *image;
1139 struct bpf_ksym ksym;
1140 struct percpu_ref pcref;
1141 void *ip_after_call;
1142 void *ip_epilogue;
1143 union {
1144 struct rcu_head rcu;
1145 struct work_struct work;
1146 };
1147 };
1148
1149 struct bpf_trampoline {
1150 /* hlist for trampoline_table */
1151 struct hlist_node hlist;
1152 struct ftrace_ops *fops;
1153 /* serializes access to fields of this trampoline */
1154 struct mutex mutex;
1155 refcount_t refcnt;
1156 u32 flags;
1157 u64 key;
1158 struct {
1159 struct btf_func_model model;
1160 void *addr;
1161 bool ftrace_managed;
1162 } func;
1163 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1164 * program by replacing one of its functions. func.addr is the address
1165 * of the function it replaced.
1166 */
1167 struct bpf_prog *extension_prog;
1168 /* list of BPF programs using this trampoline */
1169 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1170 /* Number of attached programs. A counter per kind. */
1171 int progs_cnt[BPF_TRAMP_MAX];
1172 /* Executable image of trampoline */
1173 struct bpf_tramp_image *cur_image;
1174 struct module *mod;
1175 };
1176
1177 struct bpf_attach_target_info {
1178 struct btf_func_model fmodel;
1179 long tgt_addr;
1180 struct module *tgt_mod;
1181 const char *tgt_name;
1182 const struct btf_type *tgt_type;
1183 };
1184
1185 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1186
1187 struct bpf_dispatcher_prog {
1188 struct bpf_prog *prog;
1189 refcount_t users;
1190 };
1191
1192 struct bpf_dispatcher {
1193 /* dispatcher mutex */
1194 struct mutex mutex;
1195 void *func;
1196 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1197 int num_progs;
1198 void *image;
1199 void *rw_image;
1200 u32 image_off;
1201 struct bpf_ksym ksym;
1202 #ifdef CONFIG_HAVE_STATIC_CALL
1203 struct static_call_key *sc_key;
1204 void *sc_tramp;
1205 #endif
1206 };
1207
bpf_dispatcher_nop_func(const void * ctx,const struct bpf_insn * insnsi,bpf_func_t bpf_func)1208 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1209 const void *ctx,
1210 const struct bpf_insn *insnsi,
1211 bpf_func_t bpf_func)
1212 {
1213 return bpf_func(ctx, insnsi);
1214 }
1215
1216 /* the implementation of the opaque uapi struct bpf_dynptr */
1217 struct bpf_dynptr_kern {
1218 void *data;
1219 /* Size represents the number of usable bytes of dynptr data.
1220 * If for example the offset is at 4 for a local dynptr whose data is
1221 * of type u64, the number of usable bytes is 4.
1222 *
1223 * The upper 8 bits are reserved. It is as follows:
1224 * Bits 0 - 23 = size
1225 * Bits 24 - 30 = dynptr type
1226 * Bit 31 = whether dynptr is read-only
1227 */
1228 u32 size;
1229 u32 offset;
1230 } __aligned(8);
1231
1232 enum bpf_dynptr_type {
1233 BPF_DYNPTR_TYPE_INVALID,
1234 /* Points to memory that is local to the bpf program */
1235 BPF_DYNPTR_TYPE_LOCAL,
1236 /* Underlying data is a ringbuf record */
1237 BPF_DYNPTR_TYPE_RINGBUF,
1238 /* Underlying data is a sk_buff */
1239 BPF_DYNPTR_TYPE_SKB,
1240 /* Underlying data is a xdp_buff */
1241 BPF_DYNPTR_TYPE_XDP,
1242 };
1243
1244 int bpf_dynptr_check_size(u32 size);
1245 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1246
1247 #ifdef CONFIG_BPF_JIT
1248 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1249 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1250 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1251 struct bpf_attach_target_info *tgt_info);
1252 void bpf_trampoline_put(struct bpf_trampoline *tr);
1253 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1254
1255 /*
1256 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1257 * indirection with a direct call to the bpf program. If the architecture does
1258 * not have STATIC_CALL, avoid a double-indirection.
1259 */
1260 #ifdef CONFIG_HAVE_STATIC_CALL
1261
1262 #define __BPF_DISPATCHER_SC_INIT(_name) \
1263 .sc_key = &STATIC_CALL_KEY(_name), \
1264 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1265
1266 #define __BPF_DISPATCHER_SC(name) \
1267 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1268
1269 #define __BPF_DISPATCHER_CALL(name) \
1270 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1271
1272 #define __BPF_DISPATCHER_UPDATE(_d, _new) \
1273 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1274
1275 #else
1276 #define __BPF_DISPATCHER_SC_INIT(name)
1277 #define __BPF_DISPATCHER_SC(name)
1278 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1279 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1280 #endif
1281
1282 #define BPF_DISPATCHER_INIT(_name) { \
1283 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1284 .func = &_name##_func, \
1285 .progs = {}, \
1286 .num_progs = 0, \
1287 .image = NULL, \
1288 .image_off = 0, \
1289 .ksym = { \
1290 .name = #_name, \
1291 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1292 }, \
1293 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1294 }
1295
1296 #define DEFINE_BPF_DISPATCHER(name) \
1297 __BPF_DISPATCHER_SC(name); \
1298 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \
1299 const void *ctx, \
1300 const struct bpf_insn *insnsi, \
1301 bpf_func_t bpf_func) \
1302 { \
1303 return __BPF_DISPATCHER_CALL(name); \
1304 } \
1305 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1306 struct bpf_dispatcher bpf_dispatcher_##name = \
1307 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1308
1309 #define DECLARE_BPF_DISPATCHER(name) \
1310 unsigned int bpf_dispatcher_##name##_func( \
1311 const void *ctx, \
1312 const struct bpf_insn *insnsi, \
1313 bpf_func_t bpf_func); \
1314 extern struct bpf_dispatcher bpf_dispatcher_##name;
1315
1316 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1317 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1318 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1319 struct bpf_prog *to);
1320 /* Called only from JIT-enabled code, so there's no need for stubs. */
1321 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1322 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1323 void bpf_ksym_add(struct bpf_ksym *ksym);
1324 void bpf_ksym_del(struct bpf_ksym *ksym);
1325 int bpf_jit_charge_modmem(u32 size);
1326 void bpf_jit_uncharge_modmem(u32 size);
1327 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1328 #else
bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr)1329 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1330 struct bpf_trampoline *tr)
1331 {
1332 return -ENOTSUPP;
1333 }
bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr)1334 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1335 struct bpf_trampoline *tr)
1336 {
1337 return -ENOTSUPP;
1338 }
bpf_trampoline_get(u64 key,struct bpf_attach_target_info * tgt_info)1339 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1340 struct bpf_attach_target_info *tgt_info)
1341 {
1342 return NULL;
1343 }
bpf_trampoline_put(struct bpf_trampoline * tr)1344 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1345 #define DEFINE_BPF_DISPATCHER(name)
1346 #define DECLARE_BPF_DISPATCHER(name)
1347 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1348 #define BPF_DISPATCHER_PTR(name) NULL
bpf_dispatcher_change_prog(struct bpf_dispatcher * d,struct bpf_prog * from,struct bpf_prog * to)1349 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1350 struct bpf_prog *from,
1351 struct bpf_prog *to) {}
is_bpf_image_address(unsigned long address)1352 static inline bool is_bpf_image_address(unsigned long address)
1353 {
1354 return false;
1355 }
bpf_prog_has_trampoline(const struct bpf_prog * prog)1356 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1357 {
1358 return false;
1359 }
1360 #endif
1361
1362 struct bpf_func_info_aux {
1363 u16 linkage;
1364 bool unreliable;
1365 };
1366
1367 enum bpf_jit_poke_reason {
1368 BPF_POKE_REASON_TAIL_CALL,
1369 };
1370
1371 /* Descriptor of pokes pointing /into/ the JITed image. */
1372 struct bpf_jit_poke_descriptor {
1373 void *tailcall_target;
1374 void *tailcall_bypass;
1375 void *bypass_addr;
1376 void *aux;
1377 union {
1378 struct {
1379 struct bpf_map *map;
1380 u32 key;
1381 } tail_call;
1382 };
