/* * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU. * * Copyright (c) 2003-2007 Jocelyn Mayer * Copyright (c) 2013 David Gibson, IBM Corporation * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/page-protection.h" #include "qemu/error-report.h" #include "qemu/qemu-print.h" #include "sysemu/hw_accel.h" #include "kvm_ppc.h" #include "mmu-hash64.h" #include "exec/log.h" #include "hw/hw.h" #include "internal.h" #include "mmu-book3s-v3.h" #include "mmu-books.h" #include "helper_regs.h" #ifdef CONFIG_TCG #include "exec/helper-proto.h" #endif /* #define DEBUG_SLB */ #ifdef DEBUG_SLB # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__) #else # define LOG_SLB(...) do { } while (0) #endif /* * SLB handling */ static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr) { CPUPPCState *env = &cpu->env; uint64_t esid_256M, esid_1T; int n; LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr); esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V; esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V; for (n = 0; n < cpu->hash64_opts->slb_size; n++) { ppc_slb_t *slb = &env->slb[n]; LOG_SLB("%s: slot %d %016" PRIx64 " %016" PRIx64 "\n", __func__, n, slb->esid, slb->vsid); /* * We check for 1T matches on all MMUs here - if the MMU * doesn't have 1T segment support, we will have prevented 1T * entries from being inserted in the slbmte code. */ if (((slb->esid == esid_256M) && ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M)) || ((slb->esid == esid_1T) && ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) { return slb; } } return NULL; } void dump_slb(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; int i; uint64_t slbe, slbv; cpu_synchronize_state(CPU(cpu)); qemu_printf("SLB\tESID\t\t\tVSID\n"); for (i = 0; i < cpu->hash64_opts->slb_size; i++) { slbe = env->slb[i].esid; slbv = env->slb[i].vsid; if (slbe == 0 && slbv == 0) { continue; } qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n", i, slbe, slbv); } } #ifdef CONFIG_TCG void helper_SLBIA(CPUPPCState *env, uint32_t ih) { PowerPCCPU *cpu = env_archcpu(env); int starting_entry; int n; /* * slbia must always flush all TLB (which is equivalent to ERAT in ppc * architecture). Matching on SLB_ESID_V is not good enough, because slbmte * can overwrite a valid SLB without flushing its lookaside information. * * It would be possible to keep the TLB in synch with the SLB by flushing * when a valid entry is overwritten by slbmte, and therefore slbia would * not have to flush unless it evicts a valid SLB entry. However it is * expected that slbmte is more common than slbia, and slbia is usually * going to evict valid SLB entries, so that tradeoff is unlikely to be a * good one. * * ISA v2.05 introduced IH field with values 0,1,2,6. These all invalidate * the same SLB entries (everything but entry 0), but differ in what * "lookaside information" is invalidated. TCG can ignore this and flush * everything. * * ISA v3.0 introduced additional values 3,4,7, which change what SLBs are * invalidated. */ env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; starting_entry = 1; /* default for IH=0,1,2,6 */ if (env->mmu_model == POWERPC_MMU_3_00) { switch (ih) { case 0x7: /* invalidate no SLBs, but all lookaside information */ return; case 0x3: case 0x4: /* also considers SLB entry 0 */ starting_entry = 0; break; case 0x5: /* treat undefined values as ih==0, and warn */ qemu_log_mask(LOG_GUEST_ERROR, "slbia undefined IH field %u.\n", ih); break; default: /* 0,1,2,6 */ break; } } for (n = starting_entry; n < cpu->hash64_opts->slb_size; n++) { ppc_slb_t *slb = &env->slb[n]; if (!