// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) ASPEED Technology Inc. */ #include #include #include #include #include #include #include #include #include #include #include /* * SCU 80 & 90 clock stop control for MAC controllers */ #define SCU_CLKSTOP_MAC1 (20) #define SCU_CLKSTOP_MAC2 (21) #define SCU_CLKSTOP_MAC3 (20) #define SCU_CLKSTOP_MAC4 (21) /* * MAC Clock Delay settings */ #define MAC_CLK_RGMII_125M_SRC_SEL BIT(31) #define MAC_CLK_RGMII_125M_SRC_PAD_RGMIICK 0 #define MAC_CLK_RGMII_125M_SRC_PLL 1 #define MAC_CLK_RMII2_50M_RCLK_O_CTRL BIT(30) #define MAC_CLK_RMII2_50M_RCLK_O_DIS 0 #define MAC_CLK_RMII2_50M_RCLK_O_EN 1 #define MAC_CLK_RMII1_50M_RCLK_O_CTRL BIT(29) #define MAC_CLK_RMII1_5M_RCLK_O_DIS 0 #define MAC_CLK_RMII1_5M_RCLK_O_EN 1 #define MAC_CLK_RGMIICK_PAD_DIR BIT(28) #define MAC_CLK_RGMIICK_PAD_DIR_INPUT 0 #define MAC_CLK_RGMIICK_PAD_DIR_OUTPUT 1 #define MAC_CLK_RMII_TXD_FALLING_2 BIT(27) #define MAC_CLK_RMII_TXD_FALLING_1 BIT(26) #define MAC_CLK_RXCLK_INV_2 BIT(25) #define MAC_CLK_RXCLK_INV_1 BIT(24) #define MAC_CLK_1G_INPUT_DELAY_2 GENMASK(23, 18) #define MAC_CLK_1G_INPUT_DELAY_1 GENMASK(17, 12) #define MAC_CLK_1G_OUTPUT_DELAY_2 GENMASK(11, 6) #define MAC_CLK_1G_OUTPUT_DELAY_1 GENMASK(5, 0) #define MAC_CLK_100M_10M_RESERVED GENMASK(31, 26) #define MAC_CLK_100M_10M_RXCLK_INV_2 BIT(25) #define MAC_CLK_100M_10M_RXCLK_INV_1 BIT(24) #define MAC_CLK_100M_10M_INPUT_DELAY_2 GENMASK(23, 18) #define MAC_CLK_100M_10M_INPUT_DELAY_1 GENMASK(17, 12) #define MAC_CLK_100M_10M_OUTPUT_DELAY_2 GENMASK(11, 6) #define MAC_CLK_100M_10M_OUTPUT_DELAY_1 GENMASK(5, 0) #define RGMII12_CLK_OUTPUT_DELAY_PS 1000 #define RGMII34_CLK_OUTPUT_DELAY_PS 1600 #define MAC_DEF_DELAY_1G FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, 16) | \ FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_1, 10) | \ FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, 16) | \ FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_2, 10) #define MAC_DEF_DELAY_100M FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, 16) | \ FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, 16) | \ FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, 16) | \ FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, 16) #define MAC_DEF_DELAY_10M FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, 16) | \ FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, 16) | \ FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, 16) | \ FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, 16) #define MAC34_DEF_DELAY_1G FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, 8) | \ FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_1, 4) | \ FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, 8) | \ FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_2, 4) #define MAC34_DEF_DELAY_100M FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, 8) | \ FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, 4) | \ FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, 8) | \ FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, 4) #define MAC34_DEF_DELAY_10M FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, 8) | \ FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, 4) | \ FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, 8) | \ FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, 4) /* * SCU 320 & 330 Frequency counters */ #define FREQC_CTRL_RESERVED GENMASK(31, 30) #define FREQC_CTRL_RESULT GENMASK(29, 16) #define FREQC_CTRL_RING_STAGE GENMASK(15, 9) #define FREQC_CTRL_PIN_O_CTRL BIT(8) #define FREQC_CTRL_PIN_O_DIS 0 #define FREQC_CTRL_PIN_O_EN 1 #define FREQC_CTRL_CMP_RESULT BIT(7) #define FREQC_CTRL_CMP_RESULT_FAIL 0 #define FREQC_CTRL_CMP_RESULT_PASS 1 #define FREQC_CTRL_STATUS BIT(6) #define FREQC_CTRL_STATUS_NOT_FINISHED 0 #define FREQC_CTRL_STATUS_FINISHED 1 #define FREQC_CTRL_SRC_SEL GENMASK(5, 2) #define FREQC_CTRL_SRC_SEL_HCLK_DIE0 9 #define FREQC_CTRL_SRC_SEL_DLY32_DIE0 3 #define FREQC_CTRL_SRC_SEL_HCLK_DIE1 1 #define FREQC_CTRL_SRC_SEL_DLY32_DIE1 7 #define FREQC_CTRL_OSC_CTRL BIT(1) #define FREQC_CTRL_OSC_DIS 0 #define FREQC_CTRL_OSC_EN 1 #define FREQC_CTRL_RING_CTRL BIT(0) #define FREQC_CTRL_RING_DIS 0 #define FREQC_CTRL_RING_EN 1 #define FREQC_RANGE_RESERVED0 GENMASK(31, 30) #define FREQC_RANGE_LOWER GENMASK(29, 16) #define FREQC_RANGE_RESERVED1 GENMASK(15, 14) #define FREQC_RANGE_UPPER GENMASK(13, 0) #define DLY32_NUM_OF_TAPS 32 #define DLY32_AVERAGE_COUNT_LOG2 4 #define DLY32_AVERAGE_COUNT BIT(DLY32_AVERAGE_COUNT_LOG2) /* * TGMII Clock Duty constants, taken from Aspeed SDK */ #define RGMII2_TXCK_DUTY 0x66 #define RGMII1_TXCK_DUTY 0x64 #define D2PLL_DEFAULT_RATE (250 * 1000 * 1000) #define CHIP_REVISION_ID GENMASK(23, 16) DECLARE_GLOBAL_DATA_PTR; /* * Clock divider/multiplier configuration struct. * For H-PLL and M-PLL the formula is * (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1) * M - Numerator * N - Denumerator * P - Post Divider * They have the same layout in their control register. * * D-PLL and D2-PLL have extra divider (OD + 1), which is not * yet needed and ignored by clock