/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Author: Jani Nikula */ #include #include #include #include #include #include "i915_drv.h" #include "intel_atomic.h" #include "intel_backlight.h" #include "intel_connector.h" #include "intel_crtc.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dsi.h" #include "intel_dsi_vbt.h" #include "intel_fifo_underrun.h" #include "intel_panel.h" #include "skl_scaler.h" #include "vlv_dsi.h" #include "vlv_dsi_pll.h" #include "vlv_dsi_regs.h" #include "vlv_sideband.h" /* return pixels in terms of txbyteclkhs */ static u16 txbyteclkhs(u16 pixels, int bpp, int lane_count, u16 burst_mode_ratio) { return DIV_ROUND_UP(DIV_ROUND_UP(pixels * bpp * burst_mode_ratio, 8 * 100), lane_count); } /* return pixels equvalent to txbyteclkhs */ static u16 pixels_from_txbyteclkhs(u16 clk_hs, int bpp, int lane_count, u16 burst_mode_ratio) { return DIV_ROUND_UP((clk_hs * lane_count * 8 * 100), (bpp * burst_mode_ratio)); } enum mipi_dsi_pixel_format pixel_format_from_register_bits(u32 fmt) { /* It just so happens the VBT matches register contents. */ switch (fmt) { case VID_MODE_FORMAT_RGB888: return MIPI_DSI_FMT_RGB888; case VID_MODE_FORMAT_RGB666: return MIPI_DSI_FMT_RGB666; case VID_MODE_FORMAT_RGB666_PACKED: return MIPI_DSI_FMT_RGB666_PACKED; case VID_MODE_FORMAT_RGB565: return MIPI_DSI_FMT_RGB565; default: MISSING_CASE(fmt); return MIPI_DSI_FMT_RGB666; } } void vlv_dsi_wait_for_fifo_empty(struct intel_dsi *intel_dsi, enum port port) { struct drm_encoder *encoder = &intel_dsi->base.base; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 mask; mask = LP_CTRL_FIFO_EMPTY | HS_CTRL_FIFO_EMPTY | LP_DATA_FIFO_EMPTY | HS_DATA_FIFO_EMPTY; if (intel_de_wait_for_set(dev_priv, MIPI_GEN_FIFO_STAT(port), mask, 100)) drm_err(&dev_priv->drm, "DPI FIFOs are not empty\n"); } static void write_data(struct drm_i915_private *dev_priv, i915_reg_t reg, const u8 *data, u32 len) { u32 i, j; for (i = 0; i < len; i += 4) { u32 val = 0; for (j = 0; j < min_t(u32, len - i, 4); j++) val |= *data++ << 8 * j; intel_de_write(dev_priv, reg, val); } } static void read_data(struct drm_i915_private *dev_priv, i915_reg_t reg, u8 *data, u32 len) { u32 i, j; for (i = 0; i < len; i += 4) { u32 val = intel_de_read(dev_priv, reg); for (j = 0; j < min_t(u32, len - i, 4); j++) *data++ = val >> 8 * j; } } static ssize_t intel_dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct intel_dsi_host *intel_dsi_host = to_intel_dsi_host(host); struct drm_device *dev = intel_dsi_host->intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum port port = intel_dsi_host->port; struct mipi_dsi_packet packet; ssize_t ret; const u8 *header, *data; i915_reg_t data_reg, ctrl_reg; u32 data_mask, ctrl_mask; ret = mipi_dsi_create_packet(&packet, msg); if (ret < 0) return ret; header = packet.header; data = packet.payload; if (msg->flags & MIPI_DSI_MSG_USE_LPM) { data_reg = MIPI_LP_GEN_DATA(port); data_mask = LP_DATA_FIFO_FULL; ctrl_reg = MIPI_LP_GEN_CTRL(port); ctrl_mask = LP_CTRL_FIFO_FULL; } else { data_reg = MIPI_HS_GEN_DATA(port); data_mask = HS_DATA_FIFO_FULL; ctrl_reg = MIPI_HS_GEN_CTRL(port); ctrl_mask = HS_CTRL_FIFO_FULL; } /* note: this is never true for reads */ if (packet.payload_length) { if (intel_de_wait_for_clear(dev_priv, MIPI_GEN_FIFO_STAT(port), data_mask, 50)) drm_err(&dev_priv->drm, "Timeout waiting for HS/LP DATA FIFO !full\n"); write_data(dev_priv, data_reg, packet.payload, packet.payload_length); } if (msg->rx_len) { intel_de_write(dev_priv, MIPI_INTR_STAT(port), GEN_READ_DATA_AVAIL); } if (intel_de_wait_for_clear(dev_priv, MIPI_GEN_FIFO_STAT(port), ctrl_mask, 50)) { drm_err(&dev_priv->drm, "Timeout waiting for HS/LP CTRL FIFO !full\n"); } intel_de_write(dev_priv, ctrl_reg, header[2] << 16 | header[1] << 8 | header[0]); /* ->rx_len is set only for reads */ if (msg->rx_len) { data_mask = GEN_READ_DATA_AVAIL; if (intel_de_wait_for_set(dev_priv, MIPI_INTR_STAT(port), data_mask, 50)) drm_err(&dev_priv->drm, "Timeout waiting for read data.\n"); read_data(dev_priv, data_reg, msg->rx_buf, msg->rx_len); } /* XXX: fix for reads and writes */ return 4 + packet.payload_length; } static int intel_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { return 0; } static int intel_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { return 0; } static const struct mipi_dsi_host_ops intel_dsi_host_ops = { .attach = intel_dsi_host_attach, .detach = intel_dsi_host_detach, .transfer = intel_dsi_host_transfer, }; /* * send a video mode command * * XXX: commands with data in MIPI_DPI_DATA? */ static int dpi_send_cmd(struct intel_dsi *intel_dsi, u32 cmd, bool hs, enum port port) { struct drm_encoder *encoder = &intel_dsi->base.base; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 mask; /* XXX: pipe, hs */ if (hs) cmd &= ~DPI_LP_MODE; else cmd |= DPI_LP_MODE; /* clear bit */ intel_de_write(dev_priv, MIPI_INTR_STAT(port), SPL_PKT_SENT_INTERRUPT); /* XXX: old code skips write if control unchanged */ if (cmd == intel_de_read(dev_priv, MIPI_DPI_CONTROL(port))) drm_dbg_kms(&dev_priv->drm, "Same special packet %02x twice in a row.\n", cmd); intel_de_write(dev_priv, MIPI_DPI_CONTROL(port), cmd); mask = SPL_PKT_SENT_INTERRUPT; if (intel_de_wait_for_set(dev_priv, MIPI_INTR_STAT(port), mask, 100)) drm_err(&dev_priv->drm, "Video mode command 0x%08x send failed.\n", cmd); return 0; } static void band_gap_reset(struct drm_i915_private *dev_priv) { vlv_flisdsi_get(dev_priv); vlv_flisdsi_write(dev_priv, 0x08, 0x0001); vlv_flisdsi_write(dev_priv, 0x0F, 0x0005); vlv_flisdsi_write(dev_priv, 0x0F, 0x0025); udelay(150); vlv_flisdsi_write(dev_priv, 0x0F, 0x0000); vlv_flisdsi_write(dev_priv, 0x08, 0x0000); vlv_flisdsi_put(dev_priv); } static int intel_dsi_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = container_of(encoder, struct intel_dsi, base); struct intel_connector *intel_connector = intel_dsi->attached_connector; struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; int ret; drm_dbg_kms(&dev_priv->drm, "\n"); pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; ret = intel_panel_compute_config(intel_connector, adjusted_mode); if (ret) return ret; ret = intel_panel_fitting(pipe_config, conn_state); if (ret) return ret; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; /* DSI uses short packets for sync events, so clear mode flags for DSI */ adjusted_mode->flags = 0; if (intel_dsi->pixel_format == MIPI_DSI_FMT_RGB888) pipe_config->pipe_bpp = 24; else pipe_config->pipe_bpp = 18; if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { /* Enable Frame time stamp based scanline reporting */ pipe_config->mode_flags |= I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP; /* Dual link goes to DSI transcoder A. */ if (intel_dsi->ports == BIT(PORT_C)) pipe_config->cpu_transcoder = TRANSCODER_DSI_C; else pipe_config->cpu_transcoder = TRANSCODER_DSI_A; ret = bxt_dsi_pll_compute(encoder, pipe_config); if (ret) return -EINVAL; } else { ret = vlv_dsi_pll_compute(encoder, pipe_config); if (ret) return -EINVAL; } pipe_config->clock_set = true; return 0; } static bool glk_dsi_enable_io(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 tmp; bool cold_boot = false; /* Set the MIPI mode * If MIPI_Mode is off, then writing to LP_Wake bit is not reflecting. * Power ON MIPI IO first and then write into IO reset and LP wake bits */ for_each_dsi_port(port, intel_dsi->ports) { tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); intel_de_write(dev_priv, MIPI_CTRL(port), tmp | GLK_MIPIIO_ENABLE); } /* Put the IO into reset */ tmp = intel_de_read(dev_priv, MIPI_CTRL(PORT_A)); tmp &= ~GLK_MIPIIO_RESET_RELEASED; intel_de_write(dev_priv, MIPI_CTRL(PORT_A), tmp); /* Program LP Wake */ for_each_dsi_port(port, intel_dsi->ports) { tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); if (!