// SPDX-License-Identifier: GPL-2.0 /* * Volume Management Device driver * Copyright (c) 2015, Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define VMD_CFGBAR 0 #define VMD_MEMBAR1 2 #define VMD_MEMBAR2 4 #define PCI_REG_VMCAP 0x40 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) #define PCI_REG_VMCONFIG 0x44 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) #define VMCONFIG_MSI_REMAP 0x2 #define PCI_REG_VMLOCK 0x70 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) #define MB2_SHADOW_OFFSET 0x2000 #define MB2_SHADOW_SIZE 16 enum vmd_features { /* * Device may contain registers which hint the physical location of the * membars, in order to allow proper address translation during * resource assignment to enable guest virtualization */ VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), /* * Device may provide root port configuration information which limits * bus numbering */ VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), /* * Device contains physical location shadow registers in * vendor-specific capability space */ VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2), /* * Device may use MSI-X vector 0 for software triggering and will not * be used for MSI remapping */ VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3), /* * Device can bypass remapping MSI-X transactions into its MSI-X table, * avoiding the requirement of a VMD MSI domain for child device * interrupt handling. */ VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4), /* * Enable ASPM on the PCIE root ports and set the default LTR of the * storage devices on platforms where these values are not configured by * BIOS. This is needed for laptops, which require these settings for * proper power management of the SoC. */ VMD_FEAT_BIOS_PM_QUIRK = (1 << 5), }; #define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */ #define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \ VMD_FEAT_HAS_BUS_RESTRICTIONS | \ VMD_FEAT_OFFSET_FIRST_VECTOR | \ VMD_FEAT_BIOS_PM_QUIRK) static DEFINE_IDA(vmd_instance_ida); /* * Lock for manipulating VMD IRQ lists. */ static DEFINE_RAW_SPINLOCK(list_lock); /** * struct vmd_irq - private data to map driver IRQ to the VMD shared vector * @node: list item for parent traversal. * @irq: back pointer to parent. * @enabled: true if driver enabled IRQ * @virq: the virtual IRQ value provided to the requesting driver. * * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to * a VMD IRQ using this structure. */ struct vmd_irq { struct list_head node; struct vmd_irq_list *irq; bool enabled; unsigned int virq; }; /** * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector * @irq_list: the list of irq's the VMD one demuxes to. * @srcu: SRCU struct for local synchronization. * @count: number of child IRQs assigned to this vector; used to track * sharing. * @virq: The underlying VMD Linux interrupt number */ struct vmd_irq_list { struct list_head irq_list; struct srcu_struct srcu; unsigned int count; unsigned int virq; }; struct vmd_dev { struct pci_dev *dev; spinlock_t cfg_lock; void __iomem *cfgbar; int msix_count; struct vmd_irq_list *irqs; struct pci_sysdata sysdata; struct resource resources[3]; struct irq_domain *irq_domain; struct pci_bus *bus; u8 busn_start; u8 first_vec; char *name; int instance; }; static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) { return container_of(bus->sysdata, struct vmd_dev, sysdata); } static inline unsigned int index_from_irqs(struct vmd_dev *vmd, struct vmd_irq_list *irqs) { return irqs - vmd->irqs; } /* * Drivers managing a device in a VMD domain allocate their own IRQs as before, * but the MSI entry for the hardware it's driving will be programmed with a * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its * domain into one of its own, and the VMD driver de-muxes these for the * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations * and irq_chip to set this up. */ static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) { struct vmd_irq *vmdirq = data->chip_data; struct vmd_irq_list *irq = vmdirq->irq; struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); memset(msg, 0, sizeof(*msg)); msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq); } /* * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. */ static void vmd_irq_enable(struct irq_data *data) { struct vmd_irq *vmdirq = data->chip_data; unsigned long flags; raw_spin_lock_irqsave(&list_lock, flags); WARN_ON(vmdirq->enabled); list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); vmdirq->enabled = true; raw_spin_unlock_irqrestore(&list_lock, flags); data->chip->irq_unmask(data); } static void vmd_irq_disable(struct irq_data *data) { struct vmd_irq *vmdirq = data->chip_data; unsigned long flags; data->chip->irq_mask(data); raw_spin_lock_irqsave(&list_lock, flags); if (vmdirq->enabled) { list_del_rcu(&vmdirq->node); vmdirq->enabled = false; } raw_spin_unlock_irqrestore(&list_lock, flags); } /* * XXX: Stubbed until we develop acceptable way to not create conflicts with * other devices sharing the same vector. */ static int vmd_irq_set_affinity(struct irq_data *data, const struct cpumask *dest, bool force) { return -EINVAL; } static struct irq_chip vmd_msi_controller = { .name = "VMD-MSI", .irq_enable = vmd_irq_enable, .irq_disable = vmd_irq_disable, .irq_compose_msi_msg = vmd_compose_msi_msg, .irq_set_affinity = vmd_irq_set_affinity, }; static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, msi_alloc_info_t *arg) { return 0; } /* * XXX: We can be even smarter selecting the best IRQ once we solve the * affinity problem. */ static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) { unsigned long flags; int i, best; if (vmd->msix_count == 1 + vmd->first_vec) return &vmd->irqs[vmd->first_vec]; /* * White list for fast-interrupt handlers. All others will share the * "slow" interrupt vector. */ switch (msi_desc_to_pci_dev(desc)->class) { case PCI_CLASS_STORAGE_EXPRESS: break; default: return &vmd->irqs[vmd->first_vec]; } raw_spin_lock_irqsave(&list_lock, flags); best = vmd->first_vec + 1; for (i = best; i < vmd->msix_count; i++) if (vmd->irqs[i].count < vmd->irqs[best].count) best = i; vmd->irqs[best].count++; raw_spin_unlock_irqrestore(&list_lock, flags); return &vmd->irqs[best]; } static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, unsigned int virq, irq_hw_number_t hwirq, msi_alloc_info_t *arg) { struct msi_desc *desc = arg->desc; struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); if (!vmdirq) return -ENOMEM; INIT_LIST_HEAD(&vmdirq->node); vmdirq->irq = vmd_next_irq(vmd, desc); vmdirq->virq = virq; irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq, handle_untracked_irq, vmd, NULL); return 0; } static void vmd_msi_free(struct irq_domain *domain, struct msi_domain_info *info, unsigned int virq) { struct vmd_irq *vmdirq = irq_get_chip_data(virq); unsigned long flags; synchronize_srcu(&vmdirq->irq->srcu); /* XXX: Potential optimization to rebalance */ raw_spin_lock_irqsave(&list_lock, flags); vmdirq->irq->count--; raw_spin_unlock_irqrestore(&list_lock, flags); kfree(vmdirq); } static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec, msi_alloc_info_t *arg) { struct pci_dev *pdev = to_pci_dev(dev); struct vmd_dev *vmd = vmd_from_bus(pdev->bus); if (nvec > vmd->msix_count) return vmd->msix_count; memset(arg, 0, sizeof(*arg)); return 0; } static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) { arg->desc = desc; } static struct msi_domain_ops vmd_msi_domain_ops = { .get_hwirq = vmd_get_hwirq, .msi_init = vmd_msi_init, .msi_free = vmd_msi_free, .msi_prepare = vmd_msi_prepare, .set_desc = vmd_set_desc, }; static struct msi_domain_info vmd_msi_domain_info = { .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_PCI_MSIX, .ops = &vmd_msi_domain_ops, .chip = &vmd_msi_controller, }; static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable) { u16 reg; pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®); reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) : (reg | VMCONFIG_MSI_REMAP); pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg); } static int vmd_create_irq_domain(struct vmd_dev *vmd) { struct fwnode_handle *fn; fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); if (!fn) return -ENODEV; vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL); if (!vmd->irq_domain) { irq_domain_free_fwnode(fn); return -ENODEV; } return 0; } static void vmd_remove_irq_domain(struct vmd_dev *vmd) { /* * Some production BIOS won't enable remapping between soft reboots. * Ensure remapping is restored before unloading the driver. */ if (!vmd->msix_count) vmd_set_msi_remapping(vmd, true); if (vmd->irq_domain) { struct fwnode_handle *fn = vmd->irq_domain->fwnode; irq_domain_remove(vmd->irq_domain); irq_domain_free_fwnode(fn); } } static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, unsigned int devfn, int reg, int len) { unsigned int busnr_ecam = bus->number - vmd->busn_start; u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg); if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR])) return NULL; return vmd->cfgbar + offset; } /* * CPU may deadlock if config space is not serialized on some versions of this * hardware, so all config space access is done under a spinlock. */ static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, int len, u32 *value) { struct vmd_dev *vmd = vmd_from_bus(bus); void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); unsigned long flags; int ret = 0; if (!addr) return -EFAULT; spin_lock_irqsave(&vmd->cfg_lock, flags); switch (len) { case 1: *value = readb(addr); break; case 2: *value = readw(addr); break; case 4: *value = readl(addr); break; default: ret = -EINVAL; break; } spin_unlock_irqrestore(&vmd->cfg_lock, flags); return ret; } /* * VMD h/w converts non-posted config writes to posted memory writes. The * read-back in this function forces the completion so it returns only after * the config space was written, as expected. */ static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, int len, u32 value) { struct vmd_dev *vmd = vmd_from_bus(bus); void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); unsigned long flags; int ret = 0; if (!addr) return -EFAULT; spin_lock_irqsave(&vmd->cfg_lock, flags); switch (len) { case 1: writeb(value, addr); readb(addr); break; case 2: writew(value, addr); readw(addr); break; case 4: writel(value, addr); readl(addr); break; default: ret = -EINVAL; break; } spin_unlock_irqrestore(&vmd->cfg_lock, flags); return ret; } static struct pci_ops vmd_ops = { .read = vmd_pci_read, .write = vmd_pci_write, }; #ifdef CONFIG_ACPI static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev) { struct pci_host_bridge *bridge; u32 busnr, addr; if (pci_dev->bus->ops != &vmd_ops) return NULL; bridge = pci_find_host_bridge(pci_dev->bus); busnr = pci_dev->bus->number - bridge->bus->number; /* * The address computation below is only applicable to relative bus * numbers below 32. */ if (busnr > 31) return NULL; addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU; dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n", addr); return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr, false); } static bool hook_installed; static void vmd_acpi_begin(void) { if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion)) return; hook_installed = true; } static void vmd_acpi_end(void) { if (!hook_installed) return; pci_acpi_clear_companion_lookup_hook(); hook_installed = false; } #else static inline void vmd_acpi_begin(void) { } static inline void vmd_acpi_end(void) { } #endif /* CONFIG_ACPI */ static void vmd_domain_reset(struct vmd_dev *vmd) { u16 bus, max_buses = resource_size(&vmd->resources[0]); u8 dev, functions, fn, hdr_type; char __iomem *base; for (bus = 0; bus < max_buses; bus++) { for (dev = 0; dev < 32; dev++) { base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, PCI_DEVFN(dev, 0), 0); hdr_type = readb(base + PCI_HEADER_TYPE); functions = (hdr_type & 0x80) ? 8 : 1; for (fn = 0; fn < functions; fn++) { base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, PCI_DEVFN(dev, fn), 0); hdr_type = readb(base + PCI_HEADER_TYPE) & PCI_HEADER_TYPE_MASK; if (hdr_type != PCI_HEADER_TYPE_BRIDGE || (readw(base + PCI_CLASS_DEVICE) != PCI_CLASS_BRIDGE_PCI)) continue; /* * Temporarily disable the I/O range before updating * PCI_IO_BASE. */ writel(0x0000ffff, base + PCI_IO_BASE_UPPER16); /* Update lower 16 bits of I/O base/limit */ writew(0x00f0, base + PCI_IO_BASE); /* Update upper 16 bits of I/O base/limit */ writel(0, base + PCI_IO_BASE_UPPER16); /* MMIO Base/Limit */ writel(0x0000fff0, base + PCI_MEMORY_BASE); /* Prefetchable MMIO Base/Limit */ writel(0, base + PCI_PREF_LIMIT_UPPER32); writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE); writel(0xffffffff, base + PCI_PREF_BASE_UPPER32); } } } } static void vmd_attach_resources(struct vmd_dev *vmd) { vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; } static void vmd_detach_resources(struct vmd_dev *vmd) { vmd->dev->resource[VMD_MEMBAR1].child = NULL; vmd->dev->resource[VMD_MEMBAR2].child = NULL; } /* * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower * 16 bits are the PCI Segment Group (domain) number. Other bits are * currently reserved. */ static int vmd_find_free_domain(void) { int domain = 0xffff; struct pci_bus *bus = NULL; while ((bus = pci_find_next_bus(bus)) != NULL) domain = max_t(int, domain, pci_domain_nr(bus)); return domain + 