configurations. */ union ast2600_pll_reg { u32 w; struct { unsigned int m : 13; /* bit[12:0] */ unsigned int n : 6; /* bit[18:13] */ unsigned int p : 4; /* bit[22:19] */ unsigned int off : 1; /* bit[23] */ unsigned int bypass : 1; /* bit[24] */ unsigned int reset : 1; /* bit[25] */ unsigned int reserved : 6; /* bit[31:26] */ } b; }; struct ast2600_pll_cfg { union ast2600_pll_reg reg; u32 ext_reg; }; struct ast2600_pll_desc { u32 in; u32 out; struct ast2600_pll_cfg cfg; }; static const struct ast2600_pll_desc ast2600_pll_lookup[] = { { .in = AST2600_CLK_IN, .out = 400000000, .cfg.reg.b.m = 95, .cfg.reg.b.n = 2, .cfg.reg.b.p = 1, .cfg.ext_reg = 0x31, }, { .in = AST2600_CLK_IN, .out = 200000000, .cfg.reg.b.m = 127, .cfg.reg.b.n = 0, .cfg.reg.b.p = 15, .cfg.ext_reg = 0x3f, }, { .in = AST2600_CLK_IN, .out = 334000000, .cfg.reg.b.m = 667, .cfg.reg.b.n = 4, .cfg.reg.b.p = 9, .cfg.ext_reg = 0x14d, }, { .in = AST2600_CLK_IN, .out = 1000000000, .cfg.reg.b.m = 119, .cfg.reg.b.n = 2, .cfg.reg.b.p = 0, .cfg.ext_reg = 0x3d, }, { .in = AST2600_CLK_IN, .out = 50000000, .cfg.reg.b.m = 95, .cfg.reg.b.n = 2, .cfg.reg.b.p = 15, .cfg.ext_reg = 0x31, }, }; struct mac_delay_config { u32 tx_delay_1000; u32 rx_delay_1000; u32 tx_delay_100; u32 rx_delay_100; u32 tx_delay_10; u32 rx_delay_10; }; extern u32 ast2600_get_pll_rate(struct ast2600_scu *scu, int pll_idx) { u32 clkin = AST2600_CLK_IN; u32 pll_reg = 0; unsigned int mult, div = 1; switch (pll_idx) { case ASPEED_CLK_HPLL: pll_reg = readl(&scu->h_pll_param); break; case ASPEED_CLK_MPLL: pll_reg = readl(&scu->m_pll_param); break; case ASPEED_CLK_DPLL: pll_reg = readl(&scu->d_pll_param); break; case ASPEED_CLK_EPLL: pll_reg = readl(&scu->e_pll_param); break; } if (pll_reg & BIT(24)) { /* Pass through mode */ mult = 1; div = 1; } else { union ast2600_pll_reg reg; /* F = 25Mhz * [(M + 2) / (n + 1)] / (p + 1) * HPLL Numerator (M) = fix 0x5F when SCU500[10]=1 * Fixed 0xBF when SCU500[10]=0 and SCU500[8]=1 * SCU200[12:0] (default 0x8F) when SCU510[10]=0 and SCU510[8]=0 * HPLL Denumerator (N) = SCU200[18:13] (default 0x2) * HPLL Divider (P) = SCU200[22:19] (default 0x0) * HPLL Bandwidth Adj (NB) = fix 0x2F when SCU500[10]=1 * Fixed 0x5F when SCU500[10]=0 and SCU500[8]=1 * SCU204[11:0] (default 0x31) when SCU500[10]=0 and SCU500[8]=0 */ reg.w = pll_reg; if (pll_idx == ASPEED_CLK_HPLL) { u32 hwstrap1 = readl(&scu->hwstrap1.hwstrap); if (hwstrap1 & BIT(10)) { reg.b.m = 0x5F; } else { if (hwstrap1 & BIT(8)) reg.b.m = 0xBF; /* Otherwise keep default 0x8F */ } } mult = (reg.b.m + 1) / (reg.b.n + 1); div = (reg.b.p + 1); } return ((clkin * mult) / div); } extern u32 ast2600_get_apll_rate(struct ast2600_scu *scu) { u32 hw_rev = readl(&scu->chip_id1); u32 clkin = AST2600_CLK_IN; u32 apll_reg = readl(&scu->a_pll_param); unsigned int mult, div = 1; if (((hw_rev & CHIP_REVISION_ID) >> 16) >= 2) { //after A2 version if (apll_reg & BIT(24)) { /* Pass through mode */ mult = 1; div = 1; } else { /* F = 25Mhz * [(m + 1) / (n + 1)] / (p + 1) */ u32 m = apll_reg & 0x1fff; u32 n = (apll_reg >> 13) & 0x3f; u32 p = (apll_reg >> 19) & 0xf; mult = (m + 1); div = (n + 1) * (p + 1); } } else { if (apll_reg & BIT(20)) { /* Pass through mode */ mult = 1; div = 1; } else { /* F = 25Mhz * (2-od) * [(m + 2) / (n + 1)] */ u32 m = (apll_reg >> 5) & 0x3f; u32 od = (apll_reg >> 4) & 0x1; u32 n = apll_reg & 0xf; mult = (2 - od) * (m + 2); div = n + 1; } } return ((clkin * mult) / div); } static u32 ast2600_a0_axi_ahb_div_table[] = { 2, 2, 3, 4, }; static u32 ast2600_a1_axi_ahb_div0_table[] = { 3, 2, 3, 4, }; static u32 ast2600_a1_axi_ahb_div1_table[] = { 3, 4, 6, 8, }; static u32 ast2600_a1_axi_ahb_default_table[] = { 3, 4, 3, 4, 2, 2, 2, 2, }; static u32 ast2600_get_hclk(struct ast2600_scu *scu) { u32 hw_rev = readl(&scu->chip_id1); u32 hwstrap1 = readl(&scu->hwstrap1.hwstrap); u32 axi_div = 1; u32 ahb_div = 0; u32 rate = 0; if ((hw_rev & CHIP_REVISION_ID) >> 16) { //After A0 if (hwstrap1 & BIT(16)) { ast2600_a1_axi_ahb_div1_table[0] = ast2600_a1_axi_ahb_default_table[(hwstrap1 >> 8) & 0x7] * 2; axi_div = 1; ahb_div = ast2600_a1_axi_ahb_div1_table[(hwstrap1 >> 11) & 0x3]; } else { ast2600_a1_axi_ahb_div0_table[0] = ast2600_a1_axi_ahb_default_table[(hwstrap1 >> 8) & 0x7]; axi_div = 2; ahb_div = ast2600_a1_axi_ahb_div0_table[(hwstrap1 >> 11) & 0x3]; } } else { //A0 : fix axi = hpll / 2 axi_div = 2; ahb_div = ast2600_a0_axi_ahb_div_table[(hwstrap1 >> 11) & 0x3]; } rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL); return (rate / axi_div / ahb_div); } static u32 ast2600_get_bclk_rate(struct ast2600_scu *scu) { u32 rate; u32 bclk_sel = (readl(&scu->clk_sel1) >> 20) & 0x7; rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL); return (rate / ((bclk_sel + 1) * 4)); } static u32 ast2600_hpll_pclk1_div_table[] = { 4, 8, 12, 16, 20, 24, 28, 32, }; static u32 ast2600_hpll_pclk2_div_table[] = { 2, 4, 6, 8, 10, 12, 14, 16, }; static u32 ast2600_get_pclk1(struct ast2600_scu *scu) { u32 clk_sel1 = readl(&scu->clk_sel1); u32 apb_div = ast2600_hpll_pclk1_div_table[((clk_sel1 >> 23) & 0x7)]; u32 rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL); return (rate / apb_div); } static u32 ast2600_get_pclk2(struct ast2600_scu *scu) { u32 clk_sel4 = readl(&scu->clk_sel4); u32 apb_div = ast2600_hpll_pclk2_div_table[((clk_sel4 >> 9) & 0x7)]; u32 rate = ast2600_get_hclk(scu); return (rate / apb_div); } static u32 ast2600_get_uxclk_in_rate(struct ast2600_scu *scu) { u32 clk_in = 0; u32 uxclk_sel = readl(&scu->clk_sel5); uxclk_sel &= 0x3; switch (uxclk_sel) { case 0: clk_in = ast2600_get_apll_rate(scu) / 4; break; case 1: clk_in = ast2600_get_apll_rate(scu) / 2; break; case 2: clk_in = ast2600_get_apll_rate(scu); break; case 3: clk_in = ast2600_get_hclk(scu); break; } return clk_in; } static u32 ast2600_get_huxclk_in_rate(struct ast2600_scu *scu) { u32 clk_in = 0; u32 huclk_sel = readl(&scu->clk_sel5); huclk_sel = ((huclk_sel >> 3) & 0x3); switch (huclk_sel) { case 0: clk_in = ast2600_get_apll_rate(scu) / 4; break; case 1: clk_in = ast2600_get_apll_rate(scu) / 2; break; case 2: clk_in = ast2600_get_apll_rate(scu); break; case 3: clk_in = ast2600_get_hclk(scu); break; } return clk_in; } static u32 ast2600_get_uart_uxclk_rate(struct ast2600_scu *scu) { u32 clk_in = ast2600_get_uxclk_in_rate(scu); u32 div_reg = readl(&scu->uart_24m_ref_uxclk); unsigned int mult, div; u32 n = (div_reg >> 8) & 0x3ff; u32 r = div_reg & 0xff; mult = r; div = (n * 2); return (clk_in * mult) / div; } static u32 ast2600_get_uart_huxclk_rate(struct ast2600_scu *scu) { u32 clk_in = ast2600_get_huxclk_in_rate(scu); u32 div_reg = readl(&scu->uart_24m_ref_huxclk); unsigned int mult, div; u32 n = (div_reg >> 8) & 0x3ff; u32 r = div_reg & 0xff; mult = r; div = (n * 2); return (clk_in * mult) / div; } static u32 ast2600_get_sdio_clk_rate(struct ast2600_scu *scu) { u32 clkin = 0; u32 clk_sel = readl(&scu->clk_sel4); u32 div = (clk_sel >> 28) & 0x7; u32 hw_rev = readl(&scu->chip_id1); if (clk_sel & BIT(8)) clkin = ast2600_get_apll_rate(scu); else clkin = ast2600_get_hclk(scu); div = (1 + div) * 2; if (((hw_rev & GENMASK(23, 16)) >> 16) >= 2) div = (div & 0xf) ? div : 1; return (clkin / div); } static u32 ast2600_get_emmc_clk_rate(struct ast2600_scu *scu) { u32 mmc_clk_src = readl(&scu->clk_sel1); u32 clkin; u32 clk_sel = readl(&scu->clk_sel1); u32 div = (clk_sel >> 12) & 0x7; if (mmc_clk_src & BIT(11)) { /* emmc clock comes from MPLL */ clkin = ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL); div = (div + 1) * 2; } else { clkin = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL); div = (div + 1) << 2; } return (clkin / div); } static u32 ast2600_get_uart_clk_rate(struct ast2600_scu *scu, int uart_idx) { u32 hicr9 = readl(0x1e789098); u32 uart_sel = readl(&scu->clk_sel4); u32 uart_sel5 = readl(&scu->clk_sel5); ulong uart_clk = 0; switch (uart_idx) { case 1: case 2: case 3: case 4: hicr9 &= ~(BIT(uart_idx + 3)); writel(hicr9, 0x1e789098); case 6: if (uart_sel & BIT(uart_idx - 1)) uart_clk = ast2600_get_uart_huxclk_rate(scu); else uart_clk = ast2600_get_uart_uxclk_rate(scu); break; case 5: //24mhz is come form usb phy 48Mhz { u8 uart5_clk_sel = 0; //high bit if (readl(&scu->misc_ctrl1) & BIT(12)) uart5_clk_sel = 0x2; else uart5_clk_sel = 0x0; if (readl(&scu->clk_sel2) & BIT(14)) uart5_clk_sel |= 0x1; switch (uart5_clk_sel) { case 0: uart_clk = 24000000; break; case 1: uart_clk = 192000000; break; case 2: uart_clk = 24000000 / 13; break; case 3: uart_clk = 192000000 / 13; break; } } break; case 7: case 8: case 9: case 10: case 11: case 12: case 13: if (uart_sel5 & BIT(uart_idx - 1)) uart_clk = ast2600_get_uart_huxclk_rate(scu); else uart_clk = ast2600_get_uart_uxclk_rate(scu); break; } return uart_clk; } static ulong ast2600_clk_get_rate(struct clk *clk) { struct ast2600_clk_priv *priv = dev_get_priv(clk->dev); ulong rate = 0; switch (clk->id) { case ASPEED_CLK_HPLL: case ASPEED_CLK_EPLL: case ASPEED_CLK_DPLL: case ASPEED_CLK_MPLL: rate = ast2600_get_pll_rate(priv->scu, clk->id); break; case ASPEED_CLK_AHB: rate = ast2600_get_hclk(priv->scu); break; case ASPEED_CLK_APB1: rate = ast2600_get_pclk1(priv->scu); break; case ASPEED_CLK_APB2: rate = ast2600_get_pclk2(priv->scu); break; case ASPEED_CLK_APLL: rate = ast2600_get_apll_rate(priv->scu); break; case ASPEED_CLK_GATE_UART1CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 1); break; case ASPEED_CLK_GATE_UART2CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 2); break; case ASPEED_CLK_GATE_UART3CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 3); break; case ASPEED_CLK_GATE_UART4CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 4); break; case ASPEED_CLK_GATE_UART5CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 5); break; case ASPEED_CLK_BCLK: rate = ast2600_get_bclk_rate(priv->scu); break; case ASPEED_CLK_SDIO: rate = ast2600_get_sdio_clk_rate(priv->scu); break; case ASPEED_CLK_EMMC: rate = ast2600_get_emmc_clk_rate(priv->scu); break; case ASPEED_CLK_UARTX: rate = ast2600_get_uart_uxclk_rate(priv->scu); break; case ASPEED_CLK_HUARTX: rate = ast2600_get_uart_huxclk_rate(priv->scu); break; default: pr_debug("can't get clk rate\n"); return -ENOENT; } return rate; } /** * @brief lookup PLL divider config