/* * Xilinx MicroBlaze emulation for qemu: main translation routines. * * Copyright (c) 2009 Edgar E. Iglesias. * Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "disas/disas.h" #include "exec/exec-all.h" #include "tcg/tcg-op.h" #include "exec/helper-proto.h" #include "microblaze-decode.h" #include "exec/cpu_ldst.h" #include "exec/helper-gen.h" #include "exec/translator.h" #include "qemu/qemu-print.h" #include "trace-tcg.h" #include "exec/log.h" #define SIM_COMPAT 0 #define DISAS_GNU 1 #define DISAS_MB 1 #if DISAS_MB && !SIM_COMPAT # define LOG_DIS(...) qemu_log_mask(CPU_LOG_TB_IN_ASM, ## __VA_ARGS__) #else # define LOG_DIS(...) do { } while (0) #endif #define D(x) #define EXTRACT_FIELD(src, start, end) \ (((src) >> start) & ((1 << (end - start + 1)) - 1)) /* is_jmp field values */ #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ #define DISAS_UPDATE DISAS_TARGET_1 /* cpu state was modified dynamically */ #define DISAS_TB_JUMP DISAS_TARGET_2 /* only pc was modified statically */ static TCGv_i32 env_debug; static TCGv_i32 cpu_R[32]; static TCGv_i32 cpu_pc; static TCGv_i32 cpu_msr; static TCGv_i64 cpu_ear; static TCGv_i32 cpu_esr; static TCGv_i64 cpu_btr; static TCGv_i64 cpu_edr; static TCGv_i32 env_imm; static TCGv_i32 env_btaken; static TCGv_i32 cpu_btarget; static TCGv_i32 env_iflags; static TCGv env_res_addr; static TCGv_i32 env_res_val; #include "exec/gen-icount.h" /* This is the state at translation time. */ typedef struct DisasContext { MicroBlazeCPU *cpu; uint32_t pc; /* Decoder. */ int type_b; uint32_t ir; uint8_t opcode; uint8_t rd, ra, rb; uint16_t imm; unsigned int cpustate_changed; unsigned int delayed_branch; unsigned int tb_flags, synced_flags; /* tb dependent flags. */ unsigned int clear_imm; int is_jmp; #define JMP_NOJMP 0 #define JMP_DIRECT 1 #define JMP_DIRECT_CC 2 #define JMP_INDIRECT 3 unsigned int jmp; uint32_t jmp_pc; int abort_at_next_insn; struct TranslationBlock *tb; int singlestep_enabled; } DisasContext; static const char *regnames[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", }; static inline void t_sync_flags(DisasContext *dc) { /* Synch the tb dependent flags between translator and runtime. */ if (dc->tb_flags != dc->synced_flags) { tcg_gen_movi_i32(env_iflags, dc->tb_flags); dc->synced_flags = dc->tb_flags; } } static inline void t_gen_raise_exception(DisasContext *dc, uint32_t index) { TCGv_i32 tmp = tcg_const_i32(index); t_sync_flags(dc); tcg_gen_movi_i32(cpu_pc, dc->pc); gen_helper_raise_exception(cpu_env, tmp); tcg_temp_free_i32(tmp); dc->is_jmp = DISAS_UPDATE; } static inline bool use_goto_tb(DisasContext *dc, target_ulong dest) { #ifndef CONFIG_USER_ONLY return (dc->tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK); #else return true; #endif } static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest) { if (use_goto_tb(dc, dest)) { tcg_gen_goto_tb(n); tcg_gen_movi_i32(cpu_pc, dest); tcg_gen_exit_tb(dc->tb, n); } else { tcg_gen_movi_i32(cpu_pc, dest); tcg_gen_exit_tb(NULL, 0); } } static void read_carry(DisasContext *dc, TCGv_i32 d) { tcg_gen_shri_i32(d, cpu_msr, 31); } /* * write_carry sets the carry bits in MSR based on bit 0 of v. * v[31:1] are ignored. */ static void write_carry(DisasContext *dc, TCGv_i32 v) { /* Deposit bit 0 into MSR_C and the alias MSR_CC. */ tcg_gen_deposit_i32(cpu_msr, cpu_msr, v, 2, 1); tcg_gen_deposit_i32(cpu_msr, cpu_msr, v, 31, 1); } static void write_carryi(DisasContext *dc, bool carry) { TCGv_i32 t0 = tcg_temp_new_i32(); tcg_gen_movi_i32(t0, carry); write_carry(dc, t0); tcg_temp_free_i32(t0); } /* * Returns true if the insn an illegal operation. * If exceptions are enabled, an exception is raised. */ static bool trap_illegal(DisasContext *dc, bool cond) { if (cond && (dc->tb_flags & MSR_EE_FLAG) && dc->cpu->cfg.illegal_opcode_exception) { tcg_gen_movi_i32(cpu_esr, ESR_EC_ILLEGAL_OP); t_gen_raise_exception(dc, EXCP_HW_EXCP); } return cond; } /* * Returns true if the insn is illegal in userspace. * If exceptions are enabled, an exception is raised. */ static bool trap_userspace(DisasContext *dc, bool cond) { int mem_index = cpu_mmu_index(&dc->cpu->env, false); bool cond_user = cond && mem_index == MMU_USER_IDX; if (cond_user && (dc->tb_flags & MSR_EE_FLAG)) { tcg_gen_movi_i32(cpu_esr, ESR_EC_PRIVINSN); t_gen_raise_exception(dc, EXCP_HW_EXCP); } return cond_user; } /* True if ALU operand b is a small immediate that may deserve faster treatment. */ static inline int dec_alu_op_b_is_small_imm(DisasContext *dc) { /* Immediate insn without the imm prefix ? */ return dc->type_b && !