(intel_de_read(dev_priv, MIPI_DEVICE_READY(port)) & DEVICE_READY)) tmp &= ~GLK_LP_WAKE; else tmp |= GLK_LP_WAKE; intel_de_write(dev_priv, MIPI_CTRL(port), tmp); } /* Wait for Pwr ACK */ for_each_dsi_port(port, intel_dsi->ports) { if (intel_de_wait_for_set(dev_priv, MIPI_CTRL(port), GLK_MIPIIO_PORT_POWERED, 20)) drm_err(&dev_priv->drm, "MIPIO port is powergated\n"); } /* Check for cold boot scenario */ for_each_dsi_port(port, intel_dsi->ports) { cold_boot |= !(intel_de_read(dev_priv, MIPI_DEVICE_READY(port)) & DEVICE_READY); } return cold_boot; } static void glk_dsi_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 val; /* Wait for MIPI PHY status bit to set */ for_each_dsi_port(port, intel_dsi->ports) { if (intel_de_wait_for_set(dev_priv, MIPI_CTRL(port), GLK_PHY_STATUS_PORT_READY, 20)) drm_err(&dev_priv->drm, "PHY is not ON\n"); } /* Get IO out of reset */ val = intel_de_read(dev_priv, MIPI_CTRL(PORT_A)); intel_de_write(dev_priv, MIPI_CTRL(PORT_A), val | GLK_MIPIIO_RESET_RELEASED); /* Get IO out of Low power state*/ for_each_dsi_port(port, intel_dsi->ports) { if (!(intel_de_read(dev_priv, MIPI_DEVICE_READY(port)) & DEVICE_READY)) { val = intel_de_read(dev_priv, MIPI_DEVICE_READY(port)); val &= ~ULPS_STATE_MASK; val |= DEVICE_READY; intel_de_write(dev_priv, MIPI_DEVICE_READY(port), val); usleep_range(10, 15); } else { /* Enter ULPS */ val = intel_de_read(dev_priv, MIPI_DEVICE_READY(port)); val &= ~ULPS_STATE_MASK; val |= (ULPS_STATE_ENTER | DEVICE_READY); intel_de_write(dev_priv, MIPI_DEVICE_READY(port), val); /* Wait for ULPS active */ if (intel_de_wait_for_clear(dev_priv, MIPI_CTRL(port), GLK_ULPS_NOT_ACTIVE, 20)) drm_err(&dev_priv->drm, "ULPS not active\n"); /* Exit ULPS */ val = intel_de_read(dev_priv, MIPI_DEVICE_READY(port)); val &= ~ULPS_STATE_MASK; val |= (ULPS_STATE_EXIT | DEVICE_READY); intel_de_write(dev_priv, MIPI_DEVICE_READY(port), val); /* Enter Normal Mode */ val = intel_de_read(dev_priv, MIPI_DEVICE_READY(port)); val &= ~ULPS_STATE_MASK; val |= (ULPS_STATE_NORMAL_OPERATION | DEVICE_READY); intel_de_write(dev_priv, MIPI_DEVICE_READY(port), val); val = intel_de_read(dev_priv, MIPI_CTRL(port)); val &= ~GLK_LP_WAKE; intel_de_write(dev_priv, MIPI_CTRL(port), val); } } /* Wait for Stop state */ for_each_dsi_port(port, intel_dsi->ports) { if (intel_de_wait_for_set(dev_priv, MIPI_CTRL(port), GLK_DATA_LANE_STOP_STATE, 20)) drm_err(&dev_priv->drm, "Date lane not in STOP state\n"); } /* Wait for AFE LATCH */ for_each_dsi_port(port, intel_dsi->ports) { if (intel_de_wait_for_set(dev_priv, BXT_MIPI_PORT_CTRL(port), AFE_LATCHOUT, 20)) drm_err(&dev_priv->drm, "D-PHY not entering LP-11 state\n"); } } static void bxt_dsi_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 val; drm_dbg_kms(&dev_priv->drm, "\n"); /* Enable MIPI PHY transparent latch */ for_each_dsi_port(port, intel_dsi->ports) { val = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); intel_de_write(dev_priv, BXT_MIPI_PORT_CTRL(port), val | LP_OUTPUT_HOLD); usleep_range(2000, 2500); } /* Clear ULPS and set device ready */ for_each_dsi_port(port, intel_dsi->ports) { val = intel_de_read(dev_priv, MIPI_DEVICE_READY(port)); val &= ~ULPS_STATE_MASK; intel_de_write(dev_priv, MIPI_DEVICE_READY(port), val); usleep_range(2000, 2500); val |= DEVICE_READY; intel_de_write(dev_priv, MIPI_DEVICE_READY(port), val); } } static void vlv_dsi_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 val; drm_dbg_kms(&dev_priv->drm, "\n"); vlv_flisdsi_get(dev_priv); /* program rcomp for compliance, reduce from 50 ohms to 45 ohms * needed everytime after power gate */ vlv_flisdsi_write(dev_priv, 0x04, 0x0004); vlv_flisdsi_put(dev_priv); /* bandgap reset is needed after everytime we do power gate */ band_gap_reset(dev_priv); for_each_dsi_port(port, intel_dsi->ports) { intel_de_write(dev_priv, MIPI_DEVICE_READY(port), ULPS_STATE_ENTER); usleep_range(2500, 3000); /* Enable MIPI PHY transparent latch * Common bit for both MIPI Port A & MIPI Port C * No similar bit in MIPI Port C reg */ val = intel_de_read(dev_priv, MIPI_PORT_CTRL(PORT_A)); intel_de_write(dev_priv, MIPI_PORT_CTRL(PORT_A), val | LP_OUTPUT_HOLD); usleep_range(1000, 1500); intel_de_write(dev_priv, MIPI_DEVICE_READY(port), ULPS_STATE_EXIT); usleep_range(2500, 3000); intel_de_write(dev_priv, MIPI_DEVICE_READY(port), DEVICE_READY); usleep_range(2500, 3000); } } static void intel_dsi_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (IS_GEMINILAKE(dev_priv)) glk_dsi_device_ready(encoder); else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) bxt_dsi_device_ready(encoder); else vlv_dsi_device_ready(encoder); } static void glk_dsi_enter_low_power_mode(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 val; /* Enter ULPS */ for_each_dsi_port(port, intel_dsi->ports) { val = intel_de_read(dev_priv, MIPI_DEVICE_READY(port)); val &= ~ULPS_STATE_MASK; val |= (ULPS_STATE_ENTER | DEVICE_READY); intel_de_write(dev_priv, MIPI_DEVICE_READY(port), val); } /* Wait for MIPI PHY status bit to unset */ for_each_dsi_port(port, intel_dsi->ports) { if (intel_de_wait_for_clear(dev_priv, MIPI_CTRL(port), GLK_PHY_STATUS_PORT_READY, 20)) drm_err(&dev_priv->drm, "PHY is not turning OFF\n"); } /* Wait for Pwr ACK bit to unset */ for_each_dsi_port(port, intel_dsi->ports) { if (intel_de_wait_for_clear(dev_priv, MIPI_CTRL(port), GLK_MIPIIO_PORT_POWERED, 20)) drm_err(&dev_priv->drm, "MIPI IO Port is not powergated\n"); } } static void glk_dsi_disable_mipi_io(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 tmp; /* Put the IO into reset */ tmp = intel_de_read(dev_priv, MIPI_CTRL(PORT_A)); tmp &= ~GLK_MIPIIO_RESET_RELEASED; intel_de_write(dev_priv, MIPI_CTRL(PORT_A), tmp); /* Wait for MIPI PHY status bit to unset */ for_each_dsi_port(port, intel_dsi->ports) { if (intel_de_wait_for_clear(dev_priv, MIPI_CTRL(port), GLK_PHY_STATUS_PORT_READY, 20)) drm_err(&dev_priv->drm, "PHY