// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/mm/ioremap.c * * Re-map IO memory to kernel address space so that we can access it. * * (C) Copyright 1995 1996 Linus Torvalds * * Hacked for ARM by Phil Blundell * Hacked to allow all architectures to build, and various cleanups * by Russell King * * This allows a driver to remap an arbitrary region of bus memory into * virtual space. One should *only* use readl, writel, memcpy_toio and * so on with such remapped areas. * * Because the ARM only has a 32-bit address space we can't address the * whole of the (physical) PCI space at once. PCI huge-mode addressing * allows us to circumvent this restriction by splitting PCI space into * two 2GB chunks and mapping only one at a time into processor memory. * We use MMU protection domains to trap any attempt to access the bank * that is not currently mapped. (This isn't fully implemented yet.) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mm.h" LIST_HEAD(static_vmlist); static struct static_vm *find_static_vm_paddr(phys_addr_t paddr, size_t size, unsigned int mtype) { struct static_vm *svm; struct vm_struct *vm; list_for_each_entry(svm, &static_vmlist, list) { vm = &svm->vm; if (!(vm->flags & VM_ARM_STATIC_MAPPING)) continue; if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype)) continue; if (vm->phys_addr > paddr || paddr + size - 1 > vm->phys_addr + vm->size - 1) continue; return svm; } return NULL; } struct static_vm *find_static_vm_vaddr(void *vaddr) { struct static_vm *svm; struct vm_struct *vm; list_for_each_entry(svm, &static_vmlist, list) { vm = &svm->vm; /* static_vmlist is ascending order */ if (vm->addr > vaddr) break; if (vm->addr <= vaddr && vm->addr + vm->size > vaddr) return svm; } return NULL; } void __init add_static_vm_early(struct static_vm *svm) { struct static_vm *curr_svm; struct vm_struct *vm; void *vaddr; vm = &svm->vm; vm_area_add_early(vm); vaddr = vm->addr; list_for_each_entry(curr_svm, &static_vmlist, list) { vm = &curr_svm->vm; if (vm->addr > vaddr) break; } list_add_tail(&svm->list, &curr_svm->list); } int ioremap_page(unsigned long virt, unsigned long phys, const struct mem_type *mtype) { return ioremap_page_range(virt, virt + PAGE_SIZE, phys, __pgprot(mtype->prot_pte)); } EXPORT_SYMBOL(ioremap_page); #ifdef CONFIG_KASAN static unsigned long arm_kasan_mem_to_shadow(unsigned long addr) { return (unsigned long)kasan_mem_to_shadow((void *)addr); } #else static unsigned long arm_kasan_mem_to_shadow(unsigned long addr) { return 0; } #endif static void memcpy_pgd(struct mm_struct *mm, unsigned long start, unsigned long end) { end = ALIGN(end, PGDIR_SIZE); memcpy(pgd_offset(mm, start), pgd_offset_k(start), sizeof(pgd_t) * (pgd_index(end) - pgd_index(start))); } void __check_vmalloc_seq(struct mm_struct *mm) { int seq; do { seq = atomic_read_acquire(&init_mm.context.vmalloc_seq); memcpy_pgd(mm, VMALLOC_START, VMALLOC_END); if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) { unsigned long start = arm_kasan_mem_to_shadow(VMALLOC_START); unsigned long end = arm_kasan_mem_to_shadow(VMALLOC_END); memcpy_pgd(mm, start, end); } /* * Use a store-release so that other CPUs that observe the * counter's new value are guaranteed to see the results of the * memcpy as well. */ atomic_set_release(&mm->context.vmalloc_seq, seq); } while (seq != atomic_read(&init_mm.context.vmalloc_seq)); } #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) /* * Section support is unsafe on SMP - If you iounmap and ioremap a region, * the other CPUs will not see this change until their next context switch. * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs * which requires the new ioremap'd region to be referenced, the CPU will * reference the _old_ region. * * Note that get_vm_area_caller() allocates a guard 4K page, so we need to * mask the size back to 1MB aligned or we will overflow in the loop below. */ static void unmap_area_sections(unsigned long virt, unsigned long size) { unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1)); pmd_t *pmdp = pmd_off_k(addr); do { pmd_t pmd = *pmdp; if (!pmd_none(pmd)) { /* * Clear the PMD from the page table, and * increment the vmalloc sequence so others * notice this change. * * Note: this is still racy on SMP machines. */ pmd_clear(pmdp); atomic_inc_return_release(&init_mm.context.vmalloc_seq); /* * Free the page table, if there was one. */ if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE) pte_free_kernel(&init_mm, pmd_page_vaddr(pmd)); } addr += PMD_SIZE; pmdp += 2; } while (addr < end); /* * Ensure that the active_mm is up to date - we want to * catch any use-after-iounmap cases. */ check_vmalloc_seq(current->active_mm); flush_tlb_kernel_range(virt, end); } static int remap_area_sections(unsigned long virt, unsigned long pfn, size_t size, const struct mem_type *type) { unsigned long addr = virt, end = virt + size; pmd_t *pmd = pmd_off_k(addr); /* * Remove and free any PTE-based mapping, and * sync the current kernel mapping. */ unmap_area_sections(virt, size); do { pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect); pfn += SZ_1M >> PAGE_SHIFT; pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect); pfn += SZ_1M >> PAGE_SHIFT; flush_pmd_entry(pmd); addr += PMD_SIZE; pmd += 2; } while (addr < end); return 0; } static int remap_area_supersections(unsigned long virt, unsigned long pfn, size_t size, const struct mem_type *type) { unsigned long addr = virt, end = virt + size; pmd_t *pmd = pmd_off_k(addr); /* * Remove and free any PTE-based mapping, and * sync the current kernel mapping. */ unmap_area_sections(virt, size); do { unsigned long super_pmd_val, i; super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect | PMD_SECT_SUPER; super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20; for (i = 0; i < 8; i++) { pmd[0] = __pmd(super_pmd_val); pmd[1] = __pmd(super_pmd_val); flush_pmd_entry(pmd); addr += PMD_SIZE; pmd += 2; } pfn += SUPERSECTION_SIZE >> PAGE_SHIFT; } while (addr < end); return 0; } #endif static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset, size_t size, unsigned int mtype, void *caller) { const struct mem_type *type; int err; unsigned long addr; struct vm_struct *area; phys_addr_t paddr = __pfn_to_phys(pfn); #ifndef CONFIG_ARM_LPAE /* * High mappings must be supersection aligned */ if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK)) return NULL; #endif type = get_mem_type(mtype); if (!type) return NULL; /* * Page align the mapping size, taking account of any offset. */ size = PAGE_ALIGN(offset + size); /* * Try to reuse one of the static mapping whenever possible. */ if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) { struct static_vm *svm; svm = find_static_vm_paddr(paddr, size, mtype); if (svm) { addr = (unsigned long)svm->vm.addr; addr += paddr - svm->vm.phys_addr; return (void __iomem *) (offset + addr); } } /* * Don't allow RAM to be mapped with mismatched attributes - this * causes problems with ARMv6+ */ if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) && mtype != MT_MEMORY_RW)) return NULL; area = get_vm_area_caller(size, VM_IOREMAP, caller); if (!area) return NULL; addr = (unsigned long)area->addr; area->phys_addr = paddr; #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) if (DOMAIN_IO == 0 && (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) || cpu_is_xsc3()) && pfn >= 0x100000 && !((paddr | size | addr) & ~SUPERSECTION_MASK)) { area->flags |= VM_ARM_SECTION_MAPPING; err = remap_area_supersections(addr, pfn, size, type); } else if (!