/* * Disk Array driver for HP Smart Array SAS controllers * Copyright 2016 Microsemi Corporation * Copyright 2014-2015 PMC-Sierra, Inc. * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more details. * * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hpsa_cmd.h" #include "hpsa.h" /* * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' * with an optional trailing '-' followed by a byte value (0-255). */ #define HPSA_DRIVER_VERSION "3.4.18-0" #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" #define HPSA "hpsa" /* How long to wait for CISS doorbell communication */ #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ #define MAX_IOCTL_CONFIG_WAIT 1000 /*define how many times we will try a command because of bus resets */ #define MAX_CMD_RETRIES 3 /* Embedded module documentation macros - see modules.h */ MODULE_AUTHOR("Hewlett-Packard Company"); MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ HPSA_DRIVER_VERSION); MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); MODULE_VERSION(HPSA_DRIVER_VERSION); MODULE_LICENSE("GPL"); static int hpsa_allow_any; module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(hpsa_allow_any, "Allow hpsa driver to access unknown HP Smart Array hardware"); static int hpsa_simple_mode; module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(hpsa_simple_mode, "Use 'simple mode' rather than 'performant mode'"); /* define the PCI info for the cards we can control */ static const struct pci_device_id hpsa_pci_device_id[] = { {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); /* board_id = Subsystem Device ID & Vendor ID * product = Marketing Name for the board * access = Address of the struct of function pointers */ static struct board_type products[] = { {0x3241103C, "Smart Array P212", &SA5_access}, {0x3243103C, "Smart Array P410", &SA5_access}, {0x3245103C, "Smart Array P410i", &SA5_access}, {0x3247103C, "Smart Array P411", &SA5_access}, {0x3249103C, "Smart Array P812", &SA5_access}, {0x324A103C, "Smart Array P712m", &SA5_access}, {0x324B103C, "Smart Array P711m", &SA5_access}, {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ {0x3350103C, "Smart Array P222", &SA5_access}, {0x3351103C, "Smart Array P420", &SA5_access}, {0x3352103C, "Smart Array P421", &SA5_access}, {0x3353103C, "Smart Array P822", &SA5_access}, {0x3354103C, "Smart Array P420i", &SA5_access}, {0x3355103C, "Smart Array P220i", &SA5_access}, {0x3356103C, "Smart Array P721m", &SA5_access}, {0x1920103C, "Smart Array P430i", &SA5_access}, {0x1921103C, "Smart Array P830i", &SA5_access}, {0x1922103C, "Smart Array P430", &SA5_access}, {0x1923103C, "Smart Array P431", &SA5_access}, {0x1924103C, "Smart Array P830", &SA5_access}, {0x1925103C, "Smart Array P831", &SA5_access}, {0x1926103C, "Smart Array P731m", &SA5_access}, {0x1928103C, "Smart Array P230i", &SA5_access}, {0x1929103C, "Smart Array P530", &SA5_access}, {0x21BD103C, "Smart Array P244br", &SA5_access}, {0x21BE103C, "Smart Array P741m", &SA5_access}, {0x21BF103C, "Smart HBA H240ar", &SA5_access}, {0x21C0103C, "Smart Array P440ar", &SA5_access}, {0x21C1103C, "Smart Array P840ar", &SA5_access}, {0x21C2103C, "Smart Array P440", &SA5_access}, {0x21C3103C, "Smart Array P441", &SA5_access}, {0x21C4103C, "Smart Array", &SA5_access}, {0x21C5103C, "Smart Array P841", &SA5_access}, {0x21C6103C, "Smart HBA H244br", &SA5_access}, {0x21C7103C, "Smart HBA H240", &SA5_access}, {0x21C8103C, "Smart HBA H241", &SA5_access}, {0x21C9103C, "Smart Array", &SA5_access}, {0x21CA103C, "Smart Array P246br", &SA5_access}, {0x21CB103C, "Smart Array P840", &SA5_access}, {0x21CC103C, "Smart Array", &SA5_access}, {0x21CD103C, "Smart Array", &SA5_access}, {0x21CE103C, "Smart HBA", &SA5_access}, {0x05809005, "SmartHBA-SA", &SA5_access}, {0x05819005, "SmartHBA-SA 8i", &SA5_access}, {0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, {0x05839005, "SmartHBA-SA 8e", &SA5_access}, {0x05849005, "SmartHBA-SA 16i", &SA5_access}, {0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, {0xFFFF103C, "Unknown Smart Array", &SA5_access}, }; static struct scsi_transport_template *hpsa_sas_transport_template; static int hpsa_add_sas_host(struct ctlr_info *h); static void hpsa_delete_sas_host(struct ctlr_info *h); static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, struct hpsa_scsi_dev_t *device); static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device); static struct hpsa_scsi_dev_t *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, struct sas_rphy *rphy); #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) static const struct scsi_cmnd hpsa_cmd_busy; #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) static const struct scsi_cmnd hpsa_cmd_idle; static int number_of_controllers; static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg); #ifdef CONFIG_COMPAT static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg); #endif static void cmd_free(struct ctlr_info *h, struct CommandList *c); static struct CommandList *cmd_alloc(struct ctlr_info *h); static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, struct scsi_cmnd *scmd); static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, int cmd_type); static void hpsa_free_cmd_pool(struct ctlr_info *h); #define VPD_PAGE (1 << 8) #define HPSA_SIMPLE_ERROR_BITS 0x03 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); static void hpsa_scan_start(struct Scsi_Host *); static int hpsa_scan_finished(struct Scsi_Host *sh, unsigned long elapsed_time); static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); static int hpsa_slave_alloc(struct scsi_device *sdev); static int hpsa_slave_configure(struct scsi_device *sdev); static void hpsa_slave_destroy(struct scsi_device *sdev); static void hpsa_update_scsi_devices(struct ctlr_info *h); static int check_for_unit_attention(struct ctlr_info *h, struct CommandList *c); static void check_ioctl_unit_attention(struct ctlr_info *h, struct CommandList *c); /* performant mode helper functions */ static void calc_bucket_map(int *bucket, int num_buckets, int nsgs, int min_blocks, u32 *bucket_map); static void hpsa_free_performant_mode(struct ctlr_info *h); static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); static inline u32 next_command(struct ctlr_info *h, u8 q); static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, u64 *cfg_offset); static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, unsigned long *memory_bar); static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); static int wait_for_device_to_become_ready(struct ctlr_info *h, unsigned char lunaddr[], int reply_queue); static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, int wait_for_ready); static inline void finish_cmd(struct CommandList *c); static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); #define BOARD_NOT_READY 0 #define BOARD_READY 1 static void hpsa_drain_accel_commands(struct ctlr_info *h); static void hpsa_flush_cache(struct ctlr_info *h); static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); static void hpsa_command_resubmit_worker(struct work_struct *work); static u32 lockup_detected(struct ctlr_info *h); static int detect_controller_lockup(struct ctlr_info *h); static void hpsa_disable_rld_caching(struct ctlr_info *h); static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, struct ReportExtendedLUNdata *buf, int bufsize); static bool hpsa_vpd_page_supported(struct ctlr_info *h, unsigned char scsi3addr[], u8 page); static int hpsa_luns_changed(struct ctlr_info *h); static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, struct hpsa_scsi_dev_t *dev, unsigned char *scsi3addr); static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) { unsigned long *priv = shost_priv(sdev->host); return (struct ctlr_info *) *priv; } static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) { unsigned long *priv = shost_priv(sh); return (struct ctlr_info *) *priv; } static inline bool hpsa_is_cmd_idle(struct CommandList *c) { return c->scsi_cmd == SCSI_CMD_IDLE; } static inline bool hpsa_is_pending_event(struct CommandList *c) { return c->abort_pending || c->reset_pending; } /* extract sense key, asc, and ascq from sense data. -1 means invalid. */ static void decode_sense_data(const u8 *sense_data, int sense_data_len, u8 *sense_key, u8 *asc, u8 *ascq) { struct scsi_sense_hdr sshdr; bool rc; *sense_key = -1; *asc = -1; *ascq = -1; if (sense_data_len < 1) return; rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); if (rc) { *sense_key = sshdr.sense_key; *asc = sshdr.asc; *ascq = sshdr.ascq; } } static int check_for_unit_attention(struct ctlr_info *h, struct CommandList *c) { u8 sense_key, asc, ascq; int sense_len; if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) sense_len = sizeof(c->err_info->SenseInfo); else sense_len = c->err_info->SenseLen; decode_sense_data(c->err_info->SenseInfo, sense_len, &sense_key, &asc, &ascq); if (sense_key != UNIT_ATTENTION || asc == 0xff) return 0; switch (asc) { case STATE_CHANGED: dev_warn(&h->pdev->dev, "%s: a state change detected, command retried\n", h->devname); break; case LUN_FAILED: dev_warn(&h->pdev->dev, "%s: LUN failure detected\n", h->devname); break; case REPORT_LUNS_CHANGED: dev_warn(&h->pdev->dev, "%s: report LUN data changed\n", h->devname); /* * Note: this REPORT_LUNS_CHANGED condition only occurs on the external * target (array) devices. */ break; case POWER_OR_RESET: dev_warn(&h->pdev->dev, "%s: a power on or device reset detected\n", h->devname); break; case UNIT_ATTENTION_CLEARED: dev_warn(&h->pdev->dev, "%s: unit attention cleared by another initiator\n", h->devname); break; default: dev_warn(&h->pdev->dev, "%s: unknown unit attention detected\n", h->devname); break; } return 1; } static int check_for_busy(struct ctlr_info *h, struct CommandList *c) { if (c->err_info->CommandStatus != CMD_TARGET_STATUS || (c->err_info->ScsiStatus != SAM_STAT_BUSY && c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) return 0; dev_warn(&h->pdev->dev, HPSA "device busy"); return 1; } static u32 lockup_detected(struct ctlr_info *h); static ssize_t host_show_lockup_detected(struct device *dev, struct device_attribute *attr, char *buf) { int ld; struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); h = shost_to_hba(shost); ld = lockup_detected(h); return sprintf(buf, "ld=%d\n", ld); } static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int status, len; struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); char tmpbuf[10]; if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; strncpy(tmpbuf, buf, len); tmpbuf[len] = '\0'; if (sscanf(tmpbuf, "%d", &status) != 1) return -EINVAL; h = shost_to_hba(shost); h->acciopath_status = !!status; dev_warn(&h->pdev->dev, "hpsa: HP SSD Smart Path %s via sysfs update.\n", h->acciopath_status ? "enabled" : "disabled"); return count; } static ssize_t host_store_raid_offload_debug(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int debug_level, len; struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); char tmpbuf[10]; if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; strncpy(tmpbuf, buf, len); tmpbuf[len] = '\0'; if (sscanf(tmpbuf, "%d", &debug_level) != 1) return -EINVAL; if (debug_level < 0) debug_level = 0; h = shost_to_hba(shost); h->raid_offload_debug = debug_level; dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", h->raid_offload_debug); return count; } static ssize_t host_store_rescan(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); h = shost_to_hba(shost); hpsa_scan_start(h->scsi_host); return count; } static ssize_t host_show_firmware_revision(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); unsigned char *fwrev; h = shost_to_hba(shost); if (!h->hba_inquiry_data) return 0; fwrev = &h->hba_inquiry_data[32]; return snprintf(buf, 20, "%c%c%c%c\n", fwrev[0], fwrev[1], fwrev[2], fwrev[3]); } static ssize_t host_show_commands_outstanding(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct ctlr_info *h = shost_to_hba(shost); return snprintf(buf, 20, "%d\n", atomic_read(&h->commands_outstanding)); } static ssize_t host_show_transport_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); h = shost_to_hba(shost); return snprintf(buf, 20, "%s\n", h->transMethod & CFGTBL_Trans_Performant ? "performant" : "simple"); } static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); h = shost_to_hba(shost); return snprintf(buf, 30, "HP SSD Smart Path %s\n", (h->acciopath_status == 1) ? "enabled" : "disabled"); } /* List of controllers which cannot be hard reset on kexec with reset_devices */ static u32 unresettable_controller[] = { 0x324a103C, /* Smart Array P712m */ 0x324b103C, /* Smart Array P711m */ 0x3223103C, /* Smart Array P800 */ 0x3234103C, /* Smart Array P400 */ 0x3235103C, /* Smart Array P400i */ 0x3211103C, /* Smart Array E200i */ 0x3212103C, /* Smart Array E200 */ 0x3213103C, /* Smart Array E200i */ 0x3214103C, /* Smart Array E200i */ 0x3215103C, /* Smart Array E200i */ 0x3237103C, /* Smart Array E500 */ 0x323D103C, /* Smart Array P700m */ 0x40800E11, /* Smart Array 5i */ 0x409C0E11, /* Smart Array 6400 */ 0x409D0E11, /* Smart Array 6400 EM */ 0x40700E11, /* Smart Array 5300 */ 0x40820E11, /* Smart Array 532 */ 0x40830E11, /* Smart Array 5312 */ 0x409A0E11, /* Smart Array 641 */ 0x409B0E11, /* Smart Array 642 */ 0x40910E11, /* Smart Array 6i */ }; /* List of controllers which cannot even be soft reset */ static u32 soft_unresettable_controller[] = { 0x40800E11, /* Smart Array 5i */ 0x40700E11, /* Smart Array 5300 */ 0x40820E11, /* Smart Array 532 */ 0x40830E11, /* Smart Array 5312 */ 0x409A0E11, /* Smart Array 641 */ 0x409B0E11, /* Smart Array 642 */ 0x40910E11, /* Smart Array 6i */ /* Exclude 640x boards. These are two pci devices in one slot * which share a battery backed cache module. One controls the * cache, the other accesses the cache through the one that controls * it. If we reset the one controlling the cache, the other will * likely not be happy. Just forbid resetting this conjoined mess. * The 640x isn't really supported by hpsa anyway. */ 0x409C0E11, /* Smart Array 6400 */ 0x409D0E11, /* Smart Array 6400 EM */ }; static u32 needs_abort_tags_swizzled[] = { 0x323D103C, /* Smart Array P700m */ 0x324a103C, /* Smart Array P712m */ 0x324b103C, /* SmartArray P711m */ }; static int board_id_in_array(u32 a[], int nelems, u32 board_id) { int i; for (i = 0; i < nelems; i++) if (a[i] == board_id) return 1; return 0; } static int ctlr_is_hard_resettable(u32 board_id) { return !board_id_in_array(unresettable_controller, ARRAY_SIZE(unresettable_controller), board_id); } static int ctlr_is_soft_resettable(u32 board_id) { return !board_id_in_array(soft_unresettable_controller, ARRAY_SIZE(soft_unresettable_controller), board_id); } static int ctlr_is_resettable(u32 board_id) { return ctlr_is_hard_resettable(board_id) || ctlr_is_soft_resettable(board_id); } static int ctlr_needs_abort_tags_swizzled(u32 board_id) { return board_id_in_array(needs_abort_tags_swizzled, ARRAY_SIZE(needs_abort_tags_swizzled), board_id); } static ssize_t host_show_resettable(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); h = shost_to_hba(shost); return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); } static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) { return (scsi3addr[3] & 0xC0) == 0x40; } static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", "1(+0)ADM", "UNKNOWN", "PHYS DRV" }; #define HPSA_RAID_0 0 #define HPSA_RAID_4 1 #define HPSA_RAID_1 2 /* also used for RAID 10 */ #define HPSA_RAID_5 3 /* also used for RAID 50 */ #define HPSA_RAID_51 4 #define HPSA_RAID_6 5 /* also used for RAID 60 */ #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2) #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1) static inline bool is_logical_device(struct hpsa_scsi_dev_t *device) { return !device->physical_device; } static ssize_t raid_level_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t l = 0; unsigned char rlevel; struct ctlr_info *h; struct scsi_device *sdev; struct hpsa_scsi_dev_t *hdev; unsigned long flags; sdev = to_scsi_device(dev); h = sdev_to_hba(sdev); spin_lock_irqsave(&h->lock, flags); hdev = sdev->hostdata; if (!hdev) { spin_unlock_irqrestore(&h->lock, flags); return -ENODEV; } /* Is this even a logical drive? */ if (!is_logical_device(hdev)) { spin_unlock_irqrestore(&h->lock, flags); l = snprintf(buf, PAGE_SIZE, "N/A\n"); return l; } rlevel = hdev->raid_level; spin_unlock_irqrestore(&h->lock, flags); if (rlevel > RAID_UNKNOWN) rlevel = RAID_UNKNOWN; l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); return l; } static ssize_t lunid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct scsi_device *sdev; struct hpsa_scsi_dev_t *hdev; unsigned long flags; unsigned char lunid[8]; sdev = to_scsi_device(dev); h = sdev_to_hba(sdev); spin_lock_irqsave(&h->lock, flags); hdev = sdev->hostdata; if (!hdev) { spin_unlock_irqrestore(&h->lock, flags); return -ENODEV; } memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); spin_unlock_irqrestore(&h->lock, flags); return snprintf(buf, 20, "0x%8phN\n", lunid); } static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct scsi_device *sdev; struct hpsa_scsi_dev_t *hdev; unsigned long flags; unsigned char sn[16]; sdev = to_scsi_device(dev); h = sdev_to_hba(sdev); spin_lock_irqsave(&h->lock, flags); hdev = sdev->hostdata; if (!hdev) { spin_unlock_irqrestore(&h->lock, flags); return -ENODEV; } memcpy(sn, hdev->device_id, sizeof(sn)); spin_unlock_irqrestore(&h->lock, flags); return snprintf(buf, 16 * 2 + 2, "%02X%02X%02X%02X%02X%02X%02X%02X" "%02X%02X%02X%02X%02X%02X%02X%02X\n", sn[0], sn[1], sn[2], sn[3], sn[4], sn[5], sn[6], sn[7], sn[8], sn[9], sn[10], sn[11], sn[12], sn[13], sn[14], sn[15]); } static ssize_t sas_address_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct scsi_device *sdev; struct hpsa_scsi_dev_t *hdev; unsigned long flags; u64 sas_address; sdev = to_scsi_device(dev); h = sdev_to_hba(sdev); spin_lock_irqsave(&h->lock, flags); hdev = sdev->hostdata; if (!hdev || is_logical_device(hdev) || !hdev->expose_device) { spin_unlock_irqrestore(&h->lock, flags); return -ENODEV; } sas_address = hdev->sas_address; spin_unlock_irqrestore(&h->lock, flags); return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address); } static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct scsi_device *sdev; struct hpsa_scsi_dev_t *hdev; unsigned long flags; int offload_enabled; sdev = to_scsi_device(dev); h = sdev_to_hba(sdev); spin_lock_irqsave(&h->lock, flags); hdev = sdev->hostdata; if (!hdev) { spin_unlock_irqrestore(&h->lock, flags); return -ENODEV; } offload_enabled = hdev->offload_enabled; spin_unlock_irqrestore(&h->lock, flags); return snprintf(buf, 20, "%d\n", offload_enabled); } #define MAX_PATHS 8 static ssize_t path_info_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct scsi_device *sdev; struct hpsa_scsi_dev_t *hdev; unsigned long flags; int i; int output_len = 0; u8 box; u8 bay; u8 path_map_index = 0; char *active; unsigned char phys_connector[2]; sdev = to_scsi_device(dev); h = sdev_to_hba(sdev); spin_lock_irqsave(&h->devlock, flags); hdev = sdev->hostdata; if (!hdev) { spin_unlock_irqrestore(&h->devlock, flags); return -ENODEV; } bay = hdev->bay; for (i = 0; i < MAX_PATHS; i++) { path_map_index = 1<active_path_index) active = "Active"; else if (hdev->path_map & path_map_index) active = "Inactive"; else continue; output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "[%d:%d:%d:%d] %20.20s ", h->scsi_host->host_no, hdev->bus, hdev->target, hdev->lun, scsi_device_type(hdev->devtype)); if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) { output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "%s\n", active); continue; } box = hdev->box[i]; memcpy(&phys_connector, &hdev->phys_connector[i], sizeof(phys_connector)); if (phys_connector[0] < '0') phys_connector[0] = '0'; if (phys_connector[1] < '0') phys_connector[1] = '0'; output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "PORT: %.2s ", phys_connector); if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) && hdev->expose_device) { if (box == 0 || box == 0xFF) { output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "BAY: %hhu %s\n", bay, active); } else { output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "BOX: %hhu BAY: %hhu %s\n", box, bay, active); } } else if (box != 0 && box != 0xFF) { output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "BOX: %hhu %s\n", box, active); } else output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "%s\n", active); } spin_unlock_irqrestore(&h->devlock, flags); return output_len; } static ssize_t host_show_ctlr_num(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); h = shost_to_hba(shost); return snprintf(buf, 20, "%d\n", h->ctlr); } static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL); static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, host_show_hp_ssd_smart_path_enabled, NULL); static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL); static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, host_show_hp_ssd_smart_path_status, host_store_hp_ssd_smart_path_status); static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, host_store_raid_offload_debug); static DEVICE_ATTR(firmware_revision, S_IRUGO, host_show_firmware_revision, NULL); static DEVICE_ATTR(commands_outstanding, S_IRUGO, host_show_commands_outstanding, NULL); static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL); static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL); static DEVICE_ATTR(lockup_detected, S_IRUGO, host_show_lockup_detected, NULL); static DEVICE_ATTR(ctlr_num, S_IRUGO, host_show_ctlr_num, NULL); static struct device_attribute *hpsa_sdev_attrs[] = { &dev_attr_raid_level, &dev_attr_lunid, &dev_attr_unique_id, &dev_attr_hp_ssd_smart_path_enabled, &dev_attr_path_info, &dev_attr_sas_address, NULL, }; static struct device_attribute *hpsa_shost_attrs[] = { &dev_attr_rescan, &dev_attr_firmware_revision, &dev_attr_commands_outstanding, &dev_attr_transport_mode, &dev_attr_resettable, &dev_attr_hp_ssd_smart_path_status, &dev_attr_raid_offload_debug, &dev_attr_lockup_detected, &dev_attr_ctlr_num, NULL, }; #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \ HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS) static struct scsi_host_template hpsa_driver_template = { .module = THIS_MODULE, .name = HPSA, .proc_name = HPSA, .queuecommand = hpsa_scsi_queue_command, .scan_start = hpsa_scan_start, .scan_finished = hpsa_scan_finished, .change_queue_depth = hpsa_change_queue_depth, .this_id = -1, .use_clustering = ENABLE_CLUSTERING, .eh_abort_handler = hpsa_eh_abort_handler, .eh_device_reset_handler = hpsa_eh_device_reset_handler, .ioctl = hpsa_ioctl, .slave_alloc = hpsa_slave_alloc, .slave_configure = hpsa_slave_configure, .slave_destroy = hpsa_slave_destroy, #ifdef CONFIG_COMPAT .compat_ioctl = hpsa_compat_ioctl, #endif .sdev_attrs = hpsa_sdev_attrs, .shost_attrs = hpsa_shost_attrs, .max_sectors = 8192, .no_write_same = 1, }; static inline u32 next_command(struct ctlr_info *h, u8 q) { u32 a; struct reply_queue_buffer *rq = &h->reply_queue[q]; if (h->transMethod & CFGTBL_Trans_io_accel1) return h->access.command_completed(h, q); if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) return h->access.command_completed(h, q); if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { a = rq->head[rq->current_entry]; rq->current_entry++; atomic_dec(&h->commands_outstanding); } else { a = FIFO_EMPTY; } /* Check for wraparound */ if (rq->current_entry == h->max_commands) { rq->current_entry = 0; rq->wraparound ^= 1; } return a; } /* * There are some special bits in the bus address of the * command that we have to set for the controller to know * how to process the command: * * Normal performant mode: * bit 0: 1 means performant mode, 0 means simple mode. * bits 1-3 = block fetch table entry * bits 4-6 = command type (== 0) * * ioaccel1 mode: * bit 0 = "performant mode" bit. * bits 1-3 = block fetch table entry * bits 4-6 = command type (== 110) * (command type is needed because ioaccel1 mode * commands are submitted through the same register as normal * mode commands, so this is how the controller knows whether * the command is normal mode or ioaccel1 mode.) * * ioaccel2 mode: * bit 0 = "performant mode" bit. * bits 1-4 = block fetch table entry (note extra bit) * bits 4-6 = not needed, because ioaccel2 mode has * a separate special register for submitting commands. */ /* * set_performant_mode: Modify the tag for cciss performant * set bit 0 for pull model, bits 3-1 for block fetch * register number */ #define DEFAULT_REPLY_QUEUE (-1) static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, int reply_queue) { if (likely(h->transMethod & CFGTBL_Trans_Performant)) { c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); if (unlikely(!h->msix_vectors)) return; if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) c->Header.ReplyQueue = raw_smp_processor_id() % h->nreply_queues; else c->Header.ReplyQueue = reply_queue % h->nreply_queues; } } static void set_ioaccel1_performant_mode(struct ctlr_info *h, struct CommandList *c, int reply_queue) { struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; /* * Tell the controller to post the reply to the queue for this * processor. This seems to give the best I/O throughput. */ if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) cp->ReplyQueue = smp_processor_id() % h->nreply_queues; else cp->ReplyQueue = reply_queue % h->nreply_queues; /* * Set the bits in the address sent down to include: * - performant mode bit (bit 0) * - pull count (bits 1-3) * - command type (bits 4-6) */ c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | IOACCEL1_BUSADDR_CMDTYPE; } static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, struct CommandList *c, int reply_queue) { struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) &h->ioaccel2_cmd_pool[c->cmdindex]; /* Tell the controller to post the reply to the queue for this * processor. This seems to give the best I/O throughput. */ if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) cp->reply_queue = smp_processor_id() % h->nreply_queues; else cp->reply_queue = reply_queue % h->nreply_queues; /* Set the bits in the address sent down to include: * - performant mode bit not used in ioaccel mode 2 * - pull count (bits 0-3) * - command type isn't needed for ioaccel2 */ c->busaddr |= h->ioaccel2_blockFetchTable[0]; } static void set_ioaccel2_performant_mode(struct ctlr_info *h, struct CommandList *c, int reply_queue) { struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; /* * Tell the controller to post the reply to the queue for this * processor. This seems to give the best I/O throughput. */ if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) cp->reply_queue = smp_processor_id() % h->nreply_queues; else cp->reply_queue = reply_queue % h->nreply_queues; /* * Set the bits in the address sent down to include: * - performant mode bit not used in ioaccel mode 2 * - pull count (bits 0-3) * - command type isn't needed for ioaccel2 */ c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); } static int is_firmware_flash_cmd(u8 *cdb) { return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; } /* * During firmware flash, the heartbeat register may not update as frequently * as it should. So we dial down lockup detection during firmware flash. and * dial it back up when firmware flash completes. */ #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, struct CommandList *c) { if (!is_firmware_flash_cmd(c->Request.CDB)) return; atomic_inc(&h->firmware_flash_in_progress); h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; } static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, struct CommandList *c) { if (is_firmware_flash_cmd(c->Request.CDB) && atomic_dec_and_test(&h->firmware_flash_in_progress)) h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; } static void __enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c, int reply_queue) { dial_down_lockup_detection_during_fw_flash(h, c); atomic_inc(&h->commands_outstanding); switch (c->cmd_type) { case CMD_IOACCEL1: set_ioaccel1_performant_mode(h, c, reply_queue); writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); break; case CMD_IOACCEL2: set_ioaccel2_performant_mode(h, c, reply_queue); writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); break; case IOACCEL2_TMF: set_ioaccel2_tmf_performant_mode(h, c, reply_queue); writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); break; default: set_performant_mode(h, c, reply_queue); h->access.submit_command(h, c); } } static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) { if (unlikely(hpsa_is_pending_event(c))) return finish_cmd(c); __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); } static inline int is_hba_lunid(unsigned char scsi3addr[]) { return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; } static inline int is_scsi_rev_5(struct ctlr_info *h) { if (!h->hba_inquiry_data) return 0; if ((h->hba_inquiry_data[2] & 0x07) == 5) return 1; return 0; } static int hpsa_find_target_lun(struct ctlr_info *h, unsigned char scsi3addr[], int bus, int *target, int *lun) { /* finds an unused bus, target, lun for a new physical device * assumes h->devlock is held */ int i, found = 0; DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); bitmap_zero(lun_taken, HPSA_MAX_DEVICES); for (i = 0; i < h->ndevices; i++) { if (h->dev[i]->bus == bus && h->dev[i]->target != -1) __set_bit(h->dev[i]->target, lun_taken); } i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); if (i < HPSA_MAX_DEVICES) { /* *bus = 1; */ *target = i; *lun = 0; found = 1; } return !found; } static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, char *description) { #define LABEL_SIZE 25 char label[LABEL_SIZE]; if (h == NULL || h->pdev == NULL || h->scsi_host == NULL) return; switch (dev->devtype) { case TYPE_RAID: snprintf(label, LABEL_SIZE, "controller"); break; case TYPE_ENCLOSURE: snprintf(label, LABEL_SIZE, "enclosure"); break; case TYPE_DISK: case TYPE_ZBC: if (dev->external) snprintf(label, LABEL_SIZE, "external"); else if (!is_logical_dev_addr_mode(dev->scsi3addr)) snprintf(label, LABEL_SIZE, "%s", raid_label[PHYSICAL_DRIVE]); else snprintf(label, LABEL_SIZE, "RAID-%s", dev->raid_level > RAID_UNKNOWN ? "?" : raid_label[dev->raid_level]); break; case TYPE_ROM: snprintf(label, LABEL_SIZE, "rom"); break; case TYPE_TAPE: snprintf(label, LABEL_SIZE, "tape"); break; case TYPE_MEDIUM_CHANGER: snprintf(label, LABEL_SIZE, "changer"); break; default: snprintf(label, LABEL_SIZE, "UNKNOWN"); break; } dev_printk(level, &h->pdev->dev, "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n", h->scsi_host->host_no, dev->bus, dev->target, dev->lun, description, scsi_device_type(dev->devtype), dev->vendor, dev->model, label, dev->offload_config ? '+' : '-', dev->offload_enabled ? '+' : '-', dev->expose_device); } /* Add an entry into h->dev[] array. */ static int hpsa_scsi_add_entry(struct ctlr_info *h, struct hpsa_scsi_dev_t *device, struct hpsa_scsi_dev_t *added[], int *nadded) { /* assumes h->devlock is held */ int n = h->ndevices; int i; unsigned char addr1[8], addr2[8]; struct hpsa_scsi_dev_t *sd; if (n >= HPSA_MAX_DEVICES) { dev_err(&h->pdev->dev, "too many devices, some will be " "inaccessible.