is not turning OFF\n"); } /* Clear MIPI mode */ for_each_dsi_port(port, intel_dsi->ports) { tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); tmp &= ~GLK_MIPIIO_ENABLE; intel_de_write(dev_priv, MIPI_CTRL(port), tmp); } } static void glk_dsi_clear_device_ready(struct intel_encoder *encoder) { glk_dsi_enter_low_power_mode(encoder); glk_dsi_disable_mipi_io(encoder); } static void vlv_dsi_clear_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; drm_dbg_kms(&dev_priv->drm, "\n"); for_each_dsi_port(port, intel_dsi->ports) { /* Common bit for both MIPI Port A & MIPI Port C on VLV/CHV */ i915_reg_t port_ctrl = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ? BXT_MIPI_PORT_CTRL(port) : MIPI_PORT_CTRL(PORT_A); u32 val; intel_de_write(dev_priv, MIPI_DEVICE_READY(port), DEVICE_READY | ULPS_STATE_ENTER); usleep_range(2000, 2500); intel_de_write(dev_priv, MIPI_DEVICE_READY(port), DEVICE_READY | ULPS_STATE_EXIT); usleep_range(2000, 2500); intel_de_write(dev_priv, MIPI_DEVICE_READY(port), DEVICE_READY | ULPS_STATE_ENTER); usleep_range(2000, 2500); /* * On VLV/CHV, wait till Clock lanes are in LP-00 state for MIPI * Port A only. MIPI Port C has no similar bit for checking. */ if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) || port == PORT_A) && intel_de_wait_for_clear(dev_priv, port_ctrl, AFE_LATCHOUT, 30)) drm_err(&dev_priv->drm, "DSI LP not going Low\n"); /* Disable MIPI PHY transparent latch */ val = intel_de_read(dev_priv, port_ctrl); intel_de_write(dev_priv, port_ctrl, val & ~LP_OUTPUT_HOLD); usleep_range(1000, 1500); intel_de_write(dev_priv, MIPI_DEVICE_READY(port), 0x00); usleep_range(2000, 2500); } } static void intel_dsi_port_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) { u32 temp; if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { for_each_dsi_port(port, intel_dsi->ports) { temp = intel_de_read(dev_priv, MIPI_CTRL(port)); temp &= ~BXT_PIXEL_OVERLAP_CNT_MASK | intel_dsi->pixel_overlap << BXT_PIXEL_OVERLAP_CNT_SHIFT; intel_de_write(dev_priv, MIPI_CTRL(port), temp); } } else { temp = intel_de_read(dev_priv, VLV_CHICKEN_3); temp &= ~PIXEL_OVERLAP_CNT_MASK | intel_dsi->pixel_overlap << PIXEL_OVERLAP_CNT_SHIFT; intel_de_write(dev_priv, VLV_CHICKEN_3, temp); } } for_each_dsi_port(port, intel_dsi->ports) { i915_reg_t port_ctrl = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ? BXT_MIPI_PORT_CTRL(port) : MIPI_PORT_CTRL(port); u32 temp; temp = intel_de_read(dev_priv, port_ctrl); temp &= ~LANE_CONFIGURATION_MASK; temp &= ~DUAL_LINK_MODE_MASK; if (intel_dsi->ports == (BIT(PORT_A) | BIT(PORT_C))) { temp |= (intel_dsi->dual_link - 1) << DUAL_LINK_MODE_SHIFT; if (IS_BROXTON(dev_priv)) temp |= LANE_CONFIGURATION_DUAL_LINK_A; else temp |= crtc->pipe ? LANE_CONFIGURATION_DUAL_LINK_B : LANE_CONFIGURATION_DUAL_LINK_A; } if (intel_dsi->pixel_format != MIPI_DSI_FMT_RGB888) temp |= DITHERING_ENABLE; /* assert ip_tg_enable signal */ intel_de_write(dev_priv, port_ctrl, temp | DPI_ENABLE); intel_de_posting_read(dev_priv, port_ctrl); } } static void intel_dsi_port_disable(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; for_each_dsi_port(port, intel_dsi->ports) { i915_reg_t port_ctrl = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ? BXT_MIPI_PORT_CTRL(port) : MIPI_PORT_CTRL(port); u32 temp; /* de-assert ip_tg_enable signal */ temp = intel_de_read(dev_priv, port_ctrl); intel_de_write(dev_priv, port_ctrl, temp & ~DPI_ENABLE); intel_de_posting_read(dev_priv, port_ctrl); } } static void intel_dsi_wait_panel_power_cycle(struct intel_dsi *intel_dsi) { ktime_t panel_power_on_time; s64 panel_power_off_duration; panel_power_on_time = ktime_get_boottime(); panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dsi->panel_power_off_time); if (panel_power_off_duration < (s64)intel_dsi->panel_pwr_cycle_delay) msleep(intel_dsi->panel_pwr_cycle_delay - panel_power_off_duration); } static void intel_dsi_prepare(struct intel_encoder *intel_encoder, const struct intel_crtc_state *pipe_config); static void intel_dsi_unprepare(struct intel_encoder *encoder); /* * Panel enable/disable sequences from the VBT spec. * * Note the spec has AssertReset / DeassertReset swapped from their * usual naming. We use the normal names to avoid confusion (so below * they are swapped compared to the spec). * * Steps starting with MIPI refer to VBT sequences, note that for v2 * VBTs several steps which have a VBT in v2 are expected to be handled * directly by the driver, by directly driving gpios for example. * * v2 video mode seq v3 video mode seq command mode seq * - power on - MIPIPanelPowerOn - power on * - wait t1+t2 - wait t1+t2 * - MIPIDeassertResetPin - MIPIDeassertResetPin - MIPIDeassertResetPin * - io lines to lp-11 - io lines to lp-11 - io lines to lp-11 * - MIPISendInitialDcsCmds - MIPISendInitialDcsCmds - MIPISendInitialDcsCmds * - MIPITearOn * - MIPIDisplayOn * - turn on DPI - turn on DPI - set pipe to dsr mode * - MIPIDisplayOn - MIPIDisplayOn * - wait t5 - wait t5 * - backlight on - MIPIBacklightOn - backlight on * ... ... ... issue mem cmds ... * - backlight off - MIPIBacklightOff - backlight off * - wait t6 - wait t6 * - MIPIDisplayOff * - turn off DPI - turn off DPI - disable pipe dsr mode * - MIPITearOff * - MIPIDisplayOff - MIPIDisplayOff * - io lines to lp-00 - io lines to lp-00 - io lines to lp-00 * - MIPIAssertResetPin - MIPIAssertResetPin - MIPIAssertResetPin * - wait t3 - wait t3 * - power off - MIPIPanelPowerOff - power off * - wait t4 - wait t4 */ /* * DSI port enable has to be done before pipe and plane enable, so we do it in * the pre_enable hook instead of the enable hook. */ static void intel_dsi_pre_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct intel_connector *connector = to_intel_connector(conn_state->connector); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; enum port port; u32 val; bool glk_cold_boot = false; drm_dbg_kms(&dev_priv->drm, "\n"); intel_dsi_wait_panel_power_cycle(intel_dsi); intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); /* * The BIOS may leave the PLL in a wonky state where it doesn't * lock. It needs to be fully powered down to fix it. */ if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { bxt_dsi_pll_disable(encoder); bxt_dsi_pll_enable(encoder, pipe_config); } else { vlv_dsi_pll_disable(encoder); vlv_dsi_pll_enable(encoder, pipe_config); } if (IS_BROXTON(dev_priv)) { /* Add MIPI IO reset programming for modeset */ val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON); intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val | MIPIO_RST_CTRL); /* Power up DSI regulator */ intel_de_write(dev_priv, BXT_P_DSI_REGULATOR_CFG, STAP_SELECT); intel_de_write(dev_priv, BXT_P_DSI_REGULATOR_TX_CTRL, 0); } if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { u32 val; /* Disable DPOunit clock gating, can stall pipe */ val = intel_de_read(dev_priv, DSPCLK_GATE_D); val |= DPOUNIT_CLOCK_GATE_DISABLE; intel_de_write(dev_priv, DSPCLK_GATE_D, val); } if (!IS_GEMINILAKE(dev_priv)) intel_dsi_prepare(encoder, pipe_config); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_POWER_ON); /* * Give the panel time to power-on and then deassert its reset. * Depending on the VBT MIPI sequences version the deassert-seq * may contain the necessary delay, intel_dsi_msleep() will skip * the delay in that case. If there is no deassert-seq, then an * unconditional msleep is used to give the panel time to power-on. */ if (connector->panel.vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) { intel_dsi_msleep(intel_dsi, intel_dsi->panel_on_delay); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DEASSERT_RESET); } else { msleep(intel_dsi->panel_on_delay); } if (IS_GEMINILAKE(dev_priv)) { glk_cold_boot = glk_dsi_enable_io(encoder); /* Prepare port in cold boot(s3/s4) scenario */ if (glk_cold_boot) intel_dsi_prepare(encoder, pipe_config); } /* Put device in ready state (LP-11) */ intel_dsi_device_ready(encoder); /* Prepare port in normal boot scenario */ if (IS_GEMINILAKE(dev_priv) && !glk_cold_boot) intel_dsi_prepare(encoder, pipe_config); /* Send initialization commands in LP mode */ intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_INIT_OTP); /* * Enable port in pre-enable phase itself because as per hw team * recommendation, port should be enabled before plane & pipe */ if (is_cmd_mode(intel_dsi)) { for_each_dsi_port(port, intel_dsi->ports) intel_de_write(dev_priv, MIPI_MAX_RETURN_PKT_SIZE(port), 8 * 4); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_TEAR_ON); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DISPLAY_ON); } else { msleep(20); /* XXX */ for_each_dsi_port(port, intel_dsi->ports) dpi_send_cmd(intel_dsi, TURN_ON, false, port); intel_dsi_msleep(intel_dsi, 100); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DISPLAY_ON); intel_dsi_port_enable(encoder, pipe_config); } intel_backlight_enable(pipe_config, conn_state); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_BACKLIGHT_ON); } static void bxt_dsi_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { drm_WARN_ON(state->base.dev, crtc_state->has_pch_encoder); intel_crtc_vblank_on(crtc_state); } /* * DSI port disable has to be done after pipe and plane disable, so we do it in * the post_disable hook. */ static void intel_dsi_disable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; drm_dbg_kms(&i915->drm, "\n"); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_BACKLIGHT_OFF); intel_backlight_disable(old_conn_state); /* * According to the spec we should send SHUTDOWN before * MIPI_SEQ_DISPLAY_OFF only for v3+ VBTs, but field testing * has shown that the v3 sequence works for v2 VBTs too */ if (is_vid_mode(intel_dsi)) { /* Send Shutdown command to the panel in LP mode */ for_each_dsi_port(port, intel_dsi->ports) dpi_send_cmd(intel_dsi, SHUTDOWN, false, port); msleep(10); } } static void intel_dsi_clear_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (IS_GEMINILAKE(dev_priv)) glk_dsi_clear_device_ready(encoder); else vlv_dsi_clear_device_ready(encoder); } static void intel_dsi_post_disable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 val; drm_dbg_kms(&dev_priv->drm, "\n"); if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { intel_crtc_vblank_off(old_crtc_state); skl_scaler_disable(old_crtc_state); } if (is_vid_mode(intel_dsi)) { for_each_dsi_port(port, intel_dsi->ports) vlv_dsi_wait_for_fifo_empty(intel_dsi, port); intel_dsi_port_disable(encoder); usleep_range(2000, 5000); } intel_dsi_unprepare(encoder); /* * if disable packets are sent before sending shutdown packet then in * some next enable sequence send turn on packet error is observed */ if (is_cmd_mode(intel_dsi)) intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_TEAR_OFF); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DISPLAY_OFF); /* Transition to LP-00 */ intel_dsi_clear_device_ready(encoder); if (IS_BROXTON(dev_priv)) { /* Power down DSI regulator to save power */ intel_de_write(dev_priv, BXT_P_DSI_REGULATOR_CFG, STAP_SELECT); intel_de_write(dev_priv, BXT_P_DSI_REGULATOR_TX_CTRL, HS_IO_CTRL_SELECT); /* Add MIPI IO reset programming for modeset */ val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON); intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val & ~MIPIO_RST_CTRL); } if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { bxt_dsi_pll_disable(encoder); } else { u32 val; vlv_dsi_pll_disable(encoder); val = intel_de_read(dev_priv, DSPCLK_GATE_D); val &= ~DPOUNIT_CLOCK_GATE_DISABLE; intel_de_write(dev_priv, DSPCLK_GATE_D, val); } /* Assert reset */ intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_ASSERT_RESET); intel_dsi_msleep(intel_dsi, intel_dsi->panel_off_delay); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_POWER_OFF); intel_dsi->panel_power_off_time = ktime_get_boottime(); } static void intel_dsi_shutdown(struct intel_encoder *encoder) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); intel_dsi_wait_panel_power_cycle(intel_dsi); } static bool intel_dsi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); intel_wakeref_t wakeref; enum port port; bool active = false; drm_dbg_kms(&dev_priv->drm, "\n"); wakeref = intel_display_power_get_if_enabled(dev_priv, encoder->power_domain); if (!wakeref) return false; /* * On Broxton the PLL needs to be enabled with a valid divider * configuration, otherwise accessing DSI registers will hang the * machine. See BSpec North Display Engine registers/MIPI[BXT]. */ if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && !bxt_dsi_pll_is_enabled(dev_priv)) goto out_put_power; /* XXX: this only works for one DSI output */ for_each_dsi_port(port, intel_dsi->ports) { i915_reg_t ctrl_reg = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ? BXT_MIPI_PORT_CTRL(port) : MIPI_PORT_CTRL(port); bool enabled = intel_de_read(dev_priv, ctrl_reg) & DPI_ENABLE; /* * Due to some hardware limitations on VLV/CHV, the DPI enable * bit in port C control register does not get set. As a * workaround, check pipe B conf instead. */ if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && port == PORT_C) enabled = intel_de_read(dev_priv, PIPECONF(PIPE_B)) & PIPECONF_ENABLE; /* Try command mode if video mode not enabled */ if (!enabled) { u32 tmp = intel_de_read(dev_priv, MIPI_DSI_FUNC_PRG(port)); enabled = tmp & CMD_MODE_DATA_WIDTH_MASK; } if (!enabled) continue; if (!