1; } static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint, resource_size_t *offset1, resource_size_t *offset2) { struct pci_dev *dev = vmd->dev; u64 phys1, phys2; if (native_hint) { u32 vmlock; int ret; ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock); if (ret || PCI_POSSIBLE_ERROR(vmlock)) return -ENODEV; if (MB2_SHADOW_EN(vmlock)) { void __iomem *membar2; membar2 = pci_iomap(dev, VMD_MEMBAR2, 0); if (!membar2) return -ENOMEM; phys1 = readq(membar2 + MB2_SHADOW_OFFSET); phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8); pci_iounmap(dev, membar2); } else return 0; } else { /* Hypervisor-Emulated Vendor-Specific Capability */ int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR); u32 reg, regu; pci_read_config_dword(dev, pos + 4, ®); /* "SHDW" */ if (pos && reg == 0x53484457) { pci_read_config_dword(dev, pos + 8, ®); pci_read_config_dword(dev, pos + 12, ®u); phys1 = (u64) regu << 32 | reg; pci_read_config_dword(dev, pos + 16, ®); pci_read_config_dword(dev, pos + 20, ®u); phys2 = (u64) regu << 32 | reg; } else return 0; } *offset1 = dev->resource[VMD_MEMBAR1].start - (phys1 & PCI_BASE_ADDRESS_MEM_MASK); *offset2 = dev->resource[VMD_MEMBAR2].start - (phys2 & PCI_BASE_ADDRESS_MEM_MASK); return 0; } static int vmd_get_bus_number_start(struct vmd_dev *vmd) { struct pci_dev *dev = vmd->dev; u16 reg; pci_read_config_word(dev, PCI_REG_VMCAP, ®); if (BUS_RESTRICT_CAP(reg)) { pci_read_config_word(dev, PCI_REG_VMCONFIG, ®); switch (BUS_RESTRICT_CFG(reg)) { case 0: vmd->busn_start = 0; break; case 1: vmd->busn_start = 128; break; case 2: vmd->busn_start = 224; break; default: pci_err(dev, "Unknown Bus Offset Setting (%d)\n", BUS_RESTRICT_CFG(reg)); return -ENODEV; } } return 0; } static irqreturn_t vmd_irq(int irq, void *data) { struct vmd_irq_list *irqs = data; struct vmd_irq *vmdirq; int idx; idx = srcu_read_lock(&irqs->srcu); list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) generic_handle_irq(vmdirq->virq); srcu_read_unlock(&irqs->srcu, idx); return IRQ_HANDLED; } static int vmd_alloc_irqs(struct vmd_dev *vmd) { struct pci_dev *dev = vmd->dev; int i, err; vmd->msix_count = pci_msix_vec_count(dev); if (vmd->msix_count < 0) return -ENODEV; vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1, vmd->msix_count, PCI_IRQ_MSIX); if (vmd->msix_count < 0) return vmd->msix_count; vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), GFP_KERNEL); if (!vmd->irqs) return -ENOMEM; for (i = 0; i < vmd->msix_count; i++) { err = init_srcu_struct(&vmd->irqs[i].srcu); if (err) return err; INIT_LIST_HEAD(&vmd->irqs[i].irq_list); vmd->irqs[i].virq = pci_irq_vector(dev, i); err = devm_request_irq(&dev->dev, vmd->irqs[i].virq, vmd_irq, IRQF_NO_THREAD, vmd->name, &vmd->irqs[i]); if (err) return err; } return 0; } /* * Since VMD is an aperture to regular PCIe root ports, only allow it to * control features that the OS is allowed to control on the physical PCI bus. */ static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge, struct pci_host_bridge *vmd_bridge) { vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug; vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug; vmd_bridge->native_aer = root_bridge->native_aer; vmd_bridge->native_pme = root_bridge->native_pme; vmd_bridge->native_ltr = root_bridge->native_ltr; vmd_bridge->native_dpc = root_bridge->native_dpc; } /* * Enable ASPM and LTR settings on devices that aren't configured by BIOS. */ static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata) { unsigned long features = *(unsigned long *)userdata; u16 ltr = VMD_BIOS_PM_QUIRK_LTR; u32 ltr_reg; int pos; if (!(features & VMD_FEAT_BIOS_PM_QUIRK)) return 0; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR); if (!pos) goto out_state_change; /* * Skip if the max snoop LTR is non-zero, indicating BIOS has set it * so the LTR quirk is not needed. */ pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg); if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK))) goto out_state_change; /* * Set the default values to the maximum required by the platform to * allow the deepest power management savings. Write as a DWORD where * the lower word is the max snoop latency and the upper word is the * max non-snoop latency. */ ltr_reg = (ltr << 16) | ltr; pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg); pci_info(pdev, "VMD: Default LTR value set by driver\n"); out_state_change: /* * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per * PCIe r6.0, sec 5.5.4. */ pci_set_power_state_locked(pdev, PCI_D0); pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL); return 0; } static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) { struct pci_sysdata *sd = &vmd->sysdata; struct resource *res; u32 upper_bits; unsigned long flags; LIST_HEAD(resources); resource_size_t offset[2] = {0}; resource_size_t membar2_offset = 0x2000; struct pci_bus *child; struct pci_dev *dev; int ret; /* * Shadow registers may exist in certain VMD device ids which allow * guests to correctly assign host physical addresses to the root ports * and child devices. These registers will either return the host value * or 0, depending on an enable bit in the VMD device. */ if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]); if (ret) return ret; } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) { ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]); if (ret) return ret; } /* * Certain VMD devices may have a root port configuration option which * limits the bus range to between 0-127, 128-255, or 224-255 */ if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { ret = vmd_get_bus_number_start(vmd); if (ret) return ret; } res = &vmd->dev->resource[VMD_CFGBAR]; vmd->resources[0] = (struct resource) { .name = "VMD CFGBAR", .start = vmd->busn_start, .end = vmd->busn_start + (resource_size(res) >> 20) - 1, .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, }; /* * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can * put 32-bit resources in the window. * * There's no hardware reason why a 64-bit window *couldn't* * contain a 32-bit resource, but pbus_size_mem() computes the * bridge window size assuming a 64-bit window will contain no * 32-bit resources. __pci_assign_resource() enforces that * artificial restriction to make sure everything will fit. * * The only way we could use a 64-bit non-prefetchable MEMBAR is * if its address is <4GB so that we can convert it to a 32-bit * resource. To be visible to the host OS, all VMD endpoints must * be initially configured by platform BIOS, which includes setting * up these resources. We can assume the device is configured * according to the platform needs. */ res = &vmd->dev->resource[VMD_MEMBAR1]; upper_bits = upper_32_bits(res->end); flags = res->flags & ~IORESOURCE_SIZEALIGN; if (!upper_bits) flags &= ~IORESOURCE_MEM_64; vmd->resources[1] = (struct resource) { .name = "VMD MEMBAR1", .start = res->start, .end = res->end, .flags = flags, .parent = res, }; res = &vmd->dev->resource[VMD_MEMBAR2]; upper_bits = upper_32_bits(res->end); flags = res->flags & ~IORESOURCE_SIZEALIGN; if (!upper_bits) flags &= ~IORESOURCE_MEM_64; vmd->resources[2] = (struct resource) { .name = "VMD MEMBAR2", .start = res->start + membar2_offset, .end = res->end, .flags = flags, .parent = res, }; sd->vmd_dev = vmd->dev; sd->domain = vmd_find_free_domain(); if (sd->domain < 0) return sd->domain; sd->node = pcibus_to_node(vmd->dev->bus); /* * Currently MSI remapping must be enabled in guest passthrough mode * due to some missing interrupt remapping plumbing. This is probably * acceptable because the guest is usually CPU-limited and MSI * remapping doesn't become a performance bottleneck. */ if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) || offset[0] || offset[1]) { ret = vmd_alloc_irqs(vmd); if (ret) return ret; vmd_set_msi_remapping(vmd, true); ret = vmd_create_irq_domain(vmd); if (ret) return ret; /* * Override the IRQ domain bus token so the domain can be * distinguished from a regular PCI/MSI domain. */ irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI); } else { vmd_set_msi_remapping(vmd, false); } pci_add_resource(&resources, &vmd->resources[0]); pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, &vmd_ops, sd, &resources); if (!vmd->bus) { pci_free_resource_list(&resources); vmd_remove_irq_domain(vmd); return -ENODEV; } vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus), to_pci_host_bridge(vmd->bus->bridge)); vmd_attach_resources(vmd); if (vmd->irq_domain) dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); else dev_set_msi_domain(&vmd->bus->dev, dev_get_msi_domain(&vmd->dev->dev)); WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, "domain"), "Can't create symlink to domain\n"); vmd_acpi_begin(); pci_scan_child_bus(vmd->bus); vmd_domain_reset(vmd); /* When Intel VMD is enabled, the OS does not discover the Root Ports * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies * a reset to the parent of the PCI device supplied as argument. This * is why we pass a