1383 bool tailcall_target_stable;
1384 u8 adj_off;
1385 u16 reason;
1386 u32 insn_idx;
1387 };
1388
1389 /* reg_type info for ctx arguments */
1390 struct bpf_ctx_arg_aux {
1391 u32 offset;
1392 enum bpf_reg_type reg_type;
1393 u32 btf_id;
1394 };
1395
1396 struct btf_mod_pair {
1397 struct btf *btf;
1398 struct module *module;
1399 };
1400
1401 struct bpf_kfunc_desc_tab;
1402
1403 struct bpf_prog_aux {
1404 atomic64_t refcnt;
1405 u32 used_map_cnt;
1406 u32 used_btf_cnt;
1407 u32 max_ctx_offset;
1408 u32 max_pkt_offset;
1409 u32 max_tp_access;
1410 u32 stack_depth;
1411 u32 id;
1412 u32 func_cnt; /* used by non-func prog as the number of func progs */
1413 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1414 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1415 u32 ctx_arg_info_size;
1416 u32 max_rdonly_access;
1417 u32 max_rdwr_access;
1418 struct btf *attach_btf;
1419 const struct bpf_ctx_arg_aux *ctx_arg_info;
1420 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1421 struct bpf_prog *dst_prog;
1422 struct bpf_trampoline *dst_trampoline;
1423 enum bpf_prog_type saved_dst_prog_type;
1424 enum bpf_attach_type saved_dst_attach_type;
1425 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1426 bool dev_bound; /* Program is bound to the netdev. */
1427 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1428 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1429 bool func_proto_unreliable;
1430 bool sleepable;
1431 bool tail_call_reachable;
1432 bool xdp_has_frags;
1433 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1434 const struct btf_type *attach_func_proto;
1435 /* function name for valid attach_btf_id */
1436 const char *attach_func_name;
1437 struct bpf_prog **func;
1438 void *jit_data; /* JIT specific data. arch dependent */
1439 struct bpf_jit_poke_descriptor *poke_tab;
1440 struct bpf_kfunc_desc_tab *kfunc_tab;
1441 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1442 u32 size_poke_tab;
1443 struct bpf_ksym ksym;
1444 const struct bpf_prog_ops *ops;
1445 struct bpf_map **used_maps;
1446 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1447 struct btf_mod_pair *used_btfs;
1448 struct bpf_prog *prog;
1449 struct user_struct *user;
1450 u64 load_time; /* ns since boottime */
1451 u32 verified_insns;
1452 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1453 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1454 char name[BPF_OBJ_NAME_LEN];
1455 #ifdef CONFIG_SECURITY
1456 void *security;
1457 #endif
1458 struct bpf_prog_offload *offload;
1459 struct btf *btf;
1460 struct bpf_func_info *func_info;
1461 struct bpf_func_info_aux *func_info_aux;
1462 /* bpf_line_info loaded from userspace. linfo->insn_off
1463 * has the xlated insn offset.
1464 * Both the main and sub prog share the same linfo.
1465 * The subprog can access its first linfo by
1466 * using the linfo_idx.
1467 */
1468 struct bpf_line_info *linfo;
1469 /* jited_linfo is the jited addr of the linfo. It has a
1470 * one to one mapping to linfo:
1471 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1472 * Both the main and sub prog share the same jited_linfo.
1473 * The subprog can access its first jited_linfo by
1474 * using the linfo_idx.
1475 */
1476 void **jited_linfo;
1477 u32 func_info_cnt;
1478 u32 nr_linfo;
1479 /* subprog can use linfo_idx to access its first linfo and
1480 * jited_linfo.
1481 * main prog always has linfo_idx == 0
1482 */
1483 u32 linfo_idx;
1484 struct module *mod;
1485 u32 num_exentries;
1486 struct exception_table_entry *extable;
1487 union {
1488 struct work_struct work;
1489 struct rcu_head rcu;
1490 };
1491 };
1492
1493 struct bpf_prog {
1494 u16 pages; /* Number of allocated pages */
1495 u16 jited:1, /* Is our filter JIT'ed? */
1496 jit_requested:1,/* archs need to JIT the prog */
1497 gpl_compatible:1, /* Is filter GPL compatible? */
1498 cb_access:1, /* Is control block accessed? */
1499 dst_needed:1, /* Do we need dst entry? */
1500 blinding_requested:1, /* needs constant blinding */
1501 blinded:1, /* Was blinded */
1502 is_func:1, /* program is a bpf function */
1503 kprobe_override:1, /* Do we override a kprobe? */
1504 has_callchain_buf:1, /* callchain buffer allocated? */
1505 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1506 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1507 call_get_func_ip:1, /* Do we call get_func_ip() */
1508 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1509 enum bpf_prog_type type; /* Type of BPF program */
1510 enum bpf_attach_type expected_attach_type; /* For some prog types */
1511 u32 len; /* Number of filter blocks */
1512 u32 jited_len; /* Size of jited insns in bytes */
1513 u8 tag[BPF_TAG_SIZE];
1514 struct bpf_prog_stats __percpu *stats;
1515 int __percpu *active;
1516 unsigned int (*bpf_func)(const void *ctx,
1517 const struct bpf_insn *insn);
1518 struct bpf_prog_aux *aux; /* Auxiliary fields */
1519 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1520 /* Instructions for interpreter */
1521 union {
1522 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1523 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1524 };
1525 };
1526
1527 struct bpf_array_aux {
1528 /* Programs with direct jumps into programs part of this array. */
1529 struct list_head poke_progs;
1530 struct bpf_map *map;
1531 struct mutex poke_mutex;
1532 struct work_struct work;
1533 };
1534
1535 struct bpf_link {
1536 atomic64_t refcnt;
1537 u32 id;
1538 enum bpf_link_type type;
1539 const struct bpf_link_ops *ops;
1540 struct bpf_prog *prog;
1541 /* rcu is used before freeing, work can be used to schedule that
1542 * RCU-based freeing before that, so they never overlap
1543 */
1544 union {
1545 struct rcu_head rcu;
1546 struct work_struct work;
1547 };
1548 };
1549
1550 struct bpf_link_ops {
1551 void (*release)(struct bpf_link *link);
1552 /* deallocate link resources callback, called without RCU grace period
1553 * waiting
1554 */
1555 void (*dealloc)(struct bpf_link *link);
1556 /* deallocate link resources callback, called after RCU grace period;
1557 * if underlying BPF program is sleepable we go through tasks trace
1558 * RCU GP and then "classic" RCU GP
1559 */
1560 void (*dealloc_deferred)(struct bpf_link *link);
1561 int (*detach)(struct bpf_link *link);
1562 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1563 struct bpf_prog *old_prog);
1564 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1565 int (*fill_link_info)(const struct bpf_link *link,
1566 struct bpf_link_info *info);
1567 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1568 struct bpf_map *old_map);
1569 };
1570
1571 struct bpf_tramp_link {
1572 struct bpf_link link;
1573 struct hlist_node tramp_hlist;
1574 u64 cookie;
1575 };
1576
1577 struct bpf_shim_tramp_link {
1578 struct bpf_tramp_link link;
1579 struct bpf_trampoline *trampoline;
1580 };
1581
1582 struct bpf_tracing_link {
1583 struct bpf_tramp_link link;
1584 enum bpf_attach_type attach_type;
1585 struct bpf_trampoline *trampoline;
1586 struct bpf_prog *tgt_prog;
1587 };
1588
1589 struct bpf_link_primer {
1590 struct bpf_link *link;
1591 struct file *file;
1592 int fd;
1593 u32 id;
1594 };
1595
1596 struct bpf_struct_ops_value;
1597 struct btf_member;
1598
1599 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1600 /**
1601 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1602 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1603 * of BPF_PROG_TYPE_STRUCT_OPS progs.
1604 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1605 * when determining whether the struct_ops progs in the
1606 * struct_ops map are valid.
1607 * @init: A callback that is invoked a single time, and before any other
1608 * callback, to initialize the structure. A nonzero return value means
1609 * the subsystem could not be initialized.
1610 * @check_member: When defined, a callback invoked by the verifier to allow
1611 * the subsystem to determine if an entry in the struct_ops map
1612 * is valid. A nonzero return value means that the map is
1613 * invalid and should be rejected by the verifier.