(dc->tb_flags & IMM_FLAG); } static inline TCGv_i32 *dec_alu_op_b(DisasContext *dc) { if (dc->type_b) { if (dc->tb_flags & IMM_FLAG) tcg_gen_ori_i32(env_imm, env_imm, dc->imm); else tcg_gen_movi_i32(env_imm, (int32_t)((int16_t)dc->imm)); return &env_imm; } else return &cpu_R[dc->rb]; } static void dec_add(DisasContext *dc) { unsigned int k, c; TCGv_i32 cf; k = dc->opcode & 4; c = dc->opcode & 2; LOG_DIS("add%s%s%s r%d r%d r%d\n", dc->type_b ? "i" : "", k ? "k" : "", c ? "c" : "", dc->rd, dc->ra, dc->rb); /* Take care of the easy cases first. */ if (k) { /* k - keep carry, no need to update MSR. */ /* If rd == r0, it's a nop. */ if (dc->rd) { tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); if (c) { /* c - Add carry into the result. */ cf = tcg_temp_new_i32(); read_carry(dc, cf); tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf); tcg_temp_free_i32(cf); } } return; } /* From now on, we can assume k is zero. So we need to update MSR. */ /* Extract carry. */ cf = tcg_temp_new_i32(); if (c) { read_carry(dc, cf); } else { tcg_gen_movi_i32(cf, 0); } if (dc->rd) { TCGv_i32 ncf = tcg_temp_new_i32(); gen_helper_carry(ncf, cpu_R[dc->ra], *(dec_alu_op_b(dc)), cf); tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf); write_carry(dc, ncf); tcg_temp_free_i32(ncf); } else { gen_helper_carry(cf, cpu_R[dc->ra], *(dec_alu_op_b(dc)), cf); write_carry(dc, cf); } tcg_temp_free_i32(cf); } static void dec_sub(DisasContext *dc) { unsigned int u, cmp, k, c; TCGv_i32 cf, na; u = dc->imm & 2; k = dc->opcode & 4; c = dc->opcode & 2; cmp = (dc->imm & 1) && (!dc->type_b) && k; if (cmp) { LOG_DIS("cmp%s r%d, r%d ir=%x\n", u ? "u" : "", dc->rd, dc->ra, dc->ir); if (dc->rd) { if (u) gen_helper_cmpu(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); else gen_helper_cmp(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); } return; } LOG_DIS("sub%s%s r%d, r%d r%d\n", k ? "k" : "", c ? "c" : "", dc->rd, dc->ra, dc->rb); /* Take care of the easy cases first. */ if (k) { /* k - keep carry, no need to update MSR. */ /* If rd == r0, it's a nop. */ if (dc->rd) { tcg_gen_sub_i32(cpu_R[dc->rd], *(dec_alu_op_b(dc)), cpu_R[dc->ra]); if (c) { /* c - Add carry into the result. */ cf = tcg_temp_new_i32(); read_carry(dc, cf); tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf); tcg_temp_free_i32(cf); } } return; } /* From now on, we can assume k is zero. So we need to update MSR. */ /* Extract carry. And complement a into na. */ cf = tcg_temp_new_i32(); na = tcg_temp_new_i32(); if (c) { read_carry(dc, cf); } else { tcg_gen_movi_i32(cf, 1); } /* d = b + ~a + c. carry defaults to 1. */ tcg_gen_not_i32(na, cpu_R[dc->ra]); if (dc->rd) { TCGv_i32 ncf = tcg_temp_new_i32(); gen_helper_carry(ncf, na, *(dec_alu_op_b(dc)), cf); tcg_gen_add_i32(cpu_R[dc->rd], na, *(dec_alu_op_b(dc))); tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf); write_carry(dc, ncf); tcg_temp_free_i32(ncf); } else { gen_helper_carry(cf, na, *(dec_alu_op_b(dc)), cf); write_carry(dc, cf); } tcg_temp_free_i32(cf); tcg_temp_free_i32(na); } static void dec_pattern(DisasContext *dc) { unsigned int mode; if (trap_illegal(dc, !dc->cpu->cfg.use_pcmp_instr)) { return; } mode = dc->opcode & 3; switch (mode) { case 0: /* pcmpbf. */ LOG_DIS("pcmpbf r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); if (dc->rd) gen_helper_pcmpbf(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); break; case 2: LOG_DIS("pcmpeq r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); if (dc->rd) { tcg_gen_setcond_i32(TCG_COND_EQ, cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); } break; case 3: LOG_DIS("pcmpne r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); if (dc->rd) { tcg_gen_setcond_i32(TCG_COND_NE, cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); } break; default: cpu_abort(CPU(dc->cpu), "unsupported pattern insn opcode=%x\n", dc->opcode); break; } } static void dec_and(DisasContext *dc) { unsigned int not; if (!dc->type_b && (dc->imm & (1 << 10))) { dec_pattern(dc); return; } not = dc->opcode & (1 << 1); LOG_DIS("and%s\n", not ? "n" : ""); if (!dc->rd) return; if (not) { tcg_gen_andc_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); } else tcg_gen_and_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); } static void dec_or(DisasContext *dc) { if (!dc->type_b && (dc->imm & (1 << 10))) { dec_pattern(dc); return; } LOG_DIS("or r%d r%d r%d imm=%x\n", dc->rd, dc->ra, dc->rb, dc->imm); if (dc->rd) tcg_gen_or_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); } static void dec_xor(DisasContext *dc) { if (!dc->type_b && (dc->imm & (1 << 10))) { dec_pattern(dc); return; } LOG_DIS("xor r%d\n", dc->rd); if (dc->rd) tcg_gen_xor_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); } static inline void msr_read(DisasContext *dc, TCGv_i32 d) { tcg_gen_mov_i32(d, cpu_msr); } static inline void msr_write(DisasContext *dc, TCGv_i32 v) { dc->cpustate_changed = 1; /* PVR bit is not writable, and is never set. */ tcg_gen_andi_i32(cpu_msr, v, ~MSR_PVR); } static void dec_msr(DisasContext *dc) { CPUState *cs = CPU(dc->cpu); TCGv_i32 t0, t1; unsigned int sr, rn; bool to, clrset, extended = false; sr = extract32(dc->imm, 0, 14); to = extract32(dc->imm, 14, 1); clrset = extract32(dc->imm, 15, 1) == 0; dc->type_b = 1; if (to) { dc->cpustate_changed = 1; } /* Extended MSRs are only available if addr_size > 32. */ if (dc->cpu->cfg.addr_size > 32) { /* The E-bit is encoded differently for To/From MSR. */ static const unsigned int e_bit[] = { 19, 24 }; extended = extract32(dc->imm, e_bit[to], 1); } /* msrclr and msrset. */ if (clrset) { bool clr = extract32(dc->ir, 