/* * Copyright (c) 2018 Intel Corporation. * Copyright (c) 2018-present Facebook. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "xyz/openbmc_project/Common/error.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SIZE_IANA_ID 3 namespace ipmi { using namespace phosphor::logging; static void registerOEMFunctions() __attribute__((constructor)); sdbusplus::bus::bus dbus(ipmid_get_sd_bus_connection()); // from ipmid/api.h static constexpr size_t maxFRUStringLength = 0x3F; ipmi_ret_t plat_udbg_get_post_desc(uint8_t, uint8_t *, uint8_t, uint8_t *, uint8_t *, uint8_t *); ipmi_ret_t plat_udbg_get_frame_data(uint8_t, uint8_t, uint8_t *, uint8_t *, uint8_t *); ipmi_ret_t plat_udbg_control_panel(uint8_t, uint8_t, uint8_t, uint8_t *, uint8_t *); namespace variant_ns = sdbusplus::message::variant_ns; nlohmann::json oemData; enum class LanParam : uint8_t { INPROGRESS = 0, AUTHSUPPORT = 1, AUTHENABLES = 2, IP = 3, IPSRC = 4, MAC = 5, SUBNET = 6, GATEWAY = 12, VLAN = 20, CIPHER_SUITE_COUNT = 22, CIPHER_SUITE_ENTRIES = 23, IPV6 = 59, }; namespace network { constexpr auto ROOT = "/xyz/openbmc_project/network"; constexpr auto SERVICE = "xyz.openbmc_project.Network"; constexpr auto IPV4_TYPE = "ipv4"; constexpr auto IPV6_TYPE = "ipv6"; constexpr auto IPV4_PREFIX = "169.254"; constexpr auto IPV6_PREFIX = "fe80"; constexpr auto IP_INTERFACE = "xyz.openbmc_project.Network.IP"; constexpr auto MAC_INTERFACE = "xyz.openbmc_project.Network.MACAddress"; bool isLinkLocalIP(const std::string &address) { return address.find(IPV4_PREFIX) == 0 || address.find(IPV6_PREFIX) == 0; } DbusObjectInfo getIPObject(sdbusplus::bus::bus &bus, const std::string &interface, const std::string &serviceRoot, const std::string &match) { auto objectTree = getAllDbusObjects(bus, serviceRoot, interface, match); if (objectTree.empty()) { log("No Object has implemented the IP interface", entry("INTERFACE=%s", interface.c_str())); } DbusObjectInfo objectInfo; for (auto &object : objectTree) { auto variant = ipmi::getDbusProperty(bus, object.second.begin()->first, object.first, IP_INTERFACE, "Address"); objectInfo = std::make_pair(object.first, object.second.begin()->first); // if LinkLocalIP found look for Non-LinkLocalIP if (isLinkLocalIP(std::get(variant))) { continue; } else { break; } } return objectInfo; } } // namespace network //---------------------------------------------------------------------- // Helper functions for storing oem data //---------------------------------------------------------------------- void flushOemData() { std::ofstream file(JSON_OEM_DATA_FILE); file << oemData; return; } std::string bytesToStr(uint8_t *byte, int len) { std::stringstream ss; int i; ss << std::hex; for (i = 0; i < len; i++) { ss << std::setw(2) << std::setfill('0') << (int)byte[i]; } return ss.str(); } int strToBytes(std::string &str, uint8_t *data) { std::string sstr; int i; for (i = 0; i < (str.length()) / 2; i++) { sstr = str.substr(i * 2, 2); data[i] = (uint8_t)std::strtol(sstr.c_str(), NULL, 16); } return i; } ipmi_ret_t getNetworkData(uint8_t lan_param, char *data) { ipmi_ret_t rc = IPMI_CC_OK; sdbusplus::bus::bus bus(ipmid_get_sd_bus_connection()); const std::string ethdevice = "eth0"; switch (static_cast(lan_param)) { case LanParam::IP: { auto ethIP = ethdevice + "/" + ipmi::network::IPV4_TYPE; std::string ipaddress; auto ipObjectInfo = ipmi::network::getIPObject( bus, ipmi::network::IP_INTERFACE, ipmi::network::ROOT, ethIP); auto properties = ipmi::getAllDbusProperties( bus, ipObjectInfo.second, ipObjectInfo.first, ipmi::network::IP_INTERFACE); ipaddress = variant_ns::get(properties["Address"]); std::strcpy(data, ipaddress.c_str()); } break; case LanParam::IPV6: { auto ethIP = ethdevice + "/" + ipmi::network::IPV6_TYPE; std::string ipaddress; auto ipObjectInfo = ipmi::network::getIPObject( bus, ipmi::network::IP_INTERFACE, ipmi::network::ROOT, ethIP); auto properties = ipmi::getAllDbusProperties( bus, ipObjectInfo.second, ipObjectInfo.first, ipmi::network::IP_INTERFACE); ipaddress = variant_ns::get(properties["Address"]); std::strcpy(data, ipaddress.c_str()); } break; case LanParam::MAC: { std::string macAddress; auto macObjectInfo = ipmi::getDbusObject(bus, ipmi::network::MAC_INTERFACE, ipmi::network::ROOT, ethdevice); auto variant = ipmi::getDbusProperty( bus, macObjectInfo.second, macObjectInfo.first, ipmi::network::MAC_INTERFACE, "MACAddress"); macAddress = variant_ns::get(variant); sscanf(macAddress.c_str(), ipmi::network::MAC_ADDRESS_FORMAT, (data), (data + 1), (data + 2), (data + 3), (data + 4), (data + 5)); std::strcpy(data, macAddress.c_str()); } break; default: rc = IPMI_CC_PARM_OUT_OF_RANGE; } return rc; } // return code: 0 successful int8_t getFruData(std::string &data, std::string &name) { std::string objpath = "/xyz/openbmc_project/FruDevice"; std::string intf = "xyz.openbmc_project.FruDeviceManager"; std::string service = getService(dbus, intf, objpath); ObjectValueTree valueTree = getManagedObjects(dbus, service, "/"); if (valueTree.empty()) { phosphor::logging::log( "No object implements interface", phosphor::logging::entry("INTF=%s", intf.c_str())); return -1; } for (const auto &item : valueTree) { auto interface = item.second.find("xyz.openbmc_project.FruDevice"); if (interface == item.second.end()) { continue; } auto property = interface->second.find(name.c_str()); if (property == interface->second.end()) { continue; } try { Value variant = property->second; std::string &result = sdbusplus::message::variant_ns::get(variant); if (result.size() > maxFRUStringLength) { phosphor::logging::log( "FRU serial number exceed maximum length"); return -1; } data = result; return 0; } catch (sdbusplus::message::variant_ns::bad_variant_access &e) { phosphor::logging::log(e.what()); return -1; } } return -1; } typedef struct { uint8_t cur_power_state; uint8_t last_power_event; uint8_t misc_power_state; uint8_t front_panel_button_cap_status; } ipmi_get_chassis_status_t; // Todo: Needs to update this as per power policy when integrated //---------------------------------------------------------------------- // Get Chassis Status commands //---------------------------------------------------------------------- ipmi_ret_t ipmiGetChassisStatus(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { ipmi_get_chassis_status_t chassis_status; uint8_t s = 2; *data_len = 4; // Current Power State // [7] reserved // [6..5] power restore policy // 00b = chassis stays powered off after AC/mains returns // 01b = after AC returns, power is restored to the state that was // in effect when AC/mains was lost. // 10b = chassis always powers up after AC/mains returns // 11b = unknow // Set to 00b, by observing the hardware behavior. // Do we need to define a dbus property to identify the restore // policy? // [4] power control fault // 1b = controller attempted to turn system power on or off, but // system did not enter desired state. // Set to 0b, since We don't support it.. // [3] power fault // 1b = fault detected in main power subsystem. // set to 0b. for we don't support it. // [2] 1b = interlock (chassis is presently shut down because a chassis // panel interlock switch is active). (IPMI 1.5) // set to 0b, for we don't support it. // [1] power overload // 1b = system shutdown because of power overload condition. // set to 0b, for we don't support it. // [0] power is on // 1b = system power is on // 0b = system power is off(soft-off S4/S5, or mechanical off) chassis_status.cur_power_state = ((s & 0x3) << 5) | (1 & 0x1); // Last Power Event // [7..5] – reserved // [4] – 1b = last ‘Power is on’ state was entered via IPMI command // [3] – 1b = last power down caused by power fault // [2] – 1b = last power down caused by a power interlock being activated // [1] – 1b = last power down caused by a Power overload // [0] – 1b = AC failed // set to 0x0, for we don't support these fields. chassis_status.last_power_event = 0; // Misc. Chassis State // [7] – reserved // [6] – 1b = Chassis Identify command and state info supported (Optional) // 0b = Chassis Identify command support unspecified via this command. // (The Get Command Support command , if implemented, would still // indicate support for the Chassis Identify command) // [5..4] – Chassis Identify State. Mandatory when bit[6] =1b, reserved // (return // as 00b) otherwise. Returns the present chassis identify state. // Refer to the Chassis Identify command for more info. // 00b = chassis identify state = Off // 01b = chassis identify state = Temporary(timed) On // 10b = chassis identify state = Indefinite On // 11b = reserved // [3] – 1b = Cooling/fan fault detected // [2] – 1b = Drive Fault // [1] – 1b = Front Panel Lockout active (power off and reset via chassis // push-buttons disabled.) // [0] – 1b = Chassis Intrusion active // set to 0, for we don't support them. chassis_status.misc_power_state = 0x40; // Front Panel Button Capabilities and disable/enable status(Optional) // set to 0, for we don't support them. chassis_status.front_panel_button_cap_status = 0; // Pack the actual response std::memcpy(response, &chassis_status, *data_len); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug Frame Info //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetFrameInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t *res = reinterpret_cast(response); uint8_t num_frames = 3; std::memcpy(res, req, SIZE_IANA_ID); // IANA ID res[SIZE_IANA_ID] = num_frames; *data_len = SIZE_IANA_ID + 1; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug Updated Frames //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetUpdFrames(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t *res = reinterpret_cast(response); uint8_t num_updates = 3; *data_len = 4; std::memcpy(res, req, SIZE_IANA_ID); // IANA ID res[SIZE_IANA_ID] = num_updates; *data_len = SIZE_IANA_ID + num_updates + 1; res[SIZE_IANA_ID + 1] = 1; // info page update res[SIZE_IANA_ID + 2] = 2; // cri sel update res[SIZE_IANA_ID + 3] = 