1614 * @init_member: A callback that is invoked for each member of the struct_ops
1615 * map to allow the subsystem to initialize the member. A nonzero
1616 * value means the member could not be initialized. This callback
1617 * is exclusive with the @type, @type_id, @value_type, and
1618 * @value_id fields.
1619 * @reg: A callback that is invoked when the struct_ops map has been
1620 * initialized and is being attached to. Zero means the struct_ops map
1621 * has been successfully registered and is live. A nonzero return value
1622 * means the struct_ops map could not be registered.
1623 * @unreg: A callback that is invoked when the struct_ops map should be
1624 * unregistered.
1625 * @update: A callback that is invoked when the live struct_ops map is being
1626 * updated to contain new values. This callback is only invoked when
1627 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1628 * it is assumed that the struct_ops map cannot be updated.
1629 * @validate: A callback that is invoked after all of the members have been
1630 * initialized. This callback should perform static checks on the
1631 * map, meaning that it should either fail or succeed
1632 * deterministically. A struct_ops map that has been validated may
1633 * not necessarily succeed in being registered if the call to @reg
1634 * fails. For example, a valid struct_ops map may be loaded, but
1635 * then fail to be registered due to there being another active
1636 * struct_ops map on the system in the subsystem already. For this
1637 * reason, if this callback is not defined, the check is skipped as
1638 * the struct_ops map will have final verification performed in
1639 * @reg.
1640 * @type: BTF type.
1641 * @value_type: Value type.
1642 * @name: The name of the struct bpf_struct_ops object.
1643 * @func_models: Func models
1644 * @type_id: BTF type id.
1645 * @value_id: BTF value id.
1646 */
1647 struct bpf_struct_ops {
1648 const struct bpf_verifier_ops *verifier_ops;
1649 int (*init)(struct btf *btf);
1650 int (*check_member)(const struct btf_type *t,
1651 const struct btf_member *member,
1652 const struct bpf_prog *prog);
1653 int (*init_member)(const struct btf_type *t,
1654 const struct btf_member *member,
1655 void *kdata, const void *udata);
1656 int (*reg)(void *kdata);
1657 void (*unreg)(void *kdata);
1658 int (*update)(void *kdata, void *old_kdata);
1659 int (*validate)(void *kdata);
1660 const struct btf_type *type;
1661 const struct btf_type *value_type;
1662 const char *name;
1663 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1664 u32 type_id;
1665 u32 value_id;
1666 };
1667
1668 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1669 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1670 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1671 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1672 bool bpf_struct_ops_get(const void *kdata);
1673 void bpf_struct_ops_put(const void *kdata);
1674 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1675 void *value);
1676 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1677 struct bpf_tramp_link *link,
1678 const struct btf_func_model *model,
1679 void *image, void *image_end);
bpf_try_module_get(const void * data,struct module * owner)1680 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1681 {
1682 if (owner == BPF_MODULE_OWNER)
1683 return bpf_struct_ops_get(data);
1684 else
1685 return try_module_get(owner);
1686 }
bpf_module_put(const void * data,struct module * owner)1687 static inline void bpf_module_put(const void *data, struct module *owner)
1688 {
1689 if (owner == BPF_MODULE_OWNER)
1690 bpf_struct_ops_put(data);
1691 else
1692 module_put(owner);
1693 }
1694 int bpf_struct_ops_link_create(union bpf_attr *attr);
1695
1696 #ifdef CONFIG_NET
1697 /* Define it here to avoid the use of forward declaration */
1698 struct bpf_dummy_ops_state {
1699 int val;
1700 };
1701
1702 struct bpf_dummy_ops {
1703 int (*test_1)(struct bpf_dummy_ops_state *cb);
1704 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1705 char a3, unsigned long a4);
1706 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1707 };
1708
1709 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1710 union bpf_attr __user *uattr);
1711 #endif
1712 #else
bpf_struct_ops_find(u32 type_id)1713 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1714 {
1715 return NULL;
1716 }
bpf_struct_ops_init(struct btf * btf,struct bpf_verifier_log * log)1717 static inline void bpf_struct_ops_init(struct btf *btf,
1718 struct bpf_verifier_log *log)
1719 {
1720 }
bpf_try_module_get(const void * data,struct module * owner)1721 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1722 {
1723 return try_module_get(owner);
1724 }
bpf_module_put(const void * data,struct module * owner)1725 static inline void bpf_module_put(const void *data, struct module *owner)
1726 {
1727 module_put(owner);
1728 }
bpf_struct_ops_map_sys_lookup_elem(struct bpf_map * map,void * key,void * value)1729 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1730 void *key,
1731 void *value)
1732 {
1733 return -EINVAL;
1734 }
bpf_struct_ops_link_create(union bpf_attr * attr)1735 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1736 {
1737 return -EOPNOTSUPP;
1738 }
1739
1740 #endif
1741
1742 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1743 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1744 int cgroup_atype);
1745 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1746 #else
bpf_trampoline_link_cgroup_shim(struct bpf_prog * prog,int cgroup_atype)1747 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1748 int cgroup_atype)
1749 {
1750 return -EOPNOTSUPP;
1751 }
bpf_trampoline_unlink_cgroup_shim(struct bpf_prog * prog)1752 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1753 {
1754 }
1755 #endif
1756
1757 struct bpf_array {
1758 struct bpf_map map;
1759 u32 elem_size;
1760 u32 index_mask;
1761 struct bpf_array_aux *aux;
1762 union {
1763 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1764 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1765 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1766 };
1767 };
1768
1769 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
1770 #define MAX_TAIL_CALL_CNT 33
1771
1772 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1773 * It's enum to expose it (and thus make it discoverable) through BTF.
1774 */
1775 enum {
1776 BPF_MAX_LOOPS = 8 * 1024 * 1024,
1777 };
1778
1779 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
1780 BPF_F_RDONLY_PROG | \
1781 BPF_F_WRONLY | \
1782 BPF_F_WRONLY_PROG)
1783
1784 #define BPF_MAP_CAN_READ BIT(0)
1785 #define BPF_MAP_CAN_WRITE BIT(1)
1786
1787 /* Maximum number of user-producer ring buffer samples that can be drained in
1788 * a call to bpf_user_ringbuf_drain().
1789 */
1790 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1791
bpf_map_flags_to_cap(struct bpf_map * map)1792 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1793 {
1794 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1795
1796 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1797 * not possible.
1798 */
1799 if (access_flags & BPF_F_RDONLY_PROG)
1800 return BPF_MAP_CAN_READ;
1801 else if (access_flags & BPF_F_WRONLY_PROG)
1802 return BPF_MAP_CAN_WRITE;
1803 else
1804 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1805 }
1806
bpf_map_flags_access_ok(u32 access_flags)1807 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1808 {
1809 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1810 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1811 }
1812
1813 struct bpf_event_entry {
1814 struct perf_event *event;
1815 struct file *perf_file;
1816 struct file *map_file;
1817 struct rcu_head rcu;
1818 };
1819
map_type_contains_progs(struct bpf_map * map)1820 static inline bool map_type_contains_progs(struct bpf_map *map)
1821 {
1822 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1823 map->map_type == BPF_MAP_TYPE_DEVMAP ||
1824 map->map_type == BPF_MAP_TYPE_CPUMAP;
1825 }
1826
1827 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1828 int bpf_prog_calc_tag(struct bpf_prog *fp);
1829
1830 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1831 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1832
1833 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1834 unsigned long off, unsigned long len);
1835 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1836 const struct bpf_insn *src,
1837 struct bpf_insn *dst,
1838 struct bpf_prog *prog,
1839 u32 *target_size);
1840
1841 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1842 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1843
1844 /* an array of programs to be executed under rcu_lock.
1845 *
1846 * Typical usage:
1847 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1848 *
1849 * the structure returned by bpf_prog_array_alloc() should be populated
1850 * with program pointers and the last pointer must be NULL.
1851 * The user has to keep refcnt on the program and make sure the program
1852 * is removed from the array before bpf_prog_put().
1853 * The 'struct bpf_prog_array *' should only be replaced with xchg()
1854 * since other cpus are walking the array of pointers in parallel.