((paddr | size | addr) & ~PMD_MASK)) { area->flags |= VM_ARM_SECTION_MAPPING; err = remap_area_sections(addr, pfn, size, type); } else #endif err = ioremap_page_range(addr, addr + size, paddr, __pgprot(type->prot_pte)); if (err) { vunmap((void *)addr); return NULL; } flush_cache_vmap(addr, addr + size); return (void __iomem *) (offset + addr); } void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, unsigned int mtype, void *caller) { phys_addr_t last_addr; unsigned long offset = phys_addr & ~PAGE_MASK; unsigned long pfn = __phys_to_pfn(phys_addr); /* * Don't allow wraparound or zero size */ last_addr = phys_addr + size - 1; if (!size || last_addr < phys_addr) return NULL; return __arm_ioremap_pfn_caller(pfn, offset, size, mtype, caller); } /* * Remap an arbitrary physical address space into the kernel virtual * address space. Needed when the kernel wants to access high addresses * directly. * * NOTE! We need to allow non-page-aligned mappings too: we will obviously * have to convert them into an offset in a page-aligned mapping, but the * caller shouldn't need to know that small detail. */ void __iomem * __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size, unsigned int mtype) { return __arm_ioremap_pfn_caller(pfn, offset, size, mtype, __builtin_return_address(0)); } EXPORT_SYMBOL(__arm_ioremap_pfn); void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *) = __arm_ioremap_caller; void __iomem *ioremap(resource_size_t res_cookie, size_t size) { return arch_ioremap_caller(res_cookie, size, MT_DEVICE, __builtin_return_address(0)); } EXPORT_SYMBOL(ioremap); void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size) { return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED, __builtin_return_address(0)); } EXPORT_SYMBOL(ioremap_cache); void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size) { return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC, __builtin_return_address(0)); } EXPORT_SYMBOL(ioremap_wc); /* * Remap an arbitrary physical address space into the kernel virtual * address space as memory. Needed when the kernel wants to execute * code in external memory. This is needed for reprogramming source * clocks that would affect normal memory for example. Please see * CONFIG_GENERIC_ALLOCATOR for allocating external memory. */ void __iomem * __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached) { unsigned int mtype; if (cached) mtype = MT_MEMORY_RWX; else mtype = MT_MEMORY_RWX_NONCACHED; return __arm_ioremap_caller(phys_addr, size, mtype, __builtin_return_address(0)); } void __arm_iomem_set_ro(void __iomem *ptr, size_t size) { set_memory_ro((unsigned long)ptr, PAGE_ALIGN(size) / PAGE_SIZE); } void *arch_memremap_wb(phys_addr_t phys_addr, size_t size) { return (__force void *)arch_ioremap_caller(phys_addr, size, MT_MEMORY_RW, __builtin_return_address(0)); } void iounmap(volatile void __iomem *io_addr) { void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr); struct static_vm *svm; /* If this is a static mapping, we must leave it alone */ svm = find_static_vm_vaddr(addr); if (svm) return; #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) { struct vm_struct *vm; vm = find_vm_area(addr); /* * If this is a section based mapping we need to handle it * specially as the VM subsystem does not know how to handle * such a beast. */ if (vm && (vm->flags & VM_ARM_SECTION_MAPPING)) unmap_area_sections((unsigned long)vm->addr, vm->size); } #endif vunmap(addr); } EXPORT_SYMBOL(iounmap); #if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA) static int pci_ioremap_mem_type = MT_DEVICE; void pci_ioremap_set_mem_type(int mem_type) { pci_ioremap_mem_type = mem_type; } int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) { unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; if (!(res->flags & IORESOURCE_IO)) return -EINVAL; if (res->end > IO_SPACE_LIMIT) return -EINVAL; return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte)); } EXPORT_SYMBOL(pci_remap_iospace); void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size) { return arch_ioremap_caller(res_cookie, size, MT_UNCACHED, __builtin_return_address(0)); } EXPORT_SYMBOL_GPL(pci_remap_cfgspace); #endif /* * Must be called after early_fixmap_init */ void __init early_ioremap_init(void) { early_ioremap_setup(); } bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size, unsigned long flags) { unsigned long pfn = PHYS_PFN(offset); return memblock_is_map_memory(pfn); }