(slb->esid & SLB_ESID_V)) { continue; } if (env->mmu_model == POWERPC_MMU_3_00) { if (ih == 0x3 && (slb->vsid & SLB_VSID_C) == 0) { /* preserves entries with a class value of 0 */ continue; } } slb->esid &= ~SLB_ESID_V; } } #if defined(TARGET_PPC64) void helper_SLBIAG(CPUPPCState *env, target_ulong rs, uint32_t l) { PowerPCCPU *cpu = env_archcpu(env); int n; /* * slbiag must always flush all TLB (which is equivalent to ERAT in ppc * architecture). Matching on SLB_ESID_V is not good enough, because slbmte * can overwrite a valid SLB without flushing its lookaside information. * * It would be possible to keep the TLB in synch with the SLB by flushing * when a valid entry is overwritten by slbmte, and therefore slbiag would * not have to flush unless it evicts a valid SLB entry. However it is * expected that slbmte is more common than slbiag, and slbiag is usually * going to evict valid SLB entries, so that tradeoff is unlikely to be a * good one. */ env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; for (n = 0; n < cpu->hash64_opts->slb_size; n++) { ppc_slb_t *slb = &env->slb[n]; slb->esid &= ~SLB_ESID_V; } } #endif static void __helper_slbie(CPUPPCState *env, target_ulong addr, target_ulong global) { PowerPCCPU *cpu = env_archcpu(env); ppc_slb_t *slb; slb = slb_lookup(cpu, addr); if (!slb) { return; } if (slb->esid & SLB_ESID_V) { slb->esid &= ~SLB_ESID_V; /* * XXX: given the fact that segment size is 256 MB or 1TB, * and we still don't have a tlb_flush_mask(env, n, mask) * in QEMU, we just invalidate all TLBs */ env->tlb_need_flush |= (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH); } } void helper_SLBIE(CPUPPCState *env, target_ulong addr) { __helper_slbie(env, addr, false); } void helper_SLBIEG(CPUPPCState *env, target_ulong addr) { __helper_slbie(env, addr, true); } #endif int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot, target_ulong esid, target_ulong vsid) { CPUPPCState *env = &cpu->env; ppc_slb_t *slb = &env->slb[slot]; const PPCHash64SegmentPageSizes *sps = NULL; int i; if (slot >= cpu->hash64_opts->slb_size) { return -1; /* Bad slot number */ } if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) { return -1; /* Reserved bits set */ } if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) { return -1; /* Bad segment size */ } if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) { return -1; /* 1T segment on MMU that doesn't support it */ } for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i]; if (!sps1->page_shift) { break; } if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) { sps = sps1; break; } } if (!sps) { error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx, slot, esid, vsid); return -1; } slb->esid = esid; slb->vsid = vsid; slb->sps = sps; LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid, slb->esid, slb->vsid); return 0; } #ifdef CONFIG_TCG static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb, target_ulong *rt) { CPUPPCState *env = &cpu->env; int slot = rb & 0xfff; ppc_slb_t *slb = &env->slb[slot]; if (slot >= cpu->hash64_opts->slb_size) { return -1; } *rt = slb->esid; return 0; } static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb, target_ulong *rt) { CPUPPCState *env = &cpu->env; int slot = rb & 0xfff; ppc_slb_t *slb = &env->slb[slot]; if (slot >= cpu->hash64_opts->slb_size) { return -1; } *rt = slb->vsid; return 0; } static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb, target_ulong *rt) { CPUPPCState *env = &cpu->env; ppc_slb_t *slb; if (!msr_is_64bit(env, env->msr)) { rb &= 0xffffffff; } slb = slb_lookup(cpu, rb); if (slb == NULL) { *rt = (target_ulong)-1ul; } else { *rt = slb->vsid; } return 0; } void helper_SLBMTE(CPUPPCState *env, target_ulong rb, target_ulong rs) { PowerPCCPU *cpu = env_archcpu(env); if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL, GETPC()); } } target_ulong helper_SLBMFEE(CPUPPCState *env, target_ulong rb) { PowerPCCPU *cpu = env_archcpu(env); target_ulong rt = 0; if (ppc_load_slb_esid(cpu, rb, &rt) < 0) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL, GETPC()); } return rt; } target_ulong helper_SLBFEE(CPUPPCState *env, target_ulong rb) { PowerPCCPU *cpu = env_archcpu(env); target_ulong rt = 0; if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL, GETPC()); } return rt; } target_ulong helper_SLBMFEV(CPUPPCState *env, target_ulong rb) { PowerPCCPU *cpu = env_archcpu(env); target_ulong rt = 0; if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL, GETPC()); } return rt; } #endif /* Check No-Execute or Guarded Storage */ static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu, ppc_hash_pte64_t pte) { /* Exec permissions CANNOT take away read or write permissions */ return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ? PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC; } /* Check Basic Storage Protection */ static int ppc_hash64_pte_prot(int mmu_idx, ppc_slb_t *slb, ppc_hash_pte64_t pte) { unsigned pp, key; /* * Some pp bit combinations have undefined behaviour, so default * to no access in those cases */ int prot = 0; key = !!