1855 */
1856 struct bpf_prog_array_item {
1857 struct bpf_prog *prog;
1858 union {
1859 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1860 u64 bpf_cookie;
1861 };
1862 };
1863
1864 struct bpf_prog_array {
1865 struct rcu_head rcu;
1866 struct bpf_prog_array_item items[];
1867 };
1868
1869 struct bpf_empty_prog_array {
1870 struct bpf_prog_array hdr;
1871 struct bpf_prog *null_prog;
1872 };
1873
1874 /* to avoid allocating empty bpf_prog_array for cgroups that
1875 * don't have bpf program attached use one global 'bpf_empty_prog_array'
1876 * It will not be modified the caller of bpf_prog_array_alloc()
1877 * (since caller requested prog_cnt == 0)
1878 * that pointer should be 'freed' by bpf_prog_array_free()
1879 */
1880 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1881
1882 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1883 void bpf_prog_array_free(struct bpf_prog_array *progs);
1884 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1885 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1886 int bpf_prog_array_length(struct bpf_prog_array *progs);
1887 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1888 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1889 __u32 __user *prog_ids, u32 cnt);
1890
1891 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1892 struct bpf_prog *old_prog);
1893 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1894 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1895 struct bpf_prog *prog);
1896 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1897 u32 *prog_ids, u32 request_cnt,
1898 u32 *prog_cnt);
1899 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1900 struct bpf_prog *exclude_prog,
1901 struct bpf_prog *include_prog,
1902 u64 bpf_cookie,
1903 struct bpf_prog_array **new_array);
1904
1905 struct bpf_run_ctx {};
1906
1907 struct bpf_cg_run_ctx {
1908 struct bpf_run_ctx run_ctx;
1909 const struct bpf_prog_array_item *prog_item;
1910 int retval;
1911 };
1912
1913 struct bpf_trace_run_ctx {
1914 struct bpf_run_ctx run_ctx;
1915 u64 bpf_cookie;
1916 bool is_uprobe;
1917 };
1918
1919 struct bpf_tramp_run_ctx {
1920 struct bpf_run_ctx run_ctx;
1921 u64 bpf_cookie;
1922 struct bpf_run_ctx *saved_run_ctx;
1923 };
1924
bpf_set_run_ctx(struct bpf_run_ctx * new_ctx)1925 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1926 {
1927 struct bpf_run_ctx *old_ctx = NULL;
1928
1929 #ifdef CONFIG_BPF_SYSCALL
1930 old_ctx = current->bpf_ctx;
1931 current->bpf_ctx = new_ctx;
1932 #endif
1933 return old_ctx;
1934 }
1935
bpf_reset_run_ctx(struct bpf_run_ctx * old_ctx)1936 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1937 {
1938 #ifdef CONFIG_BPF_SYSCALL
1939 current->bpf_ctx = old_ctx;
1940 #endif
1941 }
1942
1943 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1944 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
1945 /* BPF program asks to set CN on the packet. */
1946 #define BPF_RET_SET_CN (1 << 0)
1947
1948 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1949
1950 static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)1951 bpf_prog_run_array(const struct bpf_prog_array *array,
1952 const void *ctx, bpf_prog_run_fn run_prog)
1953 {
1954 const struct bpf_prog_array_item *item;
1955 const struct bpf_prog *prog;
1956 struct bpf_run_ctx *old_run_ctx;
1957 struct bpf_trace_run_ctx run_ctx;
1958 u32 ret = 1;
1959
1960 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1961
1962 if (unlikely(!array))
1963 return ret;
1964
1965 run_ctx.is_uprobe = false;
1966
1967 migrate_disable();
1968 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1969 item = &array->items[0];
1970 while ((prog = READ_ONCE(item->prog))) {
1971 run_ctx.bpf_cookie = item->bpf_cookie;
1972 ret &= run_prog(prog, ctx);
1973 item++;
1974 }
1975 bpf_reset_run_ctx(old_run_ctx);
1976 migrate_enable();
1977 return ret;
1978 }
1979
1980 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1981 *
1982 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1983 * overall. As a result, we must use the bpf_prog_array_free_sleepable
1984 * in order to use the tasks_trace rcu grace period.
1985 *
1986 * When a non-sleepable program is inside the array, we take the rcu read
1987 * section and disable preemption for that program alone, so it can access
1988 * rcu-protected dynamically sized maps.
1989 */
1990 static __always_inline u32
bpf_prog_run_array_uprobe(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)1991 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
1992 const void *ctx, bpf_prog_run_fn run_prog)
1993 {
1994 const struct bpf_prog_array_item *item;
1995 const struct bpf_prog *prog;
1996 struct bpf_run_ctx *old_run_ctx;
1997 struct bpf_trace_run_ctx run_ctx;
1998 u32 ret = 1;
1999
2000 might_fault();
2001 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2002
2003 if (unlikely(!array))
2004 return ret;
2005
2006 migrate_disable();
2007
2008 run_ctx.is_uprobe = true;
2009
2010 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2011 item = &array->items[0];
2012 while ((prog = READ_ONCE(item->prog))) {
2013 if (!prog->aux->sleepable)
2014 rcu_read_lock();
2015
2016 run_ctx.bpf_cookie = item->bpf_cookie;
2017 ret &= run_prog(prog, ctx);
2018 item++;
2019
2020 if (!prog->aux->sleepable)
2021 rcu_read_unlock();
2022 }
2023 bpf_reset_run_ctx(old_run_ctx);
2024 migrate_enable();
2025 return ret;
2026 }
2027
2028 #ifdef CONFIG_BPF_SYSCALL
2029 DECLARE_PER_CPU(int, bpf_prog_active);
2030 extern struct mutex bpf_stats_enabled_mutex;
2031
2032 /*
2033 * Block execution of BPF programs attached to instrumentation (perf,
2034 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2035 * these events can happen inside a region which holds a map bucket lock
2036 * and can deadlock on it.
2037 */
bpf_disable_instrumentation(void)2038 static inline void bpf_disable_instrumentation(void)
2039 {
2040 migrate_disable();
2041 this_cpu_inc(bpf_prog_active);
2042 }
2043
bpf_enable_instrumentation(void)2044 static inline void bpf_enable_instrumentation(void)
2045 {
2046 this_cpu_dec(bpf_prog_active);
2047 migrate_enable();
2048 }
2049
2050 extern const struct file_operations bpf_map_fops;
2051 extern const struct file_operations bpf_prog_fops;
2052 extern const struct file_operations bpf_iter_fops;
2053
2054 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2055 extern const struct bpf_prog_ops _name ## _prog_ops; \
2056 extern const struct bpf_verifier_ops _name ## _verifier_ops;
2057 #define BPF_MAP_TYPE(_id, _ops) \
2058 extern const struct bpf_map_ops _ops;
2059 #define BPF_LINK_TYPE(_id, _name)
2060 #include <linux/bpf_types.h>
2061 #undef BPF_PROG_TYPE
2062 #undef BPF_MAP_TYPE
2063 #undef BPF_LINK_TYPE
2064
2065 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2066 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2067 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2068
2069 struct bpf_prog *bpf_prog_get(u32 ufd);
2070 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2071 bool attach_drv);
2072 void bpf_prog_add(struct bpf_prog *prog, int i);
2073 void bpf_prog_sub(struct bpf_prog *prog, int i);
2074 void bpf_prog_inc(struct bpf_prog *prog);
2075 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2076 void bpf_prog_put(struct bpf_prog *prog);
2077
2078 void bpf_prog_free_id(struct bpf_prog *prog);
2079 void bpf_map_free_id(struct bpf_map *map);
2080
2081 struct btf_field *btf_record_find(const struct btf_record *rec,
2082 u32 offset, u32 field_mask);
2083 void btf_record_free(struct btf_record *rec);
2084 void bpf_map_free_record(struct bpf_map *map);
2085 struct btf_record *btf_record_dup(const struct btf_record *rec);
2086 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2087 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2088 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2089
2090 struct bpf_map *bpf_map_get(u32 ufd);
2091 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2092 struct bpf_map *__bpf_map_get(struct fd f);
2093 void bpf_map_inc(struct bpf_map *map);
2094 void bpf_map_inc_with_uref(struct bpf_map *map);
2095 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2096 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2097 void bpf_map_put_with_uref(struct bpf_map *map);
2098 void bpf_map_put(struct bpf_map *map);
2099 void *bpf_map_area_alloc(u64 size, int numa_node);
2100 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2101 void bpf_map_area_free(void *base);
2102 bool bpf_map_write_active(const struct bpf_map *map);
2103 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2104 int generic_map_lookup_batch(struct bpf_map *map,
2105 const union bpf_attr *attr,
2106 union bpf_attr __user *uattr);
2107 int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2108 const union bpf_attr *attr,
2109 union bpf_attr __user *uattr);
2110 int generic_map_delete_batch(struct bpf_map *map,
2111 const union bpf_attr *attr,
2112 union bpf_attr __user *uattr);
2113 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2114 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2115
2116 #ifdef CONFIG_MEMCG_KMEM
2117 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2118 int node);
2119 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2120 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2121 gfp_t flags);
2122 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2123 size_t align, gfp_t flags);
2124 #else
2125 static inline void *
bpf_map_kmalloc_node(const struct bpf_map * map,size_t size,gfp_t flags,int node)2126 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2127 int node)
2128 {
2129 return kmalloc_node(size, flags, node);
2130 }
2131
2132 static inline void *
bpf_map_kzalloc(const struct bpf_map * map,size_t size,gfp_t flags)2133 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2134 {