\n"); return -1; } /* physical devices do not have lun or target assigned until now. */ if (device->lun != -1) /* Logical device, lun is already assigned. */ goto lun_assigned; /* If this device a non-zero lun of a multi-lun device * byte 4 of the 8-byte LUN addr will contain the logical * unit no, zero otherwise. */ if (device->scsi3addr[4] == 0) { /* This is not a non-zero lun of a multi-lun device */ if (hpsa_find_target_lun(h, device->scsi3addr, device->bus, &device->target, &device->lun) != 0) return -1; goto lun_assigned; } /* This is a non-zero lun of a multi-lun device. * Search through our list and find the device which * has the same 8 byte LUN address, excepting byte 4 and 5. * Assign the same bus and target for this new LUN. * Use the logical unit number from the firmware. */ memcpy(addr1, device->scsi3addr, 8); addr1[4] = 0; addr1[5] = 0; for (i = 0; i < n; i++) { sd = h->dev[i]; memcpy(addr2, sd->scsi3addr, 8); addr2[4] = 0; addr2[5] = 0; /* differ only in byte 4 and 5? */ if (memcmp(addr1, addr2, 8) == 0) { device->bus = sd->bus; device->target = sd->target; device->lun = device->scsi3addr[4]; break; } } if (device->lun == -1) { dev_warn(&h->pdev->dev, "physical device with no LUN=0," " suspect firmware bug or unsupported hardware " "configuration.\n"); return -1; } lun_assigned: h->dev[n] = device; h->ndevices++; added[*nadded] = device; (*nadded)++; hpsa_show_dev_msg(KERN_INFO, h, device, device->expose_device ? "added" : "masked"); device->offload_to_be_enabled = device->offload_enabled; device->offload_enabled = 0; return 0; } /* Update an entry in h->dev[] array. */ static void hpsa_scsi_update_entry(struct ctlr_info *h, int entry, struct hpsa_scsi_dev_t *new_entry) { int offload_enabled; /* assumes h->devlock is held */ BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); /* Raid level changed. */ h->dev[entry]->raid_level = new_entry->raid_level; /* Raid offload parameters changed. Careful about the ordering. */ if (new_entry->offload_config && new_entry->offload_enabled) { /* * if drive is newly offload_enabled, we want to copy the * raid map data first. If previously offload_enabled and * offload_config were set, raid map data had better be * the same as it was before. if raid map data is changed * then it had better be the case that * h->dev[entry]->offload_enabled is currently 0. */ h->dev[entry]->raid_map = new_entry->raid_map; h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; } if (new_entry->hba_ioaccel_enabled) { h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ } h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; h->dev[entry]->offload_config = new_entry->offload_config; h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; h->dev[entry]->queue_depth = new_entry->queue_depth; /* * We can turn off ioaccel offload now, but need to delay turning * it on until we can update h->dev[entry]->phys_disk[], but we * can't do that until all the devices are updated. */ h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled; if (!new_entry->offload_enabled) h->dev[entry]->offload_enabled = 0; offload_enabled = h->dev[entry]->offload_enabled; h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled; hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); h->dev[entry]->offload_enabled = offload_enabled; } /* Replace an entry from h->dev[] array. */ static void hpsa_scsi_replace_entry(struct ctlr_info *h, int entry, struct hpsa_scsi_dev_t *new_entry, struct hpsa_scsi_dev_t *added[], int *nadded, struct hpsa_scsi_dev_t *removed[], int *nremoved) { /* assumes h->devlock is held */ BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); removed[*nremoved] = h->dev[entry]; (*nremoved)++; /* * New physical devices won't have target/lun assigned yet * so we need to preserve the values in the slot we are replacing. */ if (new_entry->target == -1) { new_entry->target = h->dev[entry]->target; new_entry->lun = h->dev[entry]->lun; } h->dev[entry] = new_entry; added[*nadded] = new_entry; (*nadded)++; hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); new_entry->offload_to_be_enabled = new_entry->offload_enabled; new_entry->offload_enabled = 0; } /* Remove an entry from h->dev[] array. */ static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry, struct hpsa_scsi_dev_t *removed[], int *nremoved) { /* assumes h->devlock is held */ int i; struct hpsa_scsi_dev_t *sd; BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); sd = h->dev[entry]; removed[*nremoved] = h->dev[entry]; (*nremoved)++; for (i = entry; i < h->ndevices-1; i++) h->dev[i] = h->dev[i+1]; h->ndevices--; hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); } #define SCSI3ADDR_EQ(a, b) ( \ (a)[7] == (b)[7] && \ (a)[6] == (b)[6] && \ (a)[5] == (b)[5] && \ (a)[4] == (b)[4] && \ (a)[3] == (b)[3] && \ (a)[2] == (b)[2] && \ (a)[1] == (b)[1] && \ (a)[0] == (b)[0]) static void fixup_botched_add(struct ctlr_info *h, struct hpsa_scsi_dev_t *added) { /* called when scsi_add_device fails in order to re-adjust * h->dev[] to match the mid layer's view. */ unsigned long flags; int i, j; spin_lock_irqsave(&h->lock, flags); for (i = 0; i < h->ndevices; i++) { if (h->dev[i] == added) { for (j = i; j < h->ndevices-1; j++) h->dev[j] = h->dev[j+1]; h->ndevices--; break; } } spin_unlock_irqrestore(&h->lock, flags); kfree(added); } static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, struct hpsa_scsi_dev_t *dev2) { /* we compare everything except lun and target as these * are not yet assigned. Compare parts likely * to differ first */ if (memcmp(dev1->scsi3addr, dev2->scsi3addr, sizeof(dev1->scsi3addr)) != 0) return 0; if (memcmp(dev1->device_id, dev2->device_id, sizeof(dev1->device_id)) != 0) return 0; if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) return 0; if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) return 0; if (dev1->devtype != dev2->devtype) return 0; if (dev1->bus != dev2->bus) return 0; return 1; } static inline int device_updated(struct hpsa_scsi_dev_t *dev1, struct hpsa_scsi_dev_t *dev2) { /* Device attributes that can change, but don't mean * that the device is a different device, nor that the OS * needs to be told anything about the change. */ if (dev1->raid_level != dev2->raid_level) return 1; if (dev1->offload_config != dev2->offload_config) return 1; if (dev1->offload_enabled != dev2->offload_enabled) return 1; if (!is_logical_dev_addr_mode(dev1->scsi3addr)) if (dev1->queue_depth != dev2->queue_depth) return 1; return 0; } /* Find needle in haystack. If exact match found, return DEVICE_SAME, * and return needle location in *index. If scsi3addr matches, but not * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle * location in *index. * In the case of a minor device attribute change, such as RAID level, just * return DEVICE_UPDATED, along with the updated device's location in index. * If needle not found, return DEVICE_NOT_FOUND. */ static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, struct hpsa_scsi_dev_t *haystack[], int haystack_size, int *index) { int i; #define DEVICE_NOT_FOUND 0 #define DEVICE_CHANGED 1 #define DEVICE_SAME 2 #define DEVICE_UPDATED 3 if (needle == NULL) return DEVICE_NOT_FOUND; for (i = 0; i < haystack_size; i++) { if (haystack[i] == NULL) /* previously removed. */ continue; if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { *index = i; if (device_is_the_same(needle, haystack[i])) { if (device_updated(needle, haystack[i])) return DEVICE_UPDATED; return DEVICE_SAME; } else { /* Keep offline devices offline */ if (needle->volume_offline) return DEVICE_NOT_FOUND; return DEVICE_CHANGED; } } } *index = -1; return DEVICE_NOT_FOUND; } static void hpsa_monitor_offline_device(struct ctlr_info *h, unsigned char scsi3addr[]) { struct offline_device_entry *device; unsigned long flags; /* Check to see if device is already on the list */ spin_lock_irqsave(&h->offline_device_lock, flags); list_for_each_entry(device, &h->offline_device_list, offline_list) { if (memcmp(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)) == 0) { spin_unlock_irqrestore(&h->offline_device_lock, flags); return; } } spin_unlock_irqrestore(&h->offline_device_lock, flags); /* Device is not on the list, add it. */ device = kmalloc(sizeof(*device), GFP_KERNEL); if (!device) return; memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); spin_lock_irqsave(&h->offline_device_lock, flags); list_add_tail(&device->offline_list, &h->offline_device_list); spin_unlock_irqrestore(&h->offline_device_lock, flags); } /* Print a message explaining various offline volume states */ static void hpsa_show_volume_status(struct ctlr_info *h, struct hpsa_scsi_dev_t *sd) { if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); switch (sd->volume_offline) { case HPSA_LV_OK: break; case HPSA_LV_UNDERGOING_ERASE: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; case HPSA_LV_NOT_AVAILABLE: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; case HPSA_LV_UNDERGOING_RPI: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; case HPSA_LV_PENDING_RPI: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; case HPSA_LV_ENCRYPTED_NO_KEY: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; case HPSA_LV_UNDERGOING_ENCRYPTION: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; case HPSA_LV_PENDING_ENCRYPTION: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; case HPSA_LV_PENDING_ENCRYPTION_REKEYING: dev_info(&h->pdev->dev, "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", h->scsi_host->host_no, sd->bus, sd->target, sd->lun); break; } } /* * Figure the list of physical drive pointers for a logical drive with * raid offload configured. */ static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev[], int ndevices, struct hpsa_scsi_dev_t *logical_drive) { struct raid_map_data *map = &logical_drive->raid_map; struct raid_map_disk_data *dd = &map->data[0]; int i, j; int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + le16_to_cpu(map->metadata_disks_per_row); int nraid_map_entries = le16_to_cpu(map->row_cnt) * le16_to_cpu(map->layout_map_count) * total_disks_per_row; int nphys_disk = le16_to_cpu(map->layout_map_count) * total_disks_per_row; int qdepth; if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) nraid_map_entries = RAID_MAP_MAX_ENTRIES; logical_drive->nphysical_disks = nraid_map_entries; qdepth = 0; for (i = 0; i < nraid_map_entries; i++) { logical_drive->phys_disk[i] = NULL; if (!logical_drive->offload_config) continue; for (j = 0; j < ndevices; j++) { if (dev[j] == NULL) continue; if (dev[j]->devtype != TYPE_DISK && dev[j]->devtype != TYPE_ZBC) continue; if (is_logical_device(dev[j])) continue; if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) continue; logical_drive->phys_disk[i] = dev[j]; if (i < nphys_disk) qdepth = min(h->nr_cmds, qdepth + logical_drive->phys_disk[i]->queue_depth); break; } /* * This can happen if a physical drive is removed and * the logical drive is degraded. In that case, the RAID * map data will refer to a physical disk which isn't actually * present. And in that case offload_enabled should already * be 0, but we'll turn it off here just in case */ if (!logical_drive->phys_disk[i]) { logical_drive->offload_enabled = 0; logical_drive->offload_to_be_enabled = 0; logical_drive->queue_depth = 8; } } if (nraid_map_entries) /* * This is correct for reads, too high for full stripe writes, * way too high for partial stripe writes */ logical_drive->queue_depth = qdepth; else logical_drive->queue_depth = h->nr_cmds; } static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev[], int ndevices) { int i; for (i = 0; i < ndevices; i++) { if (dev[i] == NULL) continue; if (dev[i]->devtype != TYPE_DISK && dev[i]->devtype != TYPE_ZBC) continue; if (!is_logical_device(dev[i])) continue; /* * If offload is currently enabled, the RAID map and * phys_disk[] assignment *better* not be changing * and since it isn't changing, we do not need to * update it. */ if (dev[i]->offload_enabled) continue; hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); } } static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) { int rc = 0; if (!h->scsi_host) return 1; if (is_logical_device(device)) /* RAID */ rc = scsi_add_device(h->scsi_host, device->bus, device->target, device->lun); else /* HBA */ rc = hpsa_add_sas_device(h->sas_host, device); return rc; } static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev) { int i; int count = 0; for (i = 0; i < h->nr_cmds; i++) { struct CommandList *c = h->cmd_pool + i; int refcount = atomic_inc_return(&c->refcount); if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, dev->scsi3addr)) { unsigned long flags; spin_lock_irqsave(&h->lock, flags); /* Implied MB */ if (!hpsa_is_cmd_idle(c)) ++count; spin_unlock_irqrestore(&h->lock, flags); } cmd_free(h, c); } return count; } static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) { int cmds = 0; int waits = 0; while (1) { cmds = hpsa_find_outstanding_commands_for_dev(h, device); if (cmds == 0) break; if (++waits > 20) break; dev_warn(&h->pdev->dev, "%s: removing device with %d outstanding commands!\n", __func__, cmds); msleep(1000); } } static void hpsa_remove_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) { struct scsi_device *sdev = NULL; if (!h->scsi_host) return; if (is_logical_device(device)) { /* RAID */ sdev = scsi_device_lookup(h->scsi_host, device->bus, device->target, device->lun); if (sdev) { scsi_remove_device(sdev); scsi_device_put(sdev); } else { /* * We don't expect to get here. Future commands * to this device will get a selection timeout as * if the device were gone. */ hpsa_show_dev_msg(KERN_WARNING, h, device, "didn't find device for removal."); } } else { /* HBA */ device->removed = 1; hpsa_wait_for_outstanding_commands_for_dev(h, device); hpsa_remove_sas_device(device); } } static void adjust_hpsa_scsi_table(struct ctlr_info *h, struct hpsa_scsi_dev_t *sd[], int nsds) { /* sd contains scsi3 addresses and devtypes, and inquiry * data. This function takes what's in sd to be the current * reality and updates h->dev[] to reflect that reality. */ int i, entry, device_change, changes = 0; struct hpsa_scsi_dev_t *csd; unsigned long flags; struct hpsa_scsi_dev_t **added, **removed; int nadded, nremoved; /* * A reset can cause a device status to change * re-schedule the scan to see what happened. */ spin_lock_irqsave(&h->reset_lock, flags); if (h->reset_in_progress) { h->drv_req_rescan = 1; spin_unlock_irqrestore(&h->reset_lock, flags); return; } spin_unlock_irqrestore(&h->reset_lock, flags); added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); if (!added || !removed) { dev_warn(&h->pdev->dev, "out of memory in " "adjust_hpsa_scsi_table\n"); goto free_and_out; } spin_lock_irqsave(&h->devlock, flags); /* find any devices in h->dev[] that are not in * sd[] and remove them from h->dev[], and for any * devices which have changed, remove the old device * info and add the new device info. * If minor device attributes change, just update * the existing device structure. */ i = 0; nremoved = 0; nadded = 0; while (i < h->ndevices) { csd = h->dev[i]; device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); if (device_change == DEVICE_NOT_FOUND) { changes++; hpsa_scsi_remove_entry(h, i, removed, &nremoved); continue; /* remove ^^^, hence i not incremented */ } else if (device_change == DEVICE_CHANGED) { changes++; hpsa_scsi_replace_entry(h, i, sd[entry], added, &nadded, removed, &nremoved); /* Set it to NULL to prevent it from being freed * at the bottom of hpsa_update_scsi_devices() */ sd[entry] = NULL; } else if (device_change == DEVICE_UPDATED) { hpsa_scsi_update_entry(h, i, sd[entry]); } i++; } /* Now, make sure every device listed in sd[] is also * listed in h->dev[], adding them if they aren't found */ for (i = 0; i < nsds; i++) { if (!sd[i]) /* if already added above. */ continue; /* Don't add devices which are NOT READY, FORMAT IN PROGRESS * as the SCSI mid-layer does not handle such devices well. * It relentlessly loops sending TUR at 3Hz, then READ(10) * at 160Hz, and prevents the system from coming up. */ if (sd[i]->volume_offline) { hpsa_show_volume_status(h, sd[i]); hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); continue; } device_change = hpsa_scsi_find_entry(sd[i], h->dev, h->ndevices, &entry); if (device_change == DEVICE_NOT_FOUND) { changes++; if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0) break; sd[i] = NULL; /* prevent from being freed later. */ } else if (device_change == DEVICE_CHANGED) { /* should never happen... */ changes++; dev_warn(&h->pdev->dev, "device unexpectedly changed.\n"); /* but if it does happen, we just ignore that device */ } } hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); /* Now that h->dev[]->phys_disk[] is coherent, we can enable * any logical drives that need it enabled. */ for (i = 0; i < h->ndevices; i++) { if (h->dev[i] == NULL) continue; h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; } spin_unlock_irqrestore(&h->devlock, flags); /* Monitor devices which are in one of several NOT READY states to be * brought online later. This must be done without holding h->devlock, * so don't touch h->dev[] */ for (i = 0; i < nsds; i++) { if (!sd[i]) /* if already added above. */ continue; if (sd[i]->volume_offline) hpsa_monitor_offline_device(h, sd[i]->scsi3addr); } /* Don't notify scsi mid layer of any changes the first time through * (or if there are no changes) scsi_scan_host will do it later the * first time through. */ if (!changes) goto free_and_out; /* Notify scsi mid layer of any removed devices */ for (i = 0; i < nremoved; i++) { if (removed[i] == NULL) continue; if (removed[i]->expose_device) hpsa_remove_device(h, removed[i]); kfree(removed[i]); removed[i] = NULL; } /* Notify scsi mid layer of any added devices */ for (i = 0; i < nadded; i++) { int rc = 0; if (added[i] == NULL) continue; if (!(added[i]->expose_device)) continue; rc = hpsa_add_device(h, added[i]); if (!rc) continue; dev_warn(&h->pdev->dev, "addition failed %d, device not added.", rc); /* now we have to remove it from h->dev, * since it didn't get added to scsi mid layer */ fixup_botched_add(h, added[i]); h->drv_req_rescan = 1; } free_and_out: kfree(added); kfree(removed); } /* * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * * Assume's h->devlock is held. */ static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, int bus, int target, int lun) { int i; struct hpsa_scsi_dev_t *sd; for (i = 0; i < h->ndevices; i++) { sd = h->dev[i]; if (sd->bus == bus && sd->target == target && sd->lun == lun) return sd; } return NULL; } static int hpsa_slave_alloc(struct scsi_device *sdev) { struct hpsa_scsi_dev_t *sd = NULL; unsigned long flags; struct ctlr_info *h; h = sdev_to_hba(sdev); spin_lock_irqsave(&h->devlock, flags); if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) { struct scsi_target *starget; struct sas_rphy *rphy; starget = scsi_target(sdev); rphy = target_to_rphy(starget); sd = hpsa_find_device_by_sas_rphy(h, rphy); if (sd) { sd->target = sdev_id(sdev); sd->lun = sdev->lun; } } if (!sd) sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), sdev_id(sdev), sdev->lun); if (sd && sd->expose_device) { atomic_set(&sd->ioaccel_cmds_out, 0); sdev->hostdata = sd; } else sdev->hostdata = NULL; spin_unlock_irqrestore(&h->devlock, flags); return 0; } /* configure scsi device based on internal per-device structure */ static int hpsa_slave_configure(struct scsi_device *sdev) { struct hpsa_scsi_dev_t *sd; int queue_depth; sd = sdev->hostdata; sdev->no_uld_attach = !sd || !sd->expose_device; if (sd) { if (sd->external) queue_depth = EXTERNAL_QD; else queue_depth = sd->queue_depth != 0 ? sd->queue_depth : sdev->host->can_queue; } else queue_depth = sdev->host->can_queue; scsi_change_queue_depth(sdev, queue_depth); return 0; } static void hpsa_slave_destroy(struct scsi_device *sdev) { /* nothing to do. */ } static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) { int i; if (!h->ioaccel2_cmd_sg_list) return; for (i = 0; i < h->nr_cmds; i++) { kfree(h->ioaccel2_cmd_sg_list[i]); h->ioaccel2_cmd_sg_list[i] = NULL; } kfree(h->ioaccel2_cmd_sg_list); h->ioaccel2_cmd_sg_list = NULL; } static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) { int i; if (h->chainsize <= 0) return 0; h->ioaccel2_cmd_sg_list = kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds, GFP_KERNEL); if (!h->ioaccel2_cmd_sg_list) return -ENOMEM; for (i = 0; i < h->nr_cmds; i++) { h->ioaccel2_cmd_sg_list[i] = kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) * h->maxsgentries, GFP_KERNEL); if (!h->ioaccel2_cmd_sg_list[i]) goto clean; } return 0; clean: hpsa_free_ioaccel2_sg_chain_blocks(h); return -ENOMEM; } static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) { int i; if (!h->cmd_sg_list) return; for (i = 0; i < h->nr_cmds; i++) { kfree(h->cmd_sg_list[i]); h->cmd_sg_list[i] = NULL; } kfree(h->cmd_sg_list); h->cmd_sg_list = NULL; } static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) { int i; if (h->chainsize <= 0) return 0; h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, GFP_KERNEL); if (!h->cmd_sg_list) return -ENOMEM; for (i = 0; i < h->nr_cmds; i++) { h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * h->chainsize, GFP_KERNEL); if (!h->cmd_sg_list[i]) goto clean; } return 0; clean: hpsa_free_sg_chain_blocks(h); return -ENOMEM; } static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, struct io_accel2_cmd *cp, struct CommandList *c) { struct ioaccel2_sg_element *chain_block; u64 temp64; u32 chain_size; chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; chain_size = le32_to_cpu(cp->sg[0].length); temp64 = pci_map_single(h->pdev, chain_block, chain_size, PCI_DMA_TODEVICE); if (dma_mapping_error(&h->pdev->dev, temp64)) { /* prevent subsequent unmapping */ cp->sg->address = 0; return -1; } cp->sg->address = cpu_to_le64(temp64); return 0; } static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, struct io_accel2_cmd *cp) { struct ioaccel2_sg_element *chain_sg; u64 temp64; u32 chain_size; chain_sg = cp->sg; temp64 = le64_to_cpu(chain_sg->address); chain_size = le32_to_cpu(cp->sg[0].length); pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE); } static int hpsa_map_sg_chain_block(struct ctlr_info *h, struct CommandList *c) { struct SGDescriptor *chain_sg, *chain_block; u64 temp64; u32 chain_len; chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; chain_block = h->cmd_sg_list[c->cmdindex]; chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); chain_len = sizeof(*chain_sg) * (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); chain_sg->Len = cpu_to_le32(chain_len); temp64 = pci_map_single(h->pdev, chain_block, chain_len, PCI_DMA_TODEVICE); if (dma_mapping_error(&h->pdev->dev, temp64)) { /* prevent subsequent unmapping */ chain_sg->Addr = cpu_to_le64(0); return -1; } chain_sg->Addr = cpu_to_le64(temp64); return 0; } static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, struct CommandList *c) { struct SGDescriptor *chain_sg; if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) return; chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr), le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE); } /* Decode the various types of errors on ioaccel2 path. * Return 1 for any error that should generate a RAID path retry. * Return 0 for errors that don't require a RAID path retry. */ static int handle_ioaccel_mode2_error(struct ctlr_info *h, struct CommandList *c, struct scsi_cmnd *cmd, struct io_accel2_cmd *c2, struct hpsa_scsi_dev_t *dev) { int data_len; int retry = 0; u32 ioaccel2_resid = 0; switch (c2->error_data.serv_response) { case IOACCEL2_SERV_RESPONSE_COMPLETE: switch (c2->error_data.status) { case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: break; case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: cmd->result |= SAM_STAT_CHECK_CONDITION; if (c2->error_data.data_present != IOACCEL2_SENSE_DATA_PRESENT) { memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); break; } /* copy the sense data */ data_len = c2->error_data.sense_data_len; if (data_len > SCSI_SENSE_BUFFERSIZE) data_len = SCSI_SENSE_BUFFERSIZE; if (data_len > sizeof(c2->error_data.sense_data_buff)) data_len = sizeof(c2->error_data.sense_data_buff); memcpy(cmd->sense_buffer, c2->error_data.sense_data_buff, data_len); retry = 1; break; case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: retry = 1; break; case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: retry = 1; break; case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: retry = 1; break; case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: retry = 1; break; default: retry = 1; break; } break; case IOACCEL2_SERV_RESPONSE_FAILURE: switch (c2->error_data.status) { case IOACCEL2_STATUS_SR_IO_ERROR: case IOACCEL2_STATUS_SR_IO_ABORTED: case IOACCEL2_STATUS_SR_OVERRUN: retry = 1; break; case IOACCEL2_STATUS_SR_UNDERRUN: cmd->result = (DID_OK << 16); /* host byte */ cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ ioaccel2_resid = get_unaligned_le32( &c2->error_data.resid_cnt[0]); scsi_set_resid(cmd, ioaccel2_resid); break; case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: case IOACCEL2_STATUS_SR_INVALID_DEVICE: case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: /* * Did an HBA disk disappear? We will eventually * get a state change event from the controller but * in the meantime, we need to tell the OS that the * HBA disk is no longer there and stop I/O * from going down. This allows the potential re-insert * of the disk to get the same device node. */ if (dev->physical_device && dev->expose_device) { cmd->result = DID_NO_CONNECT << 16; dev->removed = 1; h->drv_req_rescan = 1; dev_warn(&h->pdev->dev, "%s: device is gone!\n", __func__); } else /* * Retry by sending down the RAID path. * We will get an event from ctlr to * trigger rescan regardless. */ retry = 1; break; default: retry = 1; } break; case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: break; case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: break; case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: retry = 1; break; case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: break; default: retry = 1; break; } return retry; /* retry on raid path? */ } static void hpsa_cmd_resolve_events(struct ctlr_info *h, struct CommandList *c) { bool do_wake = false; /* * Prevent the following race in the abort handler: * * 1. LLD is requested to abort a SCSI command * 2. The SCSI command completes * 3. The struct CommandList associated with step 2 is made available * 4. New I/O request to LLD to another LUN re-uses struct CommandList * 5. Abort handler follows scsi_cmnd->host_scribble and * finds struct CommandList and tries to aborts it * Now we have aborted the wrong command. * * Reset c->scsi_cmd here so that the abort or reset handler will know * this command has completed. Then, check to see if the handler is * waiting for this command, and, if so, wake it. */ c->scsi_cmd = SCSI_CMD_IDLE; mb(); /* Declare command idle before checking for pending events. */ if (c->abort_pending) { do_wake = true; c->abort_pending = false; } if (c->reset_pending) { unsigned long flags; struct hpsa_scsi_dev_t *dev; /* * There appears to be a reset pending; lock the lock and * reconfirm. If so, then decrement the count of outstanding * commands and wake the reset command if this is the last one. */ spin_lock_irqsave(&h->lock, flags); dev = c->reset_pending; /* Re-fetch under the lock. */ if (dev && atomic_dec_and_test(&dev->reset_cmds_out)) do_wake = true; c->reset_pending = NULL; spin_unlock_irqrestore(&h->lock, flags); } if (do_wake) wake_up_all(&h->event_sync_wait_queue); } static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, struct CommandList *c) { hpsa_cmd_resolve_events(h, c); cmd_tagged_free(h, c); } static void hpsa_cmd_free_and_done(struct ctlr_info *h, struct CommandList *c, struct scsi_cmnd *cmd) { hpsa_cmd_resolve_and_free(h, c); if (cmd && cmd->scsi_done) cmd->scsi_done(cmd); } static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) { INIT_WORK(&c->work, hpsa_command_resubmit_worker); queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); } static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd) { cmd->result = DID_ABORT << 16; } static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c, struct scsi_cmnd *cmd) { hpsa_set_scsi_cmd_aborted(cmd); dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n", c->Request.CDB, c->err_info->ScsiStatus); hpsa_cmd_resolve_and_free(h, c); } static void process_ioaccel2_completion(struct ctlr_info *h, struct CommandList *c, struct scsi_cmnd *cmd, struct hpsa_scsi_dev_t *dev) { struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; /* check for good status */ if (likely(c2->error_data.serv_response == 0 && c2->error_data.status == 0)) return hpsa_cmd_free_and_done(h, c, cmd); /* * Any RAID offload error results in retry which will use * the normal I/O path so the controller can handle whatever's * wrong. */ if (is_logical_device(dev) && c2->error_data.serv_response == IOACCEL2_SERV_RESPONSE_FAILURE) { if (c2->error_data.status == IOACCEL2_STATUS_SR_IOACCEL_DISABLED) { dev->offload_enabled = 0; dev->offload_to_be_enabled = 0; } return hpsa_retry_cmd(h, c); } if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev)) return hpsa_retry_cmd(h, c); return hpsa_cmd_free_and_done(h, c, cmd); } /* Returns 0 on success, < 0 otherwise. */ static int hpsa_evaluate_tmf_status(struct ctlr_info *h, struct CommandList *cp) { u8 tmf_status = cp->err_info->ScsiStatus; switch (tmf_status) { case CISS_TMF_COMPLETE: /* * CISS_TMF_COMPLETE never happens, instead, * ei->CommandStatus == 0 for this case. */ case CISS_TMF_SUCCESS: return 0; case CISS_TMF_INVALID_FRAME: case CISS_TMF_NOT_SUPPORTED: case CISS_TMF_FAILED: case CISS_TMF_WRONG_LUN: case CISS_TMF_OVERLAPPED_TAG: break; default: dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", tmf_status); break; } return -tmf_status; } static void complete_scsi_command(struct CommandList *cp) { struct scsi_cmnd *cmd; struct ctlr_info *h; struct ErrorInfo *ei; struct hpsa_scsi_dev_t *dev; struct io_accel2_cmd *c2; u8 sense_key; u8 asc; /* additional sense code */ u8 ascq; /* additional sense code qualifier */ unsigned long sense_data_size; ei = cp->err_info; cmd = cp->scsi_cmd; h = cp->h; if (!cmd->device) { cmd->result = DID_NO_CONNECT << 16; return hpsa_cmd_free_and_done(h, cp, cmd); } dev = cmd->device->hostdata; if (!dev) { cmd->result = DID_NO_CONNECT << 16; return hpsa_cmd_free_and_done(h, cp, cmd); } c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; scsi_dma_unmap(cmd); /* undo the DMA mappings */ if ((cp->cmd_type == CMD_SCSI) && (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) hpsa_unmap_sg_chain_block(h, cp); if ((cp->cmd_type == CMD_IOACCEL2) && (c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) hpsa_unmap_ioaccel2_sg_chain_block(h, c2); cmd->result = (DID_OK << 16); /* host byte */ cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) { if (dev->physical_device && dev->expose_device && dev->removed) { cmd->result = DID_NO_CONNECT << 16; return hpsa_cmd_free_and_done(h, cp, cmd); } if (likely(cp->phys_disk != NULL)) atomic_dec(&cp->phys_disk->ioaccel_cmds_out); } /* * We check for lockup status here as it may be set for * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by * fail_all_oustanding_cmds() */ if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { /* DID_NO_CONNECT will prevent a retry */ cmd->result = DID_NO_CONNECT << 16; return hpsa_cmd_free_and_done(h, cp, cmd); } if ((unlikely(hpsa_is_pending_event(cp)))) { if (cp->reset_pending) return hpsa_cmd_free_and_done(h, cp, cmd); if (cp->abort_pending) return hpsa_cmd_abort_and_free(h, cp, cmd); } if (cp->cmd_type == CMD_IOACCEL2) return process_ioaccel2_completion(h, cp, cmd, dev); scsi_set_resid(cmd, ei->ResidualCnt); if (ei->CommandStatus == 0) return hpsa_cmd_free_and_done(h, cp, cmd); /* For I/O accelerator commands, copy over some fields to the normal * CISS header used below for error handling. */ if (cp->cmd_type == CMD_IOACCEL1) { struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; cp->Header.SGList = scsi_sg_count(cmd); cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); cp->Request.CDBLen = le16_to_cpu(c->io_flags) & IOACCEL1_IOFLAGS_CDBLEN_MASK; cp->Header.tag = c->tag; memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); /* Any RAID offload error results in retry which will use * the normal I/O path so the controller can handle whatever's * wrong. */ if (is_logical_device(dev)) { if (ei->CommandStatus == CMD_IOACCEL_DISABLED) dev->offload_enabled = 0; return hpsa_retry_cmd(h, cp); } } /* an error has occurred */ switch (ei->CommandStatus) { case CMD_TARGET_STATUS: cmd->result |= ei->ScsiStatus; /* copy the sense data */ if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) sense_data_size = SCSI_SENSE_BUFFERSIZE; else sense_data_size = sizeof(ei->SenseInfo); if (ei->SenseLen < sense_data_size) sense_data_size = ei->SenseLen; memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); if (ei->ScsiStatus) decode_sense_data(ei->SenseInfo, sense_data_size, &sense_key, &asc, &ascq); if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { if (sense_key == ABORTED_COMMAND) { cmd->result |= DID_SOFT_ERROR << 16; break; } break; } /* Problem was not a check condition * Pass it up to the upper layers... */ if (ei->ScsiStatus) { dev_warn(&h->pdev->dev, "cp %p has status 0x%x " "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " "Returning result: 0x%x\n", cp, ei->ScsiStatus, sense_key, asc, ascq, cmd->result); } else { /* scsi status is zero??? How??? */ dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " "Returning no connection.