(mmuidx_pr(mmu_idx) ? (slb->vsid & SLB_VSID_KP) : (slb->vsid & SLB_VSID_KS)); pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61); if (key == 0) { switch (pp) { case 0x0: case 0x1: case 0x2: prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; break; case 0x3: case 0x6: prot = PAGE_READ | PAGE_EXEC; break; } } else { switch (pp) { case 0x0: case 0x6: break; case 0x1: case 0x3: prot = PAGE_READ | PAGE_EXEC; break; case 0x2: prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; break; } } return prot; } /* Check the instruction access permissions specified in the IAMR */ static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key) { CPUPPCState *env = &cpu->env; int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3; /* * An instruction fetch is permitted if the IAMR bit is 0. * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit * can only take away EXEC permissions not READ or WRITE permissions. * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since * EXEC permissions are allowed. */ return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC; } static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte) { CPUPPCState *env = &cpu->env; int key, amrbits; int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; /* Only recent MMUs implement Virtual Page Class Key Protection */ if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) { return prot; } key = HPTE64_R_KEY(pte.pte1); amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3; /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */ /* env->spr[SPR_AMR]); */ /* * A store is permitted if the AMR bit is 0. Remove write * protection if it is set. */ if (amrbits & 0x2) { prot &= ~PAGE_WRITE; } /* * A load is permitted if the AMR bit is 0. Remove read * protection if it is set. */ if (amrbits & 0x1) { prot &= ~PAGE_READ; } switch (env->mmu_model) { /* * MMU version 2.07 and later support IAMR * Check if the IAMR allows the instruction access - it will return * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0 * if it does (and prot will be unchanged indicating execution support). */ case POWERPC_MMU_2_07: case POWERPC_MMU_3_00: prot &= ppc_hash64_iamr_prot(cpu, key); break; default: break; } return prot; } static hwaddr ppc_hash64_hpt_base(PowerPCCPU *cpu) { uint64_t base; if (cpu->vhyp) { return 0; } if (cpu->env.mmu_model == POWERPC_MMU_3_00) { ppc_v3_pate_t pate; if (!ppc64_v3_get_pate(cpu, cpu->env.spr[SPR_LPIDR], &pate)) { return 0; } base = pate.dw0; } else { base = cpu->env.spr[SPR_SDR1]; } return base & SDR_64_HTABORG; } static hwaddr ppc_hash64_hpt_mask(PowerPCCPU *cpu) { uint64_t base; if (cpu->vhyp) { return cpu->vhyp_class->hpt_mask(cpu->vhyp); } if (cpu->env.mmu_model == POWERPC_MMU_3_00) { ppc_v3_pate_t pate; if (!ppc64_v3_get_pate(cpu, cpu->env.spr[SPR_LPIDR], &pate)) { return 0; } base = pate.dw0; } else { base = cpu->env.spr[SPR_SDR1]; } return (1ULL << ((base & SDR_64_HTABSIZE) + 18 - 7)) - 1; } const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu, hwaddr ptex, int n) { hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; hwaddr base; hwaddr plen = n * HASH_PTE_SIZE_64; const ppc_hash_pte64_t *hptes; if (cpu->vhyp) { return cpu->vhyp_class->map_hptes(cpu->vhyp, ptex, n); } base = ppc_hash64_hpt_base(cpu); if (!base) { return NULL; } hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false, MEMTXATTRS_UNSPECIFIED); if (plen < (n * HASH_PTE_SIZE_64)) { hw_error("%s: Unable to map all requested HPTEs\n", __func__); } return hptes; } void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes, hwaddr ptex, int n) { if (cpu->vhyp) { cpu->vhyp_class->unmap_hptes(cpu->vhyp, hptes, ptex, n); return; } address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64, false, n * HASH_PTE_SIZE_64); } bool ppc_hash64_valid_ptex(PowerPCCPU *cpu, target_ulong ptex) { /* hash value/pteg group index is normalized by HPT mask */ if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) { return false; } return true; } static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps, uint64_t pte0, uint64_t pte1) { int i; if (!