// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) ASPEED Technology Inc. */ #include #include #include #include #include #include #include #include /* * MAC Clock Delay settings, taken from Aspeed SDK */ #define RGMII_TXCLK_ODLY 8 #define RMII_RXCLK_IDLY 2 #define MAC_DEF_DELAY_1G 0x00410410 #define MAC_DEF_DELAY_100M 0x00410410 #define MAC_DEF_DELAY_10M 0x00410410 #define MAC34_DEF_DELAY_1G 0x00104208 #define MAC34_DEF_DELAY_100M 0x00104208 #define MAC34_DEF_DELAY_10M 0x00104208 /* * TGMII Clock Duty constants, taken from Aspeed SDK */ #define RGMII2_TXCK_DUTY 0x66 #define RGMII1_TXCK_DUTY 0x64 #define D2PLL_DEFAULT_RATE (250 * 1000 * 1000) DECLARE_GLOBAL_DATA_PTR; /* * Clock divider/multiplier configuration struct. * For H-PLL and M-PLL the formula is * (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1) * M - Numerator * N - Denumerator * P - Post Divider * They have the same layout in their control register. * * D-PLL and D2-PLL have extra divider (OD + 1), which is not * yet needed and ignored by clock configurations. */ union ast2600_pll_reg { unsigned int w; struct { unsigned int m : 13; /* bit[12:0] */ unsigned int n : 6; /* bit[18:13] */ unsigned int p : 4; /* bit[22:19] */ unsigned int off : 1; /* bit[23] */ unsigned int bypass : 1; /* bit[24] */ unsigned int reset : 1; /* bit[25] */ unsigned int reserved : 6; /* bit[31:26] */ } b; }; struct ast2600_pll_cfg { union ast2600_pll_reg reg; unsigned int ext_reg; }; struct ast2600_pll_desc { u32 in; u32 out; struct ast2600_pll_cfg cfg; }; static const struct ast2600_pll_desc ast2600_pll_lookup[] = { {.in = AST2600_CLK_IN, .out = 400000000, .cfg.reg.b.m = 95, .cfg.reg.b.n = 2, .cfg.reg.b.p = 1, .cfg.ext_reg = 0x31, }, {.in = AST2600_CLK_IN, .out = 200000000, .cfg.reg.b.m = 127, .cfg.reg.b.n = 0, .cfg.reg.b.p = 15, .cfg.ext_reg = 0x3f }, {.in = AST2600_CLK_IN, .out = 334000000, .cfg.reg.b.m = 667, .cfg.reg.b.n = 4, .cfg.reg.b.p = 9, .cfg.ext_reg = 0x14d }, {.in = AST2600_CLK_IN, .out = 1000000000, .cfg.reg.b.m = 119, .cfg.reg.b.n = 2, .cfg.reg.b.p = 0, .cfg.ext_reg = 0x3d }, {.in = AST2600_CLK_IN, .out = 50000000, .cfg.reg.b.m = 95, .cfg.reg.b.n = 2, .cfg.reg.b.p = 15, .cfg.ext_reg = 0x31 }, }; extern u32 ast2600_get_pll_rate(struct ast2600_scu *scu, int pll_idx) { u32 clkin = AST2600_CLK_IN; u32 pll_reg = 0; unsigned int mult, div = 1; switch(pll_idx) { case ASPEED_CLK_HPLL: pll_reg = readl(&scu->h_pll_param); break; case ASPEED_CLK_MPLL: pll_reg = readl(&scu->m_pll_param); break; case ASPEED_CLK_DPLL: pll_reg = readl(&scu->d_pll_param); break; case ASPEED_CLK_EPLL: pll_reg = readl(&scu->e_pll_param); break; } if (pll_reg & BIT(24)) { /* Pass through mode */ mult = div = 1; } else { /* F = 25Mhz * [(M + 2) / (n + 1)] / (p + 1) */ union ast2600_pll_reg reg; reg.w = pll_reg; mult = (reg.b.m + 1) / (reg.b.n + 1); div = (reg.b.p + 