\n", cp), /* Ordinarily, this case should never happen, * but there is a bug in some released firmware * revisions that allows it to happen if, for * example, a 4100 backplane loses power and * the tape drive is in it. We assume that * it's a fatal error of some kind because we * can't show that it wasn't. We will make it * look like selection timeout since that is * the most common reason for this to occur, * and it's severe enough. */ cmd->result = DID_NO_CONNECT << 16; } break; case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ break; case CMD_DATA_OVERRUN: dev_warn(&h->pdev->dev, "CDB %16phN data overrun\n", cp->Request.CDB); break; case CMD_INVALID: { /* print_bytes(cp, sizeof(*cp), 1, 0); print_cmd(cp); */ /* We get CMD_INVALID if you address a non-existent device * instead of a selection timeout (no response). You will * see this if you yank out a drive, then try to access it. * This is kind of a shame because it means that any other * CMD_INVALID (e.g. driver bug) will get interpreted as a * missing target. */ cmd->result = DID_NO_CONNECT << 16; } break; case CMD_PROTOCOL_ERR: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", cp->Request.CDB); break; case CMD_HARDWARE_ERR: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", cp->Request.CDB); break; case CMD_CONNECTION_LOST: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", cp->Request.CDB); break; case CMD_ABORTED: /* Return now to avoid calling scsi_done(). */ return hpsa_cmd_abort_and_free(h, cp, cmd); case CMD_ABORT_FAILED: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", cp->Request.CDB); break; case CMD_UNSOLICITED_ABORT: cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", cp->Request.CDB); break; case CMD_TIMEOUT: cmd->result = DID_TIME_OUT << 16; dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", cp->Request.CDB); break; case CMD_UNABORTABLE: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "Command unabortable\n"); break; case CMD_TMF_STATUS: if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ cmd->result = DID_ERROR << 16; break; case CMD_IOACCEL_DISABLED: /* This only handles the direct pass-through case since RAID * offload is handled above. Just attempt a retry. */ cmd->result = DID_SOFT_ERROR << 16; dev_warn(&h->pdev->dev, "cp %p had HP SSD Smart Path error\n", cp); break; default: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", cp, ei->CommandStatus); } return hpsa_cmd_free_and_done(h, cp, cmd); } static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c, int sg_used, int data_direction) { int i; for (i = 0; i < sg_used; i++) pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr), le32_to_cpu(c->SG[i].Len), data_direction); } static int hpsa_map_one(struct pci_dev *pdev, struct CommandList *cp, unsigned char *buf, size_t buflen, int data_direction) { u64 addr64; if (buflen == 0 || data_direction == PCI_DMA_NONE) { cp->Header.SGList = 0; cp->Header.SGTotal = cpu_to_le16(0); return 0; } addr64 = pci_map_single(pdev, buf, buflen, data_direction); if (dma_mapping_error(&pdev->dev, addr64)) { /* Prevent subsequent unmap of something never mapped */ cp->Header.SGList = 0; cp->Header.SGTotal = cpu_to_le16(0); return -1; } cp->SG[0].Addr = cpu_to_le64(addr64); cp->SG[0].Len = cpu_to_le32(buflen); cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ cp->Header.SGList = 1; /* no. SGs contig in this cmd */ cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ return 0; } #define NO_TIMEOUT ((unsigned long) -1) #define DEFAULT_TIMEOUT 30000 /* milliseconds */ static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, struct CommandList *c, int reply_queue, unsigned long timeout_msecs) { DECLARE_COMPLETION_ONSTACK(wait); c->waiting = &wait; __enqueue_cmd_and_start_io(h, c, reply_queue); if (timeout_msecs == NO_TIMEOUT) { /* TODO: get rid of this no-timeout thing */ wait_for_completion_io(&wait); return IO_OK; } if (!wait_for_completion_io_timeout(&wait, msecs_to_jiffies(timeout_msecs))) { dev_warn(&h->pdev->dev, "Command timed out.\n"); return -ETIMEDOUT; } return IO_OK; } static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, int reply_queue, unsigned long timeout_msecs) { if (unlikely(lockup_detected(h))) { c->err_info->CommandStatus = CMD_CTLR_LOCKUP; return IO_OK; } return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); } static u32 lockup_detected(struct ctlr_info *h) { int cpu; u32 rc, *lockup_detected; cpu = get_cpu(); lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); rc = *lockup_detected; put_cpu(); return rc; } #define MAX_DRIVER_CMD_RETRIES 25 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, struct CommandList *c, int data_direction, unsigned long timeout_msecs) { int backoff_time = 10, retry_count = 0; int rc; do { memset(c->err_info, 0, sizeof(*c->err_info)); rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, timeout_msecs); if (rc) break; retry_count++; if (retry_count > 3) { msleep(backoff_time); if (backoff_time < 1000) backoff_time *= 2; } } while ((check_for_unit_attention(h, c) || check_for_busy(h, c)) && retry_count <= MAX_DRIVER_CMD_RETRIES); hpsa_pci_unmap(h->pdev, c, 1, data_direction); if (retry_count > MAX_DRIVER_CMD_RETRIES) rc = -EIO; return rc; } static void hpsa_print_cmd(struct ctlr_info *h, char *txt, struct CommandList *c) { const u8 *cdb = c->Request.CDB; const u8 *lun = c->Header.LUN.LunAddrBytes; dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n", txt, lun, cdb); } static void hpsa_scsi_interpret_error(struct ctlr_info *h, struct CommandList *cp) { const struct ErrorInfo *ei = cp->err_info; struct device *d = &cp->h->pdev->dev; u8 sense_key, asc, ascq; int sense_len; switch (ei->CommandStatus) { case CMD_TARGET_STATUS: if (ei->SenseLen > sizeof(ei->SenseInfo)) sense_len = sizeof(ei->SenseInfo); else sense_len = ei->SenseLen; decode_sense_data(ei->SenseInfo, sense_len, &sense_key, &asc, &ascq); hpsa_print_cmd(h, "SCSI status", cp); if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", sense_key, asc, ascq); else dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); if (ei->ScsiStatus == 0) dev_warn(d, "SCSI status is abnormally zero. " "(probably indicates selection timeout " "reported incorrectly due to a known " "firmware bug, circa July, 2001.)\n"); break; case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ break; case CMD_DATA_OVERRUN: hpsa_print_cmd(h, "overrun condition", cp); break; case CMD_INVALID: { /* controller unfortunately reports SCSI passthru's * to non-existent targets as invalid commands. */ hpsa_print_cmd(h, "invalid command", cp); dev_warn(d, "probably means device no longer present\n"); } break; case CMD_PROTOCOL_ERR: hpsa_print_cmd(h, "protocol error", cp); break; case CMD_HARDWARE_ERR: hpsa_print_cmd(h, "hardware error", cp); break; case CMD_CONNECTION_LOST: hpsa_print_cmd(h, "connection lost", cp); break; case CMD_ABORTED: hpsa_print_cmd(h, "aborted", cp); break; case CMD_ABORT_FAILED: hpsa_print_cmd(h, "abort failed", cp); break; case CMD_UNSOLICITED_ABORT: hpsa_print_cmd(h, "unsolicited abort", cp); break; case CMD_TIMEOUT: hpsa_print_cmd(h, "timed out", cp); break; case CMD_UNABORTABLE: hpsa_print_cmd(h, "unabortable", cp); break; case CMD_CTLR_LOCKUP: hpsa_print_cmd(h, "controller lockup detected", cp); break; default: hpsa_print_cmd(h, "unknown status", cp); dev_warn(d, "Unknown command status %x\n", ei->CommandStatus); } } static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, u16 page, unsigned char *buf, unsigned char bufsize) { int rc = IO_OK; struct CommandList *c; struct ErrorInfo *ei; c = cmd_alloc(h); if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD)) { rc = -1; goto out; } rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); if (rc) goto out; ei = c->err_info; if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { hpsa_scsi_interpret_error(h, c); rc = -1; } out: cmd_free(h, c); return rc; } static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr, u8 reset_type, int reply_queue) { int rc = IO_OK; struct CommandList *c; struct ErrorInfo *ei; c = cmd_alloc(h); /* fill_cmd can't fail here, no data buffer to map. */ (void) fill_cmd(c, reset_type, h, NULL, 0, 0, scsi3addr, TYPE_MSG); rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); if (rc) { dev_warn(&h->pdev->dev, "Failed to send reset command\n"); goto out; } /* no unmap needed here because no data xfer. */ ei = c->err_info; if (ei->CommandStatus != 0) { hpsa_scsi_interpret_error(h, c); rc = -1; } out: cmd_free(h, c); return rc; } static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, struct hpsa_scsi_dev_t *dev, unsigned char *scsi3addr) { int i; bool match = false; struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; if (hpsa_is_cmd_idle(c)) return false; switch (c->cmd_type) { case CMD_SCSI: case CMD_IOCTL_PEND: match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, sizeof(c->Header.LUN.LunAddrBytes)); break; case CMD_IOACCEL1: case CMD_IOACCEL2: if (c->phys_disk == dev) { /* HBA mode match */ match = true; } else { /* Possible RAID mode -- check each phys dev. */ /* FIXME: Do we need to take out a lock here? If * so, we could just call hpsa_get_pdisk_of_ioaccel2() * instead. */ for (i = 0; i < dev->nphysical_disks && !match; i++) { /* FIXME: an alternate test might be * * match = dev->phys_disk[i]->ioaccel_handle * == c2->scsi_nexus; */ match = dev->phys_disk[i] == c->phys_disk; } } break; case IOACCEL2_TMF: for (i = 0; i < dev->nphysical_disks && !match; i++) { match = dev->phys_disk[i]->ioaccel_handle == le32_to_cpu(ac->it_nexus); } break; case 0: /* The command is in the middle of being initialized. */ match = false; break; default: dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", c->cmd_type); BUG(); } return match; } static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, unsigned char *scsi3addr, u8 reset_type, int reply_queue) { int i; int rc = 0; /* We can really only handle one reset at a time */ if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); return -EINTR; } BUG_ON(atomic_read(&dev->reset_cmds_out) != 0); for (i = 0; i < h->nr_cmds; i++) { struct CommandList *c = h->cmd_pool + i; int refcount = atomic_inc_return(&c->refcount); if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) { unsigned long flags; /* * Mark the target command as having a reset pending, * then lock a lock so that the command cannot complete * while we're considering it. If the command is not * idle then count it; otherwise revoke the event. */ c->reset_pending = dev; spin_lock_irqsave(&h->lock, flags); /* Implied MB */ if (!hpsa_is_cmd_idle(c)) atomic_inc(&dev->reset_cmds_out); else c->reset_pending = NULL; spin_unlock_irqrestore(&h->lock, flags); } cmd_free(h, c); } rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue); if (!rc) wait_event(h->event_sync_wait_queue, atomic_read(&dev->reset_cmds_out) == 0 || lockup_detected(h)); if (unlikely(lockup_detected(h))) { dev_warn(&h->pdev->dev, "Controller lockup detected during reset wait\n"); rc = -ENODEV; } if (unlikely(rc)) atomic_set(&dev->reset_cmds_out, 0); else rc = wait_for_device_to_become_ready(h, scsi3addr, 0); mutex_unlock(&h->reset_mutex); return rc; } static void hpsa_get_raid_level(struct ctlr_info *h, unsigned char *scsi3addr, unsigned char *raid_level) { int rc; unsigned char *buf; *raid_level = RAID_UNKNOWN; buf = kzalloc(64, GFP_KERNEL); if (!buf) return; if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_GEOMETRY)) goto exit; rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64); if (rc == 0) *raid_level = buf[8]; if (*raid_level > RAID_UNKNOWN) *raid_level = RAID_UNKNOWN; exit: kfree(buf); return; } #define HPSA_MAP_DEBUG #ifdef HPSA_MAP_DEBUG static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, struct raid_map_data *map_buff) { struct raid_map_disk_data *dd = &map_buff->data[0]; int map, row, col; u16 map_cnt, row_cnt, disks_per_row; if (rc != 0) return; /* Show details only if debugging has been activated. */ if (h->raid_offload_debug < 2) return; dev_info(&h->pdev->dev, "structure_size = %u\n", le32_to_cpu(map_buff->structure_size)); dev_info(&h->pdev->dev, "volume_blk_size = %u\n", le32_to_cpu(map_buff->volume_blk_size)); dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", le64_to_cpu(map_buff->volume_blk_cnt)); dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", map_buff->phys_blk_shift); dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", map_buff->parity_rotation_shift); dev_info(&h->pdev->dev, "strip_size = %u\n", le16_to_cpu(map_buff->strip_size)); dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", le64_to_cpu(map_buff->disk_starting_blk)); dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", le64_to_cpu(map_buff->disk_blk_cnt)); dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", le16_to_cpu(map_buff->data_disks_per_row)); dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", le16_to_cpu(map_buff->metadata_disks_per_row)); dev_info(&h->pdev->dev, "row_cnt = %u\n", le16_to_cpu(map_buff->row_cnt)); dev_info(&h->pdev->dev, "layout_map_count = %u\n", le16_to_cpu(map_buff->layout_map_count)); dev_info(&h->pdev->dev, "flags = 0x%x\n", le16_to_cpu(map_buff->flags)); dev_info(&h->pdev->dev, "encrypytion = %s\n", le16_to_cpu(map_buff->flags) & RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); dev_info(&h->pdev->dev, "dekindex = %u\n", le16_to_cpu(map_buff->dekindex)); map_cnt = le16_to_cpu(map_buff->layout_map_count); for (map = 0; map < map_cnt; map++) { dev_info(&h->pdev->dev, "Map%u:\n", map); row_cnt = le16_to_cpu(map_buff->row_cnt); for (row = 0; row < row_cnt; row++) { dev_info(&h->pdev->dev, " Row%u:\n", row); disks_per_row = le16_to_cpu(map_buff->data_disks_per_row); for (col = 0; col < disks_per_row; col++, dd++) dev_info(&h->pdev->dev, " D%02u: h=0x%04x xor=%u,%u\n", col, dd->ioaccel_handle, dd->xor_mult[0], dd->xor_mult[1]); disks_per_row = le16_to_cpu(map_buff->metadata_disks_per_row); for (col = 0; col < disks_per_row; col++, dd++) dev_info(&h->pdev->dev, " M%02u: h=0x%04x xor=%u,%u\n", col, dd->ioaccel_handle, dd->xor_mult[0], dd->xor_mult[1]); } } } #else static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, __attribute__((unused)) int rc, __attribute__((unused)) struct raid_map_data *map_buff) { } #endif static int hpsa_get_raid_map(struct ctlr_info *h, unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) { int rc = 0; struct CommandList *c; struct ErrorInfo *ei; c = cmd_alloc(h); if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, sizeof(this_device->raid_map), 0, scsi3addr, TYPE_CMD)) { dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); cmd_free(h, c); return -1; } rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); if (rc) goto out; ei = c->err_info; if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { hpsa_scsi_interpret_error(h, c); rc = -1; goto out; } cmd_free(h, c); /* @todo in the future, dynamically allocate RAID map memory */ if (le32_to_cpu(this_device->raid_map.structure_size) > sizeof(this_device->raid_map)) { dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); rc = -1; } hpsa_debug_map_buff(h, rc, &this_device->raid_map); return rc; out: cmd_free(h, c); return rc; } static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h, unsigned char scsi3addr[], u16 bmic_device_index, struct bmic_sense_subsystem_info *buf, size_t bufsize) { int rc = IO_OK; struct CommandList *c; struct ErrorInfo *ei; c = cmd_alloc(h); rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize, 0, RAID_CTLR_LUNID, TYPE_CMD); if (rc) goto out; c->Request.CDB[2] = bmic_device_index & 0xff; c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); if (rc) goto out; ei = c->err_info; if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { hpsa_scsi_interpret_error(h, c); rc = -1; } out: cmd_free(h, c); return rc; } static int hpsa_bmic_id_controller(struct ctlr_info *h, struct bmic_identify_controller *buf, size_t bufsize) { int rc = IO_OK; struct CommandList *c; struct ErrorInfo *ei; c = cmd_alloc(h); rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize, 0, RAID_CTLR_LUNID, TYPE_CMD); if (rc) goto out; rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); if (rc) goto out; ei = c->err_info; if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { hpsa_scsi_interpret_error(h, c); rc = -1; } out: cmd_free(h, c); return rc; } static int hpsa_bmic_id_physical_device(struct ctlr_info *h, unsigned char scsi3addr[], u16 bmic_device_index, struct bmic_identify_physical_device *buf, size_t bufsize) { int rc = IO_OK; struct CommandList *c; struct ErrorInfo *ei; c = cmd_alloc(h); rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, 0, RAID_CTLR_LUNID, TYPE_CMD); if (rc) goto out; c->Request.CDB[2] = bmic_device_index & 0xff; c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); ei = c->err_info; if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { hpsa_scsi_interpret_error(h, c); rc = -1; } out: cmd_free(h, c); return rc; } /* * get enclosure information * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure * Uses id_physical_device to determine the box_index. */ static void hpsa_get_enclosure_info(struct ctlr_info *h, unsigned char *scsi3addr, struct ReportExtendedLUNdata *rlep, int rle_index, struct hpsa_scsi_dev_t *encl_dev) { int rc = -1; struct CommandList *c = NULL; struct ErrorInfo *ei = NULL; struct bmic_sense_storage_box_params *bssbp = NULL; struct bmic_identify_physical_device *id_phys = NULL; struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; u16 bmic_device_index = 0; bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]); if (encl_dev->target == -1 || encl_dev->lun == -1) { rc = IO_OK; goto out; } if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) { rc = IO_OK; goto out; } bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL); if (!bssbp) goto out; id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); if (!id_phys) goto out; rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index, id_phys, sizeof(*id_phys)); if (rc) { dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n", __func__, encl_dev->external, bmic_device_index); goto out; } c = cmd_alloc(h); rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp, sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD); if (rc) goto out; if (id_phys->phys_connector[1] == 'E') c->Request.CDB[5] = id_phys->box_index; else c->Request.CDB[5] = 0; rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); if (rc) goto out; ei = c->err_info; if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { rc = -1; goto out; } encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port; memcpy(&encl_dev->phys_connector[id_phys->active_path_number], bssbp->phys_connector, sizeof(bssbp->phys_connector)); rc = IO_OK; out: kfree(bssbp); kfree(id_phys); if (c) cmd_free(h, c); if (rc != IO_OK) hpsa_show_dev_msg(KERN_INFO, h, encl_dev, "Error, could not get enclosure information\n"); } static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h, unsigned char *scsi3addr) { struct ReportExtendedLUNdata *physdev; u32 nphysicals; u64 sa = 0; int i; physdev = kzalloc(sizeof(*physdev), GFP_KERNEL); if (!physdev) return 0; if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); kfree(physdev); return 0; } nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24; for (i = 0; i < nphysicals; i++) if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) { sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]); break; } kfree(physdev); return sa; } static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr, struct hpsa_scsi_dev_t *dev) { int rc; u64 sa = 0; if (is_hba_lunid(scsi3addr)) { struct bmic_sense_subsystem_info *ssi; ssi = kzalloc(sizeof(*ssi), GFP_KERNEL); if (!ssi) return; rc = hpsa_bmic_sense_subsystem_information(h, scsi3addr, 0, ssi, sizeof(*ssi)); if (rc == 0) { sa = get_unaligned_be64(ssi->primary_world_wide_id); h->sas_address = sa; } kfree(ssi); } else sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr); dev->sas_address = sa; } /* Get a device id from inquiry page 0x83 */ static bool hpsa_vpd_page_supported(struct ctlr_info *h, unsigned char scsi3addr[], u8 page) { int rc; int i; int pages; unsigned char *buf, bufsize; buf = kzalloc(256, GFP_KERNEL); if (!buf) return false; /* Get the size of the page list first */ rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, buf, HPSA_VPD_HEADER_SZ); if (rc != 0) goto exit_unsupported; pages = buf[3]; if ((pages + HPSA_VPD_HEADER_SZ) <= 255) bufsize = pages + HPSA_VPD_HEADER_SZ; else bufsize = 255; /* Get the whole VPD page list */ rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, buf, bufsize); if (rc != 0) goto exit_unsupported; pages = buf[3]; for (i = 1; i <= pages; i++) if (buf[3 + i] == page) goto exit_supported; exit_unsupported: kfree(buf); return false; exit_supported: kfree(buf); return true; } static void hpsa_get_ioaccel_status(struct ctlr_info *h, unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) { int rc; unsigned char *buf; u8 ioaccel_status; this_device->offload_config = 0; this_device->offload_enabled = 0; this_device->offload_to_be_enabled = 0; buf = kzalloc(64, GFP_KERNEL); if (!buf) return; if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) goto out; rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); if (rc != 0) goto out; #define IOACCEL_STATUS_BYTE 4 #define OFFLOAD_CONFIGURED_BIT 0x01 #define OFFLOAD_ENABLED_BIT 0x02 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; this_device->offload_config = !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); if (this_device->offload_config) { this_device->offload_enabled = !!(ioaccel_status & OFFLOAD_ENABLED_BIT); if (hpsa_get_raid_map(h, scsi3addr, this_device)) this_device->offload_enabled = 0; } this_device->offload_to_be_enabled = this_device->offload_enabled; out: kfree(buf); return; } /* Get the device id from inquiry page 0x83 */ static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, unsigned char *device_id, int index, int buflen) { int rc; unsigned char *buf; /* Does controller have VPD for device id? */ if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID)) return 1; /* not supported */ buf = kzalloc(64, GFP_KERNEL); if (!buf) return -ENOMEM; rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_DEVICE_ID, buf, 64); if (rc == 0) { if (buflen > 16) buflen = 16; memcpy(device_id, &buf[8], buflen); } kfree(buf); return rc; /*0 - got id, otherwise, didn't */ } static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, void *buf, int bufsize, int extended_response) { int rc = IO_OK; struct CommandList *c; unsigned char scsi3addr[8]; struct ErrorInfo *ei; c = cmd_alloc(h); /* address the controller */ memset(scsi3addr, 0, sizeof(scsi3addr)); if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, buf, bufsize, 0, scsi3addr, TYPE_CMD)) { rc = -1; goto out; } if (extended_response) c->Request.CDB[1] = extended_response; rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); if (rc) goto out; ei = c->err_info; if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { hpsa_scsi_interpret_error(h, c); rc = -1; } else { struct ReportLUNdata *rld = buf; if (rld->extended_response_flag != extended_response) { dev_err(&h->pdev->dev, "report luns requested format %u, got %u\n", extended_response, rld->extended_response_flag); rc = -1; } } out: cmd_free(h, c); return rc; } static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, struct ReportExtendedLUNdata *buf, int bufsize) { int rc; struct ReportLUNdata *lbuf; rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize, HPSA_REPORT_PHYS_EXTENDED); if (!rc || !hpsa_allow_any) return rc; /* REPORT PHYS EXTENDED is not supported */ lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL); if (!lbuf) return -ENOMEM; rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0); if (!rc) { int i; u32 nphys; /* Copy ReportLUNdata header */ memcpy(buf, lbuf, 8); nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8; for (i = 0; i < nphys; i++) memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8); } kfree(lbuf); return rc; } static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, struct ReportLUNdata *buf, int bufsize) { return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); } static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, int bus, int target, int lun) { device->bus = bus; device->target = target; device->lun = lun; } /* Use VPD inquiry to get details of volume status */ static int hpsa_get_volume_status(struct ctlr_info *h, unsigned char scsi3addr[]) { int rc; int status; int size; unsigned char *buf; buf = kzalloc(64, GFP_KERNEL); if (!buf) return HPSA_VPD_LV_STATUS_UNSUPPORTED; /* Does controller have VPD for logical volume status? */ if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) goto exit_failed; /* Get the size of the VPD return buffer */ rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, buf, HPSA_VPD_HEADER_SZ); if (rc != 0) goto exit_failed; size = buf[3]; /* Now get the whole VPD buffer */ rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, buf, size + HPSA_VPD_HEADER_SZ); if (rc != 0) goto exit_failed; status = buf[4]; /* status byte */ kfree(buf); return status; exit_failed: kfree(buf); return HPSA_VPD_LV_STATUS_UNSUPPORTED; } /* Determine offline status of a volume. * Return either: * 0 (not offline) * 0xff (offline for unknown reasons) * # (integer code indicating one of several NOT READY states * describing why a volume is to be kept offline) */ static unsigned char hpsa_volume_offline(struct ctlr_info *h, unsigned char scsi3addr[]) { struct CommandList *c; unsigned char *sense; u8 sense_key, asc, ascq; int sense_len; int rc, ldstat = 0; u16 cmd_status; u8 scsi_status; #define ASC_LUN_NOT_READY 0x04 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 c = cmd_alloc(h); (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, DEFAULT_TIMEOUT); if (rc) { cmd_free(h, c); return HPSA_VPD_LV_STATUS_UNSUPPORTED; } sense = c->err_info->SenseInfo; if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) sense_len = sizeof(c->err_info->SenseInfo); else sense_len = c->err_info->SenseLen; decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); cmd_status = c->err_info->CommandStatus; scsi_status = c->err_info->ScsiStatus; cmd_free(h, c); /* Determine the reason for not ready state */ ldstat = hpsa_get_volume_status(h, scsi3addr); /* Keep volume offline in certain cases: */ switch (ldstat) { case HPSA_LV_FAILED: case HPSA_LV_UNDERGOING_ERASE: case HPSA_LV_NOT_AVAILABLE: case HPSA_LV_UNDERGOING_RPI: case HPSA_LV_PENDING_RPI: case HPSA_LV_ENCRYPTED_NO_KEY: case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: case HPSA_LV_UNDERGOING_ENCRYPTION: case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: return ldstat; case HPSA_VPD_LV_STATUS_UNSUPPORTED: /* If VPD status page isn't available, * use ASC/ASCQ to determine state */ if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) return ldstat; break; default: break; } return HPSA_LV_OK; } /* * Find out if a logical device supports aborts by simply trying one. * Smart Array may claim not to support aborts on logical drives, but * if a MSA2000 * is connected, the drives on that will be presented * by the Smart Array as logical drives, and aborts may be sent to * those devices successfully. So the simplest way to find out is * to simply try an abort and see how the device responds. */ static int hpsa_device_supports_aborts(struct ctlr_info *h, unsigned char *scsi3addr) { struct CommandList *c; struct ErrorInfo *ei; int rc = 0; u64 tag = (u64) -1; /* bogus tag */ /* Assume that physical devices support aborts */ if (!is_logical_dev_addr_mode(scsi3addr)) return 1; c = cmd_alloc(h); (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG); (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, DEFAULT_TIMEOUT); /* no unmap needed here because no data xfer. */ ei = c->err_info; switch (ei->CommandStatus) { case CMD_INVALID: rc = 0; break; case CMD_UNABORTABLE: case CMD_ABORT_FAILED: rc = 1; break; case CMD_TMF_STATUS: rc = hpsa_evaluate_tmf_status(h, c); break; default: rc = 0; break; } cmd_free(h, c); return rc; } static int hpsa_update_device_info(struct ctlr_info *h, unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, unsigned char *is_OBDR_device) { #define OBDR_SIG_OFFSET 43 #define OBDR_TAPE_SIG "$DR-10" #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) unsigned char *inq_buff; unsigned char *obdr_sig; int rc = 0; inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); if (!inq_buff) { rc = -ENOMEM; goto bail_out; } /* Do an inquiry to the device to see what it is. */ if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { dev_err(&h->pdev->dev, "%s: inquiry failed, device will be skipped.