(intel_de_read(dev_priv, MIPI_DEVICE_READY(port)) & DEVICE_READY)) continue; if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { u32 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); tmp &= BXT_PIPE_SELECT_MASK; tmp >>= BXT_PIPE_SELECT_SHIFT; if (drm_WARN_ON(&dev_priv->drm, tmp > PIPE_C)) continue; *pipe = tmp; } else { *pipe = port == PORT_A ? PIPE_A : PIPE_B; } active = true; break; } out_put_power: intel_display_power_put(dev_priv, encoder->power_domain, wakeref); return active; } static void bxt_dsi_get_pipe_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; struct drm_display_mode *adjusted_mode_sw; struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); unsigned int lane_count = intel_dsi->lane_count; unsigned int bpp, fmt; enum port port; u16 hactive, hfp, hsync, hbp, vfp, vsync, vbp; u16 hfp_sw, hsync_sw, hbp_sw; u16 crtc_htotal_sw, crtc_hsync_start_sw, crtc_hsync_end_sw, crtc_hblank_start_sw, crtc_hblank_end_sw; /* FIXME: hw readout should not depend on SW state */ adjusted_mode_sw = &crtc->config->hw.adjusted_mode; /* * Atleast one port is active as encoder->get_config called only if * encoder->get_hw_state() returns true. */ for_each_dsi_port(port, intel_dsi->ports) { if (intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)) & DPI_ENABLE) break; } fmt = intel_de_read(dev_priv, MIPI_DSI_FUNC_PRG(port)) & VID_MODE_FORMAT_MASK; bpp = mipi_dsi_pixel_format_to_bpp( pixel_format_from_register_bits(fmt)); pipe_config->pipe_bpp = bdw_get_pipemisc_bpp(crtc); /* Enable Frame time stamo based scanline reporting */ pipe_config->mode_flags |= I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP; /* In terms of pixels */ adjusted_mode->crtc_hdisplay = intel_de_read(dev_priv, BXT_MIPI_TRANS_HACTIVE(port)); adjusted_mode->crtc_vdisplay = intel_de_read(dev_priv, BXT_MIPI_TRANS_VACTIVE(port)); adjusted_mode->crtc_vtotal = intel_de_read(dev_priv, BXT_MIPI_TRANS_VTOTAL(port)); hactive = adjusted_mode->crtc_hdisplay; hfp = intel_de_read(dev_priv, MIPI_HFP_COUNT(port)); /* * Meaningful for video mode non-burst sync pulse mode only, * can be zero for non-burst sync events and burst modes */ hsync = intel_de_read(dev_priv, MIPI_HSYNC_PADDING_COUNT(port)); hbp = intel_de_read(dev_priv, MIPI_HBP_COUNT(port)); /* harizontal values are in terms of high speed byte clock */ hfp = pixels_from_txbyteclkhs(hfp, bpp, lane_count, intel_dsi->burst_mode_ratio); hsync = pixels_from_txbyteclkhs(hsync, bpp, lane_count, intel_dsi->burst_mode_ratio); hbp = pixels_from_txbyteclkhs(hbp, bpp, lane_count, intel_dsi->burst_mode_ratio); if (intel_dsi->dual_link) { hfp *= 2; hsync *= 2; hbp *= 2; } /* vertical values are in terms of lines */ vfp = intel_de_read(dev_priv, MIPI_VFP_COUNT(port)); vsync = intel_de_read(dev_priv, MIPI_VSYNC_PADDING_COUNT(port)); vbp = intel_de_read(dev_priv, MIPI_VBP_COUNT(port)); adjusted_mode->crtc_htotal = hactive + hfp + hsync + hbp; adjusted_mode->crtc_hsync_start = hfp + adjusted_mode->crtc_hdisplay; adjusted_mode->crtc_hsync_end = hsync + adjusted_mode->crtc_hsync_start; adjusted_mode->crtc_hblank_start = adjusted_mode->crtc_hdisplay; adjusted_mode->crtc_hblank_end = adjusted_mode->crtc_htotal; adjusted_mode->crtc_vsync_start = vfp + adjusted_mode->crtc_vdisplay; adjusted_mode->crtc_vsync_end = vsync + adjusted_mode->crtc_vsync_start; adjusted_mode->crtc_vblank_start = adjusted_mode->crtc_vdisplay; adjusted_mode->crtc_vblank_end = adjusted_mode->crtc_vtotal; /* * In BXT DSI there is no regs programmed with few horizontal timings * in Pixels but txbyteclkhs.. So retrieval process adds some * ROUND_UP ERRORS in the process of PIXELS<==>txbyteclkhs. * Actually here for the given adjusted_mode, we are calculating the * value programmed to the port and then back to the horizontal timing * param in pixels. This is the expected value, including roundup errors * And if that is same as retrieved value from port, then * (HW state) adjusted_mode's horizontal timings are corrected to * match with SW state to nullify the errors. */ /* Calculating the value programmed to the Port register */ hfp_sw = adjusted_mode_sw->crtc_hsync_start - adjusted_mode_sw->crtc_hdisplay; hsync_sw = adjusted_mode_sw->crtc_hsync_end - adjusted_mode_sw->crtc_hsync_start; hbp_sw = adjusted_mode_sw->crtc_htotal - adjusted_mode_sw->crtc_hsync_end; if (intel_dsi->dual_link) { hfp_sw /= 2; hsync_sw /= 2; hbp_sw /= 2; } hfp_sw = txbyteclkhs(hfp_sw, bpp, lane_count, intel_dsi->burst_mode_ratio); hsync_sw = txbyteclkhs(hsync_sw, bpp, lane_count, intel_dsi->burst_mode_ratio); hbp_sw = txbyteclkhs(hbp_sw, bpp, lane_count, intel_dsi->burst_mode_ratio); /* Reverse calculating the adjusted mode parameters from port reg vals*/ hfp_sw = pixels_from_txbyteclkhs(hfp_sw, bpp, lane_count, intel_dsi->burst_mode_ratio); hsync_sw = pixels_from_txbyteclkhs(hsync_sw, bpp, lane_count, intel_dsi->burst_mode_ratio); hbp_sw = pixels_from_txbyteclkhs(hbp_sw, bpp, lane_count, intel_dsi->burst_mode_ratio); if (intel_dsi->dual_link) { hfp_sw *= 2; hsync_sw *= 2; hbp_sw *= 2; } crtc_htotal_sw = adjusted_mode_sw->crtc_hdisplay + hfp_sw + hsync_sw + hbp_sw; crtc_hsync_start_sw = hfp_sw + adjusted_mode_sw->crtc_hdisplay; crtc_hsync_end_sw = hsync_sw + crtc_hsync_start_sw; crtc_hblank_start_sw = adjusted_mode_sw->crtc_hdisplay; crtc_hblank_end_sw = crtc_htotal_sw; if (adjusted_mode->crtc_htotal == crtc_htotal_sw) adjusted_mode->crtc_htotal = adjusted_mode_sw->crtc_htotal; if (adjusted_mode->crtc_hsync_start == crtc_hsync_start_sw) adjusted_mode->crtc_hsync_start = adjusted_mode_sw->crtc_hsync_start; if (adjusted_mode->crtc_hsync_end == crtc_hsync_end_sw) adjusted_mode->crtc_hsync_end = adjusted_mode_sw->crtc_hsync_end; if (adjusted_mode->crtc_hblank_start == crtc_hblank_start_sw) adjusted_mode->crtc_hblank_start = adjusted_mode_sw->crtc_hblank_start; if (adjusted_mode->crtc_hblank_end == crtc_hblank_end_sw) adjusted_mode->crtc_hblank_end = adjusted_mode_sw->crtc_hblank_end; } static void intel_dsi_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); u32 pclk; drm_dbg_kms(&dev_priv->drm, "\n"); pipe_config->output_types |= BIT(INTEL_OUTPUT_DSI); if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { bxt_dsi_get_pipe_config(encoder, pipe_config); pclk = bxt_dsi_get_pclk(encoder, pipe_config); } else { pclk = vlv_dsi_get_pclk(encoder, pipe_config); } if (intel_dsi->dual_link) pclk *= 2; if (pclk) { pipe_config->hw.adjusted_mode.crtc_clock = pclk; pipe_config->port_clock = pclk; } } /* return txclkesc cycles in terms of divider and duration in us */ static u16 txclkesc(u32 divider, unsigned int us) { switch (divider) { case ESCAPE_CLOCK_DIVIDER_1: default: return 20 * us; case ESCAPE_CLOCK_DIVIDER_2: return 10 * us; case ESCAPE_CLOCK_DIVIDER_4: return 5 * us; } } static void set_dsi_timings(struct drm_encoder *encoder, const struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(to_intel_encoder(encoder)); enum port port; unsigned int bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format); unsigned int lane_count = intel_dsi->lane_count; u16 hactive, hfp, hsync, hbp, vfp, vsync, vbp; hactive = adjusted_mode->crtc_hdisplay; hfp = adjusted_mode->crtc_hsync_start - adjusted_mode->crtc_hdisplay; hsync = adjusted_mode->crtc_hsync_end - adjusted_mode->crtc_hsync_start; hbp = adjusted_mode->crtc_htotal - adjusted_mode->crtc_hsync_end; if (intel_dsi->dual_link) { hactive /= 2; if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) hactive += intel_dsi->pixel_overlap; hfp /= 2; hsync /= 2; hbp /= 2; } vfp = adjusted_mode->crtc_vsync_start - adjusted_mode->crtc_vdisplay; vsync = adjusted_mode->crtc_vsync_end - adjusted_mode->crtc_vsync_start; vbp = adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vsync_end; /* horizontal values are in terms of high speed byte clock */ hactive = txbyteclkhs(hactive, bpp, lane_count, intel_dsi->burst_mode_ratio); hfp = txbyteclkhs(hfp, bpp, lane_count, intel_dsi->burst_mode_ratio); hsync = txbyteclkhs(hsync, bpp, lane_count, intel_dsi->burst_mode_ratio); hbp = txbyteclkhs(hbp, bpp, lane_count, intel_dsi->burst_mode_ratio); for_each_dsi_port(port, intel_dsi->ports) { if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { /* * Program hdisplay and vdisplay on MIPI transcoder. * This is different from calculated hactive and * vactive, as they are calculated per channel basis, * whereas these values should be based on resolution. */ intel_de_write(dev_priv, BXT_MIPI_TRANS_HACTIVE(port), adjusted_mode->crtc_hdisplay); intel_de_write(dev_priv, BXT_MIPI_TRANS_VACTIVE(port), adjusted_mode->crtc_vdisplay); intel_de_write(dev_priv, BXT_MIPI_TRANS_VTOTAL(port), adjusted_mode->crtc_vtotal); } intel_de_write(dev_priv, MIPI_HACTIVE_AREA_COUNT(port), hactive); intel_de_write(dev_priv, MIPI_HFP_COUNT(port), hfp); /* meaningful for video mode non-burst sync pulse mode only, * can be zero for non-burst sync events and burst modes */ intel_de_write(dev_priv, MIPI_HSYNC_PADDING_COUNT(port), hsync); intel_de_write(dev_priv, MIPI_HBP_COUNT(port), hbp); /* vertical values are in terms of lines */ intel_de_write(dev_priv, MIPI_VFP_COUNT(port), vfp); intel_de_write(dev_priv, MIPI_VSYNC_PADDING_COUNT(port), vsync); intel_de_write(dev_priv, MIPI_VBP_COUNT(port), vbp); } } static u32 pixel_format_to_reg(enum mipi_dsi_pixel_format fmt) { switch (fmt) { case MIPI_DSI_FMT_RGB888: return VID_MODE_FORMAT_RGB888; case MIPI_DSI_FMT_RGB666: return VID_MODE_FORMAT_RGB666; case MIPI_DSI_FMT_RGB666_PACKED: return VID_MODE_FORMAT_RGB666_PACKED; case MIPI_DSI_FMT_RGB565: return VID_MODE_FORMAT_RGB565; default: MISSING_CASE(fmt); return VID_MODE_FORMAT_RGB666; } } static void intel_dsi_prepare(struct intel_encoder *intel_encoder, const struct intel_crtc_state *pipe_config) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(to_intel_encoder(encoder)); const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; enum port port; unsigned int bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format); u32 val, tmp; u16 mode_hdisplay; drm_dbg_kms(&dev_priv->drm, "pipe %c\n", pipe_name(crtc->pipe)); mode_hdisplay = adjusted_mode->crtc_hdisplay; if (intel_dsi->dual_link) { mode_hdisplay /= 2; if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) mode_hdisplay += intel_dsi->pixel_overlap; } for_each_dsi_port(port, intel_dsi->ports) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { /* * escape clock divider, 20MHz, shared for A and C. * device ready must be off when doing this! txclkesc? */ tmp = intel_de_read(dev_priv, MIPI_CTRL(PORT_A)); tmp &= ~ESCAPE_CLOCK_DIVIDER_MASK; intel_de_write(dev_priv, MIPI_CTRL(PORT_A), tmp | ESCAPE_CLOCK_DIVIDER_1); /* read request priority is per pipe */ tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); tmp &= ~READ_REQUEST_PRIORITY_MASK; intel_de_write(dev_priv, MIPI_CTRL(port), tmp | READ_REQUEST_PRIORITY_HIGH); } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { enum pipe pipe = crtc->pipe; tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); tmp &= ~BXT_PIPE_SELECT_MASK; tmp |= BXT_PIPE_SELECT(pipe); intel_de_write(dev_priv, MIPI_CTRL(port), tmp); } /* XXX: why here, why like this? handling in irq handler?! */ intel_de_write(dev_priv, MIPI_INTR_STAT(port), 0xffffffff); intel_de_write(dev_priv, MIPI_INTR_EN(port), 0xffffffff); intel_de_write(dev_priv, MIPI_DPHY_PARAM(port), intel_dsi->dphy_reg); intel_de_write(dev_priv, MIPI_DPI_RESOLUTION(port), adjusted_mode->crtc_vdisplay << VERTICAL_ADDRESS_SHIFT | mode_hdisplay << HORIZONTAL_ADDRESS_SHIFT); } set_dsi_timings(encoder, adjusted_mode); val = intel_dsi->lane_count << DATA_LANES_PRG_REG_SHIFT; if (is_cmd_mode(intel_dsi)) { val |= intel_dsi->channel << CMD_MODE_CHANNEL_NUMBER_SHIFT; val |= CMD_MODE_DATA_WIDTH_8_BIT; /* XXX */ } else { val |= intel_dsi->channel << VID_MODE_CHANNEL_NUMBER_SHIFT; val |= pixel_format_to_reg(intel_dsi->pixel_format); } tmp = 0; if (intel_dsi->eotp_pkt == 0) tmp |= EOT_DISABLE; if (intel_dsi->clock_stop) tmp |= CLOCKSTOP; if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { tmp |= BXT_DPHY_DEFEATURE_EN; if (!is_cmd_mode(intel_dsi)) tmp |= BXT_DEFEATURE_DPI_FIFO_CTR; } for_each_dsi_port(port, intel_dsi->ports) { intel_de_write(dev_priv, MIPI_DSI_FUNC_PRG(port), val); /* timeouts for recovery. one frame IIUC. if counter expires, * EOT and stop state. */ /* * In burst mode, value greater than one DPI line Time in byte * clock (txbyteclkhs) To timeout this timer 1+ of the above * said value is recommended. * * In non-burst mode, Value greater than one DPI frame time in * byte clock(txbyteclkhs) To timeout this timer 1+ of the above * said value is recommended. * * In DBI only mode, value greater than one DBI frame time in * byte clock(txbyteclkhs) To timeout this timer 1+ of the above * said value is recommended. */ if (is_vid_mode(intel_dsi) && intel_dsi->video_mode == BURST_MODE) { intel_de_write(dev_priv, MIPI_HS_TX_TIMEOUT(port), txbyteclkhs(adjusted_mode->crtc_htotal, bpp, intel_dsi->lane_count, intel_dsi->burst_mode_ratio) + 1); } else { intel_de_write(dev_priv, MIPI_HS_TX_TIMEOUT(port), txbyteclkhs(adjusted_mode->crtc_vtotal * adjusted_mode->crtc_htotal, bpp, intel_dsi->lane_count, intel_dsi->burst_mode_ratio) + 1); } intel_de_write(dev_priv, MIPI_LP_RX_TIMEOUT(port), intel_dsi->lp_rx_timeout); intel_de_write(dev_priv, MIPI_TURN_AROUND_TIMEOUT(port), intel_dsi->turn_arnd_val); intel_de_write(dev_priv, MIPI_DEVICE_RESET_TIMER(port), intel_dsi->rst_timer_val); /* dphy stuff */ /* in terms of low power clock */ intel_de_write(dev_priv, MIPI_INIT_COUNT(port), txclkesc(intel_dsi->escape_clk_div, 100)); if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && !intel_dsi->dual_link) { /* * BXT spec says write MIPI_INIT_COUNT for * both the ports, even if only one is * getting used. So write the other port * if not in dual link mode. */ intel_de_write(dev_priv, MIPI_INIT_COUNT(port == PORT_A ? PORT_C : PORT_A), intel_dsi->init_count); } /* recovery disables */ intel_de_write(dev_priv, MIPI_EOT_DISABLE(port), tmp); /* in terms