1); } return ((clkin * mult)/div); } extern u32 ast2600_get_apll_rate(struct ast2600_scu *scu) { u32 clkin = AST2600_CLK_IN; u32 apll_reg = readl(&scu->a_pll_param); unsigned int mult, div = 1; if (apll_reg & BIT(20)) { /* Pass through mode */ mult = div = 1; } else { /* F = 25Mhz * (2-od) * [(m + 2) / (n + 1)] */ u32 m = (apll_reg >> 5) & 0x3f; u32 od = (apll_reg >> 4) & 0x1; u32 n = apll_reg & 0xf; mult = (2 - od) * (m + 2); div = n + 1; } return ((clkin * mult)/div); } static u32 ast2600_a0_axi_ahb_div_table[] = { 2, 2, 3, 5, }; static u32 ast2600_a1_axi_ahb_div_table[] = { 4, 6, 2, 4, }; static u32 ast2600_get_hclk(struct ast2600_scu *scu) { u32 hw_rev = readl(&scu->chip_id0); u32 hwstrap1 = readl(&scu->hwstrap1); u32 axi_div = 1; u32 ahb_div = 0; u32 rate = 0; if(hwstrap1 & BIT(16)) axi_div = 1; else axi_div = 2; if (hw_rev & BIT(16)) ahb_div = ast2600_a1_axi_ahb_div_table[(hwstrap1 >> 11) & 0x3]; else ahb_div = ast2600_a0_axi_ahb_div_table[(hwstrap1 >> 11) & 0x3]; rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL); return (rate / axi_div / ahb_div); } static u32 ast2600_hpll_pclk1_div_table[] = { 4, 8, 12, 16, 20, 24, 28, 32, }; static u32 ast2600_hpll_pclk2_div_table[] = { 2, 4, 6, 8, 10, 12, 14, 16, }; static u32 ast2600_get_pclk1(struct ast2600_scu *scu) { u32 clk_sel1 = readl(&scu->clk_sel1); u32 apb_div = ast2600_hpll_pclk1_div_table[((clk_sel1 >> 23) & 0x7)]; u32 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL); return (rate / apb_div); } static u32 ast2600_get_pclk2(struct ast2600_scu *scu) { u32 clk_sel4 = readl(&scu->clk_sel4); u32 apb_div = ast2600_hpll_pclk2_div_table[((clk_sel4 >> 9) & 0x7)]; u32 rate = ast2600_get_hclk(scu); return (rate / apb_div); } static u32 ast2600_get_uxclk_rate(struct ast2600_scu *scu) { u32 clk_in = 0; u32 uxclk_sel = readl(&scu->clk_sel4); uxclk_sel &= 0x3; switch(uxclk_sel) { case 0: clk_in = ast2600_get_apll_rate(scu) / 4; break; case 1: clk_in = ast2600_get_apll_rate(scu) / 2; break; case 2: clk_in = ast2600_get_apll_rate(scu); break; case 3: clk_in = ast2600_get_hclk(scu); break; } return clk_in; } static u32 ast2600_get_huxclk_rate(struct ast2600_scu *scu) { u32 clk_in = 0; u32 huclk_sel = readl(&scu->clk_sel4); huclk_sel = ((huclk_sel >> 3) & 0x3); switch(huclk_sel) { case 0: clk_in = ast2600_get_apll_rate(scu) / 4; break; case 1: clk_in = ast2600_get_apll_rate(scu) / 2; break; case 2: clk_in = ast2600_get_apll_rate(scu); break; case 3: clk_in = ast2600_get_hclk(scu); break; } return clk_in; } static u32 ast2600_get_uart_from_uxclk_rate(struct ast2600_scu *scu) { u32 clk_in = ast2600_get_uxclk_rate(scu); u32 div_reg = readl(&scu->uart_24m_ref_uxclk); unsigned int mult, div; u32 n = (div_reg >> 8) & 0x3ff; u32 r = div_reg & 0xff; mult = r; div = (n * 4); return (clk_in * mult)/div; } static u32 ast2600_get_uart_from_huxclk_rate(struct