\n", __func__); rc = HPSA_INQUIRY_FAILED; goto bail_out; } scsi_sanitize_inquiry_string(&inq_buff[8], 8); scsi_sanitize_inquiry_string(&inq_buff[16], 16); this_device->devtype = (inq_buff[0] & 0x1f); memcpy(this_device->scsi3addr, scsi3addr, 8); memcpy(this_device->vendor, &inq_buff[8], sizeof(this_device->vendor)); memcpy(this_device->model, &inq_buff[16], sizeof(this_device->model)); this_device->rev = inq_buff[2]; memset(this_device->device_id, 0, sizeof(this_device->device_id)); if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8, sizeof(this_device->device_id))) dev_err(&h->pdev->dev, "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n", h->ctlr, __func__, h->scsi_host->host_no, this_device->target, this_device->lun, scsi_device_type(this_device->devtype), this_device->model); if ((this_device->devtype == TYPE_DISK || this_device->devtype == TYPE_ZBC) && is_logical_dev_addr_mode(scsi3addr)) { unsigned char volume_offline; hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) hpsa_get_ioaccel_status(h, scsi3addr, this_device); volume_offline = hpsa_volume_offline(h, scsi3addr); this_device->volume_offline = volume_offline; if (volume_offline == HPSA_LV_FAILED) { rc = HPSA_LV_FAILED; dev_err(&h->pdev->dev, "%s: LV failed, device will be skipped.\n", __func__); goto bail_out; } } else { this_device->raid_level = RAID_UNKNOWN; this_device->offload_config = 0; this_device->offload_enabled = 0; this_device->offload_to_be_enabled = 0; this_device->hba_ioaccel_enabled = 0; this_device->volume_offline = 0; this_device->queue_depth = h->nr_cmds; } if (this_device->external) this_device->queue_depth = EXTERNAL_QD; if (is_OBDR_device) { /* See if this is a One-Button-Disaster-Recovery device * by looking for "$DR-10" at offset 43 in inquiry data. */ obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; *is_OBDR_device = (this_device->devtype == TYPE_ROM && strncmp(obdr_sig, OBDR_TAPE_SIG, OBDR_SIG_LEN) == 0); } kfree(inq_buff); return 0; bail_out: kfree(inq_buff); return rc; } static void hpsa_update_device_supports_aborts(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, u8 *scsi3addr) { unsigned long flags; int rc, entry; /* * See if this device supports aborts. If we already know * the device, we already know if it supports aborts, otherwise * we have to find out if it supports aborts by trying one. */ spin_lock_irqsave(&h->devlock, flags); rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry); if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) && entry >= 0 && entry < h->ndevices) { dev->supports_aborts = h->dev[entry]->supports_aborts; spin_unlock_irqrestore(&h->devlock, flags); } else { spin_unlock_irqrestore(&h->devlock, flags); dev->supports_aborts = hpsa_device_supports_aborts(h, scsi3addr); if (dev->supports_aborts < 0) dev->supports_aborts = 0; } } /* * Helper function to assign bus, target, lun mapping of devices. * Logical drive target and lun are assigned at this time, but * physical device lun and target assignment are deferred (assigned * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) */ static void figure_bus_target_lun(struct ctlr_info *h, u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) { u32 lunid = get_unaligned_le32(lunaddrbytes); if (!is_logical_dev_addr_mode(lunaddrbytes)) { /* physical device, target and lun filled in later */ if (is_hba_lunid(lunaddrbytes)) { int bus = HPSA_HBA_BUS; if (!device->rev) bus = HPSA_LEGACY_HBA_BUS; hpsa_set_bus_target_lun(device, bus, 0, lunid & 0x3fff); } else /* defer target, lun assignment for physical devices */ hpsa_set_bus_target_lun(device, HPSA_PHYSICAL_DEVICE_BUS, -1, -1); return; } /* It's a logical device */ if (device->external) { hpsa_set_bus_target_lun(device, HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff, lunid & 0x00ff); return; } hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS, 0, lunid & 0x3fff); } /* * Get address of physical disk used for an ioaccel2 mode command: * 1. Extract ioaccel2 handle from the command. * 2. Find a matching ioaccel2 handle from list of physical disks. * 3. Return: * 1 and set scsi3addr to address of matching physical * 0 if no matching physical disk was found. */ static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h, struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr) { struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex]; unsigned long flags; int i; spin_lock_irqsave(&h->devlock, flags); for (i = 0; i < h->ndevices; i++) if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) { memcpy(scsi3addr, h->dev[i]->scsi3addr, sizeof(h->dev[i]->scsi3addr)); spin_unlock_irqrestore(&h->devlock, flags); return 1; } spin_unlock_irqrestore(&h->devlock, flags); return 0; } static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position, int i, int nphysicals, int nlocal_logicals) { /* In report logicals, local logicals are listed first, * then any externals. */ int logicals_start = nphysicals + (raid_ctlr_position == 0); if (i == raid_ctlr_position) return 0; if (i < logicals_start) return 0; /* i is in logicals range, but still within local logicals */ if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals) return 0; return 1; /* it's an external lun */ } /* * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, * logdev. The number of luns in physdev and logdev are returned in * *nphysicals and *nlogicals, respectively. * Returns 0 on success, -1 otherwise. */ static int hpsa_gather_lun_info(struct ctlr_info *h, struct ReportExtendedLUNdata *physdev, u32 *nphysicals, struct ReportLUNdata *logdev, u32 *nlogicals) { if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); return -1; } *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; if (*nphysicals > HPSA_MAX_PHYS_LUN) { dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); *nphysicals = HPSA_MAX_PHYS_LUN; } if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); return -1; } *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; /* Reject Logicals in excess of our max capability. */ if (*nlogicals > HPSA_MAX_LUN) { dev_warn(&h->pdev->dev, "maximum logical LUNs (%d) exceeded. " "%d LUNs ignored.\n", HPSA_MAX_LUN, *nlogicals - HPSA_MAX_LUN); *nlogicals = HPSA_MAX_LUN; } if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { dev_warn(&h->pdev->dev, "maximum logical + physical LUNs (%d) exceeded. " "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; } return 0; } static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, int nphysicals, int nlogicals, struct ReportExtendedLUNdata *physdev_list, struct ReportLUNdata *logdev_list) { /* Helper function, figure out where the LUN ID info is coming from * given index i, lists of physical and logical devices, where in * the list the raid controller is supposed to appear (first or last) */ int logicals_start = nphysicals + (raid_ctlr_position == 0); int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); if (i == raid_ctlr_position) return RAID_CTLR_LUNID; if (i < logicals_start) return &physdev_list->LUN[i - (raid_ctlr_position == 0)].lunid[0]; if (i < last_device) return &logdev_list->LUN[i - nphysicals - (raid_ctlr_position == 0)][0]; BUG(); return NULL; } /* get physical drive ioaccel handle and queue depth */ static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, struct ReportExtendedLUNdata *rlep, int rle_index, struct bmic_identify_physical_device *id_phys) { int rc; struct ext_report_lun_entry *rle; rle = &rlep->LUN[rle_index]; dev->ioaccel_handle = rle->ioaccel_handle; if ((rle->device_flags & 0x08) && dev->ioaccel_handle) dev->hba_ioaccel_enabled = 1; memset(id_phys, 0, sizeof(*id_phys)); rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0], GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys, sizeof(*id_phys)); if (!rc) /* Reserve space for FW operations */ #define DRIVE_CMDS_RESERVED_FOR_FW 2 #define DRIVE_QUEUE_DEPTH 7 dev->queue_depth = le16_to_cpu(id_phys->current_queue_depth_limit) - DRIVE_CMDS_RESERVED_FOR_FW; else dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ } static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, struct ReportExtendedLUNdata *rlep, int rle_index, struct bmic_identify_physical_device *id_phys) { struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; if ((rle->device_flags & 0x08) && this_device->ioaccel_handle) this_device->hba_ioaccel_enabled = 1; memcpy(&this_device->active_path_index, &id_phys->active_path_number, sizeof(this_device->active_path_index)); memcpy(&this_device->path_map, &id_phys->redundant_path_present_map, sizeof(this_device->path_map)); memcpy(&this_device->box, &id_phys->alternate_paths_phys_box_on_port, sizeof(this_device->box)); memcpy(&this_device->phys_connector, &id_phys->alternate_paths_phys_connector, sizeof(this_device->phys_connector)); memcpy(&this_device->bay, &id_phys->phys_bay_in_box, sizeof(this_device->bay)); } /* get number of local logical disks. */ static int hpsa_set_local_logical_count(struct ctlr_info *h, struct bmic_identify_controller *id_ctlr, u32 *nlocals) { int rc; if (!id_ctlr) { dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n", __func__); return -ENOMEM; } memset(id_ctlr, 0, sizeof(*id_ctlr)); rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr)); if (!rc) if (id_ctlr->configured_logical_drive_count < 256) *nlocals = id_ctlr->configured_logical_drive_count; else *nlocals = le16_to_cpu( id_ctlr->extended_logical_unit_count); else *nlocals = -1; return rc; } static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes) { struct bmic_identify_physical_device *id_phys; bool is_spare = false; int rc; id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); if (!id_phys) return false; rc = hpsa_bmic_id_physical_device(h, lunaddrbytes, GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys, sizeof(*id_phys)); if (rc == 0) is_spare = (id_phys->more_flags >> 6) & 0x01; kfree(id_phys); return is_spare; } #define RPL_DEV_FLAG_NON_DISK 0x1 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4 #define BMIC_DEVICE_TYPE_ENCLOSURE 6 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes, struct ext_report_lun_entry *rle) { u8 device_flags; u8 device_type; if (!MASKED_DEVICE(lunaddrbytes)) return false; device_flags = rle->device_flags; device_type = rle->device_type; if (device_flags & RPL_DEV_FLAG_NON_DISK) { if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE) return false; return true; } if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED)) return false; if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK) return false; /* * Spares may be spun down, we do not want to * do an Inquiry to a RAID set spare drive as * that would have them spun up, that is a * performance hit because I/O to the RAID device * stops while the spin up occurs which can take * over 50 seconds. */ if (hpsa_is_disk_spare(h, lunaddrbytes)) return true; return false; } static void hpsa_update_scsi_devices(struct ctlr_info *h) { /* the idea here is we could get notified * that some devices have changed, so we do a report * physical luns and report logical luns cmd, and adjust * our list of devices accordingly. * * The scsi3addr's of devices won't change so long as the * adapter is not reset. That means we can rescan and * tell which devices we already know about, vs. new * devices, vs. disappearing devices. */ struct ReportExtendedLUNdata *physdev_list = NULL; struct ReportLUNdata *logdev_list = NULL; struct bmic_identify_physical_device *id_phys = NULL; struct bmic_identify_controller *id_ctlr = NULL; u32 nphysicals = 0; u32 nlogicals = 0; u32 nlocal_logicals = 0; u32 ndev_allocated = 0; struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; int ncurrent = 0; int i, n_ext_target_devs, ndevs_to_allocate; int raid_ctlr_position; bool physical_device; DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL); if (!currentsd || !physdev_list || !logdev_list || !tmpdevice || !id_phys || !id_ctlr) { dev_err(&h->pdev->dev, "out of memory\n"); goto out; } memset(lunzerobits, 0, sizeof(lunzerobits)); h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */ if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, logdev_list, &nlogicals)) { h->drv_req_rescan = 1; goto out; } /* Set number of local logicals (non PTRAID) */ if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) { dev_warn(&h->pdev->dev, "%s: Can't determine number of local logical devices.\n", __func__); } /* We might see up to the maximum number of logical and physical disks * plus external target devices, and a device for the local RAID * controller. */ ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; /* Allocate the per device structures */ for (i = 0; i < ndevs_to_allocate; i++) { if (i >= HPSA_MAX_DEVICES) { dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." " %d devices ignored.\n", HPSA_MAX_DEVICES, ndevs_to_allocate - HPSA_MAX_DEVICES); break; } currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); if (!currentsd[i]) { h->drv_req_rescan = 1; goto out; } ndev_allocated++; } if (is_scsi_rev_5(h)) raid_ctlr_position = 0; else raid_ctlr_position = nphysicals + nlogicals; /* adjust our table of devices */ n_ext_target_devs = 0; for (i = 0; i < nphysicals + nlogicals + 1; i++) { u8 *lunaddrbytes, is_OBDR = 0; int rc = 0; int phys_dev_index = i - (raid_ctlr_position == 0); bool skip_device = false; physical_device = i < nphysicals + (raid_ctlr_position == 0); /* Figure out where the LUN ID info is coming from */ lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, i, nphysicals, nlogicals, physdev_list, logdev_list); /* Determine if this is a lun from an external target array */ tmpdevice->external = figure_external_status(h, raid_ctlr_position, i, nphysicals, nlocal_logicals); /* * Skip over some devices such as a spare. */ if (!tmpdevice->external && physical_device) { skip_device = hpsa_skip_device(h, lunaddrbytes, &physdev_list->LUN[phys_dev_index]); if (skip_device) continue; } /* Get device type, vendor, model, device id */ rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, &is_OBDR); if (rc == -ENOMEM) { dev_warn(&h->pdev->dev, "Out of memory, rescan deferred.\n"); h->drv_req_rescan = 1; goto out; } if (rc) { h->drv_req_rescan = 1; continue; } figure_bus_target_lun(h, lunaddrbytes, tmpdevice); hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes); this_device = currentsd[ncurrent]; /* Turn on discovery_polling if there are ext target devices. * Event-based change notification is unreliable for those. */ if (!h->discovery_polling) { if (tmpdevice->external) { h->discovery_polling = 1; dev_info(&h->pdev->dev, "External target, activate discovery polling.\n"); } } *this_device = *tmpdevice; this_device->physical_device = physical_device; /* * Expose all devices except for physical devices that * are masked. */ if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device) this_device->expose_device = 0; else this_device->expose_device = 1; /* * Get the SAS address for physical devices that are exposed. */ if (this_device->physical_device && this_device->expose_device) hpsa_get_sas_address(h, lunaddrbytes, this_device); switch (this_device->devtype) { case TYPE_ROM: /* We don't *really* support actual CD-ROM devices, * just "One Button Disaster Recovery" tape drive * which temporarily pretends to be a CD-ROM drive. * So we check that the device is really an OBDR tape * device by checking for "$DR-10" in bytes 43-48 of * the inquiry data. */ if (is_OBDR) ncurrent++; break; case TYPE_DISK: case TYPE_ZBC: if (this_device->physical_device) { /* The disk is in HBA mode. */ /* Never use RAID mapper in HBA mode. */ this_device->offload_enabled = 0; hpsa_get_ioaccel_drive_info(h, this_device, physdev_list, phys_dev_index, id_phys); hpsa_get_path_info(this_device, physdev_list, phys_dev_index, id_phys); } ncurrent++; break; case TYPE_TAPE: case TYPE_MEDIUM_CHANGER: ncurrent++; break; case TYPE_ENCLOSURE: if (!this_device->external) hpsa_get_enclosure_info(h, lunaddrbytes, physdev_list, phys_dev_index, this_device); ncurrent++; break; case TYPE_RAID: /* Only present the Smartarray HBA as a RAID controller. * If it's a RAID controller other than the HBA itself * (an external RAID controller, MSA500 or similar) * don't present it. */ if (!is_hba_lunid(lunaddrbytes)) break; ncurrent++; break; default: break; } if (ncurrent >= HPSA_MAX_DEVICES) break; } if (h->sas_host == NULL) { int rc = 0; rc = hpsa_add_sas_host(h); if (rc) { dev_warn(&h->pdev->dev, "Could not add sas host %d\n", rc); goto out; } } adjust_hpsa_scsi_table(h, currentsd, ncurrent); out: kfree(tmpdevice); for (i = 0; i < ndev_allocated; i++) kfree(currentsd[i]); kfree(currentsd); kfree(physdev_list); kfree(logdev_list); kfree(id_ctlr); kfree(id_phys); } static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, struct scatterlist *sg) { u64 addr64 = (u64) sg_dma_address(sg); unsigned int len = sg_dma_len(sg); desc->Addr = cpu_to_le64(addr64); desc->Len = cpu_to_le32(len); desc->Ext = 0; } /* * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci * dma mapping and fills in the scatter gather entries of the * hpsa command, cp. */ static int hpsa_scatter_gather(struct ctlr_info *h, struct CommandList *cp, struct scsi_cmnd *cmd) { struct scatterlist *sg; int use_sg, i, sg_limit, chained, last_sg; struct SGDescriptor *curr_sg; BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); use_sg = scsi_dma_map(cmd); if (use_sg < 0) return use_sg; if (!use_sg) goto sglist_finished; /* * If the number of entries is greater than the max for a single list, * then we have a chained list; we will set up all but one entry in the * first list (the last entry is saved for link information); * otherwise, we don't have a chained list and we'll set up at each of * the entries in the one list. */ curr_sg = cp->SG; chained = use_sg > h->max_cmd_sg_entries; sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; last_sg = scsi_sg_count(cmd) - 1; scsi_for_each_sg(cmd, sg, sg_limit, i) { hpsa_set_sg_descriptor(curr_sg, sg); curr_sg++; } if (chained) { /* * Continue with the chained list. Set curr_sg to the chained * list. Modify the limit to the total count less the entries * we've already set up. Resume the scan at the list entry * where the previous loop left off. */ curr_sg = h->cmd_sg_list[cp->cmdindex]; sg_limit = use_sg - sg_limit; for_each_sg(sg, sg, sg_limit, i) { hpsa_set_sg_descriptor(curr_sg, sg); curr_sg++; } } /* Back the pointer up to the last entry and mark it as "last". */ (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); if (use_sg + chained > h->maxSG) h->maxSG = use_sg + chained; if (chained) { cp->Header.SGList = h->max_cmd_sg_entries; cp->Header.SGTotal = cpu_to_le16(use_sg + 1); if (hpsa_map_sg_chain_block(h, cp)) { scsi_dma_unmap(cmd); return -1; } return 0; } sglist_finished: cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ return 0; } #define IO_ACCEL_INELIGIBLE (1) static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) { int is_write = 0; u32 block; u32 block_cnt; /* Perform some CDB fixups if needed using 10 byte reads/writes only */ switch (cdb[0]) { case WRITE_6: case WRITE_12: is_write = 1; case READ_6: case READ_12: if (*cdb_len == 6) { block = (((cdb[1] & 0x1F) << 16) | (cdb[2] << 8) | cdb[3]); block_cnt = cdb[4]; if (block_cnt == 0) block_cnt = 256; } else { BUG_ON(*cdb_len != 12); block = get_unaligned_be32(&cdb[2]); block_cnt = get_unaligned_be32(&cdb[6]); } if (block_cnt > 0xffff) return IO_ACCEL_INELIGIBLE; cdb[0] = is_write ? WRITE_10 : READ_10; cdb[1] = 0; cdb[2] = (u8) (block >> 24); cdb[3] = (u8) (block >> 16); cdb[4] = (u8) (block >> 8); cdb[5] = (u8) (block); cdb[6] = 0; cdb[7] = (u8) (block_cnt >> 8); cdb[8] = (u8) (block_cnt); cdb[9] = 0; *cdb_len = 10; break; } return 0; } static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) { struct scsi_cmnd *cmd = c->scsi_cmd; struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; unsigned int len; unsigned int total_len = 0; struct scatterlist *sg; u64 addr64; int use_sg, i; struct SGDescriptor *curr_sg; u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; /* TODO: implement chaining support */ if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { atomic_dec(&phys_disk->ioaccel_cmds_out); return IO_ACCEL_INELIGIBLE; } BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); if (fixup_ioaccel_cdb(cdb, &cdb_len)) { atomic_dec(&phys_disk->ioaccel_cmds_out); return IO_ACCEL_INELIGIBLE; } c->cmd_type = CMD_IOACCEL1; /* Adjust the DMA address to point to the accelerated command buffer */ c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + (c->cmdindex * sizeof(*cp)); BUG_ON(c->busaddr & 0x0000007F); use_sg = scsi_dma_map(cmd); if (use_sg < 0) { atomic_dec(&phys_disk->ioaccel_cmds_out); return use_sg; } if (use_sg) { curr_sg = cp->SG; scsi_for_each_sg(cmd, sg, use_sg, i) { addr64 = (u64) sg_dma_address(sg); len = sg_dma_len(sg); total_len += len; curr_sg->Addr = cpu_to_le64(addr64); curr_sg->Len = cpu_to_le32(len); curr_sg->Ext = cpu_to_le32(0); curr_sg++; } (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); switch (cmd->sc_data_direction) { case DMA_TO_DEVICE: control |= IOACCEL1_CONTROL_DATA_OUT; break; case DMA_FROM_DEVICE: control |= IOACCEL1_CONTROL_DATA_IN; break; case DMA_NONE: control |= IOACCEL1_CONTROL_NODATAXFER; break; default: dev_err(&h->pdev->dev, "unknown data direction: %d\n", cmd->sc_data_direction); BUG(); break; } } else { control |= IOACCEL1_CONTROL_NODATAXFER; } c->Header.SGList = use_sg; /* Fill out the command structure to submit */ cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); cp->transfer_len = cpu_to_le32(total_len); cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); cp->control = cpu_to_le32(control); memcpy(cp->CDB, cdb, cdb_len); memcpy(cp->CISS_LUN, scsi3addr, 8); /* Tag was already set at init time. */ enqueue_cmd_and_start_io(h, c); return 0; } /* * Queue a command directly to a device behind the controller using the * I/O accelerator path. */ static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, struct CommandList *c) { struct scsi_cmnd *cmd = c->scsi_cmd; struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; if (!dev) return -1; c->phys_disk = dev; return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); } /* * Set encryption parameters for the ioaccel2 request */ static void set_encrypt_ioaccel2(struct ctlr_info *h, struct CommandList *c, struct io_accel2_cmd *cp) { struct scsi_cmnd *cmd = c->scsi_cmd; struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; struct raid_map_data *map = &dev->raid_map; u64 first_block; /* Are we doing encryption on this device */ if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) return; /* Set the data encryption key index. */ cp->dekindex = map->dekindex; /* Set the encryption enable flag, encoded into direction field. */ cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; /* Set encryption tweak values based on logical block address * If block size is 512, tweak value is LBA. * For other block sizes, tweak is (LBA * block size)/ 512) */ switch (cmd->cmnd[0]) { /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ case READ_6: case WRITE_6: first_block = (((cmd->cmnd[1] & 0x1F) << 16) | (cmd->cmnd[2] << 8) | cmd->cmnd[3]); break; case WRITE_10: case READ_10: /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ case WRITE_12: case READ_12: first_block = get_unaligned_be32(&cmd->cmnd[2]); break; case WRITE_16: case READ_16: first_block = get_unaligned_be64(&cmd->cmnd[2]); break; default: dev_err(&h->pdev->dev, "ERROR: %s: size (0x%x) not supported for encryption\n", __func__, cmd->cmnd[0]); BUG(); break; } if (le32_to_cpu(map->volume_blk_size) != 512) first_block = first_block * le32_to_cpu(map->volume_blk_size)/512; cp->tweak_lower = cpu_to_le32(first_block); cp->tweak_upper = cpu_to_le32(first_block >> 32); } static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) { struct scsi_cmnd *cmd = c->scsi_cmd; struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; struct ioaccel2_sg_element *curr_sg; int use_sg, i; struct scatterlist *sg; u64 addr64; u32 len; u32 total_len = 0; if (!cmd->device) return -1; if (!cmd->device->hostdata) return -1; BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); if (fixup_ioaccel_cdb(cdb, &cdb_len)) { atomic_dec(&phys_disk->ioaccel_cmds_out); return IO_ACCEL_INELIGIBLE; } c->cmd_type = CMD_IOACCEL2; /* Adjust the DMA address to point to the accelerated command buffer */ c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + (c->cmdindex * sizeof(*cp)); BUG_ON(c->busaddr & 0x0000007F); memset(cp, 0, sizeof(*cp)); cp->IU_type = IOACCEL2_IU_TYPE; use_sg = scsi_dma_map(cmd); if (use_sg < 0) { atomic_dec(&phys_disk->ioaccel_cmds_out); return use_sg; } if (use_sg) { curr_sg = cp->sg; if (use_sg > h->ioaccel_maxsg) { addr64 = le64_to_cpu( h->ioaccel2_cmd_sg_list[c->cmdindex]->address); curr_sg->address = cpu_to_le64(addr64); curr_sg->length = 0; curr_sg->reserved[0] = 0; curr_sg->reserved[1] = 0; curr_sg->reserved[2] = 0; curr_sg->chain_indicator = 0x80; curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; } scsi_for_each_sg(cmd, sg, use_sg, i) { addr64 = (u64) sg_dma_address(sg); len = sg_dma_len(sg); total_len += len; curr_sg->address = cpu_to_le64(addr64); curr_sg->length = cpu_to_le32(len); curr_sg->reserved[0] = 0; curr_sg->reserved[1] = 0; curr_sg->reserved[2] = 0; curr_sg->chain_indicator = 0; curr_sg++; } switch (cmd->sc_data_direction) { case DMA_TO_DEVICE: cp->direction &= ~IOACCEL2_DIRECTION_MASK; cp->direction |= IOACCEL2_DIR_DATA_OUT; break; case DMA_FROM_DEVICE: cp->direction &= ~IOACCEL2_DIRECTION_MASK; cp->direction |= IOACCEL2_DIR_DATA_IN; break; case DMA_NONE: cp->direction &= ~IOACCEL2_DIRECTION_MASK; cp->direction |= IOACCEL2_DIR_NO_DATA; break; default: dev_err(&h->pdev->dev, "unknown data direction: %d\n", cmd->sc_data_direction); BUG(); break; } } else { cp->direction &= ~IOACCEL2_DIRECTION_MASK; cp->direction |= IOACCEL2_DIR_NO_DATA; } /* Set encryption parameters, if necessary */ set_encrypt_ioaccel2(h, c, cp); cp->scsi_nexus = cpu_to_le32(ioaccel_handle); cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); memcpy(cp->cdb, cdb, sizeof(cp->cdb)); cp->data_len = cpu_to_le32(total_len); cp->err_ptr = cpu_to_le64(c->busaddr + offsetof(struct io_accel2_cmd, error_data)); cp->err_len = cpu_to_le32(sizeof(cp->error_data)); /* fill in sg elements */ if (use_sg > h->ioaccel_maxsg) { cp->sg_count = 1; cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0])); if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { atomic_dec(&phys_disk->ioaccel_cmds_out); scsi_dma_unmap(cmd); return -1; } } else cp->sg_count = (u8) use_sg; enqueue_cmd_and_start_io(h, c); return 0; } /* * Queue a command to the correct I/O accelerator path. */ static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) { if (!c->scsi_cmd->device) return -1; if (!c->scsi_cmd->device->hostdata) return -1; /* Try to honor the device's queue depth */ if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > phys_disk->queue_depth) { atomic_dec(&phys_disk->ioaccel_cmds_out); return IO_ACCEL_INELIGIBLE; } if (h->transMethod & CFGTBL_Trans_io_accel1) return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, cdb, cdb_len, scsi3addr, phys_disk); else return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, cdb, cdb_len, scsi3addr, phys_disk); } static void raid_map_helper(struct raid_map_data *map, int offload_to_mirror, u32 *map_index, u32 *current_group) { if (offload_to_mirror == 0) { /* use physical disk in the first mirrored group. */ *map_index %= le16_to_cpu(map->data_disks_per_row); return; } do { /* determine mirror group that *map_index indicates */ *current_group = *map_index / le16_to_cpu(map->data_disks_per_row); if (offload_to_mirror == *current_group) continue; if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { /* select map index from next group */ *map_index += le16_to_cpu(map->data_disks_per_row); (*current_group)++; } else { /* select map index from first group */ *map_index %= le16_to_cpu(map->data_disks_per_row); *current_group = 0; } } while (offload_to_mirror != *current_group); } /* * Attempt to perform offload RAID mapping for a logical volume I/O. */ static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, struct CommandList *c) { struct scsi_cmnd *cmd = c->scsi_cmd; struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; struct raid_map_data *map = &dev->raid_map; struct raid_map_disk_data *dd = &map->data[0]; int is_write = 0; u32 map_index; u64 first_block, last_block; u32 block_cnt; u32 blocks_per_row; u64 first_row, last_row; u32 first_row_offset, last_row_offset; u32 first_column, last_column; u64 r0_first_row, r0_last_row; u32 r5or6_blocks_per_row; u64 r5or6_first_row, r5or6_last_row; u32 r5or6_first_row_offset, r5or6_last_row_offset; u32 r5or6_first_column, r5or6_last_column; u32 total_disks_per_row; u32 stripesize; u32 first_group, last_group, current_group; u32 map_row; u32 disk_handle; u64 disk_block; u32 disk_block_cnt; u8 cdb[16]; u8 cdb_len; u16 strip_size; #if BITS_PER_LONG == 32 u64 tmpdiv; #endif int offload_to_mirror; if (!dev) return -1; /* check for valid opcode, get LBA and block count */ switch (cmd->cmnd[0]) { case WRITE_6: is_write = 1; case READ_6: first_block = (((cmd->cmnd[1] & 0x1F) << 16) | (cmd->cmnd[2] << 8) | cmd->cmnd[3]); block_cnt = cmd->cmnd[4]; if (block_cnt == 0) block_cnt = 256; break; case WRITE_10: is_write = 1; case READ_10: first_block = (((u64) cmd->cmnd[2]) << 24) | (((u64) cmd->cmnd[3]) << 16) | (((u64) cmd->cmnd[4]) << 8) | cmd->cmnd[5]; block_cnt = (((u32) cmd->cmnd[7]) << 8) | cmd->cmnd[8]; break; case WRITE_12: is_write = 1; case READ_12: first_block = (((u64) cmd->cmnd[2]) << 24) | (((u64) cmd->cmnd[3]) << 16) | (((u64) cmd->cmnd[4]) << 8) | cmd->cmnd[5]; block_cnt = (((u32) cmd->cmnd[6]) << 24) | (((u32) cmd->cmnd[7]) << 16) | (((u32) cmd->cmnd[8]) << 8) | cmd->cmnd[9]; break; case WRITE_16: is_write = 1; case READ_16: first_block = (((u64) cmd->cmnd[2]) << 56) | (((u64) cmd->cmnd[3]) << 48) | (((u64) cmd->cmnd[4]) << 40) | (((u64) cmd->cmnd[5]) << 32) | (((u64) cmd->cmnd[6]) << 24) | (((u64) cmd->cmnd[7]) << 16) | (((u64) cmd->cmnd[8]) << 8) | cmd->cmnd[9]; block_cnt = (((u32) cmd->cmnd[10]) << 24) | (((u32) cmd->cmnd[11]) << 16) | (((u32) cmd->cmnd[12]) << 8) | cmd->cmnd[13]; break; default: return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ } last_block = first_block + block_cnt - 1; /* check for write to non-RAID-0 */ if (is_write && dev->raid_level != 0) return IO_ACCEL_INELIGIBLE; /* check for invalid block or wraparound */ if (last_block >= le64_to_cpu(map->volume_blk_cnt) || last_block < first_block) return IO_ACCEL_INELIGIBLE; /* calculate stripe information for the request */ blocks_per_row = le16_to_cpu(map->data_disks_per_row) * le16_to_cpu(map->strip_size); strip_size = le16_to_cpu(map->strip_size); #if BITS_PER_LONG == 32 tmpdiv = first_block; (void) do_div(tmpdiv, blocks_per_row); first_row = tmpdiv; tmpdiv = last_block; (void) do_div(tmpdiv, blocks_per_row); last_row = tmpdiv; first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); tmpdiv = first_row_offset; (void) do_div(tmpdiv, strip_size); first_column = tmpdiv; tmpdiv = last_row_offset; (void) do_div(tmpdiv, strip_size); last_column = tmpdiv; #else first_row = first_block / blocks_per_row; last_row = last_block / blocks_per_row; first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); first_column = first_row_offset / strip_size; last_column = last_row_offset / strip_size; #endif /* if this isn't a single row/column then give to the controller */ if ((first_row != last_row) || (first_column != last_column)) return IO_ACCEL_INELIGIBLE; /* proceeding with driver mapping */ total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + le16_to_cpu(map->metadata_disks_per_row); map_row = ((u32)(first_row >> map->parity_rotation_shift)) % le16_to_cpu(map->row_cnt); map_index = (map_row * total_disks_per_row) + first_column; switch (dev->raid_level) { case HPSA_RAID_0: break; /* nothing special to do */ case HPSA_RAID_1: /* Handles load balance across RAID 1 members. * (2-drive R1 and R10 with even # of drives.) * Appropriate for SSDs, not optimal for HDDs */ BUG_ON(le16_to_cpu(map->layout_map_count) != 2); if (dev->offload_to_mirror) map_index += le16_to_cpu(map->data_disks_per_row); dev->offload_to_mirror = !dev->offload_to_mirror; break; case HPSA_RAID_ADM: /* Handles N-way mirrors (R1-ADM) * and R10 with # of drives divisible by 3.) */ BUG_ON(le16_to_cpu(map->layout_map_count) != 3); offload_to_mirror = dev->offload_to_mirror; raid_map_helper(map, offload_to_mirror, &map_index, ¤t_group); /* set mirror group to use next time */ offload_to_mirror = (offload_to_mirror >= le16_to_cpu(map->layout_map_count) - 1) ? 