3; // cri sensor update return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug POST Description //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetPostDesc(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t *res = reinterpret_cast(response); uint8_t index = 0; uint8_t next = 0; uint8_t end = 0; uint8_t phase = 0; uint8_t count = 0; int ret; index = req[3]; phase = req[4]; phosphor::logging::log( "Get POST Description Event"); ret = plat_udbg_get_post_desc(index, &next, phase, &end, &count, &res[8]); if (ret) { memcpy(res, req, SIZE_IANA_ID); // IANA ID *data_len = SIZE_IANA_ID; return IPMI_CC_UNSPECIFIED_ERROR; } memcpy(res, req, SIZE_IANA_ID); // IANA ID res[3] = index; res[4] = next; res[5] = phase; res[6] = end; res[7] = count; *data_len = SIZE_IANA_ID + 5 + count; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug GPIO Description //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetGpioDesc(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t *res = reinterpret_cast(response); phosphor::logging::log( "Get GPIO Description Event"); std::memcpy(res, req, SIZE_IANA_ID + 1); // IANA ID *data_len = SIZE_IANA_ID + 1; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug Frame Data //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetFrameData(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t *res = reinterpret_cast(response); uint8_t frame; uint8_t page; uint8_t next; uint8_t count; int ret; frame = req[3]; page = req[4]; int fr = frame; int pg = page; ret = plat_udbg_get_frame_data(frame, page, &next, &count, &res[7]); if (ret) { memcpy(res, req, SIZE_IANA_ID); // IANA ID *data_len = SIZE_IANA_ID; return IPMI_CC_UNSPECIFIED_ERROR; } memcpy(res, req, SIZE_IANA_ID); // IANA ID res[3] = frame; res[4] = page; res[5] = next; res[6] = count; *data_len = SIZE_IANA_ID + 4 + count; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug Control Panel //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetCtrlPanel(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t *res = reinterpret_cast(response); uint8_t panel; uint8_t operation; uint8_t item; uint8_t count; ipmi_ret_t ret; panel = req[3]; operation = req[4]; item = req[5]; ret = plat_udbg_control_panel(panel, operation, item, &count, &res[3]); std::memcpy(res, req, SIZE_IANA_ID); // IANA ID *data_len = SIZE_IANA_ID + count; return ret; } //---------------------------------------------------------------------- // Set Dimm Info (CMD_OEM_SET_DIMM_INFO) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetDimmInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t index = req[0]; uint8_t type = req[1]; uint16_t speed; uint32_t size; memcpy(&speed, &req[2], 2); memcpy(&size, &req[4], 4); std::stringstream ss; ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)index; oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_INDEX] = index; oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_TYPE] = type; oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_SPEED] = speed; oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_SIZE] = size; flushOemData(); *data_len = 0; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Board ID (CMD_OEM_GET_BOARD_ID) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemGetBoardID(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t *res = reinterpret_cast(response); /* TODO: Needs to implement this after GPIO implementation */ *data_len = 0; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set Boot Order (CMD_OEM_SET_BOOT_ORDER) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetBootOrder(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t len = *data_len; uint8_t mode = req[0]; nlohmann::json bootMode; int i; *data_len = 0; if (len != SIZE_BOOT_ORDER) { phosphor::logging::log( "Invalid Boot order length received"); return IPMI_CC_REQ_DATA_LEN_INVALID; } bootMode["UEFI"] = (mode & BOOT_MODE_UEFI ? true : false); bootMode["CMOS_CLR"] = (mode & BOOT_MODE_CMOS_CLR ? true : false); bootMode["FORCE_BOOT"] = (mode & BOOT_MODE_FORCE_BOOT ? true : false); bootMode["BOOT_FLAG"] = (mode & BOOT_MODE_BOOT_FLAG ? true : false); oemData[KEY_BOOT_ORDER][KEY_BOOT_MODE] = bootMode; /* Initialize boot sequence array */ oemData[KEY_BOOT_ORDER][KEY_BOOT_SEQ] = {}; for (i = 1; i < SIZE_BOOT_ORDER; i++) oemData[KEY_BOOT_ORDER][KEY_BOOT_SEQ][i - 1] = bootSeq[req[i]]; flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Boot Order (CMD_OEM_GET_BOOT_ORDER) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemGetBootOrder(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *res = reinterpret_cast(response); nlohmann::json bootMode = oemData[KEY_BOOT_ORDER][KEY_BOOT_MODE]; uint8_t mode = 0; int i; *data_len = SIZE_BOOT_ORDER; if (bootMode["UEFI"]) mode |= BOOT_MODE_UEFI; if (bootMode["CMOS_CLR"]) mode |= BOOT_MODE_CMOS_CLR; if (bootMode["BOOT_FLAG"]) mode |= BOOT_MODE_BOOT_FLAG; res[0] = mode; for (i = 1; i < SIZE_BOOT_ORDER; i++) res[i] = bootMap[oemData[KEY_BOOT_ORDER][KEY_BOOT_SEQ][i - 