by input/output rate * @param[in] *pll - PLL descriptor * @return true - if PLL divider config is found, false - else * The function caller shall fill "pll->in" and "pll->out", * then this function will search the lookup table * to find a valid PLL divider configuration. */ static bool ast2600_search_clock_config(struct ast2600_pll_desc *pll) { u32 i; bool is_found = false; for (i = 0; i < ARRAY_SIZE(ast2600_pll_lookup); i++) { const struct ast2600_pll_desc *def_cfg = &ast2600_pll_lookup[i]; if (def_cfg->in == pll->in && def_cfg->out == pll->out) { is_found = true; pll->cfg.reg.w = def_cfg->cfg.reg.w; pll->cfg.ext_reg = def_cfg->cfg.ext_reg; break; } } return is_found; } static u32 ast2600_configure_pll(struct ast2600_scu *scu, struct ast2600_pll_cfg *p_cfg, int pll_idx) { u32 addr, addr_ext; u32 reg; switch (pll_idx) { case ASPEED_CLK_HPLL: addr = (u32)(&scu->h_pll_param); addr_ext = (u32)(&scu->h_pll_ext_param); break; case ASPEED_CLK_MPLL: addr = (u32)(&scu->m_pll_param); addr_ext = (u32)(&scu->m_pll_ext_param); break; case ASPEED_CLK_DPLL: addr = (u32)(&scu->d_pll_param); addr_ext = (u32)(&scu->d_pll_ext_param); break; case ASPEED_CLK_EPLL: addr = (u32)(&scu->e_pll_param); addr_ext = (u32)(&scu->e_pll_ext_param); break; default: debug("unknown PLL index\n"); return 1; } p_cfg->reg.b.bypass = 0; p_cfg->reg.b.off = 1; p_cfg->reg.b.reset = 1; reg = readl(addr); reg &= ~GENMASK(25, 0); reg |= p_cfg->reg.w; writel(reg, addr); /* write extend parameter */ writel(p_cfg->ext_reg, addr_ext); udelay(100); p_cfg->reg.b.off = 0; p_cfg->reg.b.reset = 0; reg &= ~GENMASK(25, 0); reg |= p_cfg->reg.w; writel(reg, addr); while (!(readl(addr_ext) & BIT(31))) ; return 0; } static u32 ast2600_configure_ddr(struct ast2600_scu *scu, ulong rate) { struct ast2600_pll_desc mpll; mpll.in = AST2600_CLK_IN; mpll.out = rate; if (ast2600_search_clock_config(&mpll) == false) { printf("error!! unable to find valid DDR clock setting\n"); return 0; } ast2600_configure_pll(scu, &mpll.cfg, ASPEED_CLK_MPLL); return ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL); } static ulong ast2600_clk_set_rate(struct clk *clk, ulong rate) { struct ast2600_clk_priv *priv = dev_get_priv(clk->dev); ulong new_rate; switch (clk->id) { case ASPEED_CLK_MPLL: new_rate = ast2600_configure_ddr(priv->scu, rate); break; default: return -ENOENT; } return new_rate; } static int ast2600_calc_dly32_time(struct ast2600_scu *scu, int die_id, int stage) { int ret, i; u64 sum = 0; u32 base, value, reset_sel, dly32_sel; if (die_id) { base = (u32)&scu->freq_counter_ctrl2; reset_sel = FREQC_CTRL_SRC_SEL_HCLK_DIE1; dly32_sel = FREQC_CTRL_SRC_SEL_DLY32_DIE1; } else { base = (u32)&scu->freq_counter_ctrl1; reset_sel = FREQC_CTRL_SRC_SEL_HCLK_DIE0; dly32_sel = FREQC_CTRL_SRC_SEL_DLY32_DIE0; } for (i = 0; i < DLY32_AVERAGE_COUNT; i++) { /* reset frequency-counter */ writel(FIELD_PREP(FREQC_CTRL_SRC_SEL, reset_sel), base); ret = readl_poll_timeout(base, value, !(value & FREQC_CTRL_RESULT), 1000); if (ret) return -1; /* start frequency counter */ value = FIELD_PREP(FREQC_CTRL_RING_STAGE, stage) | FIELD_PREP(FREQC_CTRL_SRC_SEL, dly32_sel) | FIELD_PREP(FREQC_CTRL_RING_CTRL, FREQC_CTRL_RING_EN); writel(value, base); /* delay for a while for settling down */ udelay(100); /* enable osc for measurement */ value |= FIELD_PREP(FREQC_CTRL_OSC_CTRL, FREQC_CTRL_OSC_EN); writel(value, base); ret = readl_poll_timeout(base, value, value & FREQC_CTRL_STATUS, 1000); if (ret) return -1; /* the result is represented in T count, will translate to pico-second later */ sum += FIELD_GET(FREQC_CTRL_RESULT, value); } /* return the DLY32 value in pico-second */ return (2560000 / (int)(sum >> DLY32_AVERAGE_COUNT_LOG2)); } static void ast2600_init_dly32_lookup(struct ast2600_clk_priv *priv) { struct ast2600_scu *scu = priv->scu; int i; for (i = 0; i < DLY32_NUM_OF_TAPS; i++) { priv->dly32_lookup[0][i] = ast2600_calc_dly32_time(scu, 0, i); priv->dly32_lookup[1][i] = ast2600_calc_dly32_time(scu, 1, i); } #ifdef DEBUG for (i = 0; i < DLY32_NUM_OF_TAPS; i++) printf("28nm DLY32[%d] = %d ps\n", i, priv->dly32_lookup[0][i]); for (i = 0; i < DLY32_NUM_OF_TAPS; i++) printf("55nm DLY32[%d] = %d ps\n", i, priv->dly32_lookup[1][i]); #endif } /** * @brief find the DLY32 tap number fitting the target delay time * * @param target_pico_sec target delay time in pico-second * @param lookup DLY32 lookup table * @return int DLY32 tap number */ static int ast2600_find_dly32_tap(int target_pico_sec, int *lookup) { int tap = DLY32_NUM_OF_TAPS >> 1; int lower = 0; int upper = DLY32_NUM_OF_TAPS - 1; /* binary search for the proper delay tap */ for (;;) { if (tap == 0 || tap == DLY32_NUM_OF_TAPS - 1) return -1; if (lookup[tap] >= target_pico_sec && lookup[tap - 1] < target_pico_sec) { return tap; } else if (lookup[tap] > target_pico_sec) { upper = tap; tap = (tap + lower) >> 1; } else if (lookup[tap] < target_pico_sec) { lower = tap; tap = (tap + upper) >> 1; } } } static u32 ast2600_configure_mac12_clk(struct ast2600_clk_priv *priv, struct udevice *dev) { struct ast2600_scu *scu = priv->scu; struct mac_delay_config mac1_cfg, mac2_cfg; u32 