0 : offload_to_mirror + 1; dev->offload_to_mirror = offload_to_mirror; /* Avoid direct use of dev->offload_to_mirror within this * function since multiple threads might simultaneously * increment it beyond the range of dev->layout_map_count -1. */ break; case HPSA_RAID_5: case HPSA_RAID_6: if (le16_to_cpu(map->layout_map_count) <= 1) break; /* Verify first and last block are in same RAID group */ r5or6_blocks_per_row = le16_to_cpu(map->strip_size) * le16_to_cpu(map->data_disks_per_row); BUG_ON(r5or6_blocks_per_row == 0); stripesize = r5or6_blocks_per_row * le16_to_cpu(map->layout_map_count); #if BITS_PER_LONG == 32 tmpdiv = first_block; first_group = do_div(tmpdiv, stripesize); tmpdiv = first_group; (void) do_div(tmpdiv, r5or6_blocks_per_row); first_group = tmpdiv; tmpdiv = last_block; last_group = do_div(tmpdiv, stripesize); tmpdiv = last_group; (void) do_div(tmpdiv, r5or6_blocks_per_row); last_group = tmpdiv; #else first_group = (first_block % stripesize) / r5or6_blocks_per_row; last_group = (last_block % stripesize) / r5or6_blocks_per_row; #endif if (first_group != last_group) return IO_ACCEL_INELIGIBLE; /* Verify request is in a single row of RAID 5/6 */ #if BITS_PER_LONG == 32 tmpdiv = first_block; (void) do_div(tmpdiv, stripesize); first_row = r5or6_first_row = r0_first_row = tmpdiv; tmpdiv = last_block; (void) do_div(tmpdiv, stripesize); r5or6_last_row = r0_last_row = tmpdiv; #else first_row = r5or6_first_row = r0_first_row = first_block / stripesize; r5or6_last_row = r0_last_row = last_block / stripesize; #endif if (r5or6_first_row != r5or6_last_row) return IO_ACCEL_INELIGIBLE; /* Verify request is in a single column */ #if BITS_PER_LONG == 32 tmpdiv = first_block; first_row_offset = do_div(tmpdiv, stripesize); tmpdiv = first_row_offset; first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); r5or6_first_row_offset = first_row_offset; tmpdiv = last_block; r5or6_last_row_offset = do_div(tmpdiv, stripesize); tmpdiv = r5or6_last_row_offset; r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); tmpdiv = r5or6_first_row_offset; (void) do_div(tmpdiv, map->strip_size); first_column = r5or6_first_column = tmpdiv; tmpdiv = r5or6_last_row_offset; (void) do_div(tmpdiv, map->strip_size); r5or6_last_column = tmpdiv; #else first_row_offset = r5or6_first_row_offset = (u32)((first_block % stripesize) % r5or6_blocks_per_row); r5or6_last_row_offset = (u32)((last_block % stripesize) % r5or6_blocks_per_row); first_column = r5or6_first_column = r5or6_first_row_offset / le16_to_cpu(map->strip_size); r5or6_last_column = r5or6_last_row_offset / le16_to_cpu(map->strip_size); #endif if (r5or6_first_column != r5or6_last_column) return IO_ACCEL_INELIGIBLE; /* Request is eligible */ map_row = ((u32)(first_row >> map->parity_rotation_shift)) % le16_to_cpu(map->row_cnt); map_index = (first_group * (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + (map_row * total_disks_per_row) + first_column; break; default: return IO_ACCEL_INELIGIBLE; } if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) return IO_ACCEL_INELIGIBLE; c->phys_disk = dev->phys_disk[map_index]; if (!c->phys_disk) return IO_ACCEL_INELIGIBLE; disk_handle = dd[map_index].ioaccel_handle; disk_block = le64_to_cpu(map->disk_starting_blk) + first_row * le16_to_cpu(map->strip_size) + (first_row_offset - first_column * le16_to_cpu(map->strip_size)); disk_block_cnt = block_cnt; /* handle differing logical/physical block sizes */ if (map->phys_blk_shift) { disk_block <<= map->phys_blk_shift; disk_block_cnt <<= map->phys_blk_shift; } BUG_ON(disk_block_cnt > 0xffff); /* build the new CDB for the physical disk I/O */ if (disk_block > 0xffffffff) { cdb[0] = is_write ? WRITE_16 : READ_16; cdb[1] = 0; cdb[2] = (u8) (disk_block >> 56); cdb[3] = (u8) (disk_block >> 48); cdb[4] = (u8) (disk_block >> 40); cdb[5] = (u8) (disk_block >> 32); cdb[6] = (u8) (disk_block >> 24); cdb[7] = (u8) (disk_block >> 16); cdb[8] = (u8) (disk_block >> 8); cdb[9] = (u8) (disk_block); cdb[10] = (u8) (disk_block_cnt >> 24); cdb[11] = (u8) (disk_block_cnt >> 16); cdb[12] = (u8) (disk_block_cnt >> 8); cdb[13] = (u8) (disk_block_cnt); cdb[14] = 0; cdb[15] = 0; cdb_len = 16; } else { cdb[0] = is_write ? WRITE_10 : READ_10; cdb[1] = 0; cdb[2] = (u8) (disk_block >> 24); cdb[3] = (u8) (disk_block >> 16); cdb[4] = (u8) (disk_block >> 8); cdb[5] = (u8) (disk_block); cdb[6] = 0; cdb[7] = (u8) (disk_block_cnt >> 8); cdb[8] = (u8) (disk_block_cnt); cdb[9] = 0; cdb_len = 10; } return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, dev->scsi3addr, dev->phys_disk[map_index]); } /* * Submit commands down the "normal" RAID stack path * All callers to hpsa_ciss_submit must check lockup_detected * beforehand, before (opt.) and after calling cmd_alloc */ static int hpsa_ciss_submit(struct ctlr_info *h, struct CommandList *c, struct scsi_cmnd *cmd, unsigned char scsi3addr[]) { cmd->host_scribble = (unsigned char *) c; c->cmd_type = CMD_SCSI; c->scsi_cmd = cmd; c->Header.ReplyQueue = 0; /* unused in simple mode */ memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); /* Fill in the request block... */ c->Request.Timeout = 0; BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); c->Request.CDBLen = cmd->cmd_len; memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); switch (cmd->sc_data_direction) { case DMA_TO_DEVICE: c->Request.type_attr_dir = TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); break; case DMA_FROM_DEVICE: c->Request.type_attr_dir = TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); break; case DMA_NONE: c->Request.type_attr_dir = TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); break; case DMA_BIDIRECTIONAL: /* This can happen if a buggy application does a scsi passthru * and sets both inlen and outlen to non-zero. ( see * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) */ c->Request.type_attr_dir = TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); /* This is technically wrong, and hpsa controllers should * reject it with CMD_INVALID, which is the most correct * response, but non-fibre backends appear to let it * slide by, and give the same results as if this field * were set correctly. Either way is acceptable for * our purposes here. */ break; default: dev_err(&h->pdev->dev, "unknown data direction: %d\n", cmd->sc_data_direction); BUG(); break; } if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ hpsa_cmd_resolve_and_free(h, c); return SCSI_MLQUEUE_HOST_BUSY; } enqueue_cmd_and_start_io(h, c); /* the cmd'll come back via intr handler in complete_scsi_command() */ return 0; } static void hpsa_cmd_init(struct ctlr_info *h, int index, struct CommandList *c) { dma_addr_t cmd_dma_handle, err_dma_handle; /* Zero out all of commandlist except the last field, refcount */ memset(c, 0, offsetof(struct CommandList, refcount)); c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); c->err_info = h->errinfo_pool + index; memset(c->err_info, 0, sizeof(*c->err_info)); err_dma_handle = h->errinfo_pool_dhandle + index * sizeof(*c->err_info); c->cmdindex = index; c->busaddr = (u32) cmd_dma_handle; c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); c->h = h; c->scsi_cmd = SCSI_CMD_IDLE; } static void hpsa_preinitialize_commands(struct ctlr_info *h) { int i; for (i = 0; i < h->nr_cmds; i++) { struct CommandList *c = h->cmd_pool + i; hpsa_cmd_init(h, i, c); atomic_set(&c->refcount, 0); } } static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, struct CommandList *c) { dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); BUG_ON(c->cmdindex != index); memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); memset(c->err_info, 0, sizeof(*c->err_info)); c->busaddr = (u32) cmd_dma_handle; } static int hpsa_ioaccel_submit(struct ctlr_info *h, struct CommandList *c, struct scsi_cmnd *cmd, unsigned char *scsi3addr) { struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; int rc = IO_ACCEL_INELIGIBLE; if (!dev) return SCSI_MLQUEUE_HOST_BUSY; cmd->host_scribble = (unsigned char *) c; if (dev->offload_enabled) { hpsa_cmd_init(h, c->cmdindex, c); c->cmd_type = CMD_SCSI; c->scsi_cmd = cmd; rc = hpsa_scsi_ioaccel_raid_map(h, c); if (rc < 0) /* scsi_dma_map failed. */ rc = SCSI_MLQUEUE_HOST_BUSY; } else if (dev->hba_ioaccel_enabled) { hpsa_cmd_init(h, c->cmdindex, c); c->cmd_type = CMD_SCSI; c->scsi_cmd = cmd; rc = hpsa_scsi_ioaccel_direct_map(h, c); if (rc < 0) /* scsi_dma_map failed. */ rc = SCSI_MLQUEUE_HOST_BUSY; } return rc; } static void hpsa_command_resubmit_worker(struct work_struct *work) { struct scsi_cmnd *cmd; struct hpsa_scsi_dev_t *dev; struct CommandList *c = container_of(work, struct CommandList, work); cmd = c->scsi_cmd; dev = cmd->device->hostdata; if (!dev) { cmd->result = DID_NO_CONNECT << 16; return hpsa_cmd_free_and_done(c->h, c, cmd); } if (c->reset_pending) return hpsa_cmd_free_and_done(c->h, c, cmd); if (c->abort_pending) return hpsa_cmd_abort_and_free(c->h, c, cmd); if (c->cmd_type == CMD_IOACCEL2) { struct ctlr_info *h = c->h; struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; int rc; if (c2->error_data.serv_response == IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr); if (rc == 0) return; if (rc == SCSI_MLQUEUE_HOST_BUSY) { /* * If we get here, it means dma mapping failed. * Try again via scsi mid layer, which will * then get SCSI_MLQUEUE_HOST_BUSY. */ cmd->result = DID_IMM_RETRY << 16; return hpsa_cmd_free_and_done(h, c, cmd); } /* else, fall thru and resubmit down CISS path */ } } hpsa_cmd_partial_init(c->h, c->cmdindex, c); if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) { /* * If we get here, it means dma mapping failed. Try * again via scsi mid layer, which will then get * SCSI_MLQUEUE_HOST_BUSY. * * hpsa_ciss_submit will have already freed c * if it encountered a dma mapping failure. */ cmd->result = DID_IMM_RETRY << 16; cmd->scsi_done(cmd); } } /* Running in struct Scsi_Host->host_lock less mode */ static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) { struct ctlr_info *h; struct hpsa_scsi_dev_t *dev; unsigned char scsi3addr[8]; struct CommandList *c; int rc = 0; /* Get the ptr to our adapter structure out of cmd->host. */ h = sdev_to_hba(cmd->device); BUG_ON(cmd->request->tag < 0); dev = cmd->device->hostdata; if (!dev) { cmd->result = DID_NO_CONNECT << 16; cmd->scsi_done(cmd); return 0; } if (dev->removed) { cmd->result = DID_NO_CONNECT << 16; cmd->scsi_done(cmd); return 0; } memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); if (unlikely(lockup_detected(h))) { cmd->result = DID_NO_CONNECT << 16; cmd->scsi_done(cmd); return 0; } c = cmd_tagged_alloc(h, cmd); /* * Call alternate submit routine for I/O accelerated commands. * Retries always go down the normal I/O path. */ if (likely(cmd->retries == 0 && !blk_rq_is_passthrough(cmd->request) && h->acciopath_status)) { rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr); if (rc == 0) return 0; if (rc == SCSI_MLQUEUE_HOST_BUSY) { hpsa_cmd_resolve_and_free(h, c); return SCSI_MLQUEUE_HOST_BUSY; } } return hpsa_ciss_submit(h, c, cmd, scsi3addr); } static void hpsa_scan_complete(struct ctlr_info *h) { unsigned long flags; spin_lock_irqsave(&h->scan_lock, flags); h->scan_finished = 1; wake_up(&h->scan_wait_queue); spin_unlock_irqrestore(&h->scan_lock, flags); } static void hpsa_scan_start(struct Scsi_Host *sh) { struct ctlr_info *h = shost_to_hba(sh); unsigned long flags; /* * Don't let rescans be initiated on a controller known to be locked * up. If the controller locks up *during* a rescan, that thread is * probably hosed, but at least we can prevent new rescan threads from * piling up on a locked up controller. */ if (unlikely(lockup_detected(h))) return hpsa_scan_complete(h); /* * If a scan is already waiting to run, no need to add another */ spin_lock_irqsave(&h->scan_lock, flags); if (h->scan_waiting) { spin_unlock_irqrestore(&h->scan_lock, flags); return; } spin_unlock_irqrestore(&h->scan_lock, flags); /* wait until any scan already in progress is finished. */ while (1) { spin_lock_irqsave(&h->scan_lock, flags); if (h->scan_finished) break; h->scan_waiting = 1; spin_unlock_irqrestore(&h->scan_lock, flags); wait_event(h->scan_wait_queue, h->scan_finished); /* Note: We don't need to worry about a race between this * thread and driver unload because the midlayer will * have incremented the reference count, so unload won't * happen if we're in here. */ } h->scan_finished = 0; /* mark scan as in progress */ h->scan_waiting = 0; spin_unlock_irqrestore(&h->scan_lock, flags); if (unlikely(lockup_detected(h))) return hpsa_scan_complete(h); /* * Do the scan after a reset completion */ spin_lock_irqsave(&h->reset_lock, flags); if (h->reset_in_progress) { h->drv_req_rescan = 1; spin_unlock_irqrestore(&h->reset_lock, flags); hpsa_scan_complete(h); return; } spin_unlock_irqrestore(&h->reset_lock, flags); hpsa_update_scsi_devices(h); hpsa_scan_complete(h); } static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) { struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; if (!logical_drive) return -ENODEV; if (qdepth < 1) qdepth = 1; else if (qdepth > logical_drive->queue_depth) qdepth = logical_drive->queue_depth; return scsi_change_queue_depth(sdev, qdepth); } static int hpsa_scan_finished(struct Scsi_Host *sh, unsigned long elapsed_time) { struct ctlr_info *h = shost_to_hba(sh); unsigned long flags; int finished; spin_lock_irqsave(&h->scan_lock, flags); finished = h->scan_finished; spin_unlock_irqrestore(&h->scan_lock, flags); return finished; } static int hpsa_scsi_host_alloc(struct ctlr_info *h) { struct Scsi_Host *sh; sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); if (sh == NULL) { dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); return -ENOMEM; } sh->io_port = 0; sh->n_io_port = 0; sh->this_id = -1; sh->max_channel = 3; sh->max_cmd_len = MAX_COMMAND_SIZE; sh->max_lun = HPSA_MAX_LUN; sh->max_id = HPSA_MAX_LUN; sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; sh->cmd_per_lun = sh->can_queue; sh->sg_tablesize = h->maxsgentries; sh->transportt = hpsa_sas_transport_template; sh->hostdata[0] = (unsigned long) h; sh->irq = pci_irq_vector(h->pdev, 0); sh->unique_id = sh->irq; h->scsi_host = sh; return 0; } static int hpsa_scsi_add_host(struct ctlr_info *h) { int rv; rv = scsi_add_host(h->scsi_host, &h->pdev->dev); if (rv) { dev_err(&h->pdev->dev, "scsi_add_host failed\n"); return rv; } scsi_scan_host(h->scsi_host); return 0; } /* * The block layer has already gone to the trouble of picking out a unique, * small-integer tag for this request. We use an offset from that value as * an index to select our command block. (The offset allows us to reserve the * low-numbered entries for our own uses.) */ static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) { int idx = scmd->request->tag; if (idx < 0) return idx; /* Offset to leave space for internal cmds. */ return idx += HPSA_NRESERVED_CMDS; } /* * Send a TEST_UNIT_READY command to the specified LUN using the specified * reply queue; returns zero if the unit is ready, and non-zero otherwise. */ static int hpsa_send_test_unit_ready(struct ctlr_info *h, struct CommandList *c, unsigned char lunaddr[], int reply_queue) { int rc; /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT); if (rc) return rc; /* no unmap needed here because no data xfer. */ /* Check if the unit is already ready. */ if (c->err_info->CommandStatus == CMD_SUCCESS) return 0; /* * The first command sent after reset will receive "unit attention" to * indicate that the LUN has been reset...this is actually what we're * looking for (but, success is good too). */ if (c->err_info->CommandStatus == CMD_TARGET_STATUS && c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && (c->err_info->SenseInfo[2] == NO_SENSE || c->err_info->SenseInfo[2] == UNIT_ATTENTION)) return 0; return 1; } /* * Wait for a TEST_UNIT_READY command to complete, retrying as necessary; * returns zero when the unit is ready, and non-zero when giving up. */ static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, struct CommandList *c, unsigned char lunaddr[], int reply_queue) { int rc; int count = 0; int waittime = 1; /* seconds */ /* Send test unit ready until device ready, or give up. */ for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { /* * Wait for a bit. do this first, because if we send * the TUR right away, the reset will just abort it. */ msleep(1000 * waittime); rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); if (!rc) break; /* Increase wait time with each try, up to a point. */ if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) waittime *= 2; dev_warn(&h->pdev->dev, "waiting %d secs for device to become ready.\n", waittime); } return rc; } static int wait_for_device_to_become_ready(struct ctlr_info *h, unsigned char lunaddr[], int reply_queue) { int first_queue; int last_queue; int rq; int rc = 0; struct CommandList *c; c = cmd_alloc(h); /* * If no specific reply queue was requested, then send the TUR * repeatedly, requesting a reply on each reply queue; otherwise execute * the loop exactly once using only the specified queue. */ if (reply_queue == DEFAULT_REPLY_QUEUE) { first_queue = 0; last_queue = h->nreply_queues - 1; } else { first_queue = reply_queue; last_queue = reply_queue; } for (rq = first_queue; rq <= last_queue; rq++) { rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); if (rc) break; } if (rc) dev_warn(&h->pdev->dev, "giving up on device.\n"); else dev_warn(&h->pdev->dev, "device is ready.\n"); cmd_free(h, c); return rc; } /* Need at least one of these error handlers to keep ../scsi/hosts.c from * complaining. Doing a host- or bus-reset can't do anything good here. */ static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) { int rc = SUCCESS; struct ctlr_info *h; struct hpsa_scsi_dev_t *dev; u8 reset_type; char msg[48]; unsigned long flags; /* find the controller to which the command to be aborted was sent */ h = sdev_to_hba(scsicmd->device); if (h == NULL) /* paranoia */ return FAILED; spin_lock_irqsave(&h->reset_lock, flags); h->reset_in_progress = 1; spin_unlock_irqrestore(&h->reset_lock, flags); if (lockup_detected(h)) { rc = FAILED; goto return_reset_status; } dev = scsicmd->device->hostdata; if (!dev) { dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); rc = FAILED; goto return_reset_status; } if (dev->devtype == TYPE_ENCLOSURE) { rc = SUCCESS; goto return_reset_status; } /* if controller locked up, we can guarantee command won't complete */ if (lockup_detected(h)) { snprintf(msg, sizeof(msg), "cmd %d RESET FAILED, lockup detected", hpsa_get_cmd_index(scsicmd)); hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); rc = FAILED; goto return_reset_status; } /* this reset request might be the result of a lockup; check */ if (detect_controller_lockup(h)) { snprintf(msg, sizeof(msg), "cmd %d RESET FAILED, new lockup detected", hpsa_get_cmd_index(scsicmd)); hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); rc = FAILED; goto return_reset_status; } /* Do not attempt on controller */ if (is_hba_lunid(dev->scsi3addr)) { rc = SUCCESS; goto return_reset_status; } if (is_logical_dev_addr_mode(dev->scsi3addr)) reset_type = HPSA_DEVICE_RESET_MSG; else reset_type = HPSA_PHYS_TARGET_RESET; sprintf(msg, "resetting %s", reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical "); hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); /* send a reset to the SCSI LUN which the command was sent to */ rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type, DEFAULT_REPLY_QUEUE); if (rc == 0) rc = SUCCESS; else rc = FAILED; sprintf(msg, "reset %s %s", reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ", rc == SUCCESS ? "completed successfully" : "failed"); hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); return_reset_status: spin_lock_irqsave(&h->reset_lock, flags); h->reset_in_progress = 0; spin_unlock_irqrestore(&h->reset_lock, flags); return rc; } static void swizzle_abort_tag(u8 *tag) { u8 original_tag[8]; memcpy(original_tag, tag, 8); tag[0] = original_tag[3]; tag[1] = original_tag[2]; tag[2] = original_tag[1]; tag[3] = original_tag[0]; tag[4] = original_tag[7]; tag[5] = original_tag[6]; tag[6] = original_tag[5]; tag[7] = original_tag[4]; } static void hpsa_get_tag(struct ctlr_info *h, struct CommandList *c, __le32 *taglower, __le32 *tagupper) { u64 tag; if (c->cmd_type == CMD_IOACCEL1) { struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *) &h->ioaccel_cmd_pool[c->cmdindex]; tag = le64_to_cpu(cm1->tag); *tagupper = cpu_to_le32(tag >> 32); *taglower = cpu_to_le32(tag); return; } if (c->cmd_type == CMD_IOACCEL2) { struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *) &h->ioaccel2_cmd_pool[c->cmdindex]; /* upper tag not used in ioaccel2 mode */ memset(tagupper, 0, sizeof(*tagupper)); *taglower = cm2->Tag; return; } tag = le64_to_cpu(c->Header.tag); *tagupper = cpu_to_le32(tag >> 32); *taglower = cpu_to_le32(tag); } static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, struct CommandList *abort, int reply_queue) { int rc = IO_OK; struct CommandList *c; struct ErrorInfo *ei; __le32 tagupper, taglower; c = cmd_alloc(h); /* fill_cmd can't fail here, no buffer to map */ (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag, 0, 0, scsi3addr, TYPE_MSG); if (h->needs_abort_tags_swizzled) swizzle_abort_tag(&c->Request.CDB[4]); (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT); hpsa_get_tag(h, abort, &taglower, &tagupper); dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n", __func__, tagupper, taglower); /* no unmap needed here because no data xfer. */ ei = c->err_info; switch (ei->CommandStatus) { case CMD_SUCCESS: break; case CMD_TMF_STATUS: rc = hpsa_evaluate_tmf_status(h, c); break; case CMD_UNABORTABLE: /* Very common, don't make noise. */ rc = -1; break; default: dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", __func__, tagupper, taglower); hpsa_scsi_interpret_error(h, c); rc = -1; break; } cmd_free(h, c); dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__, tagupper, taglower); return rc; } static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h, struct CommandList *command_to_abort, int reply_queue) { struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; struct io_accel2_cmd *c2a = &h->ioaccel2_cmd_pool[command_to_abort->cmdindex]; struct scsi_cmnd *scmd = command_to_abort->scsi_cmd; struct hpsa_scsi_dev_t *dev = scmd->device->hostdata; if (!dev) return; /* * We're overlaying struct hpsa_tmf_struct on top of something which * was allocated as a struct io_accel2_cmd, so we better be sure it * actually fits, and doesn't overrun the error info space. */ BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) > sizeof(struct io_accel2_cmd)); BUG_ON(offsetof(struct io_accel2_cmd, error_data) < offsetof(struct hpsa_tmf_struct, error_len) + sizeof(ac->error_len)); c->cmd_type = IOACCEL2_TMF; c->scsi_cmd = SCSI_CMD_BUSY; /* Adjust the DMA address to point to the accelerated command buffer */ c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + (c->cmdindex * sizeof(struct io_accel2_cmd)); BUG_ON(c->busaddr & 0x0000007F); memset(ac, 0, sizeof(*c2)); /* yes this is correct */ ac->iu_type = IOACCEL2_IU_TMF_TYPE; ac->reply_queue = reply_queue; ac->tmf = IOACCEL2_TMF_ABORT; ac->it_nexus = cpu_to_le32(dev->ioaccel_handle); memset(ac->lun_id, 0, sizeof(ac->lun_id)); ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT); ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag)); ac->error_ptr = cpu_to_le64(c->busaddr + offsetof(struct io_accel2_cmd, error_data)); ac->error_len = cpu_to_le32(sizeof(c2->error_data)); } /* ioaccel2 path firmware cannot handle abort task requests. * Change abort requests to physical target reset, and send to the * address of the physical disk used for the ioaccel 2 command. * Return 0 on success (IO_OK) * -1 on failure */ static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h, unsigned char *scsi3addr, struct CommandList *abort, int reply_queue) { int rc = IO_OK; struct scsi_cmnd *scmd; /* scsi command within request being aborted */ struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */ unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */ unsigned char *psa = &phys_scsi3addr[0]; /* Get a pointer to the hpsa logical device. */ scmd = abort->scsi_cmd; dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata); if (dev == NULL) { dev_warn(&h->pdev->dev, "Cannot abort: no device pointer for command.\n"); return -1; /* not abortable */ } if (h->raid_offload_debug > 0) dev_info(&h->pdev->dev, "scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n", h->scsi_host->host_no, dev->bus, dev->target, dev->lun, "Reset as abort", scsi3addr); if (!dev->offload_enabled) { dev_warn(&h->pdev->dev, "Can't abort: device is not operating in HP SSD Smart Path mode.\n"); return -1; /* not abortable */ } /* Incoming scsi3addr is logical addr. We need physical disk addr. */ if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) { dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n"); return -1; /* not abortable */ } /* send the reset */ if (h->raid_offload_debug > 0) dev_info(&h->pdev->dev, "Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n", psa); rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue); if (rc != 0) { dev_warn(&h->pdev->dev, "Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n", psa); return rc; /* failed to reset */ } /* wait for device to recover */ if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) { dev_warn(&h->pdev->dev, "Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n", psa); return -1; /* failed to recover */ } /* device recovered */ dev_info(&h->pdev->dev, "Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n", psa); return rc; /* success */ } static int hpsa_send_abort_ioaccel2(struct ctlr_info *h, struct CommandList *abort, int reply_queue) { int rc = IO_OK; struct CommandList *c; __le32 taglower, tagupper; struct hpsa_scsi_dev_t *dev; struct io_accel2_cmd *c2; dev = abort->scsi_cmd->device->hostdata; if (!dev) return -1; if (!dev->offload_enabled && !dev->hba_ioaccel_enabled) return -1; c = cmd_alloc(h); setup_ioaccel2_abort_cmd(c, h, abort, reply_queue); c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT); hpsa_get_tag(h, abort, &taglower, &tagupper); dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n", __func__, tagupper, taglower); /* no unmap needed here because no data xfer. */ dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n", __func__, tagupper, taglower, c2->error_data.serv_response); switch (c2->error_data.serv_response) { case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: rc = 0; break; case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: case IOACCEL2_SERV_RESPONSE_FAILURE: case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: rc = -1; break; default: dev_warn(&h->pdev->dev, "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n", __func__, tagupper, taglower, c2->error_data.serv_response); rc = -1; } cmd_free(h, c); dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__, tagupper, taglower); return rc; } static int hpsa_send_abort_both_ways(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue) { /* * ioccelerator mode 2 commands should be aborted via the * accelerated path, since RAID path is unaware of these commands, * but not all underlying firmware can handle abort TMF. * Change abort to physical device reset when abort TMF is unsupported. */ if (abort->cmd_type == CMD_IOACCEL2) { if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) || dev->physical_device) return hpsa_send_abort_ioaccel2(h, abort, reply_queue); else return hpsa_send_reset_as_abort_ioaccel2(h, dev->scsi3addr, abort, reply_queue); } return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue); } /* Find out which reply queue a command was meant to return on */ static int hpsa_extract_reply_queue(struct ctlr_info *h, struct CommandList *c) { if (c->cmd_type == CMD_IOACCEL2) return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue; return c->Header.ReplyQueue; } /* * Limit concurrency of abort commands to prevent * over-subscription of commands */ static inline int wait_for_available_abort_cmd(struct ctlr_info *h) { #define ABORT_CMD_WAIT_MSECS 5000 return !wait_event_timeout(h->abort_cmd_wait_queue, atomic_dec_if_positive(&h->abort_cmds_available) >= 0, msecs_to_jiffies(ABORT_CMD_WAIT_MSECS)); } /* Send an abort for the specified command. * If the device and controller support it, * send a task abort request. */ static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) { int rc; struct ctlr_info *h; struct hpsa_scsi_dev_t *dev; struct CommandList *abort; /* pointer to command to be aborted */ struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */ char msg[256]; /* For debug messaging. */ int ml = 0; __le32 tagupper, taglower; int refcount, reply_queue; if (sc == NULL) return FAILED; if (sc->device == NULL) return FAILED; /* Find the controller of the command to be aborted */ h = sdev_to_hba(sc->device); if (h == NULL) return FAILED; /* Find the device of the command to be aborted */ dev = sc->device->hostdata; if (!dev) { dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", msg); return FAILED; } /* If controller locked up, we can guarantee command won't complete */ if (lockup_detected(h)) { hpsa_show_dev_msg(KERN_WARNING, h, dev, "ABORT FAILED, lockup detected"); return FAILED; } /* This is a good time to check if controller lockup has occurred */ if (detect_controller_lockup(h)) { hpsa_show_dev_msg(KERN_WARNING, h, dev, "ABORT FAILED, new lockup detected"); return FAILED; } /* Check that controller supports some kind of task abort */ if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) return FAILED; memset(msg, 0, sizeof(msg)); ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p", h->scsi_host->host_no, sc->device->channel, sc->device->id, sc->device->lun, "Aborting command", sc); /* Get SCSI command to be aborted */ abort = (struct CommandList *) sc->host_scribble; if (abort == NULL) { /* This can happen if the command already completed. */ return SUCCESS; } refcount = atomic_inc_return(&abort->refcount); if (refcount == 1) { /* Command is done already. */ cmd_free(h, abort); return SUCCESS; } /* Don't bother trying the abort if we know it won't work. */ if (abort->cmd_type != CMD_IOACCEL2 && abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) { cmd_free(h, abort); return FAILED; } /* * Check that we're aborting the right command. * It's possible the CommandList already completed and got re-used. */ if (abort->scsi_cmd != sc) { cmd_free(h, abort); return SUCCESS; } abort->abort_pending = true; hpsa_get_tag(h, abort, &taglower, &tagupper); reply_queue = hpsa_extract_reply_queue(h, abort); ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower); as = abort->scsi_cmd; if (as != NULL) ml += sprintf(msg+ml, "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ", as->cmd_len, as->cmnd[0], as->cmnd[1], as->serial_number); dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg); hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command"); /* * Command is in flight, or possibly already completed * by the firmware (but not to the scsi mid layer) but we can't * distinguish which. Send the abort down. */ if (wait_for_available_abort_cmd(h)) { dev_warn(&h->pdev->dev, "%s FAILED, timeout waiting for an abort command to become available.