ast2600_scu *scu) { u32 clk_in = ast2600_get_huxclk_rate(scu); u32 div_reg = readl(&scu->uart_24m_ref_huxclk); unsigned int mult, div; u32 n = (div_reg >> 8) & 0x3ff; u32 r = div_reg & 0xff; mult = r; div = (n * 4); return (clk_in * mult)/div; } static u32 ast2600_get_sdio_clk_rate(struct ast2600_scu *scu) { u32 clkin = 0; u32 clk_sel = readl(&scu->clk_sel4); u32 div = (clk_sel >> 28) & 0x7; if(clk_sel & BIT(8)) { clkin = ast2600_get_apll_rate(scu); } else { clkin = ast2600_get_hclk(scu); } div = (div + 1) << 1; return (clkin / div); } static u32 ast2600_get_emmc_clk_rate(struct ast2600_scu *scu) { u32 clkin = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL); u32 clk_sel = readl(&scu->clk_sel1); u32 div = (clk_sel >> 12) & 0x7; div = (div + 1) << 2; return (clkin / div); } static u32 ast2600_get_uart_clk_rate(struct ast2600_scu *scu, int uart_idx) { u32 uart_sel = readl(&scu->clk_sel4); u32 uart_sel5 = readl(&scu->clk_sel5); ulong uart_clk = 0; switch(uart_idx) { case 1: case 2: case 3: case 4: case 6: if(uart_sel & BIT(uart_idx - 1)) uart_clk = ast2600_get_uart_from_uxclk_rate(scu)/13 ; else uart_clk = ast2600_get_uart_from_huxclk_rate(scu)/13 ; break; case 5: //24mhz is come form usb phy 48Mhz { u8 uart5_clk_sel = 0; //high bit if (readl(&scu->misc_ctrl1) & BIT(12)) uart5_clk_sel = 0x2; else uart5_clk_sel = 0x0; if (readl(&scu->clk_sel2) & BIT(14)) uart5_clk_sel |= 0x1; switch(uart5_clk_sel) { case 0: uart_clk = 24000000; break; case 1: uart_clk = 0; break; case 2: uart_clk = 24000000/13; break; case 3: uart_clk = 192000000/13; break; } } break; case 7: case 8: case 9: case 10: case 11: case 12: case 13: if(uart_sel5 & BIT(uart_idx - 1)) uart_clk = ast2600_get_uart_from_uxclk_rate(scu)/13 ; else uart_clk = ast2600_get_uart_from_huxclk_rate(scu)/13 ; break; } return uart_clk; } static ulong ast2600_clk_get_rate(struct clk *clk) { struct ast2600_clk_priv *priv = dev_get_priv(clk->dev); ulong rate = 0; switch (clk->id) { case ASPEED_CLK_HPLL: case ASPEED_CLK_EPLL: case ASPEED_CLK_DPLL: case ASPEED_CLK_MPLL: rate = ast2600_get_pll_rate(priv->scu, clk->id); break; case ASPEED_CLK_AHB: rate = ast2600_get_hclk(priv->scu); break; case ASPEED_CLK_APB1: rate = ast2600_get_pclk1(priv->scu); break; case ASPEED_CLK_APB2: rate = ast2600_get_pclk2(priv->scu); break; case ASPEED_CLK_APLL: rate = ast2600_get_apll_rate(priv->scu); break; case ASPEED_CLK_GATE_UART1CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 1); break; case ASPEED_CLK_GATE_UART2CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 2); break; case ASPEED_CLK_GATE_UART3CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 3); break; case ASPEED_CLK_GATE_UART4CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 4); break; case ASPEED_CLK_GATE_UART5CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 5); break; case