child device, so the reset can be triggered at * the Intel bridge level and propagated to all the children in the * hierarchy. */ list_for_each_entry(child, &vmd->bus->children, node) { if (!list_empty(&child->devices)) { dev = list_first_entry(&child->devices, struct pci_dev, bus_list); ret = pci_reset_bus(dev); if (ret) pci_warn(dev, "can't reset device: %d\n", ret); break; } } pci_assign_unassigned_bus_resources(vmd->bus); pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features); /* * VMD root buses are virtual and don't return true on pci_is_pcie() * and will fail pcie_bus_configure_settings() early. It can instead be * run on each of the real root ports. */ list_for_each_entry(child, &vmd->bus->children, node) pcie_bus_configure_settings(child); pci_bus_add_devices(vmd->bus); vmd_acpi_end(); return 0; } static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) { unsigned long features = (unsigned long) id->driver_data; struct vmd_dev *vmd; int err; if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) return -ENOMEM; vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); if (!vmd) return -ENOMEM; vmd->dev = dev; vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL); if (vmd->instance < 0) return vmd->instance; vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d", vmd->instance); if (!vmd->name) { err = -ENOMEM; goto out_release_instance; } err = pcim_enable_device(dev); if (err < 0) goto out_release_instance; vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); if (!vmd->cfgbar) { err = -ENOMEM; goto out_release_instance; } pci_set_master(dev); if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) { err = -ENODEV; goto out_release_instance; } if (features & VMD_FEAT_OFFSET_FIRST_VECTOR) vmd->first_vec = 1; spin_lock_init(&vmd->cfg_lock); pci_set_drvdata(dev, vmd); err = vmd_enable_domain(vmd, features); if (err) goto out_release_instance; dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", vmd->sysdata.domain); return 0; out_release_instance: ida_simple_remove(&vmd_instance_ida, vmd->instance); return err; } static void vmd_cleanup_srcu(struct vmd_dev *vmd) { int i; for (i = 0; i < vmd->msix_count; i++) cleanup_srcu_struct(&vmd->irqs[i].srcu); } static void vmd_remove(struct pci_dev *dev) { struct vmd_dev *vmd = pci_get_drvdata(dev); pci_stop_root_bus(vmd->bus); sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); pci_remove_root_bus(vmd->bus); vmd_cleanup_srcu(vmd); vmd_detach_resources(vmd); vmd_remove_irq_domain(vmd); ida_simple_remove(&vmd_instance_ida, vmd->instance); } static void vmd_shutdown(struct pci_dev *dev) { struct vmd_dev *vmd = pci_get_drvdata(dev); vmd_remove_irq_domain(vmd); } #ifdef CONFIG_PM_SLEEP static int vmd_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct vmd_dev *vmd = pci_get_drvdata(pdev); int i; for (i = 0; i < vmd->msix_count; i++) devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]); return 0; } static int vmd_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct vmd_dev *vmd = pci_get_drvdata(pdev); int err, i; if (vmd->irq_domain) vmd_set_msi_remapping(vmd, true); else vmd_set_msi_remapping(vmd, false); for (i = 0; i < vmd->msix_count; i++) { err = devm_request_irq(dev, vmd->irqs[i].virq, vmd_irq, IRQF_NO_THREAD, vmd->name, &vmd->irqs[i]); if (err) return err; } return 0; } #endif static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); static const struct pci_device_id vmd_ids[] = { {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D), .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | VMD_FEAT_HAS_BUS_RESTRICTIONS | VMD_FEAT_CAN_BYPASS_MSI_REMAP,}, {PCI_VDEVICE(INTEL, 0x467f), .driver_data = VMD_FEATS_CLIENT,}, {PCI_VDEVICE(INTEL, 0x4c3d), .driver_data = VMD_FEATS_CLIENT,}, {PCI_VDEVICE(INTEL, 0xa77f), .driver_data = VMD_FEATS_CLIENT,}, {PCI_VDEVICE(INTEL, 0x7d0b), .driver_data = VMD_FEATS_CLIENT,}, {PCI_VDEVICE(INTEL, 0xad0b), .driver_data = VMD_FEATS_CLIENT,}, {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), .driver_data = VMD_FEATS_CLIENT,}, {PCI_VDEVICE(INTEL, 0xb60b), .driver_data = VMD_FEATS_CLIENT,}, {PCI_VDEVICE(INTEL, 0xb06f), .driver_data = VMD_FEATS_CLIENT,}, {0,} }; MODULE_DEVICE_TABLE(pci, vmd_ids); static struct pci_driver vmd_drv = { .name = "vmd", .id_table = vmd_ids, .probe = vmd_probe, .remove = vmd_remove, .shutdown = vmd_shutdown, .driver = { .pm = &vmd_dev_pm_ops, }, }; module_pci_driver(vmd_drv); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL v2"); MODULE_VERSION("0.6");