\n", msg); cmd_free(h, abort); return FAILED; } rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue); atomic_inc(&h->abort_cmds_available); wake_up_all(&h->abort_cmd_wait_queue); if (rc != 0) { dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg); hpsa_show_dev_msg(KERN_WARNING, h, dev, "FAILED to abort command"); cmd_free(h, abort); return FAILED; } dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg); wait_event(h->event_sync_wait_queue, abort->scsi_cmd != sc || lockup_detected(h)); cmd_free(h, abort); return !lockup_detected(h) ? SUCCESS : FAILED; } /* * For operations with an associated SCSI command, a command block is allocated * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the * block request tag as an index into a table of entries. cmd_tagged_free() is * the complement, although cmd_free() may be called instead. */ static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, struct scsi_cmnd *scmd) { int idx = hpsa_get_cmd_index(scmd); struct CommandList *c = h->cmd_pool + idx; if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); /* The index value comes from the block layer, so if it's out of * bounds, it's probably not our bug. */ BUG(); } atomic_inc(&c->refcount); if (unlikely(!hpsa_is_cmd_idle(c))) { /* * We expect that the SCSI layer will hand us a unique tag * value. Thus, there should never be a collision here between * two requests...because if the selected command isn't idle * then someone is going to be very disappointed. */ dev_err(&h->pdev->dev, "tag collision (tag=%d) in cmd_tagged_alloc().\n", idx); if (c->scsi_cmd != NULL) scsi_print_command(c->scsi_cmd); scsi_print_command(scmd); } hpsa_cmd_partial_init(h, idx, c); return c; } static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) { /* * Release our reference to the block. We don't need to do anything * else to free it, because it is accessed by index. (There's no point * in checking the result of the decrement, since we cannot guarantee * that there isn't a concurrent abort which is also accessing it.) */ (void)atomic_dec(&c->refcount); } /* * For operations that cannot sleep, a command block is allocated at init, * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track * which ones are free or in use. Lock must be held when calling this. * cmd_free() is the complement. * This function never gives up and returns NULL. If it hangs, * another thread must call cmd_free() to free some tags. */ static struct CommandList *cmd_alloc(struct ctlr_info *h) { struct CommandList *c; int refcount, i; int offset = 0; /* * There is some *extremely* small but non-zero chance that that * multiple threads could get in here, and one thread could * be scanning through the list of bits looking for a free * one, but the free ones are always behind him, and other * threads sneak in behind him and eat them before he can * get to them, so that while there is always a free one, a * very unlucky thread might be starved anyway, never able to * beat the other threads. In reality, this happens so * infrequently as to be indistinguishable from never. * * Note that we start allocating commands before the SCSI host structure * is initialized. Since the search starts at bit zero, this * all works, since we have at least one command structure available; * however, it means that the structures with the low indexes have to be * reserved for driver-initiated requests, while requests from the block * layer will use the higher indexes. */ for (;;) { i = find_next_zero_bit(h->cmd_pool_bits, HPSA_NRESERVED_CMDS, offset); if (unlikely(i >= HPSA_NRESERVED_CMDS)) { offset = 0; continue; } c = h->cmd_pool + i; refcount = atomic_inc_return(&c->refcount); if (unlikely(refcount > 1)) { cmd_free(h, c); /* already in use */ offset = (i + 1) % HPSA_NRESERVED_CMDS; continue; } set_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits + (i / BITS_PER_LONG)); break; /* it's ours now. */ } hpsa_cmd_partial_init(h, i, c); return c; } /* * This is the complementary operation to cmd_alloc(). Note, however, in some * corner cases it may also be used to free blocks allocated by * cmd_tagged_alloc() in which case the ref-count decrement does the trick and * the clear-bit is harmless. */ static void cmd_free(struct ctlr_info *h, struct CommandList *c) { if (atomic_dec_and_test(&c->refcount)) { int i; i = c - h->cmd_pool; clear_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits + (i / BITS_PER_LONG)); } } #ifdef CONFIG_COMPAT static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void __user *arg) { IOCTL32_Command_struct __user *arg32 = (IOCTL32_Command_struct __user *) arg; IOCTL_Command_struct arg64; IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); int err; u32 cp; memset(&arg64, 0, sizeof(arg64)); err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(cp, &arg32->buf); arg64.buf = compat_ptr(cp); err |= copy_to_user(p, &arg64, sizeof(arg64)); if (err) return -EFAULT; err = hpsa_ioctl(dev, CCISS_PASSTHRU, p); if (err) return err; err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, int cmd, void __user *arg) { BIG_IOCTL32_Command_struct __user *arg32 = (BIG_IOCTL32_Command_struct __user *) arg; BIG_IOCTL_Command_struct arg64; BIG_IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); int err; u32 cp; memset(&arg64, 0, sizeof(arg64)); err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(arg64.malloc_size, &arg32->malloc_size); err |= get_user(cp, &arg32->buf); arg64.buf = compat_ptr(cp); err |= copy_to_user(p, &arg64, sizeof(arg64)); if (err) return -EFAULT; err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p); if (err) return err; err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg) { switch (cmd) { case CCISS_GETPCIINFO: case CCISS_GETINTINFO: case CCISS_SETINTINFO: case CCISS_GETNODENAME: case CCISS_SETNODENAME: case CCISS_GETHEARTBEAT: case CCISS_GETBUSTYPES: case CCISS_GETFIRMVER: case CCISS_GETDRIVVER: case CCISS_REVALIDVOLS: case CCISS_DEREGDISK: case CCISS_REGNEWDISK: case CCISS_REGNEWD: case CCISS_RESCANDISK: case CCISS_GETLUNINFO: return hpsa_ioctl(dev, cmd, arg); case CCISS_PASSTHRU32: return hpsa_ioctl32_passthru(dev, cmd, arg); case CCISS_BIG_PASSTHRU32: return hpsa_ioctl32_big_passthru(dev, cmd, arg); default: return -ENOIOCTLCMD; } } #endif static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) { struct hpsa_pci_info pciinfo; if (!argp) return -EINVAL; pciinfo.domain = pci_domain_nr(h->pdev->bus); pciinfo.bus = h->pdev->bus->number; pciinfo.dev_fn = h->pdev->devfn; pciinfo.board_id = h->board_id; if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) return -EFAULT; return 0; } static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) { DriverVer_type DriverVer; unsigned char vmaj, vmin, vsubmin; int rc; rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", &vmaj, &vmin, &vsubmin); if (rc != 3) { dev_info(&h->pdev->dev, "driver version string '%s' " "unrecognized.", HPSA_DRIVER_VERSION); vmaj = 0; vmin = 0; vsubmin = 0; } DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; if (!argp) return -EINVAL; if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) return -EFAULT; return 0; } static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) { IOCTL_Command_struct iocommand; struct CommandList *c; char *buff = NULL; u64 temp64; int rc = 0; if (!argp) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user(&iocommand, argp, sizeof(iocommand))) return -EFAULT; if ((iocommand.buf_size < 1) && (iocommand.Request.Type.Direction != XFER_NONE)) { return -EINVAL; } if (iocommand.buf_size > 0) { buff = kmalloc(iocommand.buf_size, GFP_KERNEL); if (buff == NULL) return -ENOMEM; if (iocommand.Request.Type.Direction & XFER_WRITE) { /* Copy the data into the buffer we created */ if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { rc = -EFAULT; goto out_kfree; } } else { memset(buff, 0, iocommand.buf_size); } } c = cmd_alloc(h); /* Fill in the command type */ c->cmd_type = CMD_IOCTL_PEND; c->scsi_cmd = SCSI_CMD_BUSY; /* Fill in Command Header */ c->Header.ReplyQueue = 0; /* unused in simple mode */ if (iocommand.buf_size > 0) { /* buffer to fill */ c->Header.SGList = 1; c->Header.SGTotal = cpu_to_le16(1); } else { /* no buffers to fill */ c->Header.SGList = 0; c->Header.SGTotal = cpu_to_le16(0); } memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); /* Fill in Request block */ memcpy(&c->Request, &iocommand.Request, sizeof(c->Request)); /* Fill in the scatter gather information */ if (iocommand.buf_size > 0) { temp64 = pci_map_single(h->pdev, buff, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { c->SG[0].Addr = cpu_to_le64(0); c->SG[0].Len = cpu_to_le32(0); rc = -ENOMEM; goto out; } c->SG[0].Addr = cpu_to_le64(temp64); c->SG[0].Len = cpu_to_le32(iocommand.buf_size); c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ } rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT); if (iocommand.buf_size > 0) hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); check_ioctl_unit_attention(h, c); if (rc) { rc = -EIO; goto out; } /* Copy the error information out */ memcpy(&iocommand.error_info, c->err_info, sizeof(iocommand.error_info)); if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { rc = -EFAULT; goto out; } if ((iocommand.Request.Type.Direction & XFER_READ) && iocommand.buf_size > 0) { /* Copy the data out of the buffer we created */ if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { rc = -EFAULT; goto out; } } out: cmd_free(h, c); out_kfree: kfree(buff); return rc; } static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) { BIG_IOCTL_Command_struct *ioc; struct CommandList *c; unsigned char **buff = NULL; int *buff_size = NULL; u64 temp64; BYTE sg_used = 0; int status = 0; u32 left; u32 sz; BYTE __user *data_ptr; if (!argp) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); if (!ioc) { status = -ENOMEM; goto cleanup1; } if (copy_from_user(ioc, argp, sizeof(*ioc))) { status = -EFAULT; goto cleanup1; } if ((ioc->buf_size < 1) && (ioc->Request.Type.Direction != XFER_NONE)) { status = -EINVAL; goto cleanup1; } /* Check kmalloc limits using all SGs */ if (ioc->malloc_size > MAX_KMALLOC_SIZE) { status = -EINVAL; goto cleanup1; } if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { status = -EINVAL; goto cleanup1; } buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); if (!buff) { status = -ENOMEM; goto cleanup1; } buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); if (!buff_size) { status = -ENOMEM; goto cleanup1; } left = ioc->buf_size; data_ptr = ioc->buf; while (left) { sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; buff_size[sg_used] = sz; buff[sg_used] = kmalloc(sz, GFP_KERNEL); if (buff[sg_used] == NULL) { status = -ENOMEM; goto cleanup1; } if (ioc->Request.Type.Direction & XFER_WRITE) { if (copy_from_user(buff[sg_used], data_ptr, sz)) { status = -EFAULT; goto cleanup1; } } else memset(buff[sg_used], 0, sz); left -= sz; data_ptr += sz; sg_used++; } c = cmd_alloc(h); c->cmd_type = CMD_IOCTL_PEND; c->scsi_cmd = SCSI_CMD_BUSY; c->Header.ReplyQueue = 0; c->Header.SGList = (u8) sg_used; c->Header.SGTotal = cpu_to_le16(sg_used); memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); if (ioc->buf_size > 0) { int i; for (i = 0; i < sg_used; i++) { temp64 = pci_map_single(h->pdev, buff[i], buff_size[i], PCI_DMA_BIDIRECTIONAL); if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { c->SG[i].Addr = cpu_to_le64(0); c->SG[i].Len = cpu_to_le32(0); hpsa_pci_unmap(h->pdev, c, i, PCI_DMA_BIDIRECTIONAL); status = -ENOMEM; goto cleanup0; } c->SG[i].Addr = cpu_to_le64(temp64); c->SG[i].Len = cpu_to_le32(buff_size[i]); c->SG[i].Ext = cpu_to_le32(0); } c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); } status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT); if (sg_used) hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); check_ioctl_unit_attention(h, c); if (status) { status = -EIO; goto cleanup0; } /* Copy the error information out */ memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); if (copy_to_user(argp, ioc, sizeof(*ioc))) { status = -EFAULT; goto cleanup0; } if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { int i; /* Copy the data out of the buffer we created */ BYTE __user *ptr = ioc->buf; for (i = 0; i < sg_used; i++) { if (copy_to_user(ptr, buff[i], buff_size[i])) { status = -EFAULT; goto cleanup0; } ptr += buff_size[i]; } } status = 0; cleanup0: cmd_free(h, c); cleanup1: if (buff) { int i; for (i = 0; i < sg_used; i++) kfree(buff[i]); kfree(buff); } kfree(buff_size); kfree(ioc); return status; } static void check_ioctl_unit_attention(struct ctlr_info *h, struct CommandList *c) { if (c->err_info->CommandStatus == CMD_TARGET_STATUS && c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) (void) check_for_unit_attention(h, c); } /* * ioctl */ static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg) { struct ctlr_info *h; void __user *argp = (void __user *)arg; int rc; h = sdev_to_hba(dev); switch (cmd) { case CCISS_DEREGDISK: case CCISS_REGNEWDISK: case CCISS_REGNEWD: hpsa_scan_start(h->scsi_host); return 0; case CCISS_GETPCIINFO: return hpsa_getpciinfo_ioctl(h, argp); case CCISS_GETDRIVVER: return hpsa_getdrivver_ioctl(h, argp); case CCISS_PASSTHRU: if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) return -EAGAIN; rc = hpsa_passthru_ioctl(h, argp); atomic_inc(&h->passthru_cmds_avail); return rc; case CCISS_BIG_PASSTHRU: if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) return -EAGAIN; rc = hpsa_big_passthru_ioctl(h, argp); atomic_inc(&h->passthru_cmds_avail); return rc; default: return -ENOTTY; } } static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, u8 reset_type) { struct CommandList *c; c = cmd_alloc(h); /* fill_cmd can't fail here, no data buffer to map */ (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, RAID_CTLR_LUNID, TYPE_MSG); c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ c->waiting = NULL; enqueue_cmd_and_start_io(h, c); /* Don't wait for completion, the reset won't complete. Don't free * the command either. This is the last command we will send before * re-initializing everything, so it doesn't matter and won't leak. */ return; } static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, int cmd_type) { int pci_dir = XFER_NONE; u64 tag; /* for commands to be aborted */ c->cmd_type = CMD_IOCTL_PEND; c->scsi_cmd = SCSI_CMD_BUSY; c->Header.ReplyQueue = 0; if (buff != NULL && size > 0) { c->Header.SGList = 1; c->Header.SGTotal = cpu_to_le16(1); } else { c->Header.SGList = 0; c->Header.SGTotal = cpu_to_le16(0); } memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); if (cmd_type == TYPE_CMD) { switch (cmd) { case HPSA_INQUIRY: /* are we trying to read a vital product page */ if (page_code & VPD_PAGE) { c->Request.CDB[1] = 0x01; c->Request.CDB[2] = (page_code & 0xff); } c->Request.CDBLen = 6; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); c->Request.Timeout = 0; c->Request.CDB[0] = HPSA_INQUIRY; c->Request.CDB[4] = size & 0xFF; break; case HPSA_REPORT_LOG: case HPSA_REPORT_PHYS: /* Talking to controller so It's a physical command mode = 00 target = 0. Nothing to write. */ c->Request.CDBLen = 12; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); c->Request.Timeout = 0; c->Request.CDB[0] = cmd; c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0xFF; c->Request.CDB[9] = size & 0xFF; break; case BMIC_SENSE_DIAG_OPTIONS: c->Request.CDBLen = 16; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); c->Request.Timeout = 0; /* Spec says this should be BMIC_WRITE */ c->Request.CDB[0] = BMIC_READ; c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS; break; case BMIC_SET_DIAG_OPTIONS: c->Request.CDBLen = 16; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_WRITE); c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_WRITE; c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS; break; case HPSA_CACHE_FLUSH: c->Request.CDBLen = 12; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_WRITE); c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_WRITE; c->Request.CDB[6] = BMIC_CACHE_FLUSH; c->Request.CDB[7] = (size >> 8) & 0xFF; c->Request.CDB[8] = size & 0xFF; break; case TEST_UNIT_READY: c->Request.CDBLen = 6; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); c->Request.Timeout = 0; break; case HPSA_GET_RAID_MAP: c->Request.CDBLen = 12; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); c->Request.Timeout = 0; c->Request.CDB[0] = HPSA_CISS_READ; c->Request.CDB[1] = cmd; c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0xFF; c->Request.CDB[9] = size & 0xFF; break; case BMIC_SENSE_CONTROLLER_PARAMETERS: c->Request.CDBLen = 10; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_READ; c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0xFF; break; case BMIC_IDENTIFY_PHYSICAL_DEVICE: c->Request.CDBLen = 10; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_READ; c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0XFF; break; case BMIC_SENSE_SUBSYSTEM_INFORMATION: c->Request.CDBLen = 10; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_READ; c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION; c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0XFF; break; case BMIC_SENSE_STORAGE_BOX_PARAMS: c->Request.CDBLen = 10; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_READ; c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS; c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0XFF; break; case BMIC_IDENTIFY_CONTROLLER: c->Request.CDBLen = 10; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_READ; c->Request.CDB[1] = 0; c->Request.CDB[2] = 0; c->Request.CDB[3] = 0; c->Request.CDB[4] = 0; c->Request.CDB[5] = 0; c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER; c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0XFF; c->Request.CDB[9] = 0; break; default: dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); BUG(); return -1; } } else if (cmd_type == TYPE_MSG) { switch (cmd) { case HPSA_PHYS_TARGET_RESET: c->Request.CDBLen = 16; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); c->Request.Timeout = 0; /* Don't time out */ memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); c->Request.CDB[0] = HPSA_RESET; c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE; /* Physical target reset needs no control bytes 4-7*/ c->Request.CDB[4] = 0x00; c->Request.CDB[5] = 0x00; c->Request.CDB[6] = 0x00; c->Request.CDB[7] = 0x00; break; case HPSA_DEVICE_RESET_MSG: c->Request.CDBLen = 16; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); c->Request.Timeout = 0; /* Don't time out */ memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); c->Request.CDB[0] = cmd; c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; /* If bytes 4-7 are zero, it means reset the */ /* LunID device */ c->Request.CDB[4] = 0x00; c->Request.CDB[5] = 0x00; c->Request.CDB[6] = 0x00; c->Request.CDB[7] = 0x00; break; case HPSA_ABORT_MSG: memcpy(&tag, buff, sizeof(tag)); dev_dbg(&h->pdev->dev, "Abort Tag:0x%016llx using rqst Tag:0x%016llx", tag, c->Header.tag); c->Request.CDBLen = 16; c->Request.type_attr_dir = TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_WRITE); c->Request.Timeout = 0; /* Don't time out */ c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; c->Request.CDB[2] = 0x00; /* reserved */ c->Request.CDB[3] = 0x00; /* reserved */ /* Tag to abort goes in CDB[4]-CDB[11] */ memcpy(&c->Request.CDB[4], &tag, sizeof(tag)); c->Request.CDB[12] = 0x00; /* reserved */ c->Request.CDB[13] = 0x00; /* reserved */ c->Request.CDB[14] = 0x00; /* reserved */ c->Request.CDB[15] = 0x00; /* reserved */ break; default: dev_warn(&h->pdev->dev, "unknown message type %d\n", cmd); BUG(); } } else { dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); BUG(); } switch (GET_DIR(c->Request.type_attr_dir)) { case XFER_READ: pci_dir = PCI_DMA_FROMDEVICE; break; case XFER_WRITE: pci_dir = PCI_DMA_TODEVICE; break; case XFER_NONE: pci_dir = PCI_DMA_NONE; break; default: pci_dir = PCI_DMA_BIDIRECTIONAL; } if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) return -1; return 0; } /* * Map (physical) PCI mem into (virtual) kernel space */ static void __iomem *remap_pci_mem(ulong base, ulong size) { ulong page_base = ((ulong) base) & PAGE_MASK; ulong page_offs = ((ulong) base) - page_base; void __iomem *page_remapped = ioremap_nocache(page_base, page_offs + size); return page_remapped ? (page_remapped + page_offs) : NULL; } static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) { return h->access.command_completed(h, q); } static inline bool interrupt_pending(struct ctlr_info *h) { return h->access.intr_pending(h); } static inline long interrupt_not_for_us(struct ctlr_info *h) { return (h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0); } static inline int bad_tag(struct ctlr_info *h, u32 tag_index, u32 raw_tag) { if (unlikely(tag_index >= h->nr_cmds)) { dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); return 1; } return 0; } static inline void finish_cmd(struct CommandList *c) { dial_up_lockup_detection_on_fw_flash_complete(c->h, c); if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI || c->cmd_type == CMD_IOACCEL2)) complete_scsi_command(c); else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) complete(c->waiting); } /* process completion of an indexed ("direct lookup") command */ static inline void process_indexed_cmd(struct ctlr_info *h, u32 raw_tag) { u32 tag_index; struct CommandList *c; tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; if (!bad_tag(h, tag_index, raw_tag)) { c = h->cmd_pool + tag_index; finish_cmd(c); } } /* Some controllers, like p400, will give us one interrupt * after a soft reset, even if we turned interrupts off. * Only need to check for this in the hpsa_xxx_discard_completions * functions. */ static int ignore_bogus_interrupt(struct ctlr_info *h) { if (likely(!reset_devices)) return 0; if (likely(h->interrupts_enabled)) return 0; dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " "(known firmware bug.) Ignoring.\n"); return 1; } /* * Convert &h->q[x] (passed to interrupt handlers) back to h. * Relies on (h-q[x] == x) being true for x such that * 0 <= x < MAX_REPLY_QUEUES. */ static struct ctlr_info *queue_to_hba(u8 *queue) { return container_of((queue - *queue), struct ctlr_info, q[0]); } static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) { struct ctlr_info *h = queue_to_hba(queue); u8 q = *(u8 *) queue; u32 raw_tag; if (ignore_bogus_interrupt(h)) return IRQ_NONE; if (interrupt_not_for_us(h)) return IRQ_NONE; h->last_intr_timestamp = get_jiffies_64(); while (interrupt_pending(h)) { raw_tag = get_next_completion(h, q); while (raw_tag != FIFO_EMPTY) raw_tag = next_command(h, q); } return IRQ_HANDLED; } static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) { struct ctlr_info *h = queue_to_hba(queue); u32 raw_tag; u8 q = *(u8 *) queue; if (ignore_bogus_interrupt(h)) return IRQ_NONE; h->last_intr_timestamp = get_jiffies_64(); raw_tag = get_next_completion(h, q); while (raw_tag != FIFO_EMPTY) raw_tag = next_command(h, q); return IRQ_HANDLED; } static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) { struct ctlr_info *h = queue_to_hba((u8 *) queue); u32 raw_tag; u8 q = *(u8 *) queue; if (interrupt_not_for_us(h)) return IRQ_NONE; h->last_intr_timestamp = get_jiffies_64(); while (interrupt_pending(h)) { raw_tag = get_next_completion(h, q); while (raw_tag != FIFO_EMPTY) { process_indexed_cmd(h, raw_tag); raw_tag = next_command(h, q); } } return IRQ_HANDLED; } static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) { struct ctlr_info *h = queue_to_hba(queue); u32 raw_tag; u8 q = *(u8 *) queue; h->last_intr_timestamp = get_jiffies_64(); raw_tag = get_next_completion(h, q); while (raw_tag != FIFO_EMPTY) { process_indexed_cmd(h, raw_tag); raw_tag = next_command(h, q); } return IRQ_HANDLED; } /* Send a message CDB to the firmware. Careful, this only works * in simple mode, not performant mode due to the tag lookup. * We only ever use this immediately after a controller reset. */ static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type) { struct Command { struct CommandListHeader CommandHeader; struct RequestBlock Request; struct ErrDescriptor ErrorDescriptor; }; struct Command *cmd; static const size_t cmd_sz = sizeof(*cmd) + sizeof(cmd->ErrorDescriptor); dma_addr_t paddr64; __le32 paddr32; u32 tag; void __iomem *vaddr; int i, err; vaddr = pci_ioremap_bar(pdev, 0); if (vaddr == NULL) return -ENOMEM; /* The Inbound Post Queue only accepts 32-bit physical addresses for the * CCISS commands, so they must be allocated from the lower 4GiB of * memory. */ err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { iounmap(vaddr); return err; } cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); if (cmd == NULL) { iounmap(vaddr); return -ENOMEM; } /* This must fit, because of the 32-bit consistent DMA mask. Also, * although there's no guarantee, we assume that the address is at * least 4-byte aligned (most likely, it's page-aligned). */ paddr32 = cpu_to_le32(paddr64); cmd->CommandHeader.ReplyQueue = 0; cmd->CommandHeader.SGList = 0; cmd->CommandHeader.SGTotal = cpu_to_le16(0); cmd->CommandHeader.tag = cpu_to_le64(paddr64); memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); cmd->Request.CDBLen = 16; cmd->Request.type_attr_dir = TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); cmd->Request.Timeout = 0; /* Don't time out */ cmd->Request.CDB[0] = opcode; cmd->Request.CDB[1] = type; memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ cmd->ErrorDescriptor.Addr = cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) break; msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); } iounmap(vaddr); /* we leak the DMA buffer here ... no choice since the controller could * still complete the command. */ if (i == HPSA_MSG_SEND_RETRY_LIMIT) { dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", opcode, type); return -ETIMEDOUT; } pci_free_consistent(pdev, cmd_sz, cmd, paddr64); if (tag & HPSA_ERROR_BIT) { dev_err(&pdev->dev, "controller message %02x:%02x failed\n", opcode, type); return -EIO; } dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", opcode, type); return 0; } #define hpsa_noop(p) hpsa_message(p, 3, 0) static int hpsa_controller_hard_reset(struct pci_dev *pdev, void __iomem *vaddr, u32 use_doorbell) { if (use_doorbell) { /* For everything after the P600, the PCI power state method * of resetting the controller doesn't work, so we have this * other way using the doorbell register. */ dev_info(&pdev->dev, "using doorbell to reset controller\n"); writel(use_doorbell, vaddr + SA5_DOORBELL); /* PMC hardware guys tell us we need a 10 second delay after * doorbell reset and before any attempt to talk to the board * at all to ensure that this actually works and doesn't fall * over in some weird corner cases. */ msleep(10000); } else { /* Try to do it the PCI power state way */ /* Quoting from the Open CISS Specification: "The Power * Management Control/Status Register (CSR) controls the power * state of the device. The normal operating state is D0, * CSR=00h. The software off state is D3, CSR=03h. To reset * the controller, place the interface device in D3 then to D0, * this causes a secondary PCI reset which will reset the * controller." */ int rc = 0; dev_info(&pdev->dev, "using PCI PM to reset controller\n"); /* enter the D3hot power management state */ rc = pci_set_power_state(pdev, PCI_D3hot); if (rc) return rc; msleep(500); /* enter the D0 power management state */ rc = pci_set_power_state(pdev, PCI_D0); if (rc) return rc; /* * The P600 requires a small delay when changing states. * Otherwise we may think the board did not reset and we bail. * This for kdump only and is particular to the P600. */ msleep(500); } return 0; } static void init_driver_version(char *driver_version, int len) { memset(driver_version, 0, len); strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); } static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) { char *driver_version; int i, size = sizeof(cfgtable->driver_version); driver_version = kmalloc(size, GFP_KERNEL); if (!driver_version) return -ENOMEM; init_driver_version(driver_version, size); for (i = 0; i < size; i++) writeb(driver_version[i], &cfgtable->driver_version[i]); kfree(driver_version); return 0; } static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, unsigned char *driver_ver) { int i; for (i = 0; i < sizeof(cfgtable->driver_version); i++) driver_ver[i] = readb(&cfgtable->driver_version[i]); } static int controller_reset_failed(struct CfgTable __iomem *cfgtable) { char *driver_ver, *old_driver_ver; int rc, size = sizeof(cfgtable->driver_version); old_driver_ver = kmalloc(2 * size, GFP_KERNEL); if (!old_driver_ver) return -ENOMEM; driver_ver = old_driver_ver + size; /* After a reset, the 32 bytes of "driver version" in the cfgtable * should have been changed, otherwise we know the reset failed. */ init_driver_version(old_driver_ver, size); read_driver_ver_from_cfgtable(cfgtable, driver_ver); rc = !memcmp(driver_ver, old_driver_ver, size); kfree(old_driver_ver); return rc; } /* This does a hard reset of the controller using PCI power management * states or the using the doorbell register. */ static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) { u64 cfg_offset; u32 cfg_base_addr; u64 cfg_base_addr_index; void __iomem *vaddr; unsigned long paddr; u32 misc_fw_support; int rc; struct CfgTable __iomem *cfgtable; u32 use_doorbell; u16 command_register; /* For controllers as old as the P600, this is very nearly * the same thing as * * pci_save_state(pci_dev); * pci_set_power_state(pci_dev, PCI_D3hot); * pci_set_power_state(pci_dev, PCI_D0); * pci_restore_state(pci_dev); * * For controllers newer than the P600, the pci power state * method of resetting doesn't work so we have another way * using the doorbell register. */ if (!ctlr_is_resettable(board_id)) { dev_warn(&pdev->dev, "Controller not resettable\n"); return -ENODEV; } /* if controller is soft- but not hard resettable... */ if (!ctlr_is_hard_resettable(board_id)) return -ENOTSUPP; /* try soft reset later. */ /* Save the PCI command register */ pci_read_config_word(pdev, 4, &command_register); pci_save_state(pdev); /* find the first memory BAR, so we can find the cfg table */ rc = hpsa_pci_find_memory_BAR(pdev, &paddr); if (rc) return rc; vaddr = remap_pci_mem(paddr, 0x250); if (!vaddr) return -ENOMEM; /* find cfgtable in order to check if reset via doorbell is supported */ rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, &cfg_base_addr_index, &cfg_offset); if (rc) goto unmap_vaddr; cfgtable = remap_pci_mem(pci_resource_start(pdev, cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); if (!cfgtable) { rc = -ENOMEM; goto unmap_vaddr; } rc = write_driver_ver_to_cfgtable(cfgtable); if (rc) goto unmap_cfgtable; /* If reset via doorbell register is supported, use that. * There are two such methods. Favor the newest method. */ misc_fw_support = readl(&cfgtable->misc_fw_support); use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; if (use_doorbell) { use_doorbell = DOORBELL_CTLR_RESET2; } else { use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; if (use_doorbell) { dev_warn(&pdev->dev, "Soft reset not supported. Firmware update is required.