(pte0 & HPTE64_V_LARGE)) { if (sps->page_shift != 12) { /* 4kiB page in a non 4kiB segment */ return 0; } /* Normal 4kiB page */ return 12; } for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { const PPCHash64PageSize *ps = &sps->enc[i]; uint64_t mask; if (!ps->page_shift) { break; } if (ps->page_shift == 12) { /* L bit is set so this can't be a 4kiB page */ continue; } mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN; if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) { return ps->page_shift; } } return 0; /* Bad page size encoding */ } static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1) { /* Insert B into pte0 */ *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) | ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) << (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT)); /* Remove B from pte1 */ *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK; } static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash, const PPCHash64SegmentPageSizes *sps, target_ulong ptem, ppc_hash_pte64_t *pte, unsigned *pshift) { int i; const ppc_hash_pte64_t *pteg; target_ulong pte0, pte1; target_ulong ptex; ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP; pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); if (!pteg) { return -1; } for (i = 0; i < HPTES_PER_GROUP; i++) { pte0 = ppc_hash64_hpte0(cpu, pteg, i); /* * pte0 contains the valid bit and must be read before pte1, * otherwise we might see an old pte1 with a new valid bit and * thus an inconsistent hpte value */ smp_rmb(); pte1 = ppc_hash64_hpte1(cpu, pteg, i); /* Convert format if necessary */ if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) { ppc64_v3_new_to_old_hpte(&pte0, &pte1); } /* This compares V, B, H (secondary) and the AVPN */ if (HPTE64_V_COMPARE(pte0, ptem)) { *pshift = hpte_page_shift(sps, pte0, pte1); /* * If there is no match, ignore the PTE, it could simply * be for a different segment size encoding and the * architecture specifies we should not match. Linux will * potentially leave behind PTEs for the wrong base page * size when demoting segments. */ if (*pshift == 0) { continue; } /* * We don't do anything with pshift yet as qemu TLB only * deals with 4K pages anyway */ pte->pte0 = pte0; pte->pte1 = pte1; ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP); return ptex + i; } } ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP); /* * We didn't find a valid entry. */ return -1; } static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu, ppc_slb_t *slb, target_ulong eaddr, ppc_hash_pte64_t *pte, unsigned *pshift) { CPUPPCState *env = &cpu->env; hwaddr hash, ptex; uint64_t vsid, epnmask, epn, ptem; const PPCHash64SegmentPageSizes *sps = slb->sps; /* * The SLB store path should prevent any bad page size encodings * getting in there, so: */ assert(sps); /* If ISL is set in LPCR we need to clamp the page size to 4K */ if (env->spr[SPR_LPCR] & LPCR_ISL) { /* We assume that when using TCG, 4k is first entry of SPS */ sps = &cpu->hash64_opts->sps[0]; assert(sps->page_shift == 12); } epnmask = ~((1ULL << sps->page_shift) - 1); if (slb->vsid & SLB_VSID_B) { /* 1TB segment */ vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask; hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift); } else { /* 256M segment */ vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask; hash = vsid ^ (epn >> sps->page_shift); } ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN); ptem |= HPTE64_V_VALID; /* Page address translation */ qemu_log_mask(CPU_LOG_MMU, "htab_base " HWADDR_FMT_plx " htab_mask " HWADDR_FMT_plx " hash " HWADDR_FMT_plx "\n", ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash); /* Primary