ASPEED_CLK_SDIO: rate = ast2600_get_sdio_clk_rate(priv->scu); break; case ASPEED_CLK_EMMC: rate = ast2600_get_emmc_clk_rate(priv->scu); break; default: pr_debug("can't get clk rate \n"); return -ENOENT; break; } return rate; } /** * @brief lookup PLL divider config by input/output rate * @param[in] *pll - PLL descriptor * @return true - if PLL divider config is found, false - else * * The function caller shall fill "pll->in" and "pll->out", then this function * will search the lookup table to find a valid PLL divider configuration. */ static bool ast2600_search_clock_config(struct ast2600_pll_desc *pll) { u32 i; bool is_found = false; for (i = 0; i < ARRAY_SIZE(ast2600_pll_lookup); i++) { const struct ast2600_pll_desc *def_cfg = &ast2600_pll_lookup[i]; if ((def_cfg->in == pll->in) && (def_cfg->out == pll->out)) { is_found = true; pll->cfg.reg.w = def_cfg->cfg.reg.w; pll->cfg.ext_reg = def_cfg->cfg.ext_reg; break; } } return is_found; } static u32 ast2600_configure_pll(struct ast2600_scu *scu, struct ast2600_pll_cfg *p_cfg, int pll_idx) { u32 addr, addr_ext; u32 reg; switch (pll_idx) { case ASPEED_CLK_HPLL: addr = (u32)(&scu->h_pll_param); addr_ext = (u32)(&scu->h_pll_ext_param); break; case ASPEED_CLK_MPLL: addr = (u32)(&scu->m_pll_param); addr_ext = (u32)(&scu->m_pll_ext_param); break; case ASPEED_CLK_DPLL: addr = (u32)(&scu->d_pll_param); addr_ext = (u32)(&scu->d_pll_ext_param); break; case ASPEED_CLK_EPLL: addr = (u32)(&scu->e_pll_param); addr_ext = (u32)(&scu->e_pll_ext_param); break; default: debug("unknown PLL index\n"); return 1; } p_cfg->reg.b.bypass = 0; p_cfg->reg.b.off = 1; p_cfg->reg.b.reset = 1; reg = readl(addr); reg &= ~GENMASK(25, 0); reg |= p_cfg->reg.w; writel(reg, addr); /* write extend parameter */ writel(p_cfg->ext_reg, addr_ext); udelay(100); p_cfg->reg.b.off = 0; p_cfg->reg.b.reset = 0; reg &= ~GENMASK(25, 0); reg |= p_cfg->reg.w; writel(reg, addr); /* polling PLL lock status */ while(0 == (readl(addr_ext) & BIT(31))); return 0; } static u32 ast2600_configure_ddr(struct ast2600_scu *scu, ulong rate) { struct ast2600_pll_desc mpll; mpll.in = AST2600_CLK_IN; mpll.out = rate; if (false == ast2600_search_clock_config(&mpll)) { printf("error!! unable to find valid DDR clock setting\n"); return 0; } ast2600_configure_pll(scu, &(mpll.cfg), ASPEED_CLK_MPLL); return ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL); } static ulong ast2600_clk_set_rate(struct clk *clk, ulong rate) { struct ast2600_clk_priv *priv = dev_get_priv(clk->dev); ulong new_rate; switch (clk->id) { case ASPEED_CLK_MPLL: new_rate = ast2600_configure_ddr(priv->scu, rate); break; default: return -ENOENT; } return new_rate; } #define SCU_CLKSTOP_MAC1 (20) #define SCU_CLKSTOP_MAC2 (21) #define SCU_CLKSTOP_MAC3 (20) #define SCU_CLKSTOP_MAC4 (21) static u32 ast2600_configure_mac12_clk(struct ast2600_scu *scu) { u32 