\n"); rc = -ENOTSUPP; /* try soft reset */ goto unmap_cfgtable; } } rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); if (rc) goto unmap_cfgtable; pci_restore_state(pdev); pci_write_config_word(pdev, 4, command_register); /* Some devices (notably the HP Smart Array 5i Controller) need a little pause here */ msleep(HPSA_POST_RESET_PAUSE_MSECS); rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); if (rc) { dev_warn(&pdev->dev, "Failed waiting for board to become ready after hard reset\n"); goto unmap_cfgtable; } rc = controller_reset_failed(vaddr); if (rc < 0) goto unmap_cfgtable; if (rc) { dev_warn(&pdev->dev, "Unable to successfully reset " "controller. Will try soft reset.\n"); rc = -ENOTSUPP; } else { dev_info(&pdev->dev, "board ready after hard reset.\n"); } unmap_cfgtable: iounmap(cfgtable); unmap_vaddr: iounmap(vaddr); return rc; } /* * We cannot read the structure directly, for portability we must use * the io functions. * This is for debug only. */ static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) { #ifdef HPSA_DEBUG int i; char temp_name[17]; dev_info(dev, "Controller Configuration information\n"); dev_info(dev, "------------------------------------\n"); for (i = 0; i < 4; i++) temp_name[i] = readb(&(tb->Signature[i])); temp_name[4] = '\0'; dev_info(dev, " Signature = %s\n", temp_name); dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); dev_info(dev, " Transport methods supported = 0x%x\n", readl(&(tb->TransportSupport))); dev_info(dev, " Transport methods active = 0x%x\n", readl(&(tb->TransportActive))); dev_info(dev, " Requested transport Method = 0x%x\n", readl(&(tb->HostWrite.TransportRequest))); dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", readl(&(tb->HostWrite.CoalIntDelay))); dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", readl(&(tb->HostWrite.CoalIntCount))); dev_info(dev, " Max outstanding commands = %d\n", readl(&(tb->CmdsOutMax))); dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); for (i = 0; i < 16; i++) temp_name[i] = readb(&(tb->ServerName[i])); temp_name[16] = '\0'; dev_info(dev, " Server Name = %s\n", temp_name); dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat))); #endif /* HPSA_DEBUG */ } static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) { int i, offset, mem_type, bar_type; if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ return 0; offset = 0; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) offset += 4; else { mem_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_MEM_TYPE_MASK; switch (mem_type) { case PCI_BASE_ADDRESS_MEM_TYPE_32: case PCI_BASE_ADDRESS_MEM_TYPE_1M: offset += 4; /* 32 bit */ break; case PCI_BASE_ADDRESS_MEM_TYPE_64: offset += 8; break; default: /* reserved in PCI 2.2 */ dev_warn(&pdev->dev, "base address is invalid\n"); return -1; break; } } if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) return i + 1; } return -1; } static void hpsa_disable_interrupt_mode(struct ctlr_info *h) { pci_free_irq_vectors(h->pdev); h->msix_vectors = 0; } /* If MSI/MSI-X is supported by the kernel we will try to enable it on * controllers that are capable. If not, we use legacy INTx mode. */ static int hpsa_interrupt_mode(struct ctlr_info *h) { unsigned int flags = PCI_IRQ_LEGACY; int ret; /* Some boards advertise MSI but don't really support it */ switch (h->board_id) { case 0x40700E11: case 0x40800E11: case 0x40820E11: case 0x40830E11: break; default: ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES, PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); if (ret > 0) { h->msix_vectors = ret; return 0; } flags |= PCI_IRQ_MSI; break; } ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags); if (ret < 0) return ret; return 0; } static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) { int i; u32 subsystem_vendor_id, subsystem_device_id; subsystem_vendor_id = pdev->subsystem_vendor; subsystem_device_id = pdev->subsystem_device; *board_id = ((subsystem_device_id << 16) & 0xffff0000) | subsystem_vendor_id; for (i = 0; i < ARRAY_SIZE(products); i++) if (*board_id == products[i].board_id) return i; if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || !hpsa_allow_any) { dev_warn(&pdev->dev, "unrecognized board ID: " "0x%08x, ignoring.\n", *board_id); return -ENODEV; } return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ } static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, unsigned long *memory_bar) { int i; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { /* addressing mode bits already removed */ *memory_bar = pci_resource_start(pdev, i); dev_dbg(&pdev->dev, "memory BAR = %lx\n", *memory_bar); return 0; } dev_warn(&pdev->dev, "no memory BAR found\n"); return -ENODEV; } static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, int wait_for_ready) { int i, iterations; u32 scratchpad; if (wait_for_ready) iterations = HPSA_BOARD_READY_ITERATIONS; else iterations = HPSA_BOARD_NOT_READY_ITERATIONS; for (i = 0; i < iterations; i++) { scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); if (wait_for_ready) { if (scratchpad == HPSA_FIRMWARE_READY) return 0; } else { if (scratchpad != HPSA_FIRMWARE_READY) return 0; } msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); } dev_warn(&pdev->dev, "board not ready, timed out.\n"); return -ENODEV; } static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, u64 *cfg_offset) { *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); *cfg_base_addr &= (u32) 0x0000ffff; *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); if (*cfg_base_addr_index == -1) { dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); return -ENODEV; } return 0; } static void hpsa_free_cfgtables(struct ctlr_info *h) { if (h->transtable) { iounmap(h->transtable); h->transtable = NULL; } if (h->cfgtable) { iounmap(h->cfgtable); h->cfgtable = NULL; } } /* Find and map CISS config table and transfer table + * several items must be unmapped (freed) later + * */ static int hpsa_find_cfgtables(struct ctlr_info *h) { u64 cfg_offset; u32 cfg_base_addr; u64 cfg_base_addr_index; u32 trans_offset; int rc; rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, &cfg_base_addr_index, &cfg_offset); if (rc) return rc; h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); if (!h->cfgtable) { dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); return -ENOMEM; } rc = write_driver_ver_to_cfgtable(h->cfgtable); if (rc) return rc; /* Find performant mode table. */ trans_offset = readl(&h->cfgtable->TransMethodOffset); h->transtable = remap_pci_mem(pci_resource_start(h->pdev, cfg_base_addr_index)+cfg_offset+trans_offset, sizeof(*h->transtable)); if (!h->transtable) { dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); hpsa_free_cfgtables(h); return -ENOMEM; } return 0; } static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) { #define MIN_MAX_COMMANDS 16 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); /* Limit commands in memory limited kdump scenario. */ if (reset_devices && h->max_commands > 32) h->max_commands = 32; if (h->max_commands < MIN_MAX_COMMANDS) { dev_warn(&h->pdev->dev, "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", h->max_commands, MIN_MAX_COMMANDS); h->max_commands = MIN_MAX_COMMANDS; } } /* If the controller reports that the total max sg entries is greater than 512, * then we know that chained SG blocks work. (Original smart arrays did not * support chained SG blocks and would return zero for max sg entries.) */ static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) { return h->maxsgentries > 512; } /* Interrogate the hardware for some limits: * max commands, max SG elements without chaining, and with chaining, * SG chain block size, etc. */ static void hpsa_find_board_params(struct ctlr_info *h) { hpsa_get_max_perf_mode_cmds(h); h->nr_cmds = h->max_commands; h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); h->fw_support = readl(&(h->cfgtable->misc_fw_support)); if (hpsa_supports_chained_sg_blocks(h)) { /* Limit in-command s/g elements to 32 save dma'able memory. */ h->max_cmd_sg_entries = 32; h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; h->maxsgentries--; /* save one for chain pointer */ } else { /* * Original smart arrays supported at most 31 s/g entries * embedded inline in the command (trying to use more * would lock up the controller) */ h->max_cmd_sg_entries = 31; h->maxsgentries = 31; /* default to traditional values */ h->chainsize = 0; } /* Find out what task management functions are supported and cache */ h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); } static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) { if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { dev_err(&h->pdev->dev, "not a valid CISS config table\n"); return false; } return true; } static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) { u32 driver_support; driver_support = readl(&(h->cfgtable->driver_support)); /* Need to enable prefetch in the SCSI core for 6400 in x86 */ #ifdef CONFIG_X86 driver_support |= ENABLE_SCSI_PREFETCH; #endif driver_support |= ENABLE_UNIT_ATTN; writel(driver_support, &(h->cfgtable->driver_support)); } /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result * in a prefetch beyond physical memory. */ static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) { u32 dma_prefetch; if (h->board_id != 0x3225103C) return; dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); dma_prefetch |= 0x8000; writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); } static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) { int i; u32 doorbell_value; unsigned long flags; /* wait until the clear_event_notify bit 6 is cleared by controller. */ for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { spin_lock_irqsave(&h->lock, flags); doorbell_value = readl(h->vaddr + SA5_DOORBELL); spin_unlock_irqrestore(&h->lock, flags); if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) goto done; /* delay and try again */ msleep(CLEAR_EVENT_WAIT_INTERVAL); } return -ENODEV; done: return 0; } static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) { int i; u32 doorbell_value; unsigned long flags; /* under certain very rare conditions, this can take awhile. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right * as we enter this code.) */ for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { if (h->remove_in_progress) goto done; spin_lock_irqsave(&h->lock, flags); doorbell_value = readl(h->vaddr + SA5_DOORBELL); spin_unlock_irqrestore(&h->lock, flags); if (!(doorbell_value & CFGTBL_ChangeReq)) goto done; /* delay and try again */ msleep(MODE_CHANGE_WAIT_INTERVAL); } return -ENODEV; done: return 0; } /* return -ENODEV or other reason on error, 0 on success */ static int hpsa_enter_simple_mode(struct ctlr_info *h) { u32 trans_support; trans_support = readl(&(h->cfgtable->TransportSupport)); if (!(trans_support & SIMPLE_MODE)) return -ENOTSUPP; h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); /* Update the field, and then ring the doorbell */ writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); if (hpsa_wait_for_mode_change_ack(h)) goto error; print_cfg_table(&h->pdev->dev, h->cfgtable); if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) goto error; h->transMethod = CFGTBL_Trans_Simple; return 0; error: dev_err(&h->pdev->dev, "failed to enter simple mode\n"); return -ENODEV; } /* free items allocated or mapped by hpsa_pci_init */ static void hpsa_free_pci_init(struct ctlr_info *h) { hpsa_free_cfgtables(h); /* pci_init 4 */ iounmap(h->vaddr); /* pci_init 3 */ h->vaddr = NULL; hpsa_disable_interrupt_mode(h); /* pci_init 2 */ /* * call pci_disable_device before pci_release_regions per * Documentation/PCI/pci.txt */ pci_disable_device(h->pdev); /* pci_init 1 */ pci_release_regions(h->pdev); /* pci_init 2 */ } /* several items must be freed later */ static int hpsa_pci_init(struct ctlr_info *h) { int prod_index, err; prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); if (prod_index < 0) return prod_index; h->product_name = products[prod_index].product_name; h->access = *(products[prod_index].access); h->needs_abort_tags_swizzled = ctlr_needs_abort_tags_swizzled(h->board_id); pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); err = pci_enable_device(h->pdev); if (err) { dev_err(&h->pdev->dev, "failed to enable PCI device\n"); pci_disable_device(h->pdev); return err; } err = pci_request_regions(h->pdev, HPSA); if (err) { dev_err(&h->pdev->dev, "failed to obtain PCI resources\n"); pci_disable_device(h->pdev); return err; } pci_set_master(h->pdev); err = hpsa_interrupt_mode(h); if (err) goto clean1; err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); if (err) goto clean2; /* intmode+region, pci */ h->vaddr = remap_pci_mem(h->paddr, 0x250); if (!h->vaddr) { dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); err = -ENOMEM; goto clean2; /* intmode+region, pci */ } err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); if (err) goto clean3; /* vaddr, intmode+region, pci */ err = hpsa_find_cfgtables(h); if (err) goto clean3; /* vaddr, intmode+region, pci */ hpsa_find_board_params(h); if (!hpsa_CISS_signature_present(h)) { err = -ENODEV; goto clean4; /* cfgtables, vaddr, intmode+region, pci */ } hpsa_set_driver_support_bits(h); hpsa_p600_dma_prefetch_quirk(h); err = hpsa_enter_simple_mode(h); if (err) goto clean4; /* cfgtables, vaddr, intmode+region, pci */ return 0; clean4: /* cfgtables, vaddr, intmode+region, pci */ hpsa_free_cfgtables(h); clean3: /* vaddr, intmode+region, pci */ iounmap(h->vaddr); h->vaddr = NULL; clean2: /* intmode+region, pci */ hpsa_disable_interrupt_mode(h); clean1: /* * call pci_disable_device before pci_release_regions per * Documentation/PCI/pci.txt */ pci_disable_device(h->pdev); pci_release_regions(h->pdev); return err; } static void hpsa_hba_inquiry(struct ctlr_info *h) { int rc; #define HBA_INQUIRY_BYTE_COUNT 64 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); if (!h->hba_inquiry_data) return; rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); if (rc != 0) { kfree(h->hba_inquiry_data); h->hba_inquiry_data = NULL; } } static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) { int rc, i; void __iomem *vaddr; if (!reset_devices) return 0; /* kdump kernel is loading, we don't know in which state is * the pci interface. The dev->enable_cnt is equal zero * so we call enable+disable, wait a while and switch it on. */ rc = pci_enable_device(pdev); if (rc) { dev_warn(&pdev->dev, "Failed to enable PCI device\n"); return -ENODEV; } pci_disable_device(pdev); msleep(260); /* a randomly chosen number */ rc = pci_enable_device(pdev); if (rc) { dev_warn(&pdev->dev, "failed to enable device.\n"); return -ENODEV; } pci_set_master(pdev); vaddr = pci_ioremap_bar(pdev, 0); if (vaddr == NULL) { rc = -ENOMEM; goto out_disable; } writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); iounmap(vaddr); /* Reset the controller with a PCI power-cycle or via doorbell */ rc = hpsa_kdump_hard_reset_controller(pdev, board_id); /* -ENOTSUPP here means we cannot reset the controller * but it's already (and still) up and running in * "performant mode". Or, it might be 640x, which can't reset * due to concerns about shared bbwc between 6402/6404 pair. */ if (rc) goto out_disable; /* Now try to get the controller to respond to a no-op */ dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { if (hpsa_noop(pdev) == 0) break; else dev_warn(&pdev->dev, "no-op failed%s\n", (i < 11 ? "; re-trying" : "")); } out_disable: pci_disable_device(pdev); return rc; } static void hpsa_free_cmd_pool(struct ctlr_info *h) { kfree(h->cmd_pool_bits); h->cmd_pool_bits = NULL; if (h->cmd_pool) { pci_free_consistent(h->pdev, h->nr_cmds * sizeof(struct CommandList), h->cmd_pool, h->cmd_pool_dhandle); h->cmd_pool = NULL; h->cmd_pool_dhandle = 0; } if (h->errinfo_pool) { pci_free_consistent(h->pdev, h->nr_cmds * sizeof(struct ErrorInfo), h->errinfo_pool, h->errinfo_pool_dhandle); h->errinfo_pool = NULL; h->errinfo_pool_dhandle = 0; } } static int hpsa_alloc_cmd_pool(struct ctlr_info *h) { h->cmd_pool_bits = kzalloc( DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); h->cmd_pool = pci_alloc_consistent(h->pdev, h->nr_cmds * sizeof(*h->cmd_pool), &(h->cmd_pool_dhandle)); h->errinfo_pool = pci_alloc_consistent(h->pdev, h->nr_cmds * sizeof(*h->errinfo_pool), &(h->errinfo_pool_dhandle)); if ((h->cmd_pool_bits == NULL) || (h->cmd_pool == NULL) || (h->errinfo_pool == NULL)) { dev_err(&h->pdev->dev, "out of memory in %s", __func__); goto clean_up; } hpsa_preinitialize_commands(h); return 0; clean_up: hpsa_free_cmd_pool(h); return -ENOMEM; } /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ static void hpsa_free_irqs(struct ctlr_info *h) { int i; if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) { /* Single reply queue, only one irq to free */ free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]); h->q[h->intr_mode] = 0; return; } for (i = 0; i < h->msix_vectors; i++) { free_irq(pci_irq_vector(h->pdev, i), &h->q[i]); h->q[i] = 0; } for (; i < MAX_REPLY_QUEUES; i++) h->q[i] = 0; } /* returns 0 on success; cleans up and returns -Enn on error */ static int hpsa_request_irqs(struct ctlr_info *h, irqreturn_t (*msixhandler)(int, void *), irqreturn_t (*intxhandler)(int, void *)) { int rc, i; /* * initialize h->q[x] = x so that interrupt handlers know which * queue to process. */ for (i = 0; i < MAX_REPLY_QUEUES; i++) h->q[i] = (u8) i; if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) { /* If performant mode and MSI-X, use multiple reply queues */ for (i = 0; i < h->msix_vectors; i++) { sprintf(h->intrname[i], "%s-msix%d", h->devname, i); rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler, 0, h->intrname[i], &h->q[i]); if (rc) { int j; dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", pci_irq_vector(h->pdev, i), h->devname); for (j = 0; j < i; j++) { free_irq(pci_irq_vector(h->pdev, j), &h->q[j]); h->q[j] = 0; } for (; j < MAX_REPLY_QUEUES; j++) h->q[j] = 0; return rc; } } } else { /* Use single reply pool */ if (h->msix_vectors > 0 || h->pdev->msi_enabled) { sprintf(h->intrname[0], "%s-msi%s", h->devname, h->msix_vectors ? "x" : ""); rc = request_irq(pci_irq_vector(h->pdev, 0), msixhandler, 0, h->intrname[0], &h->q[h->intr_mode]); } else { sprintf(h->intrname[h->intr_mode], "%s-intx", h->devname); rc = request_irq(pci_irq_vector(h->pdev, 0), intxhandler, IRQF_SHARED, h->intrname[0], &h->q[h->intr_mode]); } } if (rc) { dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", pci_irq_vector(h->pdev, 0), h->devname); hpsa_free_irqs(h); return -ENODEV; } return 0; } static int hpsa_kdump_soft_reset(struct ctlr_info *h) { int rc; hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER); dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); if (rc) { dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); return rc; } dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); if (rc) { dev_warn(&h->pdev->dev, "Board failed to become ready " "after soft reset.\n"); return rc; } return 0; } static void hpsa_free_reply_queues(struct ctlr_info *h) { int i; for (i = 0; i < h->nreply_queues; i++) { if (!h->reply_queue[i].head) continue; pci_free_consistent(h->pdev, h->reply_queue_size, h->reply_queue[i].head, h->reply_queue[i].busaddr); h->reply_queue[i].head = NULL; h->reply_queue[i].busaddr = 0; } h->reply_queue_size = 0; } static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) { hpsa_free_performant_mode(h); /* init_one 7 */ hpsa_free_sg_chain_blocks(h); /* init_one 6 */ hpsa_free_cmd_pool(h); /* init_one 5 */ hpsa_free_irqs(h); /* init_one 4 */ scsi_host_put(h->scsi_host); /* init_one 3 */ h->scsi_host = NULL; /* init_one 3 */ hpsa_free_pci_init(h); /* init_one 2_5 */ free_percpu(h->lockup_detected); /* init_one 2 */ h->lockup_detected = NULL; /* init_one 2 */ if (h->resubmit_wq) { destroy_workqueue(h->resubmit_wq); /* init_one 1 */ h->resubmit_wq = NULL; } if (h->rescan_ctlr_wq) { destroy_workqueue(h->rescan_ctlr_wq); h->rescan_ctlr_wq = NULL; } kfree(h); /* init_one 1 */ } /* Called when controller lockup detected. */ static void fail_all_outstanding_cmds(struct ctlr_info *h) { int i, refcount; struct CommandList *c; int failcount = 0; flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ for (i = 0; i < h->nr_cmds; i++) { c = h->cmd_pool + i; refcount = atomic_inc_return(&c->refcount); if (refcount > 1) { c->err_info->CommandStatus = CMD_CTLR_LOCKUP; finish_cmd(c); atomic_dec(&h->commands_outstanding); failcount++; } cmd_free(h, c); } dev_warn(&h->pdev->dev, "failed %d commands in fail_all\n", failcount); } static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) { int cpu; for_each_online_cpu(cpu) { u32 *lockup_detected; lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); *lockup_detected = value; } wmb(); /* be sure the per-cpu variables are out to memory */ } static void controller_lockup_detected(struct ctlr_info *h) { unsigned long flags; u32 lockup_detected; h->access.set_intr_mask(h, HPSA_INTR_OFF); spin_lock_irqsave(&h->lock, flags); lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); if (!lockup_detected) { /* no heartbeat, but controller gave us a zero. */ dev_warn(&h->pdev->dev, "lockup detected after %d but scratchpad register is zero\n", h->heartbeat_sample_interval / HZ); lockup_detected = 0xffffffff; } set_lockup_detected_for_all_cpus(h, lockup_detected); spin_unlock_irqrestore(&h->lock, flags); dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", lockup_detected, h->heartbeat_sample_interval / HZ); pci_disable_device(h->pdev); fail_all_outstanding_cmds(h); } static int detect_controller_lockup(struct ctlr_info *h) { u64 now; u32 heartbeat; unsigned long flags; now = get_jiffies_64(); /* If we've received an interrupt recently, we're ok. */ if (time_after64(h->last_intr_timestamp + (h->heartbeat_sample_interval), now)) return false; /* * If we've already checked the heartbeat recently, we're ok. * This could happen if someone sends us a signal. We * otherwise don't care about signals in this thread. */ if (time_after64(h->last_heartbeat_timestamp + (h->heartbeat_sample_interval), now)) return false; /* If heartbeat has not changed since we last looked, we're not ok. */ spin_lock_irqsave(&h->lock, flags); heartbeat = readl(&h->cfgtable->HeartBeat); spin_unlock_irqrestore(&h->lock, flags); if (h->last_heartbeat == heartbeat) { controller_lockup_detected(h); return true; } /* We're ok. */ h->last_heartbeat = heartbeat; h->last_heartbeat_timestamp = now; return false; } static void hpsa_ack_ctlr_events(struct ctlr_info *h) { int i; char *event_type; if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) return; /* Ask the controller to clear the events we're handling. */ if ((h->transMethod & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) && (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) event_type = "state change"; if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) event_type = "configuration change"; /* Stop sending new RAID offload reqs via the IO accelerator */ scsi_block_requests(h->scsi_host); for (i = 0; i < h->ndevices; i++) { h->dev[i]->offload_enabled = 0; h->dev[i]->offload_to_be_enabled = 0; } hpsa_drain_accel_commands(h); /* Set 'accelerator path config change' bit */ dev_warn(&h->pdev->dev, "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", h->events, event_type); writel(h->events, &(h->cfgtable->clear_event_notify)); /* Set the "clear event notify field update" bit 6 */ writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); /* Wait until ctlr clears 'clear event notify field', bit 6 */ hpsa_wait_for_clear_event_notify_ack(h); scsi_unblock_requests(h->scsi_host); } else { /* Acknowledge controller notification events. */ writel(h->events, &(h->cfgtable->clear_event_notify)); writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); hpsa_wait_for_clear_event_notify_ack(h); #if 0 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); hpsa_wait_for_mode_change_ack(h); #endif } return; } /* Check a register on the controller to see if there are configuration * changes (added/changed/removed logical drives, etc.) which mean that * we should rescan the controller for devices. * Also check flag for driver-initiated rescan. */ static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) { if (h->drv_req_rescan) { h->drv_req_rescan = 0; return 1; } if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) return 0; h->events = readl(&(h->cfgtable->event_notify)); return h->events & RESCAN_REQUIRED_EVENT_BITS; } /* * Check if any of the offline devices have become ready */ static int hpsa_offline_devices_ready(struct ctlr_info *h) { unsigned long flags; struct offline_device_entry *d; struct list_head *this, *tmp; spin_lock_irqsave(&h->offline_device_lock, flags); list_for_each_safe(this, tmp, &h->offline_device_list) { d = list_entry(this, struct offline_device_entry, offline_list); spin_unlock_irqrestore(&h->offline_device_lock, flags); if (!hpsa_volume_offline(h, d->scsi3addr)) { spin_lock_irqsave(&h->offline_device_lock, flags); list_del(&d->offline_list); spin_unlock_irqrestore(&h->offline_device_lock, flags); return 1; } spin_lock_irqsave(&h->offline_device_lock, flags); } spin_unlock_irqrestore(&h->offline_device_lock, flags); return 0; } static int hpsa_luns_changed(struct ctlr_info *h) { int rc = 1; /* assume there are changes */ struct ReportLUNdata *logdev = NULL; /* if we can't find out if lun data has changed, * assume that it has. */ if (!h->lastlogicals) return rc; logdev = kzalloc(sizeof(*logdev), GFP_KERNEL); if (!logdev) return rc; if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) { dev_warn(&h->pdev->dev, "report luns failed, can't track lun changes.\n"); goto out; } if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) { dev_info(&h->pdev->dev, "Lun changes detected.\n"); memcpy(h->lastlogicals, logdev, sizeof(*logdev)); goto out; } else rc = 0; /* no changes detected. */ out: kfree(logdev); return rc; } static void hpsa_rescan_ctlr_worker(struct work_struct *work) { unsigned long flags; struct ctlr_info *h = container_of(to_delayed_work(work), struct ctlr_info, rescan_ctlr_work); if (h->remove_in_progress) return; /* * Do the scan after the reset */ spin_lock_irqsave(&h->reset_lock, flags); if (h->reset_in_progress) { h->drv_req_rescan = 1; spin_unlock_irqrestore(&h->reset_lock, flags); return; } spin_unlock_irqrestore(&h->reset_lock, flags); if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) { scsi_host_get(h->scsi_host); hpsa_ack_ctlr_events(h); hpsa_scan_start(h->scsi_host); scsi_host_put(h->scsi_host); } else if (h->discovery_polling) { hpsa_disable_rld_caching(h); if (hpsa_luns_changed(h)) { struct Scsi_Host *sh = NULL; dev_info(&h->pdev->dev, "driver discovery polling rescan.\n"); sh = scsi_host_get(h->scsi_host); if (sh != NULL) { hpsa_scan_start(sh); scsi_host_put(sh); } } } spin_lock_irqsave(&h->lock, flags); if (!h->remove_in_progress) queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, h->heartbeat_sample_interval); spin_unlock_irqrestore(&h->lock, flags); } static void hpsa_monitor_ctlr_worker(struct work_struct *work) { unsigned long flags; struct ctlr_info *h = container_of(to_delayed_work(work), struct ctlr_info, monitor_ctlr_work); detect_controller_lockup(h); if (lockup_detected(h)) return; spin_lock_irqsave(&h->lock, flags); if (!h->remove_in_progress) schedule_delayed_work(&h->monitor_ctlr_work, h->heartbeat_sample_interval); spin_unlock_irqrestore(&h->lock, flags); } static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, char *name) { struct workqueue_struct *wq = NULL; wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); if (!wq) dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); return wq; } static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int dac, rc; struct ctlr_info *h; int try_soft_reset = 0; unsigned long flags; u32 board_id; if (number_of_controllers == 0) printk(KERN_INFO DRIVER_NAME "\n"); rc = hpsa_lookup_board_id(pdev, &board_id); if (rc < 0) { dev_warn(&pdev->dev, "Board ID not found\n"); return rc; } rc = hpsa_init_reset_devices(pdev, board_id); if (rc) { if (rc != -ENOTSUPP) return rc; /* If the reset fails in a particular way (it has no way to do * a proper hard reset, so returns -ENOTSUPP) we can try to do * a soft reset once we get the controller configured up to the * point that it can accept a command. */ try_soft_reset = 1; rc = 0; } reinit_after_soft_reset: /* Command structures must be aligned on a 32-byte boundary because * the 5 lower bits of the address are used by the hardware. and by * the driver. See comments in hpsa.h for more info. */ BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); h = kzalloc(sizeof(*h), GFP_KERNEL); if (!h) { dev_err(&pdev->dev, "Failed to allocate controller head\n"); return -ENOMEM; } h->pdev = pdev; h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; INIT_LIST_HEAD(&h->offline_device_list); spin_lock_init(&h->lock); spin_lock_init(&h->offline_device_lock); spin_lock_init(&h->scan_lock); spin_lock_init(&h->reset_lock); atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS); /* Allocate and clear per-cpu variable lockup_detected */ h->lockup_detected = alloc_percpu(u32); if (!h->lockup_detected) { dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); rc = -ENOMEM; goto clean1; /* aer/h */ } set_lockup_detected_for_all_cpus(h, 0); rc = hpsa_pci_init(h); if (rc) goto clean2; /* lu, aer/h */ /* relies on h-> settings made by hpsa_pci_init, including * interrupt_mode h->intr */ rc = hpsa_scsi_host_alloc(h); if (rc) goto clean2_5; /* pci, lu, aer/h */ sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); h->ctlr = number_of_controllers; number_of_controllers++; /* configure PCI DMA stuff */ rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (rc == 0) { dac = 1; } else { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc == 0) { dac = 0; } else { dev_err(&pdev->dev, "no suitable DMA available\n"); goto clean3; /* shost, pci, lu, aer/h */ } } /* make sure the board interrupts are off */ h->access.set_intr_mask(h, HPSA_INTR_OFF); rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); if (rc) goto clean3; /* shost, pci, lu, aer/h */ rc = hpsa_alloc_cmd_pool(h); if (rc) goto clean4; /* irq, shost, pci, lu, aer/h */ rc = hpsa_alloc_sg_chain_blocks(h); if (rc) goto clean5; /* cmd, irq, shost, pci, lu, aer/h */ init_waitqueue_head(&h->scan_wait_queue); init_waitqueue_head(&h->abort_cmd_wait_queue); init_waitqueue_head(&h->event_sync_wait_queue); mutex_init(&h->reset_mutex); h->scan_finished = 1; /* no scan currently in progress */ h->scan_waiting = 0; pci_set_drvdata(pdev, h); h->ndevices = 0; spin_lock_init(&h->devlock); rc = hpsa_put_ctlr_into_performant_mode(h); if (rc) goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ /* create the resubmit workqueue */ h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); if (!h->rescan_ctlr_wq) { rc = -ENOMEM; goto clean7; } h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); if (!h->resubmit_wq) { rc = -ENOMEM; goto clean7; /* aer/h */ } /* * At this point, the controller is ready to take commands. * Now, if reset_devices and the hard reset didn't work, try * the soft reset and see if that works. */ if (try_soft_reset) { /* This is kind of gross. We may or may not get a completion * from the soft reset command, and if we do, then the value * from the fifo may or may not be valid. So, we wait 10 secs * after the reset throwing away any completions we get during * that time. Unregister the interrupt handler and register * fake ones to scoop up any residual completions. */ spin_lock_irqsave(&h->lock, flags); h->access.set_intr_mask(h, HPSA_INTR_OFF); spin_unlock_irqrestore(&h->lock, flags); hpsa_free_irqs(h); rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, hpsa_intx_discard_completions); if (rc) { dev_warn(&h->pdev->dev, "Failed to request_irq after soft reset.