/* * ucontext coroutine initialization code * * Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws> * Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.0 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */ #undef _FORTIFY_SOURCE #define _FORTIFY_SOURCE 0 #include "qemu/osdep.h" #include <ucontext.h> #include "qemu/coroutine_int.h" #include "qemu/coroutine-tls.h" #ifdef CONFIG_VALGRIND_H #include <valgrind/valgrind.h> #endif #ifdef QEMU_SANITIZE_ADDRESS #ifdef CONFIG_ASAN_IFACE_FIBER #define CONFIG_ASAN 1 #include <sanitizer/asan_interface.h> #endif #endif #ifdef CONFIG_TSAN #include <sanitizer/tsan_interface.h> #endif typedef struct { Coroutine base; void *stack; size_t stack_size; #ifdef CONFIG_SAFESTACK /* Need an unsafe stack for each coroutine */ void *unsafe_stack; size_t unsafe_stack_size; #endif sigjmp_buf env; #ifdef CONFIG_TSAN void *tsan_co_fiber; void *tsan_caller_fiber; #endif #ifdef CONFIG_VALGRIND_H unsigned int valgrind_stack_id; #endif } CoroutineUContext; /** * Per-thread coroutine bookkeeping */ QEMU_DEFINE_STATIC_CO_TLS(Coroutine *, current); QEMU_DEFINE_STATIC_CO_TLS(CoroutineUContext, leader); /* * va_args to makecontext() must be type 'int', so passing * the pointer we need may require several int args. This * union is a quick hack to let us do that */ union cc_arg { void *p; int i[2]; }; /* * QEMU_ALWAYS_INLINE only does so if __OPTIMIZE__, so we cannot use it. * always_inline is required to avoid TSan runtime fatal errors. */ static inline __attribute__((always_inline)) void on_new_fiber(CoroutineUContext *co) { #ifdef CONFIG_TSAN co->tsan_co_fiber = __tsan_create_fiber(0); /* flags: sync on switch */ co->tsan_caller_fiber = __tsan_get_current_fiber(); #endif } /* always_inline is required to avoid TSan runtime fatal errors. */ static inline __attribute__((always_inline)) void finish_switch_fiber(void *fake_stack_save) { #ifdef CONFIG_ASAN CoroutineUContext *leaderp = get_ptr_leader(); const void *bottom_old; size_t size_old; __sanitizer_finish_switch_fiber(fake_stack_save, &bottom_old, &size_old); if (!leaderp->stack) { leaderp->stack = (void *)bottom_old; leaderp->stack_size = size_old; } #endif #ifdef CONFIG_TSAN if (fake_stack_save) { __tsan_release(fake_stack_save); __tsan_switch_to_fiber(fake_stack_save, 0); /* 0=synchronize */ } #endif } /* always_inline is required to avoid TSan runtime fatal errors. */ static inline __attribute__((always_inline)) void start_switch_fiber_asan(void **fake_stack_save, const void *bottom, size_t size) { #ifdef CONFIG_ASAN __sanitizer_start_switch_fiber(fake_stack_save, bottom, size); #endif } /* always_inline is required to avoid TSan runtime fatal errors. */ static inline __attribute__((always_inline)) void start_switch_fiber_tsan(void **fake_stack_save, CoroutineUContext *co, bool caller) { #ifdef CONFIG_TSAN void *new_fiber = caller ? co->tsan_caller_fiber : co->tsan_co_fiber; void *curr_fiber = __tsan_get_current_fiber(); __tsan_acquire(curr_fiber); *fake_stack_save = curr_fiber; __tsan_switch_to_fiber(new_fiber, 0); /* 0=synchronize */ #endif } static void coroutine_trampoline(int i0, int i1) { union cc_arg arg; CoroutineUContext *self; Coroutine *co; void *fake_stack_save = NULL; finish_switch_fiber(NULL); arg.i[0] = i0; arg.i[1] = i1; self = arg.p; co = &self->base; /* Initialize longjmp environment and switch back the caller */ if (!sigsetjmp(self->env, 0)) { CoroutineUContext *leaderp = get_ptr_leader(); start_switch_fiber_asan(&fake_stack_save, leaderp->stack, leaderp->stack_size); start_switch_fiber_tsan(&fake_stack_save, self, true); /* true=caller */ siglongjmp(*(sigjmp_buf *)co->entry_arg, 1); } finish_switch_fiber(fake_stack_save); while (true) { co->entry(co->entry_arg); qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE); } } Coroutine *qemu_coroutine_new(void) { CoroutineUContext *co; ucontext_t old_uc, uc; sigjmp_buf old_env; union cc_arg arg = {0}; void *fake_stack_save = NULL; /* The ucontext functions preserve signal masks which incurs a * system call overhead. sigsetjmp(buf, 0)/siglongjmp() does not * preserve signal masks but only works on the current stack. * Since we need a way to create and switch to a new stack, use * the ucontext functions for that but sigsetjmp()/siglongjmp() for * everything else. */ if (getcontext(&uc) == -1) { abort(); } co = g_malloc0(sizeof(*co)); co->stack_size = COROUTINE_STACK_SIZE; co->stack = qemu_alloc_stack(&co->stack_size); #ifdef CONFIG_SAFESTACK co->unsafe_stack_size = COROUTINE_STACK_SIZE; co->unsafe_stack = qemu_alloc_stack(&co->unsafe_stack_size); #endif co->base.entry_arg = &old_env; /* stash away our jmp_buf */ uc.uc_link = &old_uc; uc.uc_stack.ss_sp = co->stack; uc.uc_stack.ss_size = co->stack_size; uc.uc_stack.ss_flags = 0; #ifdef CONFIG_VALGRIND_H co->valgrind_stack_id = VALGRIND_STACK_REGISTER(co->stack, co->stack + co->stack_size); #endif arg.p = co; on_new_fiber(co); makecontext(&uc, (void (*)(void))coroutine_trampoline, 2, arg.i[0], arg.i[1]); /* swapcontext() in, siglongjmp() back out */ if (!sigsetjmp(old_env, 0)) { start_switch_fiber_asan(&fake_stack_save, co->stack, co->stack_size); start_switch_fiber_tsan(&fake_stack_save, co, false); /* false=not caller */ #ifdef CONFIG_SAFESTACK /* * Before we swap the context, set the new unsafe stack * The unsafe stack grows just like the normal stack, so start from * the last usable location of the memory area. * NOTE: we don't have to re-set the usp afterwards because we are * coming back to this context through a siglongjmp. * The compiler already wrapped the corresponding sigsetjmp call with * code that saves the usp on the (safe) stack before the call, and * restores it right after (which is where we return with siglongjmp). */ void *usp = co->unsafe_stack + co->unsafe_stack_size; __safestack_unsafe_stack_ptr = usp; #endif swapcontext(&old_uc, &uc); } finish_switch_fiber(fake_stack_save); return &co->base; } #ifdef CONFIG_VALGRIND_H /* Work around an unused variable in the valgrind.h macro... */ #if !defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-but-set-variable" #endif static inline void valgrind_stack_deregister(CoroutineUContext *co) { VALGRIND_STACK_DEREGISTER(co->valgrind_stack_id); } #if !defined(__clang__) #pragma GCC diagnostic pop #endif #endif #if defined(CONFIG_ASAN) && defined(CONFIG_COROUTINE_POOL) static void coroutine_fn terminate_asan(void *opaque) { CoroutineUContext *to = DO_UPCAST(CoroutineUContext, base, opaque); set_current(opaque); start_switch_fiber_asan(NULL, to->stack, to->stack_size); G_STATIC_ASSERT(!IS_ENABLED(CONFIG_TSAN)); siglongjmp(to->env, COROUTINE_ENTER); } #endif void qemu_coroutine_delete(Coroutine *co_) { CoroutineUContext *co = DO_UPCAST(CoroutineUContext, base, co_); #if defined(CONFIG_ASAN) && defined(CONFIG_COROUTINE_POOL) co_->entry_arg = qemu_coroutine_self(); co_->entry = terminate_asan; qemu_coroutine_switch(co_->entry_arg, co_, COROUTINE_ENTER); #endif #ifdef CONFIG_VALGRIND_H valgrind_stack_deregister(co); #endif qemu_free_stack(co->stack, co->stack_size); #ifdef CONFIG_SAFESTACK qemu_free_stack(co->unsafe_stack, co->unsafe_stack_size); #endif g_free(co); } /* This function is marked noinline to prevent GCC from inlining it * into coroutine_trampoline(). If we allow it to do that then it * hoists the code to get the address of the TLS variable "current" * out of the while() loop. This is an invalid transformation because * the sigsetjmp() call may be called when running thread A but * return in thread B, and so we might be in a different thread * context each time round the loop. */ CoroutineAction __attribute__((noinline)) qemu_coroutine_switch(Coroutine *from_, Coroutine *to_, CoroutineAction action) { CoroutineUContext *from = DO_UPCAST(CoroutineUContext, base, from_); CoroutineUContext *to = DO_UPCAST(CoroutineUContext, base, to_); int ret; void *fake_stack_save = NULL; set_current(to_); ret = sigsetjmp(from->env, 0); if (ret == 0) { start_switch_fiber_asan(IS_ENABLED(CONFIG_COROUTINE_POOL) || action != COROUTINE_TERMINATE ? &fake_stack_save : NULL, to->stack, to->stack_size); start_switch_fiber_tsan(&fake_stack_save, to, false); /* false=not caller */ siglongjmp(to->env, action); } finish_switch_fiber(fake_stack_save); return ret; } Coroutine *qemu_coroutine_self(void) { Coroutine *self = get_current(); CoroutineUContext *leaderp = get_ptr_leader(); if (!self) { self = &leaderp->base; set_current(self); } #ifdef CONFIG_TSAN if (!leaderp->tsan_co_fiber) { leaderp->tsan_co_fiber = __tsan_get_current_fiber(); } #endif return self; } bool qemu_in_coroutine(void) { Coroutine *self = get_current(); return self && self->caller; }