16, 1); LOG_DIS("msr%s r%d imm=%x\n", clr ? "clr" : "set", dc->rd, dc->imm); if (!dc->cpu->cfg.use_msr_instr) { /* nop??? */ return; } if (trap_userspace(dc, dc->imm != 4 && dc->imm != 0)) { return; } if (dc->rd) msr_read(dc, cpu_R[dc->rd]); t0 = tcg_temp_new_i32(); t1 = tcg_temp_new_i32(); msr_read(dc, t0); tcg_gen_mov_i32(t1, *(dec_alu_op_b(dc))); if (clr) { tcg_gen_not_i32(t1, t1); tcg_gen_and_i32(t0, t0, t1); } else tcg_gen_or_i32(t0, t0, t1); msr_write(dc, t0); tcg_temp_free_i32(t0); tcg_temp_free_i32(t1); tcg_gen_movi_i32(cpu_pc, dc->pc + 4); dc->is_jmp = DISAS_UPDATE; return; } if (trap_userspace(dc, to)) { return; } #if !defined(CONFIG_USER_ONLY) /* Catch read/writes to the mmu block. */ if ((sr & ~0xff) == 0x1000) { TCGv_i32 tmp_ext = tcg_const_i32(extended); TCGv_i32 tmp_sr; sr &= 7; tmp_sr = tcg_const_i32(sr); LOG_DIS("m%ss sr%d r%d imm=%x\n", to ? "t" : "f", sr, dc->ra, dc->imm); if (to) { gen_helper_mmu_write(cpu_env, tmp_ext, tmp_sr, cpu_R[dc->ra]); } else { gen_helper_mmu_read(cpu_R[dc->rd], cpu_env, tmp_ext, tmp_sr); } tcg_temp_free_i32(tmp_sr); tcg_temp_free_i32(tmp_ext); return; } #endif if (to) { LOG_DIS("m%ss sr%x r%d imm=%x\n", to ? "t" : "f", sr, dc->ra, dc->imm); switch (sr) { case SR_PC: break; case SR_MSR: msr_write(dc, cpu_R[dc->ra]); break; case SR_EAR: tcg_gen_extu_i32_i64(cpu_ear, cpu_R[dc->ra]); break; case SR_ESR: tcg_gen_mov_i32(cpu_esr, cpu_R[dc->ra]); break; case SR_FSR: tcg_gen_st_i32(cpu_R[dc->ra], cpu_env, offsetof(CPUMBState, fsr)); break; case SR_BTR: tcg_gen_extu_i32_i64(cpu_btr, cpu_R[dc->ra]); break; case SR_EDR: tcg_gen_extu_i32_i64(cpu_edr, cpu_R[dc->ra]); break; case 0x800: tcg_gen_st_i32(cpu_R[dc->ra], cpu_env, offsetof(CPUMBState, slr)); break; case 0x802: tcg_gen_st_i32(cpu_R[dc->ra], cpu_env, offsetof(CPUMBState, shr)); break; default: cpu_abort(CPU(dc->cpu), "unknown mts reg %x\n", sr); break; } } else { LOG_DIS("m%ss r%d sr%x imm=%x\n", to ? "t" : "f", dc->rd, sr, dc->imm); switch (sr) { case SR_PC: tcg_gen_movi_i32(cpu_R[dc->rd], dc->pc); break; case SR_MSR: msr_read(dc, cpu_R[dc->rd]); break; case SR_EAR: if (extended) { tcg_gen_extrh_i64_i32(cpu_R[dc->rd], cpu_ear); } else { tcg_gen_extrl_i64_i32(cpu_R[dc->rd], cpu_ear); } break; case SR_ESR: tcg_gen_mov_i32(cpu_R[dc->rd], cpu_esr); break; case SR_FSR: tcg_gen_ld_i32(cpu_R[dc->rd], cpu_env, offsetof(CPUMBState, fsr)); break; case SR_BTR: tcg_gen_extrl_i64_i32(cpu_R[dc->rd], cpu_btr); break; case SR_EDR: tcg_gen_extrl_i64_i32(cpu_R[dc->rd], cpu_edr); break; case 0x800: tcg_gen_ld_i32(cpu_R[dc->rd], cpu_env, offsetof(CPUMBState, slr)); break; case 0x802: tcg_gen_ld_i32(cpu_R[dc->rd], cpu_env, offsetof(CPUMBState, shr)); break; case 0x2000 ... 0x200c: rn = sr & 0xf; tcg_gen_ld_i32(cpu_R[dc->rd], cpu_env, offsetof(CPUMBState, pvr.regs[rn])); break; default: cpu_abort(cs, "unknown mfs reg %x\n", sr); break; } } if (dc->rd == 0) { tcg_gen_movi_i32(cpu_R[0], 0); } } /* Multiplier unit. */ static void dec_mul(DisasContext *dc) { TCGv_i32 tmp; unsigned int subcode; if (trap_illegal(dc, !dc->cpu->cfg.use_hw_mul)) { return; } subcode = dc->imm & 3; if (dc->type_b) { LOG_DIS("muli r%d r%d %x\n", dc->rd, dc->ra, dc->imm); tcg_gen_mul_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); return; } /* mulh, mulhsu and mulhu are not available if C_USE_HW_MUL is < 2. */ if (subcode >= 1 && subcode <= 3 && dc->cpu->cfg.use_hw_mul < 2) { /* nop??? */ } tmp = tcg_temp_new_i32(); switch (subcode) { case 0: LOG_DIS("mul r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); tcg_gen_mul_i32(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); break; case 1: LOG_DIS("mulh r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); tcg_gen_muls2_i32(tmp, cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); break; case 2: LOG_DIS("mulhsu r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); tcg_gen_mulsu2_i32(tmp, cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); break; case 3: LOG_DIS("mulhu r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); tcg_gen_mulu2_i32(tmp, cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); break; default: cpu_abort(CPU(dc->cpu), "unknown MUL insn %x\n", subcode); break; } tcg_temp_free_i32(tmp); } /* Div unit. */ static void dec_div(DisasContext *dc) { unsigned int u; u = dc->imm & 2; LOG_DIS("div\n"); if (trap_illegal(dc, !dc->cpu->cfg.use_div)) { return; } if (u) gen_helper_divu(cpu_R[dc->rd], cpu_env, *(dec_alu_op_b(dc)), cpu_R[dc->ra]); else gen_helper_divs(cpu_R[dc->rd], cpu_env, *(dec_alu_op_b(dc)), cpu_R[dc->ra]); if (!dc->rd) tcg_gen_movi_i32(cpu_R[dc->rd], 0); } static void dec_barrel(DisasContext *dc) { TCGv_i32 t0; unsigned int imm_w, imm_s; bool s, t, e = false, i = false; if (trap_illegal(dc, !dc->cpu->cfg.use_barrel)) { return; } if (dc->type_b) { /* Insert and extract are only available in immediate mode. */ i = extract32(dc->imm, 15, 1); e = extract32(dc->imm, 14, 1); } s = extract32(dc->imm, 10, 1); t = extract32(dc->imm, 9, 1); imm_w = extract32(dc->imm, 6, 5); imm_s = extract32(dc->imm, 0, 5); LOG_DIS("bs%s%s%s r%d r%d r%d\n", e ? "e" : "", s ? "l" : "r", t ? "a" : "l", dc->rd, dc->ra, dc->rb); if (e) { if (imm_w + imm_s > 32 || imm_w == 0) { /* These inputs have an undefined behavior. */ qemu_log_mask(LOG_GUEST_ERROR, "bsefi: Bad input w=%d s=%d\n", imm_w, imm_s); } else { tcg_gen_extract_i32(cpu_R[dc->rd], cpu_R[dc->ra], imm_s, imm_w); } } else if (i) { int width = imm_w - imm_s + 1; if (imm_w < imm_s) { /* These inputs have an undefined behavior. */ qemu_log_mask(LOG_GUEST_ERROR, "bsifi: Bad input w=%d s=%d\n", imm_w, imm_s); } else { tcg_gen_deposit_i32(cpu_R[dc->rd], cpu_R[dc->rd], cpu_R[dc->ra], imm_s, width); } } else { t0 = tcg_temp_new_i32(); tcg_gen_mov_i32(t0, *(dec_alu_op_b(dc))); tcg_gen_andi_i32(t0, t0, 31); if (s) { tcg_gen_shl_i32(cpu_R[dc->rd], cpu_R[dc->ra], t0); } else { if (t) { tcg_gen_sar_i32(cpu_R[dc->rd], cpu_R[dc->ra], t0); } else { tcg_gen_shr_i32(cpu_R[dc->rd], cpu_R[dc->ra], t0); } } tcg_temp_free_i32(t0); } } static void dec_bit(DisasContext *dc) { CPUState *cs = CPU(dc->cpu); TCGv_i32 t0; unsigned int op; op = dc->ir & ((1 << 9) - 1); switch (op) { case 0x21: /* src. */ t0 = tcg_temp_new_i32(); LOG_DIS("src r%d r%d\n", dc->rd, dc->ra); tcg_gen_andi_i32(t0, cpu_msr, MSR_CC); write_carry(dc, cpu_R[dc->ra]); if (dc->rd) { tcg_gen_shri_i32(cpu_R[dc->rd], cpu_R[dc->ra], 1); tcg_gen_or_i32(cpu_R[dc->rd], cpu_R[dc->rd], t0); } tcg_temp_free_i32(t0); break; case 0x1: case 0x41: /* srl. */ LOG_DIS("srl r%d r%d\n", dc->rd, dc->ra); /* Update carry. Note that write carry only looks at the LSB. */ write_carry(dc, cpu_R[dc->ra]); if (dc->rd) { if (op == 0x41) tcg_gen_shri_i32(cpu_R[dc->rd], cpu_R[dc->ra], 1); else tcg_gen_sari_i32(cpu_R[dc->rd], cpu_R[dc->ra], 1); } break; case 0x60: LOG_DIS("ext8s r%d r%d\n", dc->rd, dc->ra); tcg_gen_ext8s_i32(cpu_R[dc->rd], cpu_R[dc->ra]); break; case 0x61: LOG_DIS("ext16s r%d r%d\n", dc->rd, dc->ra); tcg_gen_ext16s_i32(cpu_R[dc->rd], cpu_R[dc->ra]); break; case 0x64: case 0x66: case 0x74: case 0x76: /* wdc. */ LOG_DIS("wdc r%d\n", dc->ra); trap_userspace(dc, true); break; case 0x68: /* wic. */ LOG_DIS("wic r%d\n", dc->ra); trap_userspace(dc, true); break; case 0xe0: if (trap_illegal(dc, !dc->cpu->cfg.use_pcmp_instr)) { return; } if (dc->cpu->cfg.use_pcmp_instr) { tcg_gen_clzi_i32(cpu_R[dc->rd], cpu_R[dc->ra], 32); } break; case 0x1e0: /* swapb */ LOG_DIS("swapb r%d r%d\n", dc->rd, dc->ra); tcg_gen_bswap32_i32(cpu_R[dc->rd], cpu_R[dc->ra]); break; case 0x1e2: /*swaph */ LOG_DIS("swaph r%d r%d\n", dc->rd, dc->ra); tcg_gen_rotri_i32(cpu_R[dc->rd], cpu_R[dc->ra], 16); break; default: cpu_abort(cs, "unknown bit oc=%x op=%x rd=%d ra=%d rb=%d\n", dc->pc, op, dc->rd, dc->ra, dc->rb); break; } } static inline void sync_jmpstate(DisasContext *dc) { if (dc->jmp == JMP_DIRECT || dc->jmp == JMP_DIRECT_CC) { if (dc->jmp == JMP_DIRECT) { tcg_gen_movi_i32(env_btaken, 1); } dc->jmp = JMP_INDIRECT; tcg_gen_movi_i32(cpu_btarget, dc->jmp_pc); } } static void dec_imm(DisasContext *dc) { LOG_DIS("imm %x\n", dc->imm << 16); tcg_gen_movi_i32(env_imm, (dc->imm << 16)); dc->tb_flags |= IMM_FLAG; dc->clear_imm = 0; } static inline void compute_ldst_addr(DisasContext *dc, bool ea, TCGv t) { bool extimm = dc->tb_flags & IMM_FLAG; /* Should be set to true if r1 is used by loadstores. */ bool stackprot = false; TCGv_i32 t32; /* All load/stores use ra. */ if (dc->ra == 1 && dc->cpu->cfg.stackprot) { stackprot = true; } /* Treat the common cases first. */ if (!dc->type_b) { if (ea) { int addr_size = dc->cpu->cfg.addr_size; if (addr_size == 32) { tcg_gen_extu_i32_tl(t, cpu_R[dc->rb]); return; } tcg_gen_concat_i32_i64(t, cpu_R[dc->rb], cpu_R[dc->ra]); if (addr_size < 64) { /* Mask off out of range bits. */ tcg_gen_andi_i64(t, t, MAKE_64BIT_MASK(0, addr_size)); } return; } /* If any of the regs is r0, set t to the value of the other reg. */ if (dc->ra == 0) { tcg_gen_extu_i32_tl(t, cpu_R[dc->rb]); return; } else if (dc->rb == 0) { tcg_gen_extu_i32_tl(t, cpu_R[dc->ra]); return; } if (dc->rb == 1 && dc->cpu->cfg.stackprot) { stackprot = true; } t32 = tcg_temp_new_i32(); tcg_gen_add_i32(t32, cpu_R[dc->ra], cpu_R[dc->rb]); tcg_gen_extu_i32_tl(t, t32); tcg_temp_free_i32(t32); if (stackprot) { gen_helper_stackprot(cpu_env, t); } return; } /* Immediate. */ t32 = tcg_temp_new_i32(); if (!extimm) { tcg_gen_addi_i32(t32, cpu_R[dc->ra], (int16_t)dc->imm); } else { tcg_gen_add_i32(t32, cpu_R[dc->ra], *(dec_alu_op_b(dc))); } tcg_gen_extu_i32_tl(t, t32); tcg_temp_free_i32(t32); if (stackprot) { gen_helper_stackprot(cpu_env, t); } return; } static void dec_load(DisasContext *dc) { TCGv_i32 v; TCGv addr; unsigned int size; bool rev = false, ex = false, ea = false; int mem_index = cpu_mmu_index(&dc->cpu->env, false); MemOp mop; mop = dc->opcode & 3; size = 1 << mop; if (!dc->type_b) { ea = extract32(dc->ir, 7, 1); rev = extract32(dc->ir, 9, 1); ex = extract32(dc->ir, 10, 1); } mop |= MO_TE; if (rev) { mop ^= MO_BSWAP; } if (trap_illegal(dc, size > 4)) { return; } if (trap_userspace(dc, ea)) { return; } LOG_DIS("l%d%s%s%s%s\n", size, dc->type_b ? "i" : "", rev ? "r" : "", ex ? "x" : "", ea ? "ea" : ""); t_sync_flags(dc); addr = tcg_temp_new(); compute_ldst_addr(dc, ea, addr); /* Extended addressing bypasses the MMU. */ mem_index = ea ? MMU_NOMMU_IDX : mem_index; /* * When doing reverse accesses we need to do two things. * * 1. Reverse the address wrt endianness. * 2. Byteswap the data lanes on the way back into the CPU core. */ if (rev && size != 4) { /* Endian reverse the address. t is addr. */ switch (size) { case 1: { tcg_gen_xori_tl(addr, addr, 3); break; } case 2: /* 00 -> 10 10 -> 00. */ tcg_gen_xori_tl(addr, addr, 2); break; default: cpu_abort(CPU(dc->cpu), "Invalid reverse size\n"); break; } } /* lwx does not throw unaligned access errors, so force alignment */ if (ex) { tcg_gen_andi_tl(addr, addr, ~3); } /* If we get a fault on a dslot, the jmpstate better be in sync. */ sync_jmpstate(dc); /* Verify alignment if needed. */ /* * Microblaze gives MMU faults priority over faults due to * unaligned addresses. That's why we speculatively do the load * into v. If the load succeeds, we verify alignment of the * address and if that succeeds we write into the destination reg. */ v = tcg_temp_new_i32(); tcg_gen_qemu_ld_i32(v, addr, mem_index, mop); if (dc->cpu->cfg.unaligned_exceptions && size > 1) { TCGv_i32 t0 = tcg_const_i32(0); TCGv_i32 treg = tcg_const_i32(dc->rd); TCGv_i32 tsize = tcg_const_i32(size - 1); tcg_gen_movi_i32(cpu_pc, dc->pc); gen_helper_memalign(cpu_env, addr, treg, t0, tsize); tcg_temp_free_i32(t0); tcg_temp_free_i32(treg); tcg_temp_free_i32(tsize); } if (ex) { tcg_gen_mov_tl(env_res_addr, addr); tcg_gen_mov_i32(env_res_val, v); } if (dc->rd) { tcg_gen_mov_i32(cpu_R[dc->rd], v); } tcg_temp_free_i32(v); if (ex) { /* lwx */ /* no support for AXI exclusive so always clear C */ write_carryi(dc, 0); } tcg_temp_free(addr); } static void dec_store(DisasContext *dc) { TCGv addr; TCGLabel *swx_skip = NULL; unsigned int size; bool rev = false, ex = false, ea = false; int mem_index = cpu_mmu_index(&dc->cpu->env, false); MemOp mop; mop = dc->opcode & 3; size = 1 << mop; if (!dc->type_b) { ea = extract32(dc->ir, 7, 1); rev = extract32(dc->ir, 9, 1); ex = extract32(dc->ir, 10, 1); } mop |= MO_TE; if (rev) { mop ^= MO_BSWAP; } if (trap_illegal(dc, size > 4)) { return; } trap_userspace(dc, ea); LOG_DIS("s%d%s%s%s%s\n", size, dc->type_b ? "i" : "", rev ? "r" : "", ex ? "x" : "", ea ? "ea" : ""); t_sync_flags(dc); /* If we get a fault on a dslot, the jmpstate better be in sync. */ sync_jmpstate(dc); /* SWX needs a temp_local. */ addr = ex ? tcg_temp_local_new() : tcg_temp_new(); compute_ldst_addr(dc, ea, addr); /* Extended addressing bypasses the MMU. */ mem_index = ea ? MMU_NOMMU_IDX : mem_index; if (ex) { /* swx */ TCGv_i32 tval; /* swx does not throw unaligned access errors, so force alignment */ tcg_gen_andi_tl(addr, addr, ~3); write_carryi(dc, 1); swx_skip = gen_new_label(); tcg_gen_brcond_tl(TCG_COND_NE, env_res_addr, addr, swx_skip); /* * Compare the value loaded at lwx with current contents of * the reserved location. */ tval = tcg_temp_new_i32(); tcg_gen_atomic_cmpxchg_i32(tval, addr, env_res_val, cpu_R[dc->rd], mem_index, mop); tcg_gen_brcond_i32(TCG_COND_NE, env_res_val, tval, swx_skip); write_carryi(dc, 0); tcg_temp_free_i32(tval); } if (rev && size != 4) { /* Endian reverse the address. t is addr. */ switch (size) { case 1: { tcg_gen_xori_tl(addr, addr, 3); break; } case 2: /* 00 -> 10 10 -> 00. */ /* Force addr into the temp. */ tcg_gen_xori_tl(addr, addr, 2); break; default: cpu_abort(CPU(dc->cpu), "Invalid reverse size\n"); break; } } if (!ex) { tcg_gen_qemu_st_i32(cpu_R[dc->rd], addr, mem_index, mop); } /* Verify alignment if needed. */ if (dc->cpu->cfg.unaligned_exceptions && size > 1) { TCGv_i32 t1 = tcg_const_i32(1); TCGv_i32 treg = tcg_const_i32(dc->rd); TCGv_i32 tsize = tcg_const_i32(size - 1); tcg_gen_movi_i32(cpu_pc, dc->pc); /* FIXME: if the alignment is wrong, we should restore the value * in memory. One possible way to achieve this is to probe * the MMU prior to the memaccess, thay way we could put * the alignment checks in between the probe and the mem * access. */ gen_helper_memalign(cpu_env, addr, treg, t1, tsize); tcg_temp_free_i32(t1); tcg_temp_free_i32(treg); tcg_temp_free_i32(tsize); } if (ex) { gen_set_label(swx_skip); } tcg_temp_free(addr); } static inline void eval_cc(DisasContext *dc, unsigned int cc, TCGv_i32 d, TCGv_i32 a) { static const int mb_to_tcg_cc[] = { [CC_EQ] = TCG_COND_EQ, [CC_NE] = TCG_COND_NE, [CC_LT] = TCG_COND_LT, [CC_LE] = TCG_COND_LE, [CC_GE] = TCG_COND_GE, [CC_GT] = TCG_COND_GT, }; switch (cc) { case CC_EQ: case CC_NE: case CC_LT: case CC_LE: case CC_GE: case CC_GT: tcg_gen_setcondi_i32(mb_to_tcg_cc[cc], d, a, 0); break; default: cpu_abort(CPU(dc->cpu), "Unknown condition code %x.