clksel; u32 clkdelay; struct ast2600_pll_desc epll; epll.in = AST2600_CLK_IN; epll.out = 1000000000; if (false == ast2600_search_clock_config(&epll)) { printf( "error!! unable to find valid ETHNET MAC clock setting\n"); debug("%s: epll cfg = 0x%08x 0x%08x\n", __func__, epll.cfg.reg.w, epll.cfg.ext_reg); debug("%s: epll cfg = %02x %02x %02x\n", __func__, epll.cfg.reg.b.m, epll.cfg.reg.b.n, epll.cfg.reg.b.p); return 0; } ast2600_configure_pll(scu, &(epll.cfg), ASPEED_CLK_EPLL); /* select MAC#1 and MAC#2 clock source = EPLL / 8 */ clksel = readl(&scu->clk_sel2); clksel &= ~BIT(23); clksel |= 0x7 << 20; writel(clksel, &scu->clk_sel2); /* BIT(31): select RGMII 125M from internal source BIT(28): RGMII 125M output enable BIT(25:0): 1G default delay */ clkdelay = MAC_DEF_DELAY_1G | BIT(31) | BIT(28); writel(clkdelay, &scu->mac12_clk_delay); /* set 100M/10M default delay */ writel(MAC_DEF_DELAY_100M, &scu->mac12_clk_delay_100M); writel(MAC_DEF_DELAY_10M, &scu->mac12_clk_delay_10M); /* MAC AHB = HPLL / 6 */ clksel = readl(&scu->clk_sel1); clksel &= ~GENMASK(18, 16); clksel |= 0x2 << 16; writel(clksel, &scu->clk_sel1); return 0; } static u32 ast2600_configure_mac34_clk(struct ast2600_scu *scu) { u32 reg; ast2600_configure_mac12_clk(scu); /* BIT[31] RGMII 125M source: 0 = from IO pin BIT[25:0] MAC 1G delay */ reg = readl(&scu->mac34_clk_delay); reg &= ~(BIT(31) | GENMASK(25, 0)); reg |= MAC34_DEF_DELAY_1G; writel(reg, &scu->mac34_clk_delay); writel(MAC34_DEF_DELAY_100M, &scu->mac34_clk_delay_100M); writel(MAC34_DEF_DELAY_10M, &scu->mac34_clk_delay_10M); /* clock source seletion and divider */ reg = readl(&scu->clk_sel4); reg &= ~GENMASK(26, 24); /* MAC AHB = HCLK / 2 */ reg &= ~GENMASK(18, 16); reg |= 0x3 << 16; /* RMII 50M = SLICLK_200M / 4 */ writel(reg, &scu->clk_sel4); /* set driving strength */ reg = readl(&scu->pinmux_ctrl16); reg &= GENMASK(3, 0); reg |= (0x2 << 0) | (0x2 << 2); writel(reg, &scu->pinmux_ctrl16); return 0; } #if 0 /** * ast2600 RGMII clock source tree * * 125M from external PAD -------->|\ * HPLL -->|\ | |---->RGMII 125M for MAC#1 & MAC#2 * | |---->| divider |---->|/ + * EPLL -->|/ | * | * +---------<-----------|PAD output enable|<---------------------+ * | * +--->|PAD input enable|----->|\ * | |----> RGMII 125M for MAC#3 & MAC#4 * SLICLK 200M -->|divider|---->|/ * * * ast2600 RMII/NCSI clock source tree * * HPLL -->|\ * | |---->| divider |----> RMII 50M for MAC#1 & MAC#2 * EPLL -->|/ * * HCLK(SCLICLK)---->| divider |----> RMII 50M for MAC#3 & MAC#4 */ struct ast2600_rgmii_clk_config { u32 mac_1_2_src; /* 0=external PAD, 1=internal PLL */ u32 int_clk_src; /* 0=EPLL, 1=HPLL */ u32 int_clk_div; u32 mac_3_4_src; /* 0=external PAD, 1=SLICLK */ u32 sli_clk_div; /* reserved */ }; static void ast2600_init_rgmii_clk(struct ast2600_scu *scu, int index) { debug("%s not ready\n", __func__); } static