of low power clock */ intel_de_write(dev_priv, MIPI_INIT_COUNT(port), intel_dsi->init_count); /* in terms of txbyteclkhs. actual high to low switch + * MIPI_STOP_STATE_STALL * MIPI_LP_BYTECLK. * * XXX: write MIPI_STOP_STATE_STALL? */ intel_de_write(dev_priv, MIPI_HIGH_LOW_SWITCH_COUNT(port), intel_dsi->hs_to_lp_count); /* XXX: low power clock equivalence in terms of byte clock. * the number of byte clocks occupied in one low power clock. * based on txbyteclkhs and txclkesc. * txclkesc time / txbyteclk time * (105 + MIPI_STOP_STATE_STALL * ) / 105.??? */ intel_de_write(dev_priv, MIPI_LP_BYTECLK(port), intel_dsi->lp_byte_clk); if (IS_GEMINILAKE(dev_priv)) { intel_de_write(dev_priv, MIPI_TLPX_TIME_COUNT(port), intel_dsi->lp_byte_clk); /* Shadow of DPHY reg */ intel_de_write(dev_priv, MIPI_CLK_LANE_TIMING(port), intel_dsi->dphy_reg); } /* the bw essential for transmitting 16 long packets containing * 252 bytes meant for dcs write memory command is programmed in * this register in terms of byte clocks. based on dsi transfer * rate and the number of lanes configured the time taken to * transmit 16 long packets in a dsi stream varies. */ intel_de_write(dev_priv, MIPI_DBI_BW_CTRL(port), intel_dsi->bw_timer); intel_de_write(dev_priv, MIPI_CLK_LANE_SWITCH_TIME_CNT(port), intel_dsi->clk_lp_to_hs_count << LP_HS_SSW_CNT_SHIFT | intel_dsi->clk_hs_to_lp_count << HS_LP_PWR_SW_CNT_SHIFT); if (is_vid_mode(intel_dsi)) { u32 fmt = intel_dsi->video_frmt_cfg_bits | IP_TG_CONFIG; /* * Some panels might have resolution which is not a * multiple of 64 like 1366 x 768. Enable RANDOM * resolution support for such panels by default. */ fmt |= RANDOM_DPI_DISPLAY_RESOLUTION; switch (intel_dsi->video_mode) { default: MISSING_CASE(intel_dsi->video_mode); fallthrough; case NON_BURST_SYNC_EVENTS: fmt |= VIDEO_MODE_NON_BURST_WITH_SYNC_EVENTS; break; case NON_BURST_SYNC_PULSE: fmt |= VIDEO_MODE_NON_BURST_WITH_SYNC_PULSE; break; case BURST_MODE: fmt |= VIDEO_MODE_BURST; break; } intel_de_write(dev_priv, MIPI_VIDEO_MODE_FORMAT(port), fmt); } } } static void intel_dsi_unprepare(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 val; if (IS_GEMINILAKE(dev_priv)) return; for_each_dsi_port(port, intel_dsi->ports) { /* Panel commands can be sent when clock is in LP11 */ intel_de_write(dev_priv, MIPI_DEVICE_READY(port), 0x0); if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) bxt_dsi_reset_clocks(encoder, port); else vlv_dsi_reset_clocks(encoder, port); intel_de_write(dev_priv, MIPI_EOT_DISABLE(port), CLOCKSTOP); val = intel_de_read(dev_priv, MIPI_DSI_FUNC_PRG(port)); val &= ~VID_MODE_FORMAT_MASK; intel_de_write(dev_priv, MIPI_DSI_FUNC_PRG(port), val); intel_de_write(dev_priv, MIPI_DEVICE_READY(port), 0x1); } } static void intel_dsi_encoder_destroy(struct drm_encoder *encoder) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(to_intel_encoder(encoder)); intel_dsi_vbt_gpio_cleanup(intel_dsi); intel_encoder_destroy(encoder); } static const struct drm_encoder_funcs intel_dsi_funcs = { .destroy = intel_dsi_encoder_destroy, }; static const struct drm_connector_helper_funcs intel_dsi_connector_helper_funcs = { .get_modes = intel_dsi_get_modes, .mode_valid = intel_dsi_mode_valid, .atomic_check = intel_digital_connector_atomic_check, }; static const struct drm_connector_funcs intel_dsi_connector_funcs = { .detect = intel_panel_detect, .late_register = intel_connector_register, .early_unregister = intel_connector_unregister, .destroy = intel_connector_destroy, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_digital_connector_atomic_get_property, .atomic_set_property = intel_digital_connector_atomic_set_property, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_digital_connector_duplicate_state, }; static void vlv_dsi_add_properties(struct intel_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->base.dev); const struct drm_display_mode *fixed_mode = intel_panel_preferred_fixed_mode(connector); u32 allowed_scalers; allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); if (!HAS_GMCH(dev_priv)) allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); drm_connector_attach_scaling_mode_property(&connector->base, allowed_scalers); connector->base.state->scaling_mode = DRM_MODE_SCALE_ASPECT; drm_connector_set_panel_orientation_with_quirk(&connector->base, intel_dsi_get_panel_orientation(connector), fixed_mode->hdisplay, fixed_mode->vdisplay); } #define NS_KHZ_RATIO 1000000 #define PREPARE_CNT_MAX 0x3F #define EXIT_ZERO_CNT_MAX 0x3F #define CLK_ZERO_CNT_MAX 0xFF #define TRAIL_CNT_MAX 0x1F static void vlv_dphy_param_init(struct intel_dsi *intel_dsi) { struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_connector *connector = intel_dsi->attached_connector; struct mipi_config *mipi_config = connector->panel.vbt.dsi.config; u32 tlpx_ns, extra_byte_count, tlpx_ui; u32 ui_num, ui_den; u32 prepare_cnt, exit_zero_cnt, clk_zero_cnt, trail_cnt; u32 ths_prepare_ns, tclk_trail_ns; u32 tclk_prepare_clkzero, ths_prepare_hszero; u32 lp_to_hs_switch, hs_to_lp_switch; u32 mul; tlpx_ns = intel_dsi_tlpx_ns(intel_dsi); switch (intel_dsi->lane_count) { case 1: case 2: extra_byte_count = 2; break; case 3: extra_byte_count = 4; break; case 4: default: extra_byte_count = 3; break; } /* in Kbps */ ui_num = NS_KHZ_RATIO; ui_den = intel_dsi_bitrate(intel_dsi); tclk_prepare_clkzero = mipi_config->tclk_prepare_clkzero; ths_prepare_hszero = mipi_config->ths_prepare_hszero; /* * B060 * LP byte clock = TLPX/ (8UI) */ intel_dsi->lp_byte_clk = DIV_ROUND_UP(tlpx_ns * ui_den, 8 * ui_num); /* DDR clock period = 2 * UI * UI(sec) = 1/(bitrate * 10^3) (bitrate is in KHZ) * UI(nsec) = 10^6 / bitrate * DDR clock period (nsec) = 2 * UI = (2 * 10^6)/ bitrate * DDR clock count = ns_value / DDR clock period * * For GEMINILAKE dphy_param_reg will be programmed in terms of * HS byte clock count for other platform in HS ddr clock count */ mul = IS_GEMINILAKE(dev_priv) ? 