#include #include #include #include #include #include #include #include #include #include namespace attn { /** @brief Traces some regs for hostboot */ void addHbStatusRegs() { // Only do this for P10 systems if (util::pdbg::queryHardwareAnalysisSupported()) { // We only need this for PRIMARY processor pdbg_target* pibTarget = pdbg_target_from_path(nullptr, "/proc0/pib"); pdbg_target* fsiTarget = pdbg_target_from_path(nullptr, "/proc0/fsi"); uint32_t l_cfamData = 0xFFFFFFFF; uint64_t l_scomData1 = 0xFFFFFFFFFFFFFFFFull; uint64_t l_scomData2 = 0xFFFFFFFFFFFFFFFFull; uint32_t l_cfamAddr = 0x283C; uint64_t l_scomAddr1 = 0x4602F489; uint64_t l_scomAddr2 = 0x4602F487; if ((nullptr != fsiTarget) && (nullptr != pibTarget)) { // get first debug reg (CFAM) if (RC_SUCCESS != fsi_read(fsiTarget, l_cfamAddr, &l_cfamData)) { trace::err("cfam read error: 0x%08x", l_cfamAddr); l_cfamData = 0xFFFFFFFF; } // Get SCOM regs next (just 2 of them) if (RC_SUCCESS != pib_read(pibTarget, l_scomAddr1, &l_scomData1)) { trace::err("scom read error: 0x%016" PRIx64 "", l_scomAddr1); l_scomData1 = 0xFFFFFFFFFFFFFFFFull; } if (RC_SUCCESS != pib_read(pibTarget, l_scomAddr2, &l_scomData2)) { trace::err("scom read error: 0x%016" PRIx64 "", l_scomAddr2); l_scomData2 = 0xFFFFFFFFFFFFFFFFull; } } // Trace out the results here of all 3 regs // (Format should resemble FSP: HostBoot Reg:0000283C Data:AA801504 // 00000000 Proc:00050001 ) trace::inf("HostBoot Reg:%08x Data:%08x Proc:00000000", l_cfamAddr, l_cfamData); trace::inf("HostBoot Reg:%08x Data:%016" PRIx64 " Proc:00000000", l_scomAddr1, l_scomData1); trace::inf("HostBoot Reg:%08x Data:%016" PRIx64 " Proc:00000000", l_scomAddr2, l_scomData2); } return; } // end addHbStatusRegs /** @brief Check for recoverable errors present */ bool recoverableErrors() { bool recoverableErrors = false; // assume no recoverable attentions pdbg_target* target; pdbg_for_each_class_target("proc", target) { if (PDBG_TARGET_ENABLED == pdbg_target_probe(target)) { auto proc = pdbg_target_index(target); // get processor number // Use PIB target to determine if a processor is enabled char path[16]; sprintf(path, "/proc%d/pib", proc); pdbg_target* pibTarget = pdbg_target_from_path(nullptr, path); // sanity check if (nullptr == pibTarget) { trace::inf("pib path or target not found"); continue; } // check if pib target is enabled - indicates proc is enabled if (PDBG_TARGET_ENABLED == pdbg_target_probe(pibTarget)) { // The processor FSI target is required for CFAM read sprintf(path, "/proc%d/fsi", proc); pdbg_target* fsiTarget = pdbg_target_from_path(nullptr, path); // sanity check if (nullptr == fsiTarget) { trace::inf("fsi path or target not found"); continue; } uint32_t isr_val = 0xffffffff; // invalid isr value // get active attentions on processor if (RC_SUCCESS != fsi_read(fsiTarget, 0x1007, &isr_val)) { // log cfam read error trace::err("cfam read 0x1007 FAILED"); eventAttentionFail((int)AttnSection::attnHandler | ATTN_PDBG_CFAM); } // check for invalid/stale value else if (0xffffffff == isr_val) { trace::err("cfam read 0x1007 INVALID"); continue; } // check recoverable error status bit else if (0 != (isr_val & RECOVERABLE_ATTN)) { recoverableErrors = true; break; } } // fsi target enabled } // pib target enabled } // next processor return recoverableErrors; } /** @brief timesec less-than-equal-to compare */ bool operator<=(const timespec& lhs, const timespec& rhs) { if (lhs.tv_sec == rhs.tv_sec) return lhs.tv_nsec <= rhs.tv_nsec; else return lhs.tv_sec <= rhs.tv_sec; } /** @brief sleep for n-seconds */ void sleepSeconds(const unsigned int seconds) { auto count = seconds; struct timespec requested, remaining; while (0 < count) { requested.tv_sec = 1; requested.tv_nsec = 0; remaining = requested; while (-1 == nanosleep(&requested, &remaining)) { // if not changing or implausible then abort if (requested <= remaining) { break; } // back to sleep requested = remaining; } count--; } } } // namespace attn