2135 return kzalloc(size, flags);
2136 }
2137
2138 static inline void *
bpf_map_kvcalloc(struct bpf_map * map,size_t n,size_t size,gfp_t flags)2139 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2140 {
2141 return kvcalloc(n, size, flags);
2142 }
2143
2144 static inline void __percpu *
bpf_map_alloc_percpu(const struct bpf_map * map,size_t size,size_t align,gfp_t flags)2145 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2146 gfp_t flags)
2147 {
2148 return __alloc_percpu_gfp(size, align, flags);
2149 }
2150 #endif
2151
2152 static inline int
bpf_map_init_elem_count(struct bpf_map * map)2153 bpf_map_init_elem_count(struct bpf_map *map)
2154 {
2155 size_t size = sizeof(*map->elem_count), align = size;
2156 gfp_t flags = GFP_USER | __GFP_NOWARN;
2157
2158 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2159 if (!map->elem_count)
2160 return -ENOMEM;
2161
2162 return 0;
2163 }
2164
2165 static inline void
bpf_map_free_elem_count(struct bpf_map * map)2166 bpf_map_free_elem_count(struct bpf_map *map)
2167 {
2168 free_percpu(map->elem_count);
2169 }
2170
bpf_map_inc_elem_count(struct bpf_map * map)2171 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2172 {
2173 this_cpu_inc(*map->elem_count);
2174 }
2175
bpf_map_dec_elem_count(struct bpf_map * map)2176 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2177 {
2178 this_cpu_dec(*map->elem_count);
2179 }
2180
2181 extern int sysctl_unprivileged_bpf_disabled;
2182
bpf_allow_ptr_leaks(void)2183 static inline bool bpf_allow_ptr_leaks(void)
2184 {
2185 return perfmon_capable();
2186 }
2187
bpf_allow_uninit_stack(void)2188 static inline bool bpf_allow_uninit_stack(void)
2189 {
2190 return perfmon_capable();
2191 }
2192
bpf_bypass_spec_v1(void)2193 static inline bool bpf_bypass_spec_v1(void)
2194 {
2195 return perfmon_capable();
2196 }
2197
bpf_bypass_spec_v4(void)2198 static inline bool bpf_bypass_spec_v4(void)
2199 {
2200 return perfmon_capable();
2201 }
2202
2203 int bpf_map_new_fd(struct bpf_map *map, int flags);
2204 int bpf_prog_new_fd(struct bpf_prog *prog);
2205
2206 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2207 const struct bpf_link_ops *ops, struct bpf_prog *prog);
2208 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2209 int bpf_link_settle(struct bpf_link_primer *primer);
2210 void bpf_link_cleanup(struct bpf_link_primer *primer);
2211 void bpf_link_inc(struct bpf_link *link);
2212 void bpf_link_put(struct bpf_link *link);
2213 int bpf_link_new_fd(struct bpf_link *link);
2214 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2215 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2216
2217 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2218 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2219
2220 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2221 #define DEFINE_BPF_ITER_FUNC(target, args...) \
2222 extern int bpf_iter_ ## target(args); \
2223 int __init bpf_iter_ ## target(args) { return 0; }
2224
2225 /*
2226 * The task type of iterators.
2227 *
2228 * For BPF task iterators, they can be parameterized with various
2229 * parameters to visit only some of tasks.
2230 *
2231 * BPF_TASK_ITER_ALL (default)
2232 * Iterate over resources of every task.
2233 *
2234 * BPF_TASK_ITER_TID
2235 * Iterate over resources of a task/tid.
2236 *
2237 * BPF_TASK_ITER_TGID
2238 * Iterate over resources of every task of a process / task group.
2239 */
2240 enum bpf_iter_task_type {
2241 BPF_TASK_ITER_ALL = 0,
2242 BPF_TASK_ITER_TID,
2243 BPF_TASK_ITER_TGID,
2244 };
2245
2246 struct bpf_iter_aux_info {
2247 /* for map_elem iter */
2248 struct bpf_map *map;
2249
2250 /* for cgroup iter */
2251 struct {
2252 struct cgroup *start; /* starting cgroup */
2253 enum bpf_cgroup_iter_order order;
2254 } cgroup;
2255 struct {
2256 enum bpf_iter_task_type type;
2257 u32 pid;
2258 } task;
2259 };
2260
2261 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2262 union bpf_iter_link_info *linfo,
2263 struct bpf_iter_aux_info *aux);
2264 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2265 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2266 struct seq_file *seq);
2267 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2268 struct bpf_link_info *info);
2269 typedef const struct bpf_func_proto *
2270 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2271 const struct bpf_prog *prog);
2272
2273 enum bpf_iter_feature {
2274 BPF_ITER_RESCHED = BIT(0),
2275 };
2276
2277 #define BPF_ITER_CTX_ARG_MAX 2
2278 struct bpf_iter_reg {
2279 const char *target;
2280 bpf_iter_attach_target_t attach_target;
2281 bpf_iter_detach_target_t detach_target;
2282 bpf_iter_show_fdinfo_t show_fdinfo;
2283 bpf_iter_fill_link_info_t fill_link_info;
2284 bpf_iter_get_func_proto_t get_func_proto;
2285 u32 ctx_arg_info_size;
2286 u32 feature;
2287 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2288 const struct bpf_iter_seq_info *seq_info;
2289 };
2290
2291 struct bpf_iter_meta {
2292 __bpf_md_ptr(struct seq_file *, seq);
2293 u64 session_id;
2294 u64 seq_num;
2295 };
2296
2297 struct bpf_iter__bpf_map_elem {
2298 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2299 __bpf_md_ptr(struct bpf_map *, map);
2300 __bpf_md_ptr(void *, key);
2301 __bpf_md_ptr(void *, value);
2302 };
2303
2304 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2305 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2306 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2307 const struct bpf_func_proto *
2308 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2309 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2310 int bpf_iter_new_fd(struct bpf_link *link);
2311 bool bpf_link_is_iter(struct bpf_link *link);
2312 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2313 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2314 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2315 struct seq_file *seq);
2316 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2317 struct bpf_link_info *info);
2318
2319 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2320 struct bpf_func_state *caller,
2321 struct bpf_func_state *callee);
2322
2323 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2324 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2325 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2326 u64 flags);
2327 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2328 u64 flags);
2329
2330 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2331
2332 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2333 void *key, void *value, u64 map_flags);
2334 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2335 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2336 void *key, void *value, u64 map_flags);
2337 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2338
2339 int bpf_get_file_flag(int flags);
2340 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2341 size_t actual_size);
2342
2343 /* verify correctness of eBPF program */
2344 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2345
2346 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2347 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2348 #endif
2349
2350 struct btf *bpf_get_btf_vmlinux(void);
2351
2352 /* Map specifics */
2353 struct xdp_frame;
2354 struct sk_buff;
2355 struct bpf_dtab_netdev;
2356 struct bpf_cpu_map_entry;
2357
2358 void __dev_flush(void);
2359 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2360 struct net_device *dev_rx);
2361 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2362 struct net_device *dev_rx);
2363 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2364 struct bpf_map *map, bool exclude_ingress);
2365 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2366 struct bpf_prog *xdp_prog);
2367 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2368 struct bpf_prog *xdp_prog, struct bpf_map *map,
2369 bool exclude_ingress);
2370
2371 void __cpu_map_flush(void);
2372 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2373 struct net_device *dev_rx);
2374 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2375 struct sk_buff *skb);
2376
2377 /* Return map's numa specified by userspace */
bpf_map_attr_numa_node(const union bpf_attr * attr)2378 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2379 {
2380 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2381 attr->numa_node : NUMA_NO_NODE;
2382 }
2383
2384 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2385 int array_map_alloc_check(union bpf_attr *attr);
2386
2387 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2388 union bpf_attr __user *uattr);
2389 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2390 union bpf_attr __user *uattr);
2391 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2392 const union bpf_attr *kattr,
2393 union bpf_attr __user *uattr);
2394 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2395 const union bpf_attr *kattr,
2396 union bpf_attr __user *uattr);
2397 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2398 const union bpf_attr *kattr,
2399 union bpf_attr __user *uattr);
2400 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2401 const union bpf_attr *kattr,
2402 union bpf_attr __user *uattr);
2403 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2404 const union bpf_attr *kattr,
2405 union bpf_attr __user *uattr);
2406 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2407 const struct bpf_prog *prog,
2408 struct bpf_insn_access_aux *info);
2409
bpf_tracing_ctx_access(int off,int size,enum bpf_access_type type)2410 static inline bool bpf_tracing_ctx_access(int off, int size,
2411 enum bpf_access_type type)
2412 {
2413 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2414 return false;