1]]; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set Machine Config Info (CMD_OEM_SET_MACHINE_CONFIG_INFO) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetMachineCfgInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { machineConfigInfo_t *req = reinterpret_cast(request); uint8_t len = *data_len; *data_len = 0; if (len < sizeof(machineConfigInfo_t)) { phosphor::logging::log( "Invalid machine configuration length received"); return IPMI_CC_REQ_DATA_LEN_INVALID; } if (req->chassis_type >= sizeof(chassisType) / sizeof(uint8_t *)) oemData[KEY_MC_CONFIG][KEY_MC_CHAS_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_CHAS_TYPE] = chassisType[req->chassis_type]; if (req->mb_type >= sizeof(mbType) / sizeof(uint8_t *)) oemData[KEY_MC_CONFIG][KEY_MC_MB_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_MB_TYPE] = mbType[req->mb_type]; oemData[KEY_MC_CONFIG][KEY_MC_PROC_CNT] = req->proc_cnt; oemData[KEY_MC_CONFIG][KEY_MC_MEM_CNT] = req->mem_cnt; oemData[KEY_MC_CONFIG][KEY_MC_HDD35_CNT] = req->hdd35_cnt; oemData[KEY_MC_CONFIG][KEY_MC_HDD25_CNT] = req->hdd25_cnt; if (req->riser_type >= sizeof(riserType) / sizeof(uint8_t *)) oemData[KEY_MC_CONFIG][KEY_MC_RSR_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_RSR_TYPE] = riserType[req->riser_type]; oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC] = {}; int i = 0; if (req->pcie_card_loc & BIT_0) oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT1"; if (req->pcie_card_loc & BIT_1) oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT2"; if (req->pcie_card_loc & BIT_2) oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT3"; if (req->pcie_card_loc & BIT_3) oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT4"; if (req->slot1_pcie_type >= sizeof(pcieType) / sizeof(uint8_t *)) oemData[KEY_MC_CONFIG][KEY_MC_SLOT1_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_SLOT1_TYPE] = pcieType[req->slot1_pcie_type]; if (req->slot2_pcie_type >= sizeof(pcieType) / sizeof(uint8_t *)) oemData[KEY_MC_CONFIG][KEY_MC_SLOT2_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_SLOT2_TYPE] = pcieType[req->slot2_pcie_type]; if (req->slot3_pcie_type >= sizeof(pcieType) / sizeof(uint8_t *)) oemData[KEY_MC_CONFIG][KEY_MC_SLOT3_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_SLOT3_TYPE] = pcieType[req->slot3_pcie_type]; if (req->slot4_pcie_type >= sizeof(pcieType) / sizeof(uint8_t *)) oemData[KEY_MC_CONFIG][KEY_MC_SLOT4_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_SLOT4_TYPE] = pcieType[req->slot4_pcie_type]; oemData[KEY_MC_CONFIG][KEY_MC_AEP_CNT] = req->aep_mem_cnt; flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set POST start (CMD_OEM_SET_POST_START) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetPostStart(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { phosphor::logging::log("POST Start Event"); /* Do nothing, return success */ *data_len = 0; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set POST End (CMD_OEM_SET_POST_END) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetPostEnd(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { struct timespec ts; phosphor::logging::log("POST End Event"); *data_len = 0; // Timestamp post end time. clock_gettime(CLOCK_REALTIME, &ts); oemData[KEY_TS_SLED] = ts.tv_sec; flushOemData(); // Sync time with system // TODO: Add code for syncing time return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set PPIN Info (CMD_OEM_SET_PPIN_INFO) //---------------------------------------------------------------------- // Inform BMC about PPIN data of 8 bytes for each CPU // // Request: // Byte 1:8 – CPU0 PPIN data // Optional: // Byte 9:16 – CPU1 PPIN data // // Response: // Byte 1 – Completion Code ipmi_ret_t ipmiOemSetPPINInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); std::string ppinStr; int len; if (*data_len > SIZE_CPU_PPIN * 2) len = SIZE_CPU_PPIN * 2; else len = *data_len; *data_len = 0; ppinStr = bytesToStr(req, len); oemData[KEY_PPIN_INFO] = ppinStr.c_str(); flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set ADR Trigger (CMD_OEM_SET_ADR_TRIGGER) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetAdrTrigger(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { /* Do nothing, return success */ *data_len = 0; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set Bios Flash Info (CMD_OEM_SET_BIOS_FLASH_INFO) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetBiosFlashInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { /* Do nothing, return success */ *data_len = 0; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set PPR (CMD_OEM_SET_PPR) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetPpr(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t pprCnt, pprAct, pprIndex; uint8_t selParam = req[0]; uint8_t len = *data_len; std::stringstream ss; std::string str; *data_len = 0; switch (selParam) { case PPR_ACTION: if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) == oemData[KEY_PPR].