reg[3]; int ret; reg[0] = MAC_DEF_DELAY_1G; reg[1] = MAC_DEF_DELAY_100M; reg[2] = MAC_DEF_DELAY_10M; ret = ast2600_find_dly32_tap(RGMII12_CLK_OUTPUT_DELAY_PS, priv->dly32_lookup[0]); if (ret > 0) { debug("suggested tx delay for mac1/2: %d\n", ret); reg[0] &= ~(MAC_CLK_1G_OUTPUT_DELAY_1 | MAC_CLK_1G_OUTPUT_DELAY_2); reg[0] |= FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, ret) | FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, ret); reg[1] &= ~(MAC_CLK_100M_10M_OUTPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_2); reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, ret) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, ret); reg[2] &= ~(MAC_CLK_100M_10M_OUTPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_2); reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, ret) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, ret); } ret = dev_read_u32_array(dev, "mac0-clk-delay", (u32 *)&mac1_cfg, sizeof(mac1_cfg) / sizeof(u32)); if (!ret) { reg[0] &= ~(MAC_CLK_1G_INPUT_DELAY_1 | MAC_CLK_1G_OUTPUT_DELAY_1); reg[0] |= FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_1, mac1_cfg.rx_delay_1000) | FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, mac1_cfg.tx_delay_1000); reg[1] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_1); reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, mac1_cfg.rx_delay_100) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, mac1_cfg.tx_delay_100); reg[2] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_1); reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, mac1_cfg.rx_delay_10) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, mac1_cfg.tx_delay_10); } ret = dev_read_u32_array(dev, "mac1-clk-delay", (u32 *)&mac2_cfg, sizeof(mac2_cfg) / sizeof(u32)); if (!ret) { reg[0] &= ~(MAC_CLK_1G_INPUT_DELAY_2 | MAC_CLK_1G_OUTPUT_DELAY_2); reg[0] |= FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_2, mac2_cfg.rx_delay_1000) | FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, mac2_cfg.tx_delay_1000); reg[1] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_2 | MAC_CLK_100M_10M_OUTPUT_DELAY_2); reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, mac2_cfg.rx_delay_100) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, mac2_cfg.tx_delay_100); reg[2] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_2 | MAC_CLK_100M_10M_OUTPUT_DELAY_2); reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, mac2_cfg.rx_delay_10) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, mac2_cfg.tx_delay_10); } reg[0] |= (readl(&scu->mac12_clk_delay) & ~GENMASK(25, 0)); writel(reg[0], &scu->mac12_clk_delay); writel(reg[1], &scu->mac12_clk_delay_100M); writel(reg[2], &scu->mac12_clk_delay_10M); /* MAC AHB = HPLL / 6 */ clrsetbits_le32(&scu->clk_sel1, GENMASK(18, 16), (0x2 << 16)); return 0; } static u32 ast2600_configure_mac34_clk(struct ast2600_clk_priv *priv, struct udevice *dev) { struct ast2600_scu *scu = priv->scu; struct mac_delay_config mac3_cfg, mac4_cfg; u32 reg[3]; int ret; reg[0] = MAC34_DEF_DELAY_1G; reg[1] = MAC34_DEF_DELAY_100M; reg[2] = MAC34_DEF_DELAY_10M; ret = ast2600_find_dly32_tap(RGMII34_CLK_OUTPUT_DELAY_PS, priv->dly32_lookup[1]); if (ret > 0) { debug("suggested tx delay for mac3/4: %d\n", ret); reg[0] &= ~(MAC_CLK_1G_OUTPUT_DELAY_1 | MAC_CLK_1G_OUTPUT_DELAY_2); reg[0] |= FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, ret) | FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, ret); reg[1] &= ~(MAC_CLK_100M_10M_OUTPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_2); reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, ret) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, ret); reg[2] &= ~(MAC_CLK_100M_10M_OUTPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_2); reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, ret) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, ret); } ret = dev_read_u32_array(dev, "mac2-clk-delay", (u32 *)&mac3_cfg, sizeof(mac3_cfg) / sizeof(u32)); if (!ret) { reg[0] &= ~(MAC_CLK_1G_INPUT_DELAY_1 | MAC_CLK_1G_OUTPUT_DELAY_1); reg[0] |= FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_1, mac3_cfg.rx_delay_1000) | FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_1, mac3_cfg.tx_delay_1000); reg[1] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_1); reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, mac3_cfg.rx_delay_100) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, mac3_cfg.tx_delay_100); reg[2] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_1 | MAC_CLK_100M_10M_OUTPUT_DELAY_1); reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_1, mac3_cfg.rx_delay_10) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_1, mac3_cfg.tx_delay_10); } ret = dev_read_u32_array(dev, "mac3-clk-delay", (u32 *)&mac4_cfg, sizeof(mac4_cfg) / sizeof(u32)); if (!ret) { reg[0] &= ~(MAC_CLK_1G_INPUT_DELAY_2 | MAC_CLK_1G_OUTPUT_DELAY_2); reg[0] |= FIELD_PREP(MAC_CLK_1G_INPUT_DELAY_2, mac4_cfg.rx_delay_1000) | FIELD_PREP(MAC_CLK_1G_OUTPUT_DELAY_2, mac4_cfg.tx_delay_1000); reg[1] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_2 | MAC_CLK_100M_10M_OUTPUT_DELAY_2); reg[1] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, mac4_cfg.rx_delay_100) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, mac4_cfg.tx_delay_100); reg[2] &= ~(MAC_CLK_100M_10M_INPUT_DELAY_2 | MAC_CLK_100M_10M_OUTPUT_DELAY_2); reg[2] |= FIELD_PREP(MAC_CLK_100M_10M_INPUT_DELAY_2, mac4_cfg.rx_delay_10) | FIELD_PREP(MAC_CLK_100M_10M_OUTPUT_DELAY_2, mac4_cfg.tx_delay_10); } reg[0] |= (readl(&scu->mac34_clk_delay) & ~GENMASK(25, 0)); reg[0] &= ~MAC_CLK_RGMII_125M_SRC_SEL; reg[0] |= FIELD_PREP(MAC_CLK_RGMII_125M_SRC_SEL, MAC_CLK_RGMII_125M_SRC_PAD_RGMIICK); writel(reg[0], &scu->mac34_clk_delay); writel(reg[1], &scu->mac34_clk_delay_100M); writel(reg[2], &scu->mac34_clk_delay_10M); /* * clock source seletion and divider * scu310[26:24] : MAC AHB bus clock = HCLK / 2 * scu310[18:16] : RMII 50M = HCLK_200M / 4 */ clrsetbits_le32(&scu->clk_sel4, (GENMASK(26, 24) | GENMASK(18, 16)), ((0x0 << 24) | (0x3 << 16))); /* * set driving strength * scu458[3:2] : MAC4 driving strength * scu458[1:0] : MAC3 driving strength */ clrsetbits_le32(&scu->pinmux_ctrl16, GENMASK(3, 0), (0x3 << 2) | (0x3 << 0)); return 0; } /** * ast2600 RGMII clock source tree * 125M from external PAD -------->|\ * HPLL -->|\ | |---->RGMII 125M for MAC#1 & MAC#2 * | |---->| divider |---->|/ + * EPLL -->|/ | * | * +---------<-----------|RGMIICK PAD output enable|<-------------+ * | * +--------------------------->|\ * | |----> RGMII 125M for MAC#3 & MAC#4 * HCLK 200M ---->|divider|---->|/ * To simplify the control flow: * 1. RGMII 1/2 always use EPLL as the internal clock source * 2. RGMII 3/4 always use RGMIICK pad as the RGMII 125M source * 125M from external PAD -------->|\ * | |---->RGMII 125M for MAC#1 & MAC#2 * EPLL---->| divider |--->|/ + * | * +<--------------------|RGMIICK PAD output enable|<-------------+ * | * +--------------------------->RGMII 125M for MAC#3 & MAC#4 */ #define RGMIICK_SRC_PAD 0 #define RGMIICK_SRC_EPLL 1 /* recommended */ #define RGMIICK_SRC_HPLL 2 #define RGMIICK_DIV2 1 #define RGMIICK_DIV3 2 #define RGMIICK_DIV4 3 #define RGMIICK_DIV5 4 #define RGMIICK_DIV6 5 #define RGMIICK_DIV7 6 #define RGMIICK_DIV8 7 /* recommended */ #define RMIICK_DIV4 0 #define RMIICK_DIV8 1 #define RMIICK_DIV12 2 #define RMIICK_DIV16 3 #define RMIICK_DIV20 4 /* recommended */ #define RMIICK_DIV24 5 #define RMIICK_DIV28 6 #define RMIICK_DIV32 7 struct ast2600_mac_clk_div { u32 src; /* 0=external PAD, 1=internal PLL */ u32 fin; /* divider input speed */ u32 n; /* 0=div2, 1=div2, 2=div3, 3=div4,...,7=div8 */ u32 fout; /* fout = fin / n */ }; struct ast2600_mac_clk_div rgmii_clk_defconfig = { .src = ASPEED_CLK_EPLL, .fin = 1000000000, .n = RGMIICK_DIV8, .fout = 125000000, }; struct ast2600_mac_clk_div rmii_clk_defconfig = { .src = ASPEED_CLK_EPLL, .fin = 1000000000, .n = RMIICK_DIV20, .fout = 50000000, }; static void ast2600_init_mac_pll(struct ast2600_scu *p_scu, struct ast2600_mac_clk_div *p_cfg) { struct ast2600_pll_desc pll; pll.in = AST2600_CLK_IN; pll.out = p_cfg->fin; if (ast2600_search_clock_config(&pll) == false) { pr_err("unable to find valid ETHNET MAC clock setting\n"); debug("%s: pll cfg = 0x%08x 0x%08x\n", __func__, pll.cfg.reg.w, pll.cfg.ext_reg); debug("%s: pll cfg = %02x %02x %02x\n", __func__, pll.cfg.reg.b.m, pll.cfg.reg.b.n, pll.cfg.reg.b.p); return; } ast2600_configure_pll(p_scu, &pll.cfg, p_cfg->src); } static void ast2600_init_rgmii_clk(struct ast2600_scu *p_scu, struct ast2600_mac_clk_div *p_cfg) { u32 reg_304 = readl(&p_scu->clk_sel2); u32 reg_340 = readl(&p_scu->mac12_clk_delay); u32 reg_350 = readl(&p_scu->mac34_clk_delay); reg_340 &= ~(MAC_CLK_RGMII_125M_SRC_SEL | MAC_CLK_RMII2_50M_RCLK_O_CTRL | MAC_CLK_RMII1_50M_RCLK_O_CTRL | MAC_CLK_RGMIICK_PAD_DIR); /* RGMIICK PAD output enable (to MAC 3/4) */ reg_340 |= FIELD_PREP(MAC_CLK_RGMIICK_PAD_DIR, MAC_CLK_RGMIICK_PAD_DIR_OUTPUT); if (p_cfg->src == ASPEED_CLK_EPLL || p_cfg->src == ASPEED_CLK_HPLL) { /* * re-init PLL if the current PLL output frequency doesn't match * the divider setting */ if (p_cfg->fin != ast2600_get_pll_rate(p_scu, p_cfg->src)) ast2600_init_mac_pll(p_scu, p_cfg); /* select RGMII 125M from internal source */ reg_340 |= FIELD_PREP(MAC_CLK_RGMII_125M_SRC_SEL, MAC_CLK_RGMII_125M_SRC_PLL); } reg_304 &= ~GENMASK(23, 20); /* set clock divider */ reg_304 |= (p_cfg->n & 0x7) << 20; /* select internal clock source */ if (p_cfg->src == ASPEED_CLK_HPLL) reg_304 |= BIT(23); /* RGMII 3/4 clock source select */ reg_350 &= ~BIT(31); writel(reg_304, &p_scu->clk_sel2); writel(reg_340, &p_scu->mac12_clk_delay); writel(reg_350, &p_scu->mac34_clk_delay); } /** * ast2600 RMII/NCSI clock source tree * HPLL -->|\ * | |---->| divider |----> RMII 50M for MAC#1 & MAC#2 * EPLL -->|/ * HCLK(SCLICLK)---->| divider |----> RMII 50M for MAC#3 & MAC#4 */ static void ast2600_init_rmii_clk(struct ast2600_scu *p_scu, struct ast2600_mac_clk_div *p_cfg) { u32 reg_304; u32 reg_310; if (p_cfg->src == ASPEED_CLK_EPLL || p_cfg->src == ASPEED_CLK_HPLL) { /* * re-init PLL if the current PLL output frequency doesn't match * the divider setting */ if (p_cfg->fin != ast2600_get_pll_rate(p_scu, p_cfg->src)) ast2600_init_mac_pll(p_scu, p_cfg); } reg_304 = readl(&p_scu->clk_sel2); reg_310 = readl(&p_scu->clk_sel4); reg_304 &= ~GENMASK(19, 16); /* set RMII 1/2 clock divider */ reg_304 |= (p_cfg->n & 0x7) << 16; /* RMII clock source selection */ if (p_cfg->src == ASPEED_CLK_HPLL) reg_304 |= BIT(19); /* set RMII 3/4 clock divider */ reg_310 &= ~GENMASK(18, 16); reg_310 |= (0x3 << 16); writel(reg_304, &p_scu->clk_sel2); writel(reg_310, &p_scu->clk_sel4); } static u32 ast2600_configure_mac(struct ast2600_scu *scu, int index) { u32 reset_bit; u32 clkstop_bit; switch (index) { case 1: reset_bit = BIT(ASPEED_RESET_MAC1); clkstop_bit = BIT(SCU_CLKSTOP_MAC1); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl1); break; case 2: reset_bit = BIT(ASPEED_RESET_MAC2); clkstop_bit = BIT(SCU_CLKSTOP_MAC2); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl1); break; case 3: reset_bit = BIT(ASPEED_RESET_MAC3 - 32); clkstop_bit = BIT(SCU_CLKSTOP_MAC3); writel(reset_bit, &scu->sysreset_ctrl2); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl2); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl2); break; case 4: reset_bit = BIT(ASPEED_RESET_MAC4 - 32); clkstop_bit = BIT(SCU_CLKSTOP_MAC4); writel(reset_bit, &scu->sysreset_ctrl2); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl2); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl2); break; default: return -EINVAL; } return 0; } #define SCU_CLK_ECC_RSA_FROM_HPLL_CLK BIT(19) #define SCU_CLK_ECC_RSA_CLK_MASK GENMASK(27, 26) #define SCU_CLK_ECC_RSA_CLK_DIV(x) ((x) << 26) static void ast2600_configure_rsa_ecc_clk(struct ast2600_scu *scu) { u32 clk_sel = readl(&scu->clk_sel1); /* Configure RSA clock = HPLL/4 */ clk_sel |= SCU_CLK_ECC_RSA_FROM_HPLL_CLK; clk_sel &= ~SCU_CLK_ECC_RSA_CLK_MASK; clk_sel |= SCU_CLK_ECC_RSA_CLK_DIV(3); writel(clk_sel, &scu->clk_sel1); } #define SCU_CLKSTOP_SDIO 4 static ulong ast2600_enable_sdclk(struct ast2600_scu *scu) { u32 reset_bit; u32 clkstop_bit; reset_bit = BIT(ASPEED_RESET_SD - 32); clkstop_bit = BIT(SCU_CLKSTOP_SDIO); writel(reset_bit, &scu->sysreset_ctrl2); udelay(100); //enable clk writel(clkstop_bit, &scu->clk_stop_clr_ctrl2); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl2); return 0; } #define SCU_CLKSTOP_EXTSD 31 #define SCU_CLK_SD_MASK (0x7 << 28) #define SCU_CLK_SD_DIV(x) ((x) << 28) #define SCU_CLK_SD_FROM_APLL_CLK BIT(8) static ulong ast2600_enable_extsdclk(struct ast2600_scu *scu) { u32 clk_sel = readl(&scu->clk_sel4); u32 enableclk_bit; u32 rate = 0; u32 div = 0; int i = 0; enableclk_bit = BIT(SCU_CLKSTOP_EXTSD); /* ast2600 sd controller max clk is 200Mhz : * use apll for clock source 800/4 = 200 : controller max is 200mhz */ rate = ast2600_get_apll_rate(scu); for (i = 0; i < 8; i++) { div = (i + 1) * 2; if ((rate / div) <= 200000000) break; } clk_sel &= ~SCU_CLK_SD_MASK; clk_sel |= SCU_CLK_SD_DIV(i) | SCU_CLK_SD_FROM_APLL_CLK; writel(clk_sel, &scu->clk_sel4); //enable clk setbits_le32(&scu->clk_sel4, enableclk_bit); return 0; } #define SCU_CLKSTOP_EMMC 27 static ulong ast2600_enable_emmcclk(struct ast2600_scu *scu) { u32 reset_bit; u32 clkstop_bit; reset_bit = BIT(ASPEED_RESET_EMMC); clkstop_bit = BIT(SCU_CLKSTOP_EMMC); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); //enable clk writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl1); return 0; } #define SCU_CLKSTOP_EXTEMMC 15 #define SCU_CLK_EMMC_MASK (0x7 << 12) #define SCU_CLK_EMMC_DIV(x) ((x) << 12) #define SCU_CLK_EMMC_FROM_MPLL_CLK BIT(11) static ulong ast2600_enable_extemmcclk(struct ast2600_scu *scu) { u32 revision_id = readl(&scu->chip_id1); u32 clk_sel = readl(&scu->clk_sel1); u32 enableclk_bit = BIT(SCU_CLKSTOP_EXTEMMC); u32 rate = 0; u32 div = 0; int i = 0; /* * ast2600 eMMC controller max clk is 200Mhz * HPll->1/2->|\ * |->SCU300[11]->SCU300[14:12][1/N] + * MPLL------>|/ | * +----------------------------------------------+ * | * +---------> EMMC12C[15:8][1/N]-> eMMC clk */ if (((revision_id & CHIP_REVISION_ID) >> 16)) { //AST2600A1 : use mpll to be clk source rate = ast2600_get_pll_rate(scu, ASPEED_CLK_MPLL); for (i = 0; i < 8; i++) { div = (i + 1) * 2; if ((rate / div) <= 200000000) break; } clk_sel &= ~SCU_CLK_EMMC_MASK; clk_sel |= SCU_CLK_EMMC_DIV(i) | SCU_CLK_EMMC_FROM_MPLL_CLK; writel(clk_sel, &scu->clk_sel1); } else { //AST2600A0 : use hpll to be clk source rate = ast2600_get_pll_rate(scu, ASPEED_CLK_HPLL); for (i = 0; i < 8; i++) { div = (i + 1) * 4; if ((rate / div) <= 200000000) break; } clk_sel &= ~SCU_CLK_EMMC_MASK; clk_sel |= SCU_CLK_EMMC_DIV(i); writel(clk_sel, &scu->clk_sel1); } setbits_le32(&scu->clk_sel1, enableclk_bit); return 0; } #define SCU_CLKSTOP_FSICLK 30 static ulong ast2600_enable_fsiclk(struct ast2600_scu *scu) { u32 reset_bit; u32 clkstop_bit; reset_bit = BIT(ASPEED_RESET_FSI % 32); clkstop_bit = BIT(SCU_CLKSTOP_FSICLK); /* The FSI clock is shared between masters. If it's already on * don't touch it, as that will reset the existing master. */ if (!