2415 if (type != BPF_READ)
2416 return false;
2417 if (off % size != 0)
2418 return false;
2419 return true;
2420 }
2421
bpf_tracing_btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2422 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2423 enum bpf_access_type type,
2424 const struct bpf_prog *prog,
2425 struct bpf_insn_access_aux *info)
2426 {
2427 if (!bpf_tracing_ctx_access(off, size, type))
2428 return false;
2429 return btf_ctx_access(off, size, type, prog, info);
2430 }
2431
2432 int btf_struct_access(struct bpf_verifier_log *log,
2433 const struct bpf_reg_state *reg,
2434 int off, int size, enum bpf_access_type atype,
2435 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2436 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2437 const struct btf *btf, u32 id, int off,
2438 const struct btf *need_btf, u32 need_type_id,
2439 bool strict);
2440
2441 int btf_distill_func_proto(struct bpf_verifier_log *log,
2442 struct btf *btf,
2443 const struct btf_type *func_proto,
2444 const char *func_name,
2445 struct btf_func_model *m);
2446
2447 struct bpf_reg_state;
2448 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2449 struct bpf_reg_state *regs);
2450 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2451 struct bpf_reg_state *regs);
2452 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2453 struct bpf_reg_state *reg);
2454 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2455 struct btf *btf, const struct btf_type *t);
2456
2457 struct bpf_prog *bpf_prog_by_id(u32 id);
2458 struct bpf_link *bpf_link_by_id(u32 id);
2459
2460 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2461 void bpf_task_storage_free(struct task_struct *task);
2462 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2463 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2464 const struct btf_func_model *
2465 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2466 const struct bpf_insn *insn);
2467 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2468 u16 btf_fd_idx, u8 **func_addr);
2469
2470 struct bpf_core_ctx {
2471 struct bpf_verifier_log *log;
2472 const struct btf *btf;
2473 };
2474
2475 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2476 const struct bpf_reg_state *reg,
2477 const char *field_name, u32 btf_id, const char *suffix);
2478
2479 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2480 const struct btf *reg_btf, u32 reg_id,
2481 const struct btf *arg_btf, u32 arg_id);
2482
2483 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2484 int relo_idx, void *insn);
2485
unprivileged_ebpf_enabled(void)2486 static inline bool unprivileged_ebpf_enabled(void)
2487 {
2488 return !sysctl_unprivileged_bpf_disabled;
2489 }
2490
2491 /* Not all bpf prog type has the bpf_ctx.
2492 * For the bpf prog type that has initialized the bpf_ctx,
2493 * this function can be used to decide if a kernel function
2494 * is called by a bpf program.
2495 */
has_current_bpf_ctx(void)2496 static inline bool has_current_bpf_ctx(void)
2497 {
2498 return !!current->bpf_ctx;
2499 }
2500
2501 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2502
2503 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2504 enum bpf_dynptr_type type, u32 offset, u32 size);
2505 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2506 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2507 #else /* !CONFIG_BPF_SYSCALL */
bpf_prog_get(u32 ufd)2508 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2509 {
2510 return ERR_PTR(-EOPNOTSUPP);
2511 }
2512
bpf_prog_get_type_dev(u32 ufd,enum bpf_prog_type type,bool attach_drv)2513 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2514 enum bpf_prog_type type,
2515 bool attach_drv)
2516 {
2517 return ERR_PTR(-EOPNOTSUPP);
2518 }
2519
bpf_prog_add(struct bpf_prog * prog,int i)2520 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2521 {
2522 }
2523
bpf_prog_sub(struct bpf_prog * prog,int i)2524 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2525 {
2526 }
2527
bpf_prog_put(struct bpf_prog * prog)2528 static inline void bpf_prog_put(struct bpf_prog *prog)
2529 {
2530 }
2531
bpf_prog_inc(struct bpf_prog * prog)2532 static inline void bpf_prog_inc(struct bpf_prog *prog)
2533 {
2534 }
2535
2536 static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog * prog)2537 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2538 {
2539 return ERR_PTR(-EOPNOTSUPP);
2540 }
2541
bpf_link_init(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog)2542 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2543 const struct bpf_link_ops *ops,
2544 struct bpf_prog *prog)
2545 {
2546 }
2547
bpf_link_prime(struct bpf_link * link,struct bpf_link_primer * primer)2548 static inline int bpf_link_prime(struct bpf_link *link,
2549 struct bpf_link_primer *primer)
2550 {
2551 return -EOPNOTSUPP;
2552 }
2553
bpf_link_settle(struct bpf_link_primer * primer)2554 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2555 {
2556 return -EOPNOTSUPP;
2557 }
2558
bpf_link_cleanup(struct bpf_link_primer * primer)2559 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2560 {
2561 }
2562
bpf_link_inc(struct bpf_link * link)2563 static inline void bpf_link_inc(struct bpf_link *link)
2564 {
2565 }
2566
bpf_link_put(struct bpf_link * link)2567 static inline void bpf_link_put(struct bpf_link *link)
2568 {
2569 }
2570
bpf_obj_get_user(const char __user * pathname,int flags)2571 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2572 {
2573 return -EOPNOTSUPP;
2574 }
2575
__dev_flush(void)2576 static inline void __dev_flush(void)
2577 {
2578 }
2579
2580 struct xdp_frame;
2581 struct bpf_dtab_netdev;
2582 struct bpf_cpu_map_entry;
2583
2584 static inline
dev_xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)2585 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2586 struct net_device *dev_rx)
2587 {
2588 return 0;
2589 }
2590
2591 static inline
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_frame * xdpf,struct net_device * dev_rx)2592 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2593 struct net_device *dev_rx)
2594 {
2595 return 0;
2596 }
2597
2598 static inline
dev_map_enqueue_multi(struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_map * map,bool exclude_ingress)2599 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2600 struct bpf_map *map, bool exclude_ingress)
2601 {
2602 return 0;
2603 }
2604
2605 struct sk_buff;
2606
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,struct bpf_prog * xdp_prog)2607 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2608 struct sk_buff *skb,
2609 struct bpf_prog *xdp_prog)
2610 {
2611 return 0;
2612 }
2613
2614 static inline
dev_map_redirect_multi(struct net_device * dev,struct sk_buff * skb,struct bpf_prog * xdp_prog,struct bpf_map * map,bool exclude_ingress)2615 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2616 struct bpf_prog *xdp_prog, struct bpf_map *map,
2617 bool exclude_ingress)
2618 {
2619 return 0;
2620 }
2621
__cpu_map_flush(void)2622 static inline void __cpu_map_flush(void)
2623 {
2624 }
2625
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)2626 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2627 struct xdp_frame *xdpf,
2628 struct net_device *dev_rx)
2629 {
2630 return 0;
2631 }
2632
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)2633 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2634 struct sk_buff *skb)
2635 {
2636 return -EOPNOTSUPP;
2637 }
2638
bpf_prog_get_type_path(const char * name,enum bpf_prog_type type)2639 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2640 enum bpf_prog_type type)
2641 {
2642 return ERR_PTR(-EOPNOTSUPP);
2643 }
2644
bpf_prog_test_run_xdp(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2645 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2646 const union bpf_attr *kattr,
2647 union bpf_attr __user *uattr)
2648 {
2649 return -ENOTSUPP;
2650 }
2651
bpf_prog_test_run_skb(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2652 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2653 const union bpf_attr *kattr,
2654 union bpf_attr __user *uattr)
2655 {
2656 return -ENOTSUPP;
2657 }
2658
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2659 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2660 const union bpf_attr *kattr,
2661 union bpf_attr __user *uattr)
2662 {
2663 return -ENOTSUPP;
2664 }
2665
bpf_prog_test_run_flow_dissector(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2666 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2667 const union bpf_attr *kattr,
2668 union bpf_attr __user *uattr)
2669 {
2670 return -ENOTSUPP;
2671 }
2672
bpf_prog_test_run_sk_lookup(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2673 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2674 const union bpf_attr *kattr,
2675 union bpf_attr __user *uattr)
2676 {
2677 return -ENOTSUPP;
2678 }
2679
bpf_map_put(struct bpf_map * map)2680 static inline void bpf_map_put(struct bpf_map *map)
2681 {
2682 }
2683
bpf_prog_by_id(u32 id)2684 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2685 {
2686 return ERR_PTR(-ENOTSUPP);
2687 }
2688
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)2689 static inline int btf_struct_access(struct bpf_verifier_log *log,
2690 const struct bpf_reg_state *reg,
2691 int off, int size, enum bpf_access_type atype,
2692 u32 *next_btf_id, enum bpf_type_flag *flag,
2693 const char **field_name)
2694 {
2695 return -EACCES;
2696 }
2697
2698 static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)2699 bpf_base_func_proto(enum bpf_func_id func_id)
2700 {
2701 return NULL;
2702 }
2703
bpf_task_storage_free(struct task_struct * task)2704 static inline void bpf_task_storage_free(struct task_struct *task)
2705 {
2706 }
2707