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; pprCnt = oemData[KEY_PPR][KEY_PPR_ROW_COUNT]; if (pprCnt == 0) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; pprAct = req[1]; /* Check if ppr is enabled or disabled */ if (!(pprAct & 0x80)) pprAct = 0; oemData[KEY_PPR][KEY_PPR_ACTION] = pprAct; break; case PPR_ROW_COUNT: if (req[1] > 100) return IPMI_CC_PARM_OUT_OF_RANGE; oemData[KEY_PPR][KEY_PPR_ROW_COUNT] = req[1]; break; case PPR_ROW_ADDR: pprIndex = req[1]; if (pprIndex > 100) return IPMI_CC_PARM_OUT_OF_RANGE; if (len < PPR_ROW_ADDR_LEN + 1) { phosphor::logging::log( "Invalid PPR Row Address length received"); return IPMI_CC_REQ_DATA_LEN_INVALID; } ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)pprIndex; oemData[KEY_PPR][ss.str()][KEY_PPR_INDEX] = pprIndex; str = bytesToStr(&req[1], PPR_ROW_ADDR_LEN); oemData[KEY_PPR][ss.str()][KEY_PPR_ROW_ADDR] = str.c_str(); break; case PPR_HISTORY_DATA: pprIndex = req[1]; if (pprIndex > 100) return IPMI_CC_PARM_OUT_OF_RANGE; if (len < PPR_HST_DATA_LEN + 1) { phosphor::logging::log( "Invalid PPR history data length received"); return IPMI_CC_REQ_DATA_LEN_INVALID; } ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)pprIndex; oemData[KEY_PPR][ss.str()][KEY_PPR_INDEX] = pprIndex; str = bytesToStr(&req[1], PPR_HST_DATA_LEN); oemData[KEY_PPR][ss.str()][KEY_PPR_HST_DATA] = str.c_str(); break; default: return IPMI_CC_PARM_OUT_OF_RANGE; break; } flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get PPR (CMD_OEM_GET_PPR) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemGetPpr(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { uint8_t *req = reinterpret_cast(request); uint8_t *res = reinterpret_cast(response); uint8_t pprCnt, pprIndex; uint8_t selParam = req[0]; std::stringstream ss; std::string str; /* Any failure will return zero length data */ *data_len = 0; switch (selParam) { case PPR_ACTION: res[0] = 0; *data_len = 1; if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) != oemData[KEY_PPR].end()) { pprCnt = oemData[KEY_PPR][KEY_PPR_ROW_COUNT]; if (pprCnt != 0) { if (oemData[KEY_PPR].find(KEY_PPR_ACTION) != oemData[KEY_PPR].end()) { res[0] = oemData[KEY_PPR][KEY_PPR_ACTION]; } } } break; case PPR_ROW_COUNT: res[0] = 0; *data_len = 1; if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) != oemData[KEY_PPR].end()) res[0] = oemData[KEY_PPR][KEY_PPR_ROW_COUNT]; break; case PPR_ROW_ADDR: pprIndex = req[1]; if (pprIndex > 100) return IPMI_CC_PARM_OUT_OF_RANGE; ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)pprIndex; if (oemData[KEY_PPR].find(ss.str()) == oemData[KEY_PPR].end()) return IPMI_CC_PARM_OUT_OF_RANGE; if (oemData[KEY_PPR][ss.str()].find(KEY_PPR_ROW_ADDR) == oemData[KEY_PPR][ss.str()].end()) return IPMI_CC_PARM_OUT_OF_RANGE; str = oemData[KEY_PPR][ss.str()][KEY_PPR_ROW_ADDR]; *data_len = strToBytes(str, res); break; case PPR_HISTORY_DATA: pprIndex = req[1]; if (pprIndex > 100) return IPMI_CC_PARM_OUT_OF_RANGE; ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)pprIndex; if (oemData[KEY_PPR].find(ss.str()) == oemData[KEY_PPR].end()) return IPMI_CC_PARM_OUT_OF_RANGE; if (oemData[KEY_PPR][ss.str()].find(KEY_PPR_HST_DATA) == oemData[KEY_PPR][ss.str()].end()) return IPMI_CC_PARM_OUT_OF_RANGE; str = oemData[KEY_PPR][ss.str()][KEY_PPR_HST_DATA]; *data_len = strToBytes(str, res); break; default: return IPMI_CC_PARM_OUT_OF_RANGE; break; } return IPMI_CC_OK; } /* FB OEM QC Commands */ //---------------------------------------------------------------------- // Set Proc Info (CMD_OEM_Q_SET_PROC_INFO) //---------------------------------------------------------------------- //"Request: // Byte 1:3 – Manufacturer ID – XXYYZZ h, LSB first // Byte 4 – Processor Index, 0 base // Byte 5 – Parameter Selector // Byte 6..N – Configuration parameter data (see below for Parameters // of Processor Information) // Response: // Byte 1 – Completion code // // Parameter#1: (Processor Product Name) // // Byte 1..48 –Product name(ASCII code) // Ex. Intel(R) Xeon(R) CPU E5-2685 v3 @ 2.60GHz // // Param#2: Processor Basic Information // Byte 1 – Core Number // Byte 2 – Thread Number (LSB) // Byte 3 – Thread Number (MSB) // Byte 4 – Processor frequency in MHz (LSB) // Byte 5 – Processor frequency in MHz (MSB) // Byte 6..7 – Revision // ipmi_ret_t ipmiOemQSetProcInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { qProcInfo_t *req = reinterpret_cast(request); uint8_t numParam = sizeof(cpuInfoKey) / sizeof(uint8_t *); std::stringstream ss; std::string str; uint8_t len = *data_len; *data_len = 0; /* check for requested data params */ if (len < 5 || req->paramSel < 1 || req->paramSel >= numParam) { phosphor::logging::log( "Invalid parameter received"); return IPMI_CC_PARM_OUT_OF_RANGE; } len = len - 5; // Get Actual data length ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)req->procIndex; oemData[KEY_Q_PROC_INFO][ss.str()][KEY_PROC_INDEX] = req->procIndex; str = bytesToStr(req->data, len); oemData[KEY_Q_PROC_INFO][ss.str()][cpuInfoKey[req->paramSel]] = str.c_str(); flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Proc