\n", cc); break; } } static void eval_cond_jmp(DisasContext *dc, TCGv_i32 pc_true, TCGv_i32 pc_false) { TCGv_i32 zero = tcg_const_i32(0); tcg_gen_movcond_i32(TCG_COND_NE, cpu_pc, env_btaken, zero, pc_true, pc_false); tcg_temp_free_i32(zero); } static void dec_setup_dslot(DisasContext *dc) { TCGv_i32 tmp = tcg_const_i32(dc->type_b && (dc->tb_flags & IMM_FLAG)); dc->delayed_branch = 2; dc->tb_flags |= D_FLAG; tcg_gen_st_i32(tmp, cpu_env, offsetof(CPUMBState, bimm)); tcg_temp_free_i32(tmp); } static void dec_bcc(DisasContext *dc) { unsigned int cc; unsigned int dslot; cc = EXTRACT_FIELD(dc->ir, 21, 23); dslot = dc->ir & (1 << 25); LOG_DIS("bcc%s r%d %x\n", dslot ? "d" : "", dc->ra, dc->imm); dc->delayed_branch = 1; if (dslot) { dec_setup_dslot(dc); } if (dec_alu_op_b_is_small_imm(dc)) { int32_t offset = (int32_t)((int16_t)dc->imm); /* sign-extend. */ tcg_gen_movi_i32(cpu_btarget, dc->pc + offset); dc->jmp = JMP_DIRECT_CC; dc->jmp_pc = dc->pc + offset; } else { dc->jmp = JMP_INDIRECT; tcg_gen_addi_i32(cpu_btarget, *dec_alu_op_b(dc), dc->pc); } eval_cc(dc, cc, env_btaken, cpu_R[dc->ra]); } static void dec_br(DisasContext *dc) { unsigned int dslot, link, abs, mbar; dslot = dc->ir & (1 << 20); abs = dc->ir & (1 << 19); link = dc->ir & (1 << 18); /* Memory barrier. */ mbar = (dc->ir >> 16) & 31; if (mbar == 2 && dc->imm == 4) { uint16_t mbar_imm = dc->rd; LOG_DIS("mbar %d\n", mbar_imm); /* Data access memory barrier. */ if ((mbar_imm & 2) == 0) { tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL); } /* mbar IMM & 16 decodes to sleep. */ if (mbar_imm & 16) { TCGv_i32 tmp_hlt = tcg_const_i32(EXCP_HLT); TCGv_i32 tmp_1 = tcg_const_i32(1); LOG_DIS("sleep\n"); if (trap_userspace(dc, true)) { /* Sleep is a privileged instruction. */ return; } t_sync_flags(dc); tcg_gen_st_i32(tmp_1, cpu_env, -offsetof(MicroBlazeCPU, env) +offsetof(CPUState, halted)); tcg_gen_movi_i32(cpu_pc, dc->pc + 4); gen_helper_raise_exception(cpu_env, tmp_hlt); tcg_temp_free_i32(tmp_hlt); tcg_temp_free_i32(tmp_1); return; } /* Break the TB. */ dc->cpustate_changed = 1; return; } LOG_DIS("br%s%s%s%s imm=%x\n", abs ? "a" : "", link ? "l" : "", dc->type_b ? "i" : "", dslot ? "d" : "", dc->imm); dc->delayed_branch = 1; if (dslot) { dec_setup_dslot(dc); } if (link && dc->rd) tcg_gen_movi_i32(cpu_R[dc->rd], dc->pc); dc->jmp = JMP_INDIRECT; if (abs) { tcg_gen_movi_i32(env_btaken, 1); tcg_gen_mov_i32(cpu_btarget, *(dec_alu_op_b(dc))); if (link && !dslot) { if (!(dc->tb_flags & IMM_FLAG) && (dc->imm == 8 || dc->imm == 0x18)) t_gen_raise_exception(dc, EXCP_BREAK); if (dc->imm == 0) { if (trap_userspace(dc, true)) { return; } t_gen_raise_exception(dc, EXCP_DEBUG); } } } else { if (dec_alu_op_b_is_small_imm(dc)) { dc->jmp = JMP_DIRECT; dc->jmp_pc = dc->pc + (int32_t)((int16_t)dc->imm); } else { tcg_gen_movi_i32(env_btaken, 1); tcg_gen_addi_i32(cpu_btarget, *dec_alu_op_b(dc), dc->pc); } } } static inline void do_rti(DisasContext *dc) { TCGv_i32 t0, t1; t0 = tcg_temp_new_i32(); t1 = tcg_temp_new_i32(); tcg_gen_mov_i32(t1, cpu_msr); tcg_gen_shri_i32(t0, t1, 1); tcg_gen_ori_i32(t1, t1, MSR_IE); tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM)); tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM)); tcg_gen_or_i32(t1, t1, t0); msr_write(dc, t1); tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); dc->tb_flags &= ~DRTI_FLAG; } static inline void do_rtb(DisasContext *dc) { TCGv_i32 t0, t1; t0 = tcg_temp_new_i32(); t1 = tcg_temp_new_i32(); tcg_gen_mov_i32(t1, cpu_msr); tcg_gen_andi_i32(t1, t1, ~MSR_BIP); tcg_gen_shri_i32(t0, t1, 1); tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM)); tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM)); tcg_gen_or_i32(t1, t1, t0); msr_write(dc, t1); tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); dc->tb_flags &= ~DRTB_FLAG; } static inline void do_rte(DisasContext *dc) { TCGv_i32 t0, t1; t0 = tcg_temp_new_i32(); t1 = tcg_temp_new_i32(); tcg_gen_mov_i32(t1, cpu_msr); tcg_gen_ori_i32(t1, t1, MSR_EE); tcg_gen_andi_i32(t1, t1, ~MSR_EIP); tcg_gen_shri_i32(t0, t1, 1); tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM)); tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM)); tcg_gen_or_i32(t1, t1, t0); msr_write(dc, t1); tcg_temp_free_i32(t1); tcg_temp_free_i32(t0); dc->tb_flags &= ~DRTE_FLAG; } static void dec_rts(DisasContext *dc) { unsigned int b_bit, i_bit, e_bit; i_bit = dc->ir & (1 << 21); b_bit = dc->ir & (1 << 22); e_bit = dc->ir & (1 << 23); if (trap_userspace(dc, i_bit || b_bit || e_bit)) { return; } dec_setup_dslot(dc); if (i_bit) { LOG_DIS("rtid ir=%x\n", dc->ir); dc->tb_flags |= DRTI_FLAG; } else if (b_bit) { LOG_DIS("rtbd ir=%x\n", dc->ir); dc->tb_flags |= DRTB_FLAG; } else if (e_bit) { LOG_DIS("rted ir=%x\n", dc->ir); dc->tb_flags |= DRTE_FLAG; } else LOG_DIS("rts ir=%x\n", dc->ir); dc->jmp = JMP_INDIRECT; tcg_gen_movi_i32(env_btaken, 1); tcg_gen_add_i32(cpu_btarget, cpu_R[dc->ra], *dec_alu_op_b(dc)); } static int dec_check_fpuv2(DisasContext *dc) { if ((dc->cpu->cfg.use_fpu != 2) && (dc->tb_flags & MSR_EE_FLAG)) { tcg_gen_movi_i32(cpu_esr, ESR_EC_FPU); t_gen_raise_exception(dc, EXCP_HW_EXCP); } return (dc->cpu->cfg.use_fpu == 2) ? PVR2_USE_FPU2_MASK : 0; } static void dec_fpu(DisasContext *dc) { unsigned int fpu_insn; if (trap_illegal(dc, !dc->cpu->cfg.use_fpu)) { return; } fpu_insn = (dc->ir >> 7) & 7; switch (fpu_insn) { case 0: gen_helper_fadd(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; case 1: gen_helper_frsub(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; case 2: gen_helper_fmul(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; case 3: gen_helper_fdiv(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; case 4: switch ((dc->ir >> 4) & 7) { case 0: gen_helper_fcmp_un(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; case 1: gen_helper_fcmp_lt(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; case 2: gen_helper_fcmp_eq(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; case 3: gen_helper_fcmp_le(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; case 4: gen_helper_fcmp_gt(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; case 5: gen_helper_fcmp_ne(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; case 6: gen_helper_fcmp_ge(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], cpu_R[dc->rb]); break; default: qemu_log_mask(LOG_UNIMP, "unimplemented fcmp fpu_insn=%x pc=%x" " opc=%x\n", fpu_insn, dc->pc, dc->opcode); dc->abort_at_next_insn = 1; break; } break; case 5: if (!dec_check_fpuv2(dc)) { return; } gen_helper_flt(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra]); break; case 6: if (!dec_check_fpuv2(dc)) { return; } gen_helper_fint(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra]); break; case 7: if (!dec_check_fpuv2(dc)) { return; } gen_helper_fsqrt(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra]); break; default: qemu_log_mask(LOG_UNIMP, "unimplemented FPU insn fpu_insn=%x pc=%x" " opc=%x\n", fpu_insn, dc->pc, dc->opcode); dc->abort_at_next_insn = 1; break; } } static void dec_null(DisasContext *dc) { if (trap_illegal(dc, true)) { return; } qemu_log_mask(LOG_GUEST_ERROR, "unknown insn pc=%x opc=%x\n", dc->pc, dc->opcode); dc->abort_at_next_insn = 1; } /* Insns connected to FSL or AXI stream attached devices. */ static void dec_stream(DisasContext *dc) { TCGv_i32 t_id, t_ctrl; int ctrl; LOG_DIS("%s%s imm=%x\n", dc->rd ? "get" : "put", dc->type_b ? "" : "d", dc->imm); if (trap_userspace(dc, true)) { return; } t_id = tcg_temp_new_i32(); if (dc->type_b) { tcg_gen_movi_i32(t_id, dc->imm & 0xf); ctrl = dc->imm >> 10; } else { tcg_gen_andi_i32(t_id, cpu_R[dc->rb], 0xf); ctrl = dc->imm >> 5; } t_ctrl = tcg_const_i32(ctrl); if (dc->rd == 0) { gen_helper_put(t_id, t_ctrl, cpu_R[dc->ra]); } else { gen_helper_get(cpu_R[dc->rd], t_id, t_ctrl); } tcg_temp_free_i32(t_id); tcg_temp_free_i32(t_ctrl); } static struct decoder_info { struct { uint32_t bits; uint32_t mask; }; void (*dec)(DisasContext *dc); } decinfo[] = { {DEC_ADD, dec_add}, {DEC_SUB, dec_sub}, {DEC_AND, dec_and}, {DEC_XOR, dec_xor}, {DEC_OR, dec_or}, {DEC_BIT, dec_bit}, {DEC_BARREL, dec_barrel}, {DEC_LD, dec_load}, {DEC_ST, dec_store}, {DEC_IMM, dec_imm}, {DEC_BR, dec_br}, {DEC_BCC, dec_bcc}, {DEC_RTS, dec_rts}, {DEC_FPU, dec_fpu}, {DEC_MUL, dec_mul}, {DEC_DIV, dec_div}, {DEC_MSR, dec_msr}, {DEC_STREAM, dec_stream}, {{0, 0}, dec_null} }; static inline void decode(DisasContext *dc, uint32_t ir) { int i; dc->ir = ir; LOG_DIS("%8.8x\t", dc->ir); if (ir == 0) { trap_illegal(dc, dc->cpu->cfg.opcode_0_illegal); /* Don't decode nop/zero instructions any further. */ return; } /* bit 2 seems to indicate insn type. */ dc->type_b = ir & (1 << 29); dc->opcode = EXTRACT_FIELD(ir, 26, 31); dc->rd = EXTRACT_FIELD(ir, 21, 25); dc->ra = EXTRACT_FIELD(ir, 16, 20); dc->rb = EXTRACT_FIELD(ir, 11, 15); dc->imm = EXTRACT_FIELD(ir, 0, 15); /* Large switch for all insns. */ for (i = 0; i < ARRAY_SIZE(decinfo); i++) { if ((dc->opcode & decinfo[i].mask) == decinfo[i].bits) { decinfo[i].dec(dc); break; } } } /* generate intermediate code for basic block 'tb'. */ void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) { CPUMBState *env = cs->env_ptr; MicroBlazeCPU *cpu = env_archcpu(env); uint32_t pc_start; struct DisasContext ctx; struct DisasContext *dc = &ctx; uint32_t page_start, org_flags; uint32_t npc; int num_insns; pc_start = tb->pc; dc->cpu = cpu; dc->tb = tb; org_flags = dc->synced_flags = dc->tb_flags = tb->flags; dc->is_jmp = DISAS_NEXT; dc->jmp = 0; dc->delayed_branch = !!(dc->tb_flags & D_FLAG); if (dc->delayed_branch) { dc->jmp = JMP_INDIRECT; } dc->pc = pc_start; dc->singlestep_enabled = cs->singlestep_enabled; dc->cpustate_changed = 0; dc->abort_at_next_insn = 0; if (pc_start & 3) { cpu_abort(cs, "Microblaze: unaligned PC=%x\n", pc_start); } page_start = pc_start & TARGET_PAGE_MASK; num_insns = 0; gen_tb_start(tb); do { tcg_gen_insn_start(dc->pc); num_insns++; #if SIM_COMPAT if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) { tcg_gen_movi_i32(cpu_pc, dc->pc); gen_helper_debug(); } #endif if (unlikely(cpu_breakpoint_test(cs, dc->pc, BP_ANY))) { t_gen_raise_exception(dc, EXCP_DEBUG); dc->is_jmp = DISAS_UPDATE; /* The address covered by the breakpoint must be included in [tb->pc, tb->pc + tb->size) in order to for it to be properly cleared -- thus we increment the PC here so that the logic setting tb->size below does the right thing. */ dc->pc += 4; break; } /* Pretty disas. */ LOG_DIS("%8.8x:\t", dc->pc); if (num_insns == max_insns && (tb_cflags(tb) & CF_LAST_IO)) { gen_io_start(); } dc->clear_imm = 1; decode(dc, cpu_ldl_code(env, dc->pc)); if (dc->clear_imm) dc->tb_flags &= ~IMM_FLAG; dc->pc += 4; if (dc->delayed_branch) { dc->delayed_branch--; if (!dc->delayed_branch) { if (dc->tb_flags & DRTI_FLAG) do_rti(dc); if (dc->tb_flags & DRTB_FLAG) do_rtb(dc); if (dc->tb_flags & DRTE_FLAG) do_rte(dc); /* Clear the delay slot flag. */ dc->tb_flags &= ~D_FLAG; /* If it is a direct jump, try direct chaining. */ if (dc->jmp == JMP_INDIRECT) { TCGv_i32 tmp_pc = tcg_const_i32(dc->pc); eval_cond_jmp(dc, cpu_btarget, tmp_pc); tcg_temp_free_i32(tmp_pc); dc->is_jmp = DISAS_JUMP; } else if (dc->jmp == JMP_DIRECT) { t_sync_flags(dc); gen_goto_tb(dc, 0, dc->jmp_pc); dc->is_jmp = DISAS_TB_JUMP; } else if (dc->jmp == JMP_DIRECT_CC) { TCGLabel *l1 = gen_new_label(); t_sync_flags(dc); /* Conditional jmp. */ tcg_gen_brcondi_i32(TCG_COND_NE, env_btaken, 0, l1); gen_goto_tb(dc, 1, dc->pc); gen_set_label(l1); gen_goto_tb(dc, 0, dc->jmp_pc); dc->is_jmp = DISAS_TB_JUMP; } break; } } if (cs->singlestep_enabled) { break; } } while (!dc->is_jmp && !dc->cpustate_changed && !tcg_op_buf_full() && !singlestep && (dc->pc - page_start < TARGET_PAGE_SIZE) && num_insns < max_insns); npc = dc->pc; if (dc->jmp == JMP_DIRECT || dc->jmp == JMP_DIRECT_CC) { if (dc->tb_flags & D_FLAG) { dc->is_jmp = DISAS_UPDATE; tcg_gen_movi_i32(cpu_pc, npc); sync_jmpstate(dc); } else npc = dc->jmp_pc; } /* Force an update if the per-tb cpu state has changed. */ if (dc->is_jmp == DISAS_NEXT && (dc->cpustate_changed || org_flags != dc->tb_flags)) { dc->is_jmp = DISAS_UPDATE; tcg_gen_movi_i32(cpu_pc, npc); } t_sync_flags(dc); if (unlikely(cs->singlestep_enabled)) { TCGv_i32 tmp = tcg_const_i32(EXCP_DEBUG); if (dc->is_jmp != DISAS_JUMP) { tcg_gen_movi_i32(cpu_pc, npc); } gen_helper_raise_exception(cpu_env, tmp); tcg_temp_free_i32(tmp); } else { switch(dc->is_jmp) { case DISAS_NEXT: gen_goto_tb(dc, 1, npc); break; default: case DISAS_JUMP: case DISAS_UPDATE: /* indicate that the hash table must be used to find the next TB */ tcg_gen_exit_tb(NULL, 0); break; case DISAS_TB_JUMP: /* nothing more to generate */ break; } } gen_tb_end(tb, num_insns); tb->size = dc->pc - pc_start; tb->icount = num_insns; #ifdef DEBUG_DISAS #if !SIM_COMPAT if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) && qemu_log_in_addr_range(pc_start)) { FILE *logfile = qemu_log_lock(); qemu_log("--------------\n"); log_target_disas(cs, pc_start, dc->pc - pc_start); qemu_log_unlock(logfile); } #endif #endif assert(!dc->abort_at_next_insn); } void mb_cpu_dump_state(CPUState *cs, FILE *f, int flags) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; int i; if (!env) { return; } qemu_fprintf(f, "IN: PC=%x %s\n", env->pc, lookup_symbol(env->pc)); qemu_fprintf(f, "rmsr=%x resr=%x rear=%" PRIx64 " " "debug=%x imm=%x iflags=%x fsr=%x " "rbtr=%" PRIx64 "\n", env->msr, env->esr, env->ear, env->debug, env->imm, env->iflags, env->fsr, env->btr); qemu_fprintf(f, "btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n", env->btaken, env->btarget, (env->msr & MSR_UM) ? "user" : "kernel", (env->msr & MSR_UMS) ? "user" : "kernel", (bool)(env->msr & MSR_EIP), (bool)(env->msr & MSR_IE)); for (i = 0; i < 12; i++) { qemu_fprintf(f, "rpvr%2.2d=%8.8x ", i, env->pvr.regs[i]); if ((i + 1) % 4 == 0) { qemu_fprintf(f, "\n"); } } /* Registers that aren't modeled are reported as 0 */ qemu_fprintf(f, "redr=%" PRIx64 " rpid=0 rzpr=0 rtlbx=0 rtlbsx=0 " "rtlblo=0 rtlbhi=0\n", env->edr); qemu_fprintf(f, "slr=%x shr=%x\n", env->slr, env->shr); for (i = 0; i < 32; i++) { qemu_fprintf(f, "r%2.2d=%8.8x ", i, env->regs[i]); if ((i + 1) % 4 == 0) qemu_fprintf(f, "\n"); } qemu_fprintf(f, "\n\n"); } void mb_tcg_init(void) { int i; env_debug = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMBState, debug), "debug0"); env_iflags = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMBState, iflags), "iflags"); env_imm = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMBState, imm), "imm"); cpu_btarget = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMBState, btarget), "btarget"); env_btaken = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMBState, btaken), "btaken"); env_res_addr = tcg_global_mem_new(cpu_env, offsetof(CPUMBState, res_addr), "res_addr"); env_res_val = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMBState, res_val), "res_val"); for (i = 0; i < ARRAY_SIZE(cpu_R); i++) { cpu_R[i] = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMBState, regs[i]), regnames[i]); } cpu_pc = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMBState, pc), "rpc"); cpu_msr = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMBState, msr), "rmsr"); cpu_ear = tcg_global_mem_new_i64(cpu_env, offsetof(CPUMBState, ear), "rear"); cpu_esr = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMBState, esr), "resr"); cpu_btr = tcg_global_mem_new_i64(cpu_env, offsetof(CPUMBState, btr), "rbtr"); cpu_edr = tcg_global_mem_new_i64(cpu_env, offsetof(CPUMBState, edr), "redr"); } void restore_state_to_opc(CPUMBState *env, TranslationBlock *tb, target_ulong *data) { env->pc = data[0]; }