\n"); /* * cannot goto clean7 or free_irqs will be called * again. Instead, do its work */ hpsa_free_performant_mode(h); /* clean7 */ hpsa_free_sg_chain_blocks(h); /* clean6 */ hpsa_free_cmd_pool(h); /* clean5 */ /* * skip hpsa_free_irqs(h) clean4 since that * was just called before request_irqs failed */ goto clean3; } rc = hpsa_kdump_soft_reset(h); if (rc) /* Neither hard nor soft reset worked, we're hosed. */ goto clean7; dev_info(&h->pdev->dev, "Board READY.\n"); dev_info(&h->pdev->dev, "Waiting for stale completions to drain.\n"); h->access.set_intr_mask(h, HPSA_INTR_ON); msleep(10000); h->access.set_intr_mask(h, HPSA_INTR_OFF); rc = controller_reset_failed(h->cfgtable); if (rc) dev_info(&h->pdev->dev, "Soft reset appears to have failed.\n"); /* since the controller's reset, we have to go back and re-init * everything. Easiest to just forget what we've done and do it * all over again. */ hpsa_undo_allocations_after_kdump_soft_reset(h); try_soft_reset = 0; if (rc) /* don't goto clean, we already unallocated */ return -ENODEV; goto reinit_after_soft_reset; } /* Enable Accelerated IO path at driver layer */ h->acciopath_status = 1; /* Disable discovery polling.*/ h->discovery_polling = 0; /* Turn the interrupts on so we can service requests */ h->access.set_intr_mask(h, HPSA_INTR_ON); hpsa_hba_inquiry(h); h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL); if (!h->lastlogicals) dev_info(&h->pdev->dev, "Can't track change to report lun data\n"); /* hook into SCSI subsystem */ rc = hpsa_scsi_add_host(h); if (rc) goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ /* Monitor the controller for firmware lockups */ h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); schedule_delayed_work(&h->monitor_ctlr_work, h->heartbeat_sample_interval); INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, h->heartbeat_sample_interval); return 0; clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ hpsa_free_performant_mode(h); h->access.set_intr_mask(h, HPSA_INTR_OFF); clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ hpsa_free_sg_chain_blocks(h); clean5: /* cmd, irq, shost, pci, lu, aer/h */ hpsa_free_cmd_pool(h); clean4: /* irq, shost, pci, lu, aer/h */ hpsa_free_irqs(h); clean3: /* shost, pci, lu, aer/h */ scsi_host_put(h->scsi_host); h->scsi_host = NULL; clean2_5: /* pci, lu, aer/h */ hpsa_free_pci_init(h); clean2: /* lu, aer/h */ if (h->lockup_detected) { free_percpu(h->lockup_detected); h->lockup_detected = NULL; } clean1: /* wq/aer/h */ if (h->resubmit_wq) { destroy_workqueue(h->resubmit_wq); h->resubmit_wq = NULL; } if (h->rescan_ctlr_wq) { destroy_workqueue(h->rescan_ctlr_wq); h->rescan_ctlr_wq = NULL; } kfree(h); return rc; } static void hpsa_flush_cache(struct ctlr_info *h) { char *flush_buf; struct CommandList *c; int rc; if (unlikely(lockup_detected(h))) return; flush_buf = kzalloc(4, GFP_KERNEL); if (!flush_buf) return; c = cmd_alloc(h); if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, RAID_CTLR_LUNID, TYPE_CMD)) { goto out; } rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE, DEFAULT_TIMEOUT); if (rc) goto out; if (c->err_info->CommandStatus != 0) out: dev_warn(&h->pdev->dev, "error flushing cache on controller\n"); cmd_free(h, c); kfree(flush_buf); } /* Make controller gather fresh report lun data each time we * send down a report luns request */ static void hpsa_disable_rld_caching(struct ctlr_info *h) { u32 *options; struct CommandList *c; int rc; /* Don't bother trying to set diag options if locked up */ if (unlikely(h->lockup_detected)) return; options = kzalloc(sizeof(*options), GFP_KERNEL); if (!options) return; c = cmd_alloc(h); /* first, get the current diag options settings */ if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, RAID_CTLR_LUNID, TYPE_CMD)) goto errout; rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); if ((rc != 0) || (c->err_info->CommandStatus != 0)) goto errout; /* Now, set the bit for disabling the RLD caching */ *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING; if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0, RAID_CTLR_LUNID, TYPE_CMD)) goto errout; rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE, DEFAULT_TIMEOUT); if ((rc != 0) || (c->err_info->CommandStatus != 0)) goto errout; /* Now verify that it got set: */ if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, RAID_CTLR_LUNID, TYPE_CMD)) goto errout; rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); if ((rc != 0) || (c->err_info->CommandStatus != 0)) goto errout; if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING) goto out; errout: dev_err(&h->pdev->dev, "Error: failed to disable report lun data caching.\n"); out: cmd_free(h, c); kfree(options); } static void hpsa_shutdown(struct pci_dev *pdev) { struct ctlr_info *h; h = pci_get_drvdata(pdev); /* Turn board interrupts off and send the flush cache command * sendcmd will turn off interrupt, and send the flush... * To write all data in the battery backed cache to disks */ hpsa_flush_cache(h); h->access.set_intr_mask(h, HPSA_INTR_OFF); hpsa_free_irqs(h); /* init_one 4 */ hpsa_disable_interrupt_mode(h); /* pci_init 2 */ } static void hpsa_free_device_info(struct ctlr_info *h) { int i; for (i = 0; i < h->ndevices; i++) { kfree(h->dev[i]); h->dev[i] = NULL; } } static void hpsa_remove_one(struct pci_dev *pdev) { struct ctlr_info *h; unsigned long flags; if (pci_get_drvdata(pdev) == NULL) { dev_err(&pdev->dev, "unable to remove device\n"); return; } h = pci_get_drvdata(pdev); /* Get rid of any controller monitoring work items */ spin_lock_irqsave(&h->lock, flags); h->remove_in_progress = 1; spin_unlock_irqrestore(&h->lock, flags); cancel_delayed_work_sync(&h->monitor_ctlr_work); cancel_delayed_work_sync(&h->rescan_ctlr_work); destroy_workqueue(h->rescan_ctlr_wq); destroy_workqueue(h->resubmit_wq); /* * Call before disabling interrupts. * scsi_remove_host can trigger I/O operations especially * when multipath is enabled. There can be SYNCHRONIZE CACHE * operations which cannot complete and will hang the system. */ if (h->scsi_host) scsi_remove_host(h->scsi_host); /* init_one 8 */ /* includes hpsa_free_irqs - init_one 4 */ /* includes hpsa_disable_interrupt_mode - pci_init 2 */ hpsa_shutdown(pdev); hpsa_free_device_info(h); /* scan */ kfree(h->hba_inquiry_data); /* init_one 10 */ h->hba_inquiry_data = NULL; /* init_one 10 */ hpsa_free_ioaccel2_sg_chain_blocks(h); hpsa_free_performant_mode(h); /* init_one 7 */ hpsa_free_sg_chain_blocks(h); /* init_one 6 */ hpsa_free_cmd_pool(h); /* init_one 5 */ kfree(h->lastlogicals); /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ scsi_host_put(h->scsi_host); /* init_one 3 */ h->scsi_host = NULL; /* init_one 3 */ /* includes hpsa_disable_interrupt_mode - pci_init 2 */ hpsa_free_pci_init(h); /* init_one 2.5 */ free_percpu(h->lockup_detected); /* init_one 2 */ h->lockup_detected = NULL; /* init_one 2 */ /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */ hpsa_delete_sas_host(h); kfree(h); /* init_one 1 */ } static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, __attribute__((unused)) pm_message_t state) { return -ENOSYS; } static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) { return -ENOSYS; } static struct pci_driver hpsa_pci_driver = { .name = HPSA, .probe = hpsa_init_one, .remove = hpsa_remove_one, .id_table = hpsa_pci_device_id, /* id_table */ .shutdown = hpsa_shutdown, .suspend = hpsa_suspend, .resume = hpsa_resume, }; /* Fill in bucket_map[], given nsgs (the max number of * scatter gather elements supported) and bucket[], * which is an array of 8 integers. The bucket[] array * contains 8 different DMA transfer sizes (in 16 * byte increments) which the controller uses to fetch * commands. This function fills in bucket_map[], which * maps a given number of scatter gather elements to one of * the 8 DMA transfer sizes. The point of it is to allow the * controller to only do as much DMA as needed to fetch the * command, with the DMA transfer size encoded in the lower * bits of the command address. */ static void calc_bucket_map(int bucket[], int num_buckets, int nsgs, int min_blocks, u32 *bucket_map) { int i, j, b, size; /* Note, bucket_map must have nsgs+1 entries. */ for (i = 0; i <= nsgs; i++) { /* Compute size of a command with i SG entries */ size = i + min_blocks; b = num_buckets; /* Assume the biggest bucket */ /* Find the bucket that is just big enough */ for (j = 0; j < num_buckets; j++) { if (bucket[j] >= size) { b = j; break; } } /* for a command with i SG entries, use bucket b. */ bucket_map[i] = b; } } /* * return -ENODEV on err, 0 on success (or no action) * allocates numerous items that must be freed later */ static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) { int i; unsigned long register_value; unsigned long transMethod = CFGTBL_Trans_Performant | (trans_support & CFGTBL_Trans_use_short_tags) | CFGTBL_Trans_enable_directed_msix | (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)); struct access_method access = SA5_performant_access; /* This is a bit complicated. There are 8 registers on * the controller which we write to to tell it 8 different * sizes of commands which there may be. It's a way of * reducing the DMA done to fetch each command. Encoded into * each command's tag are 3 bits which communicate to the controller * which of the eight sizes that command fits within. The size of * each command depends on how many scatter gather entries there are. * Each SG entry requires 16 bytes. The eight registers are programmed * with the number of 16-byte blocks a command of that size requires. * The smallest command possible requires 5 such 16 byte blocks. * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte * blocks. Note, this only extends to the SG entries contained * within the command block, and does not extend to chained blocks * of SG elements. bft[] contains the eight values we write to * the registers. They are not evenly distributed, but have more * sizes for small commands, and fewer sizes for larger commands. */ int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; #define MIN_IOACCEL2_BFT_ENTRY 5 #define HPSA_IOACCEL2_HEADER_SZ 4 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > 16 * MIN_IOACCEL2_BFT_ENTRY); BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); /* 5 = 1 s/g entry or 4k * 6 = 2 s/g entry or 8k * 8 = 4 s/g entry or 16k * 10 = 6 s/g entry or 24k */ /* If the controller supports either ioaccel method then * we can also use the RAID stack submit path that does not * perform the superfluous readl() after each command submission. */ if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) access = SA5_performant_access_no_read; /* Controller spec: zero out this buffer. */ for (i = 0; i < h->nreply_queues; i++) memset(h->reply_queue[i].head, 0, h->reply_queue_size); bft[7] = SG_ENTRIES_IN_CMD + 4; calc_bucket_map(bft, ARRAY_SIZE(bft), SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); for (i = 0; i < 8; i++) writel(bft[i], &h->transtable->BlockFetch[i]); /* size of controller ring buffer */ writel(h->max_commands, &h->transtable->RepQSize); writel(h->nreply_queues, &h->transtable->RepQCount); writel(0, &h->transtable->RepQCtrAddrLow32); writel(0, &h->transtable->RepQCtrAddrHigh32); for (i = 0; i < h->nreply_queues; i++) { writel(0, &h->transtable->RepQAddr[i].upper); writel(h->reply_queue[i].busaddr, &h->transtable->RepQAddr[i].lower); } writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); /* * enable outbound interrupt coalescing in accelerator mode; */ if (trans_support & CFGTBL_Trans_io_accel1) { access = SA5_ioaccel_mode1_access; writel(10, &h->cfgtable->HostWrite.CoalIntDelay); writel(4, &h->cfgtable->HostWrite.CoalIntCount); } else if (trans_support & CFGTBL_Trans_io_accel2) access = SA5_ioaccel_mode2_access; writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); if (hpsa_wait_for_mode_change_ack(h)) { dev_err(&h->pdev->dev, "performant mode problem - doorbell timeout\n"); return -ENODEV; } register_value = readl(&(h->cfgtable->TransportActive)); if (!(register_value & CFGTBL_Trans_Performant)) { dev_err(&h->pdev->dev, "performant mode problem - transport not active\n"); return -ENODEV; } /* Change the access methods to the performant access methods */ h->access = access; h->transMethod = transMethod; if (!((trans_support & CFGTBL_Trans_io_accel1) || (trans_support & CFGTBL_Trans_io_accel2))) return 0; if (trans_support & CFGTBL_Trans_io_accel1) { /* Set up I/O accelerator mode */ for (i = 0; i < h->nreply_queues; i++) { writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); h->reply_queue[i].current_entry = readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); } bft[7] = h->ioaccel_maxsg + 8; calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, h->ioaccel1_blockFetchTable); /* initialize all reply queue entries to unused */ for (i = 0; i < h->nreply_queues; i++) memset(h->reply_queue[i].head, (u8) IOACCEL_MODE1_REPLY_UNUSED, h->reply_queue_size); /* set all the constant fields in the accelerator command * frames once at init time to save CPU cycles later. */ for (i = 0; i < h->nr_cmds; i++) { struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; cp->function = IOACCEL1_FUNCTION_SCSIIO; cp->err_info = (u32) (h->errinfo_pool_dhandle + (i * sizeof(struct ErrorInfo))); cp->err_info_len = sizeof(struct ErrorInfo); cp->sgl_offset = IOACCEL1_SGLOFFSET; cp->host_context_flags = cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); cp->timeout_sec = 0; cp->ReplyQueue = 0; cp->tag = cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); cp->host_addr = cpu_to_le64(h->ioaccel_cmd_pool_dhandle + (i * sizeof(struct io_accel1_cmd))); } } else if (trans_support & CFGTBL_Trans_io_accel2) { u64 cfg_offset, cfg_base_addr_index; u32 bft2_offset, cfg_base_addr; int rc; rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, &cfg_base_addr_index, &cfg_offset); BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, 4, h->ioaccel2_blockFetchTable); bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); BUILD_BUG_ON(offsetof(struct CfgTable, io_accel_request_size_offset) != 0xb8); h->ioaccel2_bft2_regs = remap_pci_mem(pci_resource_start(h->pdev, cfg_base_addr_index) + cfg_offset + bft2_offset, ARRAY_SIZE(bft2) * sizeof(*h->ioaccel2_bft2_regs)); for (i = 0; i < ARRAY_SIZE(bft2); i++) writel(bft2[i], &h->ioaccel2_bft2_regs[i]); } writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); if (hpsa_wait_for_mode_change_ack(h)) { dev_err(&h->pdev->dev, "performant mode problem - enabling ioaccel mode\n"); return -ENODEV; } return 0; } /* Free ioaccel1 mode command blocks and block fetch table */ static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) { if (h->ioaccel_cmd_pool) { pci_free_consistent(h->pdev, h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle); h->ioaccel_cmd_pool = NULL; h->ioaccel_cmd_pool_dhandle = 0; } kfree(h->ioaccel1_blockFetchTable); h->ioaccel1_blockFetchTable = NULL; } /* Allocate ioaccel1 mode command blocks and block fetch table */ static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) { h->ioaccel_maxsg = readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; /* Command structures must be aligned on a 128-byte boundary * because the 7 lower bits of the address are used by the * hardware. */ BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % IOACCEL1_COMMANDLIST_ALIGNMENT); h->ioaccel_cmd_pool = pci_alloc_consistent(h->pdev, h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), &(h->ioaccel_cmd_pool_dhandle)); h->ioaccel1_blockFetchTable = kmalloc(((h->ioaccel_maxsg + 1) * sizeof(u32)), GFP_KERNEL); if ((h->ioaccel_cmd_pool == NULL) || (h->ioaccel1_blockFetchTable == NULL)) goto clean_up; memset(h->ioaccel_cmd_pool, 0, h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); return 0; clean_up: hpsa_free_ioaccel1_cmd_and_bft(h); return -ENOMEM; } /* Free ioaccel2 mode command blocks and block fetch table */ static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) { hpsa_free_ioaccel2_sg_chain_blocks(h); if (h->ioaccel2_cmd_pool) { pci_free_consistent(h->pdev, h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle); h->ioaccel2_cmd_pool = NULL; h->ioaccel2_cmd_pool_dhandle = 0; } kfree(h->ioaccel2_blockFetchTable); h->ioaccel2_blockFetchTable = NULL; } /* Allocate ioaccel2 mode command blocks and block fetch table */ static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) { int rc; /* Allocate ioaccel2 mode command blocks and block fetch table */ h->ioaccel_maxsg = readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % IOACCEL2_COMMANDLIST_ALIGNMENT); h->ioaccel2_cmd_pool = pci_alloc_consistent(h->pdev, h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), &(h->ioaccel2_cmd_pool_dhandle)); h->ioaccel2_blockFetchTable = kmalloc(((h->ioaccel_maxsg + 1) * sizeof(u32)), GFP_KERNEL); if ((h->ioaccel2_cmd_pool == NULL) || (h->ioaccel2_blockFetchTable == NULL)) { rc = -ENOMEM; goto clean_up; } rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); if (rc) goto clean_up; memset(h->ioaccel2_cmd_pool, 0, h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); return 0; clean_up: hpsa_free_ioaccel2_cmd_and_bft(h); return rc; } /* Free items allocated by hpsa_put_ctlr_into_performant_mode */ static void hpsa_free_performant_mode(struct ctlr_info *h) { kfree(h->blockFetchTable); h->blockFetchTable = NULL; hpsa_free_reply_queues(h); hpsa_free_ioaccel1_cmd_and_bft(h); hpsa_free_ioaccel2_cmd_and_bft(h); } /* return -ENODEV on error, 0 on success (or no action) * allocates numerous items that must be freed later */ static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) { u32 trans_support; unsigned long transMethod = CFGTBL_Trans_Performant | CFGTBL_Trans_use_short_tags; int i, rc; if (hpsa_simple_mode) return 0; trans_support = readl(&(h->cfgtable->TransportSupport)); if (!(trans_support & PERFORMANT_MODE)) return 0; /* Check for I/O accelerator mode support */ if (trans_support & CFGTBL_Trans_io_accel1) { transMethod |= CFGTBL_Trans_io_accel1 | CFGTBL_Trans_enable_directed_msix; rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); if (rc) return rc; } else if (trans_support & CFGTBL_Trans_io_accel2) { transMethod |= CFGTBL_Trans_io_accel2 | CFGTBL_Trans_enable_directed_msix; rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); if (rc) return rc; } h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1; hpsa_get_max_perf_mode_cmds(h); /* Performant mode ring buffer and supporting data structures */ h->reply_queue_size = h->max_commands * sizeof(u64); for (i = 0; i < h->nreply_queues; i++) { h->reply_queue[i].head = pci_alloc_consistent(h->pdev, h->reply_queue_size, &(h->reply_queue[i].busaddr)); if (!h->reply_queue[i].head) { rc = -ENOMEM; goto clean1; /* rq, ioaccel */ } h->reply_queue[i].size = h->max_commands; h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ h->reply_queue[i].current_entry = 0; } /* Need a block fetch table for performant mode */ h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * sizeof(u32)), GFP_KERNEL); if (!h->blockFetchTable) { rc = -ENOMEM; goto clean1; /* rq, ioaccel */ } rc = hpsa_enter_performant_mode(h, trans_support); if (rc) goto clean2; /* bft, rq, ioaccel */ return 0; clean2: /* bft, rq, ioaccel */ kfree(h->blockFetchTable); h->blockFetchTable = NULL; clean1: /* rq, ioaccel */ hpsa_free_reply_queues(h); hpsa_free_ioaccel1_cmd_and_bft(h); hpsa_free_ioaccel2_cmd_and_bft(h); return rc; } static int is_accelerated_cmd(struct CommandList *c) { return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; } static void hpsa_drain_accel_commands(struct ctlr_info *h) { struct CommandList *c = NULL; int i, accel_cmds_out; int refcount; do { /* wait for all outstanding ioaccel commands to drain out */ accel_cmds_out = 0; for (i = 0; i < h->nr_cmds; i++) { c = h->cmd_pool + i; refcount = atomic_inc_return(&c->refcount); if (refcount > 1) /* Command is allocated */ accel_cmds_out += is_accelerated_cmd(c); cmd_free(h, c); } if (accel_cmds_out <= 0) break; msleep(100); } while (1); } static struct hpsa_sas_phy *hpsa_alloc_sas_phy( struct hpsa_sas_port *hpsa_sas_port) { struct hpsa_sas_phy *hpsa_sas_phy; struct sas_phy *phy; hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL); if (!hpsa_sas_phy) return NULL; phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev, hpsa_sas_port->next_phy_index); if (!phy) { kfree(hpsa_sas_phy); return NULL; } hpsa_sas_port->next_phy_index++; hpsa_sas_phy->phy = phy; hpsa_sas_phy->parent_port = hpsa_sas_port; return hpsa_sas_phy; } static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy) { struct sas_phy *phy = hpsa_sas_phy->phy; sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy); sas_phy_free(phy); if (hpsa_sas_phy->added_to_port) list_del(&hpsa_sas_phy->phy_list_entry); kfree(hpsa_sas_phy); } static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy) { int rc; struct hpsa_sas_port *hpsa_sas_port; struct sas_phy *phy; struct sas_identify *identify; hpsa_sas_port = hpsa_sas_phy->parent_port; phy = hpsa_sas_phy->phy; identify = &phy->identify; memset(identify, 0, sizeof(*identify)); identify->sas_address = hpsa_sas_port->sas_address; identify->device_type = SAS_END_DEVICE; identify->initiator_port_protocols = SAS_PROTOCOL_STP; identify->target_port_protocols = SAS_PROTOCOL_STP; phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN; phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN; phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN; rc = sas_phy_add(hpsa_sas_phy->phy); if (rc) return rc; sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy); list_add_tail(&hpsa_sas_phy->phy_list_entry, &hpsa_sas_port->phy_list_head); hpsa_sas_phy->added_to_port = true; return 0; } static int hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port, struct sas_rphy *rphy) { struct sas_identify *identify; identify = &rphy->identify; identify->sas_address = hpsa_sas_port->sas_address; identify->initiator_port_protocols = SAS_PROTOCOL_STP; identify->target_port_protocols = SAS_PROTOCOL_STP; return sas_rphy_add(rphy); } static struct hpsa_sas_port *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node, u64 sas_address) { int rc; struct hpsa_sas_port *hpsa_sas_port; struct sas_port *port; hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL); if (!hpsa_sas_port) return NULL; INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head); hpsa_sas_port->parent_node = hpsa_sas_node; port = sas_port_alloc_num(hpsa_sas_node->parent_dev); if (!port) goto free_hpsa_port; rc = sas_port_add(port); if (rc) goto free_sas_port; hpsa_sas_port->port = port; hpsa_sas_port->sas_address = sas_address; list_add_tail(&hpsa_sas_port->port_list_entry, &hpsa_sas_node->port_list_head); return hpsa_sas_port; free_sas_port: sas_port_free(port); free_hpsa_port: kfree(hpsa_sas_port); return NULL; } static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port) { struct hpsa_sas_phy *hpsa_sas_phy; struct hpsa_sas_phy *next; list_for_each_entry_safe(hpsa_sas_phy, next, &hpsa_sas_port->phy_list_head, phy_list_entry) hpsa_free_sas_phy(hpsa_sas_phy); sas_port_delete(hpsa_sas_port->port); list_del(&hpsa_sas_port->port_list_entry); kfree(hpsa_sas_port); } static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev) { struct hpsa_sas_node *hpsa_sas_node; hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL); if (hpsa_sas_node) { hpsa_sas_node->parent_dev = parent_dev; INIT_LIST_HEAD(&hpsa_sas_node->port_list_head); } return hpsa_sas_node; } static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node) { struct hpsa_sas_port *hpsa_sas_port; struct hpsa_sas_port *next; if (!hpsa_sas_node) return; list_for_each_entry_safe(hpsa_sas_port, next, &hpsa_sas_node->port_list_head, port_list_entry) hpsa_free_sas_port(hpsa_sas_port); kfree(hpsa_sas_node); } static struct hpsa_scsi_dev_t *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, struct sas_rphy *rphy) { int i; struct hpsa_scsi_dev_t *device; for (i = 0; i < h->ndevices; i++) { device = h->dev[i]; if (!device->sas_port) continue; if (device->sas_port->rphy == rphy) return device; } return NULL; } static int hpsa_add_sas_host(struct ctlr_info *h) { int rc; struct device *parent_dev; struct hpsa_sas_node *hpsa_sas_node; struct hpsa_sas_port *hpsa_sas_port; struct hpsa_sas_phy *hpsa_sas_phy; parent_dev = &h->scsi_host->shost_gendev; hpsa_sas_node = hpsa_alloc_sas_node(parent_dev); if (!hpsa_sas_node) return -ENOMEM; hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address); if (!hpsa_sas_port) { rc = -ENODEV; goto free_sas_node; } hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port); if (!hpsa_sas_phy) { rc = -ENODEV; goto free_sas_port; } rc = hpsa_sas_port_add_phy(hpsa_sas_phy); if (rc) goto free_sas_phy; h->sas_host = hpsa_sas_node; return 0; free_sas_phy: hpsa_free_sas_phy(hpsa_sas_phy); free_sas_port: hpsa_free_sas_port(hpsa_sas_port); free_sas_node: hpsa_free_sas_node(hpsa_sas_node); return rc; } static void hpsa_delete_sas_host(struct ctlr_info *h) { hpsa_free_sas_node(h->sas_host); } static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, struct hpsa_scsi_dev_t *device) { int rc; struct hpsa_sas_port *hpsa_sas_port; struct sas_rphy *rphy; hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address); if (!hpsa_sas_port) return -ENOMEM; rphy = sas_end_device_alloc(hpsa_sas_port->port); if (!rphy) { rc = -ENODEV; goto free_sas_port; } hpsa_sas_port->rphy = rphy; device->sas_port = hpsa_sas_port; rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy); if (rc) goto free_sas_port; return 0; free_sas_port: hpsa_free_sas_port(hpsa_sas_port); device->sas_port = NULL; return rc; } static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device) { if (device->sas_port) { hpsa_free_sas_port(device->sas_port); device->sas_port = NULL; } } static int hpsa_sas_get_linkerrors(struct sas_phy *phy) { return 0; } static int hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier) { *identifier = 0; return 0; } static int hpsa_sas_get_bay_identifier(struct sas_rphy *rphy) { return -ENXIO; } static int hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset) { return 0; } static int hpsa_sas_phy_enable(struct sas_phy *phy, int enable) { return 0; } static int hpsa_sas_phy_setup(struct sas_phy *phy) { return 0; } static void hpsa_sas_phy_release(struct sas_phy *phy) { } static int hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates) { return -EINVAL; } /* SMP = Serial Management Protocol */ static int hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, struct request *req) { return -EINVAL; } static struct sas_function_template hpsa_sas_transport_functions = { .get_linkerrors = hpsa_sas_get_linkerrors, .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier, .get_bay_identifier = hpsa_sas_get_bay_identifier, .phy_reset = hpsa_sas_phy_reset, .phy_enable = hpsa_sas_phy_enable, .phy_setup = hpsa_sas_phy_setup, .phy_release = hpsa_sas_phy_release, .set_phy_speed = hpsa_sas_phy_speed, .smp_handler = hpsa_sas_smp_handler, }; /* * This is it. Register the PCI driver information for the cards we control * the OS will call our registered routines when it finds one of our cards. */ static int __init hpsa_init(void) { int rc; hpsa_sas_transport_template = sas_attach_transport(&hpsa_sas_transport_functions); if (!hpsa_sas_transport_template) return -ENODEV; rc = pci_register_driver(&hpsa_pci_driver); if (rc) sas_release_transport(hpsa_sas_transport_template); return rc; } static void __exit hpsa_cleanup(void) { pci_unregister_driver(&hpsa_pci_driver); sas_release_transport(hpsa_sas_transport_template); } static void __attribute__((unused)) verify_offsets(void) { #define VERIFY_OFFSET(member, offset) \ BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) VERIFY_OFFSET(structure_size, 0); VERIFY_OFFSET(volume_blk_size, 4); VERIFY_OFFSET(volume_blk_cnt, 8); VERIFY_OFFSET(phys_blk_shift, 16); VERIFY_OFFSET(parity_rotation_shift, 17); VERIFY_OFFSET(strip_size, 18); VERIFY_OFFSET(disk_starting_blk, 20); VERIFY_OFFSET(disk_blk_cnt, 28); VERIFY_OFFSET(data_disks_per_row, 36); VERIFY_OFFSET(metadata_disks_per_row, 38); VERIFY_OFFSET(row_cnt, 40); VERIFY_OFFSET(layout_map_count, 42); VERIFY_OFFSET(flags, 44); VERIFY_OFFSET(dekindex, 46); /* VERIFY_OFFSET(reserved, 48 */ VERIFY_OFFSET(data, 64); #undef VERIFY_OFFSET #define VERIFY_OFFSET(member, offset) \ BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) VERIFY_OFFSET(IU_type, 0); VERIFY_OFFSET(direction, 1); VERIFY_OFFSET(reply_queue, 2); /* VERIFY_OFFSET(reserved1, 3); */ VERIFY_OFFSET(scsi_nexus, 4); VERIFY_OFFSET(Tag, 8); VERIFY_OFFSET(cdb, 16); VERIFY_OFFSET(cciss_lun, 32); VERIFY_OFFSET(data_len, 40); VERIFY_OFFSET(cmd_priority_task_attr, 44); VERIFY_OFFSET(sg_count, 45); /* VERIFY_OFFSET(reserved3 */ VERIFY_OFFSET(err_ptr, 48); VERIFY_OFFSET(err_len, 56); /* VERIFY_OFFSET(reserved4 */ VERIFY_OFFSET(sg, 64); #undef VERIFY_OFFSET #define VERIFY_OFFSET(member, offset) \ BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) VERIFY_OFFSET(dev_handle, 0x00); VERIFY_OFFSET(reserved1, 0x02); VERIFY_OFFSET(function, 0x03); VERIFY_OFFSET(reserved2, 0x04); VERIFY_OFFSET(err_info, 0x0C); VERIFY_OFFSET(reserved3, 0x10); VERIFY_OFFSET(err_info_len, 0x12); VERIFY_OFFSET(reserved4, 0x13); VERIFY_OFFSET(sgl_offset, 0x14); VERIFY_OFFSET(reserved5, 0x15); VERIFY_OFFSET(transfer_len, 0x1C); VERIFY_OFFSET(reserved6, 0x20); VERIFY_OFFSET(io_flags, 0x24); VERIFY_OFFSET(reserved7, 0x26); VERIFY_OFFSET(LUN, 0x34); VERIFY_OFFSET(control, 0x3C); VERIFY_OFFSET(CDB, 0x40); VERIFY_OFFSET(reserved8, 0x50); VERIFY_OFFSET(host_context_flags, 0x60); VERIFY_OFFSET(timeout_sec, 0x62); VERIFY_OFFSET(ReplyQueue, 0x64); VERIFY_OFFSET(reserved9, 0x65); VERIFY_OFFSET(tag, 0x68); VERIFY_OFFSET(host_addr, 0x70); VERIFY_OFFSET(CISS_LUN, 0x78); VERIFY_OFFSET(SG, 0x78 + 8); #undef VERIFY_OFFSET } module_init(hpsa_init); module_exit(hpsa_cleanup);