void ast2600_init_rmii_clk(struct ast2600_scu *scu, int index) { debug("%s not ready\n", __func__); } #endif static u32 ast2600_configure_mac(struct ast2600_scu *scu, int index) { u32 reset_bit; u32 clkstop_bit; if (index < 3) ast2600_configure_mac12_clk(scu); else ast2600_configure_mac34_clk(scu); switch (index) { case 1: reset_bit = BIT(ASPEED_RESET_MAC1); clkstop_bit = BIT(SCU_CLKSTOP_MAC1); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl1); break; case 2: reset_bit = BIT(ASPEED_RESET_MAC2); clkstop_bit = BIT(SCU_CLKSTOP_MAC2); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl1); break; case 3: reset_bit = BIT(ASPEED_RESET_MAC3 - 32); clkstop_bit = BIT(SCU_CLKSTOP_MAC3); writel(reset_bit, &scu->sysreset_ctrl2); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl2); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl2); break; case 4: reset_bit = BIT(ASPEED_RESET_MAC4 - 32); clkstop_bit = BIT(SCU_CLKSTOP_MAC4); writel(reset_bit, &scu->sysreset_ctrl2); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl2); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl2); break; default: return -EINVAL; } return 0; } #define SCU_CLKSTOP_SDIO 4 static ulong ast2600_enable_sdclk(struct ast2600_scu *scu) { u32 reset_bit; u32 clkstop_bit; reset_bit = BIT(ASPEED_RESET_SD - 32); clkstop_bit = BIT(SCU_CLKSTOP_SDIO); writel(reset_bit, &scu->sysreset_ctrl2); udelay(100); //enable clk writel(clkstop_bit, &scu->clk_stop_clr_ctrl2); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl2); return 0; } #define SCU_CLKSTOP_EXTSD 31 #define SCU_CLK_SD_MASK (0x7 << 28) #define SCU_CLK_SD_DIV(x) (x << 28) static ulong ast2600_enable_extsdclk(struct ast2600_scu *scu) { u32 clk_sel = readl(&scu->clk_sel4); u32 enableclk_bit; enableclk_bit = BIT(SCU_CLKSTOP_EXTSD); //default use apll for clock source 800/4 = 200 : controller max is 200mhz clk_sel &= ~SCU_CLK_SD_MASK; clk_sel |= SCU_CLK_SD_DIV(1) | BIT(8); writel(clk_sel, &scu->clk_sel4); //enable clk setbits_le32(&scu->clk_sel4, enableclk_bit); return 0; } #define SCU_CLKSTOP_EMMC 27 static ulong ast2600_enable_emmcclk(struct ast2600_scu *scu) { u32 reset_bit; u32 clkstop_bit; reset_bit = BIT(ASPEED_RESET_EMMC); clkstop_bit = BIT(SCU_CLKSTOP_EMMC); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); //enable clk writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl1); return 0; } #define SCU_CLKSTOP_EXTEMMC 15 #define SCU_CLK_EMMC_MASK (0x7 << 12) #define SCU_CLK_EMMC_DIV(x) (x << 12) static ulong ast2600_enable_extemmcclk(struct ast2600_scu *scu) { u32 clk_sel = readl(&scu->clk_sel1); u32 enableclk_bit; enableclk_bit = BIT(SCU_CLKSTOP_EXTEMMC); clk_sel &= ~SCU_CLK_SD_MASK; clk_sel |= SCU_CLK_SD_DIV(1); writel(clk_sel, &scu->clk_sel1); //enable clk setbits_le32(&scu->clk_sel1, enableclk_bit); return 0; } static int ast2600_clk_enable(struct