(readl(&scu->clk_stop_ctrl2) & clkstop_bit)) { debug("%s: already running, not touching it\n", __func__); return 0; } writel(reset_bit, &scu->sysreset_ctrl2); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl2); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl2); return 0; } static ulong ast2600_enable_usbahclk(struct ast2600_scu *scu) { u32 reset_bit; u32 clkstop_bit; reset_bit = BIT(ASPEED_RESET_EHCI_P1); clkstop_bit = BIT(14); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); writel(clkstop_bit, &scu->clk_stop_ctrl1); mdelay(20); writel(reset_bit, &scu->sysreset_clr_ctrl1); return 0; } static ulong ast2600_enable_usbbhclk(struct ast2600_scu *scu) { u32 reset_bit; u32 clkstop_bit; reset_bit = BIT(ASPEED_RESET_EHCI_P2); clkstop_bit = BIT(7); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(20); writel(reset_bit, &scu->sysreset_clr_ctrl1); return 0; } /* also known as yclk */ static ulong ast2600_enable_haceclk(struct ast2600_scu *scu) { u32 reset_bit; u32 clkstop_bit; reset_bit = BIT(ASPEED_RESET_HACE); clkstop_bit = BIT(13); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(20); writel(reset_bit, &scu->sysreset_clr_ctrl1); return 0; } static ulong ast2600_enable_rsaeccclk(struct ast2600_scu *scu) { u32 clkstop_bit; clkstop_bit = BIT(24); writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(20); return 0; } static int ast2600_clk_enable(struct clk *clk) { struct ast2600_clk_priv *priv = dev_get_priv(clk->dev); switch (clk->id) { case ASPEED_CLK_GATE_MAC1CLK: ast2600_configure_mac(priv->scu, 1); break; case ASPEED_CLK_GATE_MAC2CLK: ast2600_configure_mac(priv->scu, 2); break; case ASPEED_CLK_GATE_MAC3CLK: ast2600_configure_mac(priv->scu, 3); break; case ASPEED_CLK_GATE_MAC4CLK: ast2600_configure_mac(priv->scu, 4); break; case ASPEED_CLK_GATE_SDCLK: ast2600_enable_sdclk(priv->scu); break; case ASPEED_CLK_GATE_SDEXTCLK: ast2600_enable_extsdclk(priv->scu); break; case ASPEED_CLK_GATE_EMMCCLK: ast2600_enable_emmcclk(priv->scu); break; case ASPEED_CLK_GATE_EMMCEXTCLK: ast2600_enable_extemmcclk(priv->scu); break; case ASPEED_CLK_GATE_FSICLK: ast2600_enable_fsiclk(priv->scu); break; case ASPEED_CLK_GATE_USBPORT1CLK: ast2600_enable_usbahclk(priv->scu); break; case ASPEED_CLK_GATE_USBPORT2CLK: ast2600_enable_usbbhclk(priv->scu); break; case ASPEED_CLK_GATE_YCLK: ast2600_enable_haceclk(priv->scu); break; case ASPEED_CLK_GATE_RSAECCCLK: ast2600_enable_rsaeccclk(priv->scu); break; default: pr_err("can't enable clk\n"); return -ENOENT; } return 0; } struct clk_ops ast2600_clk_ops = { .get_rate = ast2600_clk_get_rate, .set_rate = ast2600_clk_set_rate, .enable = ast2600_clk_enable, }; static int ast2600_clk_probe(struct udevice *dev) { struct ast2600_clk_priv *priv = dev_get_priv(dev); u32 uart_clk_source; priv->scu = devfdt_get_addr_ptr(dev); if (IS_ERR(priv->scu)) return PTR_ERR(priv->scu); uart_clk_source = dev_read_u32_default(dev, "uart-clk-source", 0x0); if (uart_clk_source) { if (uart_clk_source & GENMASK(5, 0)) setbits_le32(&priv->scu->clk_sel4, uart_clk_source & GENMASK(5, 0)); if (uart_clk_source & GENMASK(12, 6)) setbits_le32(&priv->scu->clk_sel5, uart_clk_source & GENMASK(12, 6)); } ast2600_init_rgmii_clk(priv->scu, &rgmii_clk_defconfig); ast2600_init_rmii_clk(priv->scu, &rmii_clk_defconfig); ast2600_init_dly32_lookup(priv); ast2600_configure_mac12_clk(priv, dev); ast2600_configure_mac34_clk(priv, dev); ast2600_configure_rsa_ecc_clk(priv->scu); return 0; } static int ast2600_clk_bind(struct udevice *dev) { int ret; /* The reset driver does not have a device node, so bind it here */ ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev); if (ret) debug("Warning: No reset driver: ret=%d\n", ret); return 0; } struct aspeed_clks { ulong id; const char *name; }; static struct aspeed_clks aspeed_clk_names[] = { { ASPEED_CLK_HPLL, "hpll" }, { ASPEED_CLK_MPLL, "mpll" }, { ASPEED_CLK_APLL, "apll" }, { ASPEED_CLK_EPLL, "epll" }, { ASPEED_CLK_DPLL, "dpll" }, { ASPEED_CLK_AHB, "hclk" }, { ASPEED_CLK_APB1, "pclk1" }, { ASPEED_CLK_APB2, "pclk2" }, { ASPEED_CLK_BCLK, "bclk" }, { ASPEED_CLK_UARTX, "uxclk" }, { ASPEED_CLK_HUARTX, "huxclk" }, }; int soc_clk_dump(void) { struct udevice *dev; struct clk clk; unsigned long rate; int i, ret; ret = uclass_get_device_by_driver(UCLASS_CLK, DM_GET_DRIVER(aspeed_scu), &dev); if (ret) return ret; printf("Clk\t\tHz\n"); for (i = 0; i < ARRAY_SIZE(aspeed_clk_names); i++) { clk.id = aspeed_clk_names[i].id; ret = clk_request(dev, &clk); if (ret < 0) { debug("%s clk_request() failed: %d\n", __func__, ret); continue; } ret = clk_get_rate(&clk); rate = ret; clk_free(&clk); if (ret == -ENOTSUPP) { printf("clk ID %lu not supported yet\n", aspeed_clk_names[i].id); continue; } if (ret < 0) { printf("%s %lu: get_rate err: %d\n", __func__, aspeed_clk_names[i].id, ret); continue; } printf("%s(%3lu):\t%lu\n", aspeed_clk_names[i].name, aspeed_clk_names[i].id, rate); } return 0; } static const struct udevice_id ast2600_clk_ids[] = { { .compatible = "aspeed,ast2600-scu", }, {} }; U_BOOT_DRIVER(aspeed_scu) = { .name = "aspeed_scu", .id = UCLASS_CLK, .of_match = ast2600_clk_ids, .priv_auto_alloc_size = sizeof(struct ast2600_clk_priv), .ops = &ast2600_clk_ops, .bind = ast2600_clk_bind, .probe = ast2600_clk_probe, };