Info (CMD_OEM_Q_GET_PROC_INFO) //---------------------------------------------------------------------- // Request: // Byte 1:3 – Manufacturer ID – XXYYZZ h, LSB first // Byte 4 – Processor Index, 0 base // Byte 5 – Parameter Selector // Response: // Byte 1 – Completion code // Byte 2..N – Configuration Parameter Data (see below for Parameters // of Processor Information) // // Parameter#1: (Processor Product Name) // // Byte 1..48 –Product name(ASCII code) // Ex. Intel(R) Xeon(R) CPU E5-2685 v3 @ 2.60GHz // // Param#2: Processor Basic Information // Byte 1 – Core Number // Byte 2 – Thread Number (LSB) // Byte 3 – Thread Number (MSB) // Byte 4 – Processor frequency in MHz (LSB) // Byte 5 – Processor frequency in MHz (MSB) // Byte 6..7 – Revision // ipmi_ret_t ipmiOemQGetProcInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { qProcInfo_t *req = reinterpret_cast(request); uint8_t numParam = sizeof(cpuInfoKey) / sizeof(uint8_t *); uint8_t *res = reinterpret_cast(response); std::stringstream ss; std::string str; *data_len = 0; /* check for requested data params */ if (req->paramSel < 1 || req->paramSel >= numParam) { phosphor::logging::log( "Invalid parameter received"); return IPMI_CC_PARM_OUT_OF_RANGE; } ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)req->procIndex; if (oemData[KEY_Q_PROC_INFO].find(ss.str()) == oemData[KEY_Q_PROC_INFO].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; if (oemData[KEY_Q_PROC_INFO][ss.str()].find(cpuInfoKey[req->paramSel]) == oemData[KEY_Q_PROC_INFO][ss.str()].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; str = oemData[KEY_Q_PROC_INFO][ss.str()][cpuInfoKey[req->paramSel]]; *data_len = strToBytes(str, res); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set Dimm Info (CMD_OEM_Q_SET_DIMM_INFO) //---------------------------------------------------------------------- // Request: // Byte 1:3 – Manufacturer ID – XXYYZZh, LSB first // Byte 4 – DIMM Index, 0 base // Byte 5 – Parameter Selector // Byte 6..N – Configuration parameter data (see below for Parameters // of DIMM Information) // Response: // Byte 1 – Completion code // // Param#1 (DIMM Location): // Byte 1 – DIMM Present // Byte 1 – DIMM Present // 01h – Present // FFh – Not Present // Byte 2 – Node Number, 0 base // Byte 3 – Channel Number , 0 base // Byte 4 – DIMM Number , 0 base // // Param#2 (DIMM Type): // Byte 1 – DIMM Type // Bit [7:6] // For DDR3 // 00 – Normal Voltage (1.5V) // 01 – Ultra Low Voltage (1.25V) // 10 – Low Voltage (1.35V) // 11 – Reserved // For DDR4 // 00 – Reserved // 01 – Reserved // 10 – Reserved // 11 – Normal Voltage (1.2V) // Bit [5:0] // 0x00 – SDRAM // 0x01 – DDR-1 RAM // 0x02 – Rambus // 0x03 – DDR-2 RAM // 0x04 – FBDIMM // 0x05 – DDR-3 RAM // 0x06 – DDR-4 RAM // // Param#3 (DIMM Speed): // Byte 1..2 – DIMM speed in MHz, LSB // Byte 3..6 – DIMM size in Mbytes, LSB // // Param#4 (Module Part Number): // Byte 1..20 –Module Part Number (JEDEC Standard No. 21-C) // // Param#5 (Module Serial Number): // Byte 1..4 –Module Serial Number (JEDEC Standard No. 21-C) // // Param#6 (Module Manufacturer ID): // Byte 1 - Module Manufacturer ID, LSB // Byte 2 - Module Manufacturer ID, MSB // ipmi_ret_t ipmiOemQSetDimmInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { qDimmInfo_t *req = reinterpret_cast(request); uint8_t numParam = sizeof(dimmInfoKey) / sizeof(uint8_t *); std::stringstream ss; std::string str; uint8_t len = *data_len; *data_len = 0; /* check for requested data params */ if (len < 5 || req->paramSel < 1 || req->paramSel >= numParam) { phosphor::logging::log( "Invalid parameter received"); return IPMI_CC_PARM_OUT_OF_RANGE; } len = len - 5; // Get Actual data length ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)req->dimmIndex; oemData[KEY_Q_DIMM_INFO][ss.str()][KEY_DIMM_INDEX] = req->dimmIndex; str = bytesToStr(req->data, len); oemData[KEY_Q_DIMM_INFO][ss.str()][dimmInfoKey[req->paramSel]] = str.c_str(); flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Dimm Info (CMD_OEM_Q_GET_DIMM_INFO) //---------------------------------------------------------------------- // Request: // Byte 1:3 – Manufacturer ID – XXYYZZh, LSB first // Byte 4 – DIMM Index, 0 base // Byte 5 – Parameter Selector // Byte 6..N – Configuration parameter data (see below for Parameters // of DIMM Information) // Response: // Byte 1 – Completion code // Byte 2..N – Configuration Parameter Data (see Table_1213h Parameters // of DIMM Information) // // Param#1 (DIMM Location): // Byte 1 – DIMM Present // Byte 1 – DIMM Present // 01h – Present // FFh – Not Present // Byte 2 – Node Number, 0 base // Byte 3 – Channel Number , 0 base // Byte 4 – DIMM Number , 0 base // // Param#2 (DIMM Type): // Byte 1 – DIMM Type // Bit [7:6] // For DDR3 // 00 – Normal Voltage (1.5V) // 01 – Ultra Low Voltage (1.25V) // 10 – Low Voltage (1.35V) // 11 – Reserved // For DDR4 // 00 – Reserved // 01 – Reserved // 10 – Reserved // 11 – Normal Voltage (1.2V) // Bit [5:0] // 0x00 – SDRAM // 0x01 – DDR-1 RAM // 0x02 – Rambus // 0x03 – DDR-2 RAM // 0x04 – FBDIMM // 0x05 – DDR-3 RAM // 0x06 – DDR-4 RAM // // Param#3 (DIMM Speed): // Byte 1..2 – DIMM speed in MHz, LSB // Byte 3..6 – DIMM size in Mbytes, LSB // // Param#4 (Module Part Number): // Byte 1..20 –Module Part Number (JEDEC Standard No. 21-C) // // Param#5 (Module Serial Number): // Byte 1..4 –Module Serial Number (JEDEC Standard No. 21-C) // // Param#6 (Module Manufacturer ID): // Byte 1 - Module Manufacturer ID, LSB // Byte 2 - Module Manufacturer ID, MSB // ipmi_ret_t ipmiOemQGetDimmInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { qDimmInfo_t *req = reinterpret_cast(request); uint8_t numParam = sizeof(dimmInfoKey) / sizeof(uint8_t *); uint8_t *res = reinterpret_cast(response); std::stringstream ss; std::string str; *data_len = 0; /* check for requested data params */ if (req->paramSel < 1 || req->paramSel >= numParam) { phosphor::logging::log( "Invalid parameter received"); return IPMI_CC_PARM_OUT_OF_RANGE; } ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)req->dimmIndex; if (oemData[KEY_Q_DIMM_INFO].find(ss.str()) == oemData[KEY_Q_DIMM_INFO].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; if (oemData[KEY_Q_DIMM_INFO][ss.str()].find(dimmInfoKey[req->paramSel]) == oemData[KEY_Q_DIMM_INFO][ss.str()].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; str = oemData[KEY_Q_DIMM_INFO][ss.str()][dimmInfoKey[req->paramSel]]; *data_len = strToBytes(str, res); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set Drive Info (CMD_OEM_Q_SET_DRIVE_INFO) //---------------------------------------------------------------------- // BIOS issue this command to provide HDD information to BMC. // // BIOS just can get information by standard ATA / SMART command for // OB SATA controller. // BIOS can get // 1. Serial Number // 2. Model Name // 3. HDD FW Version // 4. HDD Capacity // 5. HDD WWN // // Use Get HDD info Param #5 to know the MAX HDD info index. // // Request: // Byte 1:3 – Quanta Manufacturer ID – 001C4Ch, LSB first // Byte 4 – // [7:4] Reserved // [3:0] HDD Controller Type // 0x00 – BIOS // 0x01 – Expander // 0x02 – LSI // Byte 5 – HDD Info Index, 0 base // Byte 6 – Parameter Selector // Byte 7..N – Configuration parameter data (see Table_1415h Parameters of HDD // Information) // // Response: // Byte 1 – Completion Code // // Param#0 (HDD Location): // Byte 1 – Controller // [7:3] Device Number // [2:0] Function Number // For Intel C610 series (Wellsburg) // D31:F2 (0xFA) – SATA control 1 // D31:F5 (0xFD) – SATA control 2 // D17:F4 (0x8C) – sSata control // Byte 2 – Port Number // Byte 3 – Location (0xFF: No HDD Present) // BIOS default set Byte 3 to 0xFF, if No HDD Present. And then skip send param // #1~4, #6, #7 to BMC (still send param #5) BIOS default set Byte 3 to 0, if // the HDD present. BMC or other people who know the HDD location has // responsibility for update Location info // // Param#1 (Serial Number): // Bytes 1..33: HDD Serial Number // // Param#2 (Model Name): // Byte 1..33 – HDD Model Name // // Param#3 (HDD FW Version): // Byte 1..17 –HDD FW version // // Param#4 (Capacity): // Byte 1..4 –HDD Block Size, LSB // Byte 5..12 - HDD Block Number, LSB // HDD Capacity = HDD Block size * HDD BLock number (Unit Byte) // // Param#5 (Max HDD Quantity): // Byte 1 - Max HDD Quantity // Max supported port numbers in this PCH // // Param#6 (HDD Type) // Byte 1 – HDD Type // 0h – Reserved // 1h – SAS // 2h – SATA // 3h – PCIE SSD (NVME) // // Param#7 (HDD WWN) // Data 1...8: HDD World Wide Name, LSB // ipmi_ret_t ipmiOemQSetDriveInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { qDriveInfo_t *req = reinterpret_cast(request); uint8_t numParam = sizeof(driveInfoKey) / sizeof(uint8_t *); uint8_t ctrlType = req->hddCtrlType & 0x0f; std::stringstream ss; std::string str; uint8_t len = *data_len; *data_len = 0; /* check for requested data params */ if (len < 6 || req->paramSel < 1 || req->paramSel >= numParam || ctrlType > 2) { phosphor::logging::log( "Invalid parameter received"); return IPMI_CC_PARM_OUT_OF_RANGE; } len = len - 6; // Get Actual data length ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)req->hddIndex; oemData[KEY_Q_DRIVE_INFO][KEY_HDD_CTRL_TYPE] = req->hddCtrlType; oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()][KEY_HDD_INDEX] = req->hddIndex; str = bytesToStr(req->data, len); oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()] [driveInfoKey[req->paramSel]] = str.c_str(); flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Drive Info (CMD_OEM_Q_GET_DRIVE_INFO) //---------------------------------------------------------------------- // BMC needs to check HDD presented or not first. If NOT presented, return // completion code 0xD5. // // Request: // Byte 1:3 – Quanta Manufacturer ID – 001C4Ch, LSB first // Byte 4 – //[7:4] Reserved //[3:0] HDD Controller Type // 0x00 – BIOS // 0x01 – Expander // 0x02 – LSI // Byte 5 – HDD Index, 0 base // Byte 6 – Parameter Selector (See Above Set HDD Information) // Response: // Byte 1 – Completion Code // 0xD5 – Not support in current status (HDD Not Present) // Byte 2..N – Configuration parameter data (see Table_1415h Parameters of HDD // Information) // ipmi_ret_t ipmiOemQGetDriveInfo(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { qDriveInfo_t *req = reinterpret_cast(request); uint8_t numParam = sizeof(driveInfoKey) / sizeof(uint8_t *); uint8_t *res = reinterpret_cast(response); uint8_t ctrlType = req->hddCtrlType & 0x0f; std::stringstream ss; std::string str; *data_len = 0; /* check for requested data params */ if (req->paramSel < 1 || req->paramSel >= numParam || ctrlType > 2) { phosphor::logging::log( "Invalid parameter received"); return IPMI_CC_PARM_OUT_OF_RANGE; } if (oemData[KEY_Q_DRIVE_INFO].find(ctrlTypeKey[ctrlType]) == oemData[KEY_Q_DRIVE_INFO].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)req->hddIndex; if (oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]].find(ss.str()) == oemData[KEY_Q_DRIVE_INFO].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; if (oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()].find( dimmInfoKey[req->paramSel]) == oemData[KEY_Q_DRIVE_INFO][ss.str()].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; str = oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()] [dimmInfoKey[req->paramSel]]; *data_len = strToBytes(str, res); return IPMI_CC_OK; } static void registerOEMFunctions(void) { /* Get OEM data from json file */ std::ifstream file(JSON_OEM_DATA_FILE); if (file) file >> oemData; phosphor::logging::log( "Registering OEM commands"); ipmiPrintAndRegister(NETFUN_CHASSIS, 1, NULL, ipmiGetChassisStatus, PRIVILEGE_USER); // get chassis status ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_FRAME_INFO, NULL, ipmiOemDbgGetFrameInfo, PRIVILEGE_USER); // get debug frame info ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_UPDATED_FRAMES, NULL, ipmiOemDbgGetUpdFrames, PRIVILEGE_USER); // get debug updated frames ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_POST_DESC, NULL, ipmiOemDbgGetPostDesc, PRIVILEGE_USER); // get debug post description ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_GPIO_DESC, NULL, ipmiOemDbgGetGpioDesc, PRIVILEGE_USER); // get debug gpio description ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_FRAME_DATA, NULL, ipmiOemDbgGetFrameData, PRIVILEGE_USER); // get debug frame data ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_CTRL_PANEL, NULL, ipmiOemDbgGetCtrlPanel, PRIVILEGE_USER); // get debug control panel ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_DIMM_INFO, NULL, ipmiOemSetDimmInfo, PRIVILEGE_USER); // Set Dimm Info ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_GET_BOARD_ID, NULL, ipmiOemGetBoardID, PRIVILEGE_USER); // Get Board ID ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_BOOT_ORDER, NULL, ipmiOemSetBootOrder, PRIVILEGE_USER); // Set Boot Order ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_GET_BOOT_ORDER, NULL, ipmiOemGetBootOrder, PRIVILEGE_USER); // Get Boot Order ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_MACHINE_CONFIG_INFO, NULL, ipmiOemSetMachineCfgInfo, PRIVILEGE_USER); // Set Machine Config Info ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_POST_START, NULL, ipmiOemSetPostStart, PRIVILEGE_USER); // Set POST start ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_POST_END, NULL, ipmiOemSetPostEnd, PRIVILEGE_USER); // Set POST End ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_PPIN_INFO, NULL, ipmiOemSetPPINInfo, PRIVILEGE_USER); // Set PPIN Info ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_ADR_TRIGGER, NULL, ipmiOemSetAdrTrigger, PRIVILEGE_USER); // Set ADR Trigger ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_BIOS_FLASH_INFO, NULL, ipmiOemSetBiosFlashInfo, PRIVILEGE_USER); // Set Bios Flash Info ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_PPR, NULL, ipmiOemSetPpr, PRIVILEGE_USER); // Set PPR ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_GET_PPR, NULL, ipmiOemGetPpr, PRIVILEGE_USER); // Get PPR /* FB OEM QC Commands */ ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_SET_PROC_INFO, NULL, ipmiOemQSetProcInfo, PRIVILEGE_USER); // Set Proc Info ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_GET_PROC_INFO, NULL, ipmiOemQGetProcInfo, PRIVILEGE_USER); // Get Proc Info ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_SET_DIMM_INFO, NULL, ipmiOemQSetDimmInfo, PRIVILEGE_USER); // Set Dimm Info ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_GET_DIMM_INFO, NULL, ipmiOemQGetDimmInfo, PRIVILEGE_USER); // Get Dimm Info ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_SET_DRIVE_INFO, NULL, ipmiOemQSetDriveInfo, PRIVILEGE_USER); // Set Drive Info ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_GET_DRIVE_INFO, NULL, ipmiOemQGetDriveInfo, PRIVILEGE_USER); // Get Drive Info return; } } // namespace ipmi