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2708 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2709 {
2710 return false;
2711 }
2712
2713 static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2714 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2715 const struct bpf_insn *insn)
2716 {
2717 return NULL;
2718 }
2719
2720 static inline int
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2721 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2722 u16 btf_fd_idx, u8 **func_addr)
2723 {
2724 return -ENOTSUPP;
2725 }
2726
unprivileged_ebpf_enabled(void)2727 static inline bool unprivileged_ebpf_enabled(void)
2728 {
2729 return false;
2730 }
2731
has_current_bpf_ctx(void)2732 static inline bool has_current_bpf_ctx(void)
2733 {
2734 return false;
2735 }
2736
bpf_prog_inc_misses_counter(struct bpf_prog * prog)2737 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2738 {
2739 }
2740
bpf_cgrp_storage_free(struct cgroup * cgroup)2741 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2742 {
2743 }
2744
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)2745 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2746 enum bpf_dynptr_type type, u32 offset, u32 size)
2747 {
2748 }
2749
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)2750 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2751 {
2752 }
2753
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)2754 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2755 {
2756 }
2757 #endif /* CONFIG_BPF_SYSCALL */
2758
2759 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)2760 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2761 {
2762 int ret = -EFAULT;
2763
2764 if (IS_ENABLED(CONFIG_BPF_EVENTS))
2765 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2766 if (unlikely(ret < 0))
2767 memset(dst, 0, size);
2768 return ret;
2769 }
2770
2771 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2772 struct btf_mod_pair *used_btfs, u32 len);
2773
bpf_prog_get_type(u32 ufd,enum bpf_prog_type type)2774 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2775 enum bpf_prog_type type)
2776 {
2777 return bpf_prog_get_type_dev(ufd, type, false);
2778 }
2779
2780 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2781 struct bpf_map **used_maps, u32 len);
2782
2783 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2784
2785 int bpf_prog_offload_compile(struct bpf_prog *prog);
2786 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2787 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2788 struct bpf_prog *prog);
2789
2790 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2791
2792 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2793 int bpf_map_offload_update_elem(struct bpf_map *map,
2794 void *key, void *value, u64 flags);
2795 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2796 int bpf_map_offload_get_next_key(struct bpf_map *map,
2797 void *key, void *next_key);
2798
2799 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2800
2801 struct bpf_offload_dev *
2802 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2803 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2804 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2805 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2806 struct net_device *netdev);
2807 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2808 struct net_device *netdev);
2809 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2810
2811 void unpriv_ebpf_notify(int new_state);
2812
2813 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2814 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2815 struct bpf_prog_aux *prog_aux);
2816 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2817 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2818 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2819 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2820
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)2821 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2822 {
2823 return aux->dev_bound;
2824 }
2825
bpf_prog_is_offloaded(const struct bpf_prog_aux * aux)2826 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2827 {
2828 return aux->offload_requested;
2829 }
2830
2831 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2832
bpf_map_is_offloaded(struct bpf_map * map)2833 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2834 {
2835 return unlikely(map->ops == &bpf_map_offload_ops);
2836 }
2837
2838 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2839 void bpf_map_offload_map_free(struct bpf_map *map);
2840 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2841 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2842 const union bpf_attr *kattr,
2843 union bpf_attr __user *uattr);
2844
2845 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2846 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2847 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2848 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2849 union bpf_attr __user *uattr);
2850
2851 void sock_map_unhash(struct sock *sk);
2852 void sock_map_destroy(struct sock *sk);
2853 void sock_map_close(struct sock *sk, long timeout);
2854 #else
bpf_dev_bound_kfunc_check(struct bpf_verifier_log * log,struct bpf_prog_aux * prog_aux)2855 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2856 struct bpf_prog_aux *prog_aux)
2857 {
2858 return -EOPNOTSUPP;
2859 }
2860
bpf_dev_bound_resolve_kfunc(struct bpf_prog * prog,u32 func_id)2861 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2862 u32 func_id)
2863 {
2864 return NULL;
2865 }
2866
bpf_prog_dev_bound_init(struct bpf_prog * prog,union bpf_attr * attr)2867 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2868 union bpf_attr *attr)
2869 {
2870 return -EOPNOTSUPP;
2871 }
2872
bpf_prog_dev_bound_inherit(struct bpf_prog * new_prog,struct bpf_prog * old_prog)2873 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2874 struct bpf_prog *old_prog)
2875 {
2876 return -EOPNOTSUPP;
2877 }
2878
bpf_dev_bound_netdev_unregister(struct net_device * dev)2879 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2880 {
2881 }
2882
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)2883 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2884 {
2885 return false;
2886 }
2887
bpf_prog_is_offloaded(struct bpf_prog_aux * aux)2888 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2889 {
2890 return false;
2891 }
2892
bpf_prog_dev_bound_match(const struct bpf_prog * lhs,const struct bpf_prog * rhs)2893 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2894 {
2895 return false;
2896 }
2897
bpf_map_is_offloaded(struct bpf_map * map)2898 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2899 {
2900 return false;
2901 }
2902
bpf_map_offload_map_alloc(union bpf_attr * attr)2903 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2904 {
2905 return ERR_PTR(-EOPNOTSUPP);
2906 }
2907
bpf_map_offload_map_free(struct bpf_map * map)2908 static inline void bpf_map_offload_map_free(struct bpf_map *map)
2909 {
2910 }
2911
bpf_map_offload_map_mem_usage(const struct bpf_map * map)2912 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2913 {
2914 return 0;
2915 }
2916
bpf_prog_test_run_syscall(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2917 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2918 const union bpf_attr *kattr,
2919 union bpf_attr __user *uattr)
2920 {
2921 return -ENOTSUPP;
2922 }
2923
2924 #ifdef CONFIG_BPF_SYSCALL
sock_map_get_from_fd(const union bpf_attr * attr,struct bpf_prog * prog)2925 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2926 struct bpf_prog *prog)
2927 {
2928 return -EINVAL;
2929 }
2930
sock_map_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)2931 static inline int sock_map_prog_detach(const union bpf_attr *attr,
2932 enum bpf_prog_type ptype)
2933 {
2934 return -EOPNOTSUPP;
2935 }
2936
sock_map_update_elem_sys(struct bpf_map * map,void * key,void * value,u64 flags)2937 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2938 u64 flags)
2939 {
2940 return -EOPNOTSUPP;
2941 }
2942
sock_map_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)2943 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2944 union bpf_attr __user *uattr)
2945 {
2946 return -EINVAL;
2947 }
2948 #endif /* CONFIG_BPF_SYSCALL */
2949 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2950
2951 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2952 void bpf_sk_reuseport_detach(struct sock *sk);
2953 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2954 void *value);
2955 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2956 void *value, u64 map_flags);
2957 #else
bpf_sk_reuseport_detach(struct sock * sk)2958 static inline void bpf_sk_reuseport_detach(struct sock *sk)
2959 {
2960 }
2961
2962 #ifdef CONFIG_BPF_SYSCALL
bpf_fd_reuseport_array_lookup_elem(struct bpf_map * map,void * key,void * value)2963 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2964 void *key, void *value)
2965 {
2966 return -EOPNOTSUPP;
2967 }
2968
bpf_fd_reuseport_array_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)2969 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2970 void *key, void *value,
2971 u64 map_flags)
2972 {
2973 return -EOPNOTSUPP;
2974 }
2975 #endif /* CONFIG_BPF_SYSCALL */
2976 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2977
2978 /* verifier prototypes for helper functions called from eBPF programs */
2979 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2980 extern const struct bpf_func_proto bpf_map_update_elem_proto;
2981 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2982 extern const struct bpf_func_proto bpf_map_push_elem_proto;
2983 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2984 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2985 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2986