8 : 2; ths_prepare_ns = max(mipi_config->ths_prepare, mipi_config->tclk_prepare); /* prepare count */ prepare_cnt = DIV_ROUND_UP(ths_prepare_ns * ui_den, ui_num * mul); if (prepare_cnt > PREPARE_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "prepare count too high %u\n", prepare_cnt); prepare_cnt = PREPARE_CNT_MAX; } /* exit zero count */ exit_zero_cnt = DIV_ROUND_UP( (ths_prepare_hszero - ths_prepare_ns) * ui_den, ui_num * mul ); /* * Exit zero is unified val ths_zero and ths_exit * minimum value for ths_exit = 110ns * min (exit_zero_cnt * 2) = 110/UI * exit_zero_cnt = 55/UI */ if (exit_zero_cnt < (55 * ui_den / ui_num) && (55 * ui_den) % ui_num) exit_zero_cnt += 1; if (exit_zero_cnt > EXIT_ZERO_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "exit zero count too high %u\n", exit_zero_cnt); exit_zero_cnt = EXIT_ZERO_CNT_MAX; } /* clk zero count */ clk_zero_cnt = DIV_ROUND_UP( (tclk_prepare_clkzero - ths_prepare_ns) * ui_den, ui_num * mul); if (clk_zero_cnt > CLK_ZERO_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "clock zero count too high %u\n", clk_zero_cnt); clk_zero_cnt = CLK_ZERO_CNT_MAX; } /* trail count */ tclk_trail_ns = max(mipi_config->tclk_trail, mipi_config->ths_trail); trail_cnt = DIV_ROUND_UP(tclk_trail_ns * ui_den, ui_num * mul); if (trail_cnt > TRAIL_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "trail count too high %u\n", trail_cnt); trail_cnt = TRAIL_CNT_MAX; } /* B080 */ intel_dsi->dphy_reg = exit_zero_cnt << 24 | trail_cnt << 16 | clk_zero_cnt << 8 | prepare_cnt; /* * LP to HS switch count = 4TLPX + PREP_COUNT * mul + EXIT_ZERO_COUNT * * mul + 10UI + Extra Byte Count * * HS to LP switch count = THS-TRAIL + 2TLPX + Extra Byte Count * Extra Byte Count is calculated according to number of lanes. * High Low Switch Count is the Max of LP to HS and * HS to LP switch count * */ tlpx_ui = DIV_ROUND_UP(tlpx_ns * ui_den, ui_num); /* B044 */ /* FIXME: * The comment above does not match with the code */ lp_to_hs_switch = DIV_ROUND_UP(4 * tlpx_ui + prepare_cnt * mul + exit_zero_cnt * mul + 10, 8); hs_to_lp_switch = DIV_ROUND_UP(mipi_config->ths_trail + 2 * tlpx_ui, 8); intel_dsi->hs_to_lp_count = max(lp_to_hs_switch, hs_to_lp_switch); intel_dsi->hs_to_lp_count += extra_byte_count; /* B088 */ /* LP -> HS for clock lanes * LP clk sync + LP11 + LP01 + tclk_prepare + tclk_zero + * extra byte count * 2TPLX + 1TLPX + 1 TPLX(in ns) + prepare_cnt * 2 + clk_zero_cnt * * 2(in UI) + extra byte count * In byteclks = (4TLPX + prepare_cnt * 2 + clk_zero_cnt *2 (in UI)) / * 8 + extra byte count */ intel_dsi->clk_lp_to_hs_count = DIV_ROUND_UP( 4 * tlpx_ui + prepare_cnt * 2 + clk_zero_cnt * 2, 8); intel_dsi->clk_lp_to_hs_count += extra_byte_count; /* HS->LP for Clock Lanes * Low Power clock synchronisations + 1Tx byteclk + tclk_trail + * Extra byte count * 2TLPX + 8UI + (trail_count*2)(in UI) + Extra byte count * In byteclks = (2*TLpx(in UI) + trail_count*2 +8)(in UI)/8 + * Extra byte count */ intel_dsi->clk_hs_to_lp_count = DIV_ROUND_UP(2 * tlpx_ui + trail_cnt * 2 + 8, 8); intel_dsi->clk_hs_to_lp_count += extra_byte_count; intel_dsi_log_params(intel_dsi); } void vlv_dsi_init(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct intel_dsi *intel_dsi; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; struct intel_connector *intel_connector; struct drm_connector *connector; struct drm_display_mode *current_mode; enum port port; enum pipe pipe; drm_dbg_kms(&dev_priv->drm, "\n"); /* There is no detection method for MIPI so rely on VBT */ if (!intel_bios_is_dsi_present(dev_priv, &port)) return; if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) dev_priv->mipi_mmio_base = BXT_MIPI_BASE; else dev_priv->mipi_mmio_base = VLV_MIPI_BASE; intel_dsi = kzalloc(sizeof(*intel_dsi), GFP_KERNEL); if (!intel_dsi) return; intel_connector = intel_connector_alloc(); if (!intel_connector) { kfree(intel_dsi); return; } intel_encoder = &intel_dsi->base; encoder = &intel_encoder->base; intel_dsi->attached_connector = intel_connector; connector = &intel_connector->base; drm_encoder_init(dev, encoder, &intel_dsi_funcs, DRM_MODE_ENCODER_DSI, "DSI %c", port_name(port)); intel_encoder->compute_config = intel_dsi_compute_config; intel_encoder->pre_enable = intel_dsi_pre_enable; if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) intel_encoder->enable = bxt_dsi_enable; intel_encoder->disable = intel_dsi_disable; intel_encoder->post_disable = intel_dsi_post_disable; intel_encoder->get_hw_state = intel_dsi_get_hw_state; intel_encoder->get_config = intel_dsi_get_config; intel_encoder->update_pipe = intel_backlight_update; intel_encoder->shutdown = intel_dsi_shutdown; intel_connector->get_hw_state = intel_connector_get_hw_state; intel_encoder->port = port; intel_encoder->type = INTEL_OUTPUT_DSI; intel_encoder->power_domain = POWER_DOMAIN_PORT_DSI; intel_encoder->cloneable = 0; /* * On BYT/CHV, pipe A maps to MIPI DSI port A, pipe B maps to MIPI DSI * port C. BXT isn't limited like this. */ if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) intel_encoder->pipe_mask = ~0; else if (port == PORT_A) intel_encoder->pipe_mask = BIT(PIPE_A); else intel_encoder->pipe_mask = BIT(PIPE_B); intel_dsi->panel_power_off_time = ktime_get_boottime(); intel_bios_init_panel(dev_priv, &intel_connector->panel, NULL, NULL); if (intel_connector->panel.vbt.dsi.config->dual_link) intel_dsi->ports = BIT(PORT_A) | BIT(PORT_C); else intel_dsi->ports = BIT(port); if (drm_WARN_ON(&dev_priv->drm, intel_connector->panel.vbt.dsi.bl_ports & ~intel_dsi->ports)) intel_connector->panel.vbt.dsi.bl_ports &= intel_dsi->ports; intel_dsi->dcs_backlight_ports = intel_connector->panel.vbt.dsi.bl_ports; if (drm_WARN_ON(&dev_priv->drm, intel_connector->panel.vbt.dsi.cabc_ports & ~intel_dsi->ports)) intel_connector->panel.vbt.dsi.cabc_ports &= intel_dsi->ports; intel_dsi->dcs_cabc_ports = intel_connector->panel.vbt.dsi.cabc_ports; /* Create a DSI host (and a device) for each port. */ for_each_dsi_port(port, intel_dsi->ports) { struct intel_dsi_host *host; host = intel_dsi_host_init(intel_dsi, &intel_dsi_host_ops, port); if (!host) goto err; intel_dsi->dsi_hosts[port] = host; } if (!intel_dsi_vbt_init(intel_dsi, MIPI_DSI_GENERIC_PANEL_ID)) { drm_dbg_kms(&dev_priv->drm, "no device found\n"); goto err; } /* Use clock read-back from current hw-state for fastboot */ current_mode = intel_encoder_current_mode(intel_encoder); if (current_mode) { drm_dbg_kms(&dev_priv->drm, "Calculated pclk %d GOP %d\n", intel_dsi->pclk, current_mode->clock); if (intel_fuzzy_clock_check(intel_dsi->pclk, current_mode->clock)) { drm_dbg_kms(&dev_priv->drm, "Using GOP pclk\n"); intel_dsi->pclk = current_mode->clock; } kfree(current_mode); } vlv_dphy_param_init(intel_dsi); intel_dsi_vbt_gpio_init(intel_dsi, intel_dsi_get_hw_state(intel_encoder, &pipe)); drm_connector_init(dev, connector, &intel_dsi_connector_funcs, DRM_MODE_CONNECTOR_DSI); drm_connector_helper_add(connector, &intel_dsi_connector_helper_funcs); connector->display_info.subpixel_order = SubPixelHorizontalRGB; /*XXX*/ connector->interlace_allowed = false; connector->doublescan_allowed = false; intel_connector_attach_encoder(intel_connector, intel_encoder); mutex_lock(&dev->mode_config.mutex); intel_panel_add_vbt_lfp_fixed_mode(intel_connector); mutex_unlock(&dev->mode_config.mutex); if (!intel_panel_preferred_fixed_mode(intel_connector)) { drm_dbg_kms(&dev_priv->drm, "no fixed mode\n"); goto err_cleanup_connector; } intel_panel_init(intel_connector); intel_backlight_setup(intel_connector, INVALID_PIPE); vlv_dsi_add_properties(intel_connector); return; err_cleanup_connector: drm_connector_cleanup(&intel_connector->base); err: drm_encoder_cleanup(&intel_encoder->base); kfree(intel_dsi); kfree(intel_connector); }