clk *clk) { struct ast2600_clk_priv *priv = dev_get_priv(clk->dev); switch (clk->id) { case ASPEED_CLK_GATE_MAC1CLK: ast2600_configure_mac(priv->scu, 1); break; case ASPEED_CLK_GATE_MAC2CLK: ast2600_configure_mac(priv->scu, 2); break; case ASPEED_CLK_GATE_MAC3CLK: ast2600_configure_mac(priv->scu, 3); break; case ASPEED_CLK_GATE_MAC4CLK: ast2600_configure_mac(priv->scu, 4); break; case ASPEED_CLK_GATE_SDCLK: ast2600_enable_sdclk(priv->scu); break; case ASPEED_CLK_GATE_SDEXTCLK: ast2600_enable_extsdclk(priv->scu); break; case ASPEED_CLK_GATE_EMMCCLK: ast2600_enable_emmcclk(priv->scu); break; case ASPEED_CLK_GATE_EMMCEXTCLK: ast2600_enable_extemmcclk(priv->scu); break; default: pr_debug("can't enable clk \n"); return -ENOENT; break; } return 0; } struct clk_ops ast2600_clk_ops = { .get_rate = ast2600_clk_get_rate, .set_rate = ast2600_clk_set_rate, .enable = ast2600_clk_enable, }; static int ast2600_clk_probe(struct udevice *dev) { struct ast2600_clk_priv *priv = dev_get_priv(dev); priv->scu = devfdt_get_addr_ptr(dev); if (IS_ERR(priv->scu)) return PTR_ERR(priv->scu); return 0; } static int ast2600_clk_bind(struct udevice *dev) { int ret; /* The reset driver does not have a device node, so bind it here */ ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev); if (ret) debug("Warning: No reset driver: ret=%d\n", ret); return 0; } #if CONFIG_IS_ENABLED(CMD_CLK) struct aspeed_clks { ulong id; const char *name; }; static struct aspeed_clks aspeed_clk_names[] = { { ASPEED_CLK_HPLL, "hpll" }, { ASPEED_CLK_MPLL, "mpll" }, { ASPEED_CLK_APLL, "apll" }, { ASPEED_CLK_EPLL, "epll" }, { ASPEED_CLK_DPLL, "dpll" }, { ASPEED_CLK_AHB, "hclk" }, { ASPEED_CLK_APB1, "pclk1" }, { ASPEED_CLK_APB2, "pclk2" }, }; int soc_clk_dump(void) { struct udevice *dev; struct clk clk; unsigned long rate; int i, ret; ret = uclass_get_device_by_driver(UCLASS_CLK, DM_GET_DRIVER(aspeed_scu), &dev); if (ret) return ret; printf("Clk\t\tHz\n"); for (i = 0; i < ARRAY_SIZE(aspeed_clk_names); i++) { clk.id = aspeed_clk_names[i].id; ret = clk_request(dev, &clk); if (ret < 0) { debug("%s clk_request() failed: %d\n", __func__, ret); continue; } ret = clk_get_rate(&clk); rate = ret; clk_free(&clk); if (ret == -ENOTSUPP) { printf("clk ID %lu not supported yet\n", aspeed_clk_names[i].id); continue; } if (ret < 0) { printf("%s %lu: get_rate err: %d\n", __func__, aspeed_clk_names[i].id, ret); continue; } printf("%s(%3lu):\t%lu\n", aspeed_clk_names[i].name, aspeed_clk_names[i].id, rate); } return 0; } #endif static const struct udevice_id ast2600_clk_ids[] = { { .compatible = "aspeed,ast2600-scu", }, { } }; U_BOOT_DRIVER(aspeed_scu) = { .name = "aspeed_scu", .id = UCLASS_CLK, .of_match = ast2600_clk_ids, .priv_auto_alloc_size = sizeof(struct ast2600_clk_priv), .ops = &ast2600_clk_ops, .bind = ast2600_clk_bind, .probe = ast2600_clk_probe, };