2987 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2988 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2989 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2990 extern const struct bpf_func_proto bpf_tail_call_proto;
2991 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2992 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2993 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2994 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2995 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2996 extern const struct bpf_func_proto bpf_get_current_comm_proto;
2997 extern const struct bpf_func_proto bpf_get_stackid_proto;
2998 extern const struct bpf_func_proto bpf_get_stack_proto;
2999 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3000 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3001 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3002 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3003 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3004 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3005 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3006 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3007 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3008 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3009 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3010 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3011 extern const struct bpf_func_proto bpf_spin_lock_proto;
3012 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3013 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3014 extern const struct bpf_func_proto bpf_strtol_proto;
3015 extern const struct bpf_func_proto bpf_strtoul_proto;
3016 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3017 extern const struct bpf_func_proto bpf_jiffies64_proto;
3018 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3019 extern const struct bpf_func_proto bpf_event_output_data_proto;
3020 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3021 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3022 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3023 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3024 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3025 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3026 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3027 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3028 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3029 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3030 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3031 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3032 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3033 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3034 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3035 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3036 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3037 extern const struct bpf_func_proto bpf_snprintf_proto;
3038 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3039 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3040 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3041 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3042 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3043 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3044 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3045 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3046 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3047 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3048 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3049 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3050 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3051 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3052 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3053 extern const struct bpf_func_proto bpf_find_vma_proto;
3054 extern const struct bpf_func_proto bpf_loop_proto;
3055 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3056 extern const struct bpf_func_proto bpf_set_retval_proto;
3057 extern const struct bpf_func_proto bpf_get_retval_proto;
3058 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3059 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3060 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3061
3062 const struct bpf_func_proto *tracing_prog_func_proto(
3063 enum bpf_func_id func_id, const struct bpf_prog *prog);
3064
3065 /* Shared helpers among cBPF and eBPF. */
3066 void bpf_user_rnd_init_once(void);
3067 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3068 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3069
3070 #if defined(CONFIG_NET)
3071 bool bpf_sock_common_is_valid_access(int off, int size,
3072 enum bpf_access_type type,
3073 struct bpf_insn_access_aux *info);
3074 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3075 struct bpf_insn_access_aux *info);
3076 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3077 const struct bpf_insn *si,
3078 struct bpf_insn *insn_buf,
3079 struct bpf_prog *prog,
3080 u32 *target_size);
3081 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3082 struct bpf_dynptr_kern *ptr);
3083 #else
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3084 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3085 enum bpf_access_type type,
3086 struct bpf_insn_access_aux *info)
3087 {
3088 return false;
3089 }
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3090 static inline bool bpf_sock_is_valid_access(int off, int size,
3091 enum bpf_access_type type,
3092 struct bpf_insn_access_aux *info)
3093 {
3094 return false;
3095 }
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3096 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3097 const struct bpf_insn *si,
3098 struct bpf_insn *insn_buf,
3099 struct bpf_prog *prog,
3100 u32 *target_size)
3101 {
3102 return 0;
3103 }
bpf_dynptr_from_skb_rdonly(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr)3104 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3105 struct bpf_dynptr_kern *ptr)
3106 {
3107 return -EOPNOTSUPP;
3108 }
3109 #endif
3110
3111 #ifdef CONFIG_INET
3112 struct sk_reuseport_kern {
3113 struct sk_buff *skb;
3114 struct sock *sk;
3115 struct sock *selected_sk;
3116 struct sock *migrating_sk;
3117 void *data_end;
3118 u32 hash;
3119 u32 reuseport_id;
3120 bool bind_inany;
3121 };
3122 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3123 struct bpf_insn_access_aux *info);
3124
3125 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3126 const struct bpf_insn *si,
3127 struct bpf_insn *insn_buf,
3128 struct bpf_prog *prog,
3129 u32 *target_size);
3130
3131 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3132 struct bpf_insn_access_aux *info);
3133
3134 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3135 const struct bpf_insn *si,
3136 struct bpf_insn *insn_buf,
3137 struct bpf_prog *prog,
3138 u32 *target_size);
3139 #else
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3140 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3141 enum bpf_access_type type,
3142 struct bpf_insn_access_aux *info)
3143 {
3144 return false;
3145 }
3146
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3147 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3148 const struct bpf_insn *si,
3149 struct bpf_insn *insn_buf,
3150 struct bpf_prog *prog,
3151 u32 *target_size)
3152 {
3153 return 0;
3154 }
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3155 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3156 enum bpf_access_type type,
3157 struct bpf_insn_access_aux *info)
3158 {
3159 return false;
3160 }
3161
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3162 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3163 const struct bpf_insn *si,
3164 struct bpf_insn *insn_buf,
3165 struct bpf_prog *prog,
3166 u32 *target_size)
3167 {
3168 return 0;
3169 }
3170 #endif /* CONFIG_INET */
3171
3172 enum bpf_text_poke_type {
3173 BPF_MOD_CALL,
3174 BPF_MOD_JUMP,
3175 };
3176
3177 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3178 void *addr1, void *addr2);
3179
3180 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3181 struct bpf_prog *new, struct bpf_prog *old);
3182
3183 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3184 int bpf_arch_text_invalidate(void *dst, size_t len);
3185
3186 struct btf_id_set;
3187 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3188
3189 #define MAX_BPRINTF_VARARGS 12
3190 #define MAX_BPRINTF_BUF 1024
3191
3192 struct bpf_bprintf_data {
3193 u32 *bin_args;
3194 char *buf;
3195 bool get_bin_args;
3196 bool get_buf;
3197 };
3198
3199 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3200 u32 num_args, struct bpf_bprintf_data *data);
3201 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3202
3203 #ifdef CONFIG_BPF_LSM
3204 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3205 void bpf_cgroup_atype_put(int cgroup_atype);
3206 #else
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)3207 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
bpf_cgroup_atype_put(int cgroup_atype)3208 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3209 #endif /* CONFIG_BPF_LSM */
3210
3211 struct key;
3212
3213 #ifdef CONFIG_KEYS
3214 struct bpf_key {
3215 struct key *key;
3216 bool has_ref;
3217 };
3218 #endif /* CONFIG_KEYS */
3219
type_is_alloc(u32 type)3220 static inline bool type_is_alloc(u32 type)
3221 {
3222 return type & MEM_ALLOC;
3223 }
3224
bpf_memcg_flags(gfp_t flags)3225 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3226 {
3227 if (memcg_bpf_enabled())
3228 return flags | __GFP_ACCOUNT;
3229 return flags;
3230 }
3231
3232 #endif /* _LINUX_BPF_H */
3233