PTEG lookup */ qemu_log_mask(CPU_LOG_MMU, "0 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx " hash=" HWADDR_FMT_plx "\n", ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), vsid, ptem, hash); ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift); if (ptex == -1) { /* Secondary PTEG lookup */ ptem |= HPTE64_V_SECONDARY; qemu_log_mask(CPU_LOG_MMU, "1 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx " hash=" HWADDR_FMT_plx "\n", ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash); ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift); } return ptex; } unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu, uint64_t pte0, uint64_t pte1) { int i; if (!(pte0 & HPTE64_V_LARGE)) { return 12; } /* * The encodings in env->sps need to be carefully chosen so that * this gives an unambiguous result. */ for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i]; unsigned shift; if (!sps->page_shift) { break; } shift = hpte_page_shift(sps, pte0, pte1); if (shift) { return shift; } } return 0; } static bool ppc_hash64_use_vrma(CPUPPCState *env) { switch (env->mmu_model) { case POWERPC_MMU_3_00: /* * ISAv3.0 (POWER9) always uses VRMA, the VPM0 field and RMOR * register no longer exist */ return true; default: return !!(env->spr[SPR_LPCR] & LPCR_VPM0); } } static void ppc_hash64_set_isi(CPUState *cs, int mmu_idx, uint64_t slb_vsid, uint64_t error_code) { CPUPPCState *env = &POWERPC_CPU(cs)->env; bool vpm; if (!mmuidx_real(mmu_idx)) { vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); } else { vpm = ppc_hash64_use_vrma(env); } if (vpm && !mmuidx_hv(mmu_idx)) { cs->exception_index = POWERPC_EXCP_HISI; env->spr[SPR_ASDR] = slb_vsid; } else { cs->exception_index = POWERPC_EXCP_ISI; } env->error_code = error_code; } static void ppc_hash64_set_dsi(CPUState *cs, int mmu_idx, uint64_t slb_vsid, uint64_t dar, uint64_t dsisr) { CPUPPCState *env = &POWERPC_CPU(cs)->env; bool vpm; if (!mmuidx_real(mmu_idx)) { vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); } else { vpm = ppc_hash64_use_vrma(env); } if (vpm && !mmuidx_hv(mmu_idx)) { cs->exception_index = POWERPC_EXCP_HDSI; env->spr[SPR_HDAR] = dar; env->spr[SPR_HDSISR] = dsisr; env->spr[SPR_ASDR] = slb_vsid; } else { cs->exception_index = POWERPC_EXCP_DSI; env->spr[SPR_DAR] = dar; env->spr[SPR_DSISR] = dsisr; } env->error_code = 0; } static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1) { hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; if (cpu->vhyp) { cpu->vhyp_class->hpte_set_r(cpu->vhyp, ptex, pte1); return; } base = ppc_hash64_hpt_base(cpu); /* The HW performs a non-atomic byte update */ stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01); } static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1) { hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; if (cpu->vhyp) { cpu->vhyp_class->hpte_set_c(cpu->vhyp, ptex, pte1); return; } base = ppc_hash64_hpt_base(cpu); /* The HW performs a non-atomic byte update */ stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80); } static target_ulong rmls_limit(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; /* * In theory the meanings of RMLS values are implementation * dependent. In practice, this seems to have been the set from * POWER4+..POWER8, and RMLS is no longer supported in POWER9. * * Unsupported values mean the OS has shot itself in the * foot. Return a 0-sized RMA in this case, which we expect * to trigger an immediate DSI or ISI */ static const target_ulong rma_sizes[16] = { [0] = 256 * GiB, [1] = 16 * GiB, [2] = 1 * GiB, [3] = 64 * MiB, [4] = 256 * MiB, [7] = 128 * MiB, [8] = 32 * MiB, }; target_ulong rmls = (env->spr[SPR_LPCR] & LPCR_RMLS) >> LPCR_RMLS_SHIFT; return rma_sizes[rmls]; } /* Return the LLP in SLB_VSID format */ static uint64_t get_vrma_llp(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; uint64_t llp; if (env->mmu_model == POWERPC_MMU_3_00) { ppc_v3_pate_t pate; uint64_t ps, l, lp; /* * ISA v3.0 removes the LPCR[VRMASD] field and puts the VRMA base * page size (L||LP equivalent) in the PS field in the HPT partition * table entry. */ if (!ppc64_v3_get_pate(cpu, cpu->env.spr[SPR_LPIDR], &pate)) { error_report("Bad VRMA with no partition table entry"); return 0; } ps = PATE0_GET_PS(pate.dw0); /* PS has L||LP in 3 consecutive bits, put them into SLB LLP format */ l = (ps >> 2) & 0x1; lp = ps & 0x3; llp = (l << SLB_VSID_L_SHIFT) | (lp << SLB_VSID_LP_SHIFT); } else { uint64_t lpcr = env->spr[SPR_LPCR]; target_ulong vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT; /* VRMASD LLP matches SLB format, just shift and mask it */ llp = (vrmasd << SLB_VSID_LP_SHIFT) & SLB_VSID_LLP_MASK; } return llp; } static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb) { uint64_t llp = get_vrma_llp(cpu); target_ulong vsid = SLB_VSID_VRMA | llp; int i; for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i]; if (!sps->page_shift) { break; } if ((vsid & SLB_VSID_LLP_MASK) == sps->slb_enc) { slb->esid = SLB_ESID_V; slb->vsid = vsid; slb->sps = sps; return 0; } } error_report("Bad VRMA page size encoding 0x" TARGET_FMT_lx, llp); return -1; } bool ppc_hash64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type, hwaddr *raddrp, int *psizep, int *protp, int mmu_idx, bool guest_visible) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; ppc_slb_t vrma_slbe; ppc_slb_t *slb; unsigned apshift; hwaddr ptex; ppc_hash_pte64_t pte; int exec_prot, pp_prot, amr_prot, prot; int need_prot; hwaddr raddr; bool vrma = false; /* * Note on LPCR usage: 970 uses HID4, but our special variant of * store_spr copies relevant fields into env->spr[SPR_LPCR]. * Similarly we filter unimplemented bits when storing into LPCR * depending on the MMU version. This code can thus just use the * LPCR "as-is". */ /* 1. Handle real mode accesses */ if (mmuidx_real(mmu_idx)) { /* * Translation is supposedly "off", but in real mode the top 4 * effective address bits are (mostly) ignored */ raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; if (cpu->vhyp) { /* * In virtual hypervisor mode, there's nothing to do: * EA == GPA == qemu guest address */ } else if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) { /* In HV mode, add HRMOR if top EA bit is clear */ if (!(eaddr >> 63)) { raddr |= env->spr[SPR_HRMOR]; } } else if (ppc_hash64_use_vrma(env)) { /* Emulated VRMA mode */ vrma = true; slb = &vrma_slbe; if (build_vrma_slbe(cpu, slb) != 0) { /* Invalid VRMA setup, machine check */ if (guest_visible) { cs->exception_index = POWERPC_EXCP_MCHECK; env->error_code = 0; } return false; } goto skip_slb_search; } else { target_ulong limit = rmls_limit(cpu); /* Emulated old-style RMO mode, bounds check against RMLS */ if (raddr >= limit) { if (!guest_visible) { return false; } switch (access_type) { case MMU_INST_FETCH: ppc_hash64_set_isi(cs, mmu_idx, 0, SRR1_PROTFAULT); break; case MMU_DATA_LOAD: ppc_hash64_set_dsi(cs, mmu_idx, 0, eaddr, DSISR_PROTFAULT); break; case MMU_DATA_STORE: ppc_hash64_set_dsi(cs, mmu_idx, 0, eaddr, DSISR_PROTFAULT | DSISR_ISSTORE); break; default: g_assert_not_reached(); } return false; } raddr |= env->spr[SPR_RMOR]; } *raddrp = raddr; *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC; *psizep = TARGET_PAGE_BITS; return true; } /* 2. Translation is on, so look up the SLB */ slb = slb_lookup(cpu, eaddr); if (!slb) { /* No entry found, check if in-memory segment tables are in use */ if (ppc64_use_proc_tbl(cpu)) { /* TODO - Unsupported */ error_report("Segment Table Support Unimplemented"); exit(1); } /* Segment still not found, generate the appropriate interrupt */ if (!guest_visible) { return false; } switch (access_type) { case MMU_INST_FETCH: cs->exception_index = POWERPC_EXCP_ISEG; env->error_code = 0; break; case MMU_DATA_LOAD: case MMU_DATA_STORE: cs->exception_index = POWERPC_EXCP_DSEG; env->error_code = 0; env->spr[SPR_DAR] = eaddr; break; default: g_assert_not_reached(); } return false; } skip_slb_search: /* 3. Check for segment level no-execute violation */ if (access_type == MMU_INST_FETCH && (slb->vsid & SLB_VSID_N)) { if (guest_visible) { ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, SRR1_NOEXEC_GUARD); } return false; } /* 4. Locate the PTE in the hash table */ ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift); if (ptex == -1) { if (!guest_visible) { return false; } switch (access_type) { case MMU_INST_FETCH: ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, SRR1_NOPTE); break; case MMU_DATA_LOAD: ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, DSISR_NOPTE); break; case MMU_DATA_STORE: ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, DSISR_NOPTE | DSISR_ISSTORE); break; default: g_assert_not_reached(); } return false; } qemu_log_mask(CPU_LOG_MMU, "found PTE at index %08" HWADDR_PRIx "\n", ptex); /* 5. Check access permissions */ exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte); pp_prot = ppc_hash64_pte_prot(mmu_idx, slb, pte); if (vrma) { /* VRMA does not check keys */ amr_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; } else { amr_prot = ppc_hash64_amr_prot(cpu, pte); } prot = exec_prot & pp_prot & amr_prot; need_prot = check_prot_access_type(PAGE_RWX, access_type); if (need_prot & ~prot) { /* Access right violation */ qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n"); if (!guest_visible) { return false; } if (access_type == MMU_INST_FETCH) { int srr1 = 0; if (PAGE_EXEC & ~exec_prot) { srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */ } else if (PAGE_EXEC & ~pp_prot) { srr1 |= SRR1_PROTFAULT; /* Access violates access authority */ } if (PAGE_EXEC & ~amr_prot) { srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */ } ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, srr1); } else { int dsisr = 0; if (need_prot & ~pp_prot) { dsisr |= DSISR_PROTFAULT; } if (access_type == MMU_DATA_STORE) { dsisr |= DSISR_ISSTORE; } if (need_prot & ~amr_prot) { dsisr |= DSISR_AMR; } ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, dsisr); } return false; } qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n"); /* 6. Update PTE referenced and changed bits if necessary */ if (!(pte.pte1 & HPTE64_R_R)) { ppc_hash64_set_r(cpu, ptex, pte.pte1); } if (!(pte.pte1 & HPTE64_R_C)) { if (access_type == MMU_DATA_STORE) { ppc_hash64_set_c(cpu, ptex, pte.pte1); } else { /* * Treat the page as read-only for now, so that a later write * will pass through this function again to set the C bit */ prot &= ~PAGE_WRITE; } } /* 7. Determine the real address from the PTE */ *raddrp = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr); *protp = prot; *psizep = apshift; return true; } void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex, target_ulong pte0, target_ulong pte1) { /* * XXX: given the fact that there are too many segments to * invalidate, and we still don't have a tlb_flush_mask(env, n, * mask) in QEMU, we just invalidate all TLBs */ cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH; } #ifdef CONFIG_TCG void helper_store_lpcr(CPUPPCState *env, target_ulong val) { PowerPCCPU *cpu = env_archcpu(env); ppc_store_lpcr(cpu, val); } #endif void ppc_hash64_init(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); if (!pcc->hash64_opts) { assert(!mmu_is_64bit(env->mmu_model)); return; } cpu->hash64_opts = g_memdup2(pcc->hash64_opts, sizeof(*cpu->hash64_opts)); } void ppc_hash64_finalize(PowerPCCPU *cpu) { g_free(cpu->hash64_opts); } const PPCHash64Options ppc_hash64_opts_basic = { .flags = 0, .slb_size = 64, .sps = { { .page_shift = 12, /* 4K */ .slb_enc = 0, .enc = { { .page_shift = 12, .pte_enc = 0 } } }, { .page_shift = 24, /* 16M */ .slb_enc = 0x100, .enc = { { .page_shift = 24, .pte_enc = 0 } } }, }, }; const PPCHash64Options ppc_hash64_opts_POWER7 = { .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE, .slb_size = 32, .sps = { { .page_shift = 12, /* 4K */ .slb_enc = 0, .enc = { { .page_shift = 12, .pte_enc = 0 }, { .page_shift = 16, .pte_enc = 0x7 }, { .page_shift = 24, .pte_enc = 0x38 }, }, }, { .page_shift = 16, /* 64K */ .slb_enc = SLB_VSID_64K, .enc = { { .page_shift = 16, .pte_enc = 0x1 }, { .page_shift = 24, .pte_enc = 0x8 }, }, }, { .page_shift = 24, /* 16M */ .slb_enc = SLB_VSID_16M, .enc = { { .page_shift = 24, .pte_enc = 0 }, }, }, { .page_shift = 34, /* 16G */ .slb_enc = SLB_VSID_16G, .enc = { { .page_shift = 34, .pte_enc = 0x3 }, }, }, } };