Lines Matching +full:1 +full:- +full:of +full:- +full:4
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
8 * and/or sell copies of the Software, and to permit persons to whom the
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
39 * further describe the buffer's format - for example tiling or compression.
42 * ----------------
46 * format and data layout of the buffer, and should be the only way to describe
50 * be avoided, as such aliases run the risk of different drivers exposing
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
58 * may preserve meaning - such as number of planes - from the fourcc code,
62 * match only a single modifier. A modifier must not be a subset of layouts of
64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
68 * For modifiers where the combination of fourcc code and modifier can alias,
74 * There are two kinds of modifier users:
76 * - Kernel and user-space drivers: for drivers it's important that modifiers
80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
83 * (i.e. they are not expected to extract information out of the modifier).
89 * The authoritative list of format modifier codes is found in
93 * -----------------------
98 * upstream in-kernel or open source userspace user does not apply.
108 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
114 #define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1…
116 #define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
119 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
120 #define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1…
125 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
126 #define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
131 /* 1 bpp Red (direct relationship between channel value and brightness) */
132 #define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1…
137 /* 4 bpp Red (direct relationship between channel value and brightness) */
138 #define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
144 #define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
147 #define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
150 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
165 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian…
166 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian…
167 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian…
168 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian…
170 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian…
171 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian…
172 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian…
173 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian…
175 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian…
176 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian…
177 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian…
178 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian…
180 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian…
181 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian…
182 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian…
183 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian…
185 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
186 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
189 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
190 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
193 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian…
194 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian…
195 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian…
196 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian…
198 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian…
199 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian…
200 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian…
201 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian…
214 #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 littl…
215 #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 littl…
217 #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 littl…
218 #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 littl…
222 * IEEE 754-2008 binary16 half-precision float
223 * [15:0] sign:exponent:mantissa 1:5:10
225 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 litt…
226 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 litt…
228 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 litt…
229 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 litt…
232 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
233 * of unused padding per component:
235 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 1…
247 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
248 …010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only …
252 * 16-xx padding occupy lsb
254 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:…
255 …RM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:1…
256 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16…
260 * 16-xx padding occupy lsb except Y410
262 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 litt…
263 …ine DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:…
264 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 lit…
267 …1616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian…
268 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 lit…
274 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little end…
276 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little end…
279 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
281 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
285 * 1-plane YUV 4:2:0
288 * These formats can only be used with a non-Linear modifier.
291 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
296 * index 1 = A plane, [7:0] A
310 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
312 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
314 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
315 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
316 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
317 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
318 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
319 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
323 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
325 #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
330 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
332 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per …
337 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
339 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per …
343 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
344 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
346 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per …
351 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
353 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per …
356 * 3 10 bit components and 2 padding bits packed into 4 bytes.
358 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
362 /* 3 plane non-subsampled (444) YCbCr
365 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
368 #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
370 /* 3 plane non-subsampled (444) YCrCb
373 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
376 #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
381 * index 1: Cb plane, [7:0] Cb
384 * index 1: Cr plane, [7:0] Cr
387 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) plane…
388 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) plane…
389 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) plane…
390 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) plane…
391 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) plane…
392 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) plane…
393 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) plane…
394 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) plane…
395 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) plane…
396 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) plane…
402 * Format modifiers describe, typically, a re-ordering or modification
403 * of the data in a plane of an FB. This can be used to express tiled/
404 * swizzled formats, or compression, or a combination of the two.
406 * The upper 8 bits of the format modifier are a vendor-id as assigned
425 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
441 * authoritative source for all of these.
445 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
447 * compatibility, in cases where a vendor-specific definition already exists and
452 * generic layouts (such as pixel re-ordering), which may have
453 * independently-developed support across multiple vendors.
456 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
462 * have implementations of the same standardised compression scheme (such as
464 * modifier(s), reflecting the vendor of the standard.
483 * which tells the driver to also take driver-internal information into account
493 * used is out-of-band information carried in an API-specific way (e.g. in a
501 * Intel X-tiling layout
503 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
504 * in row-major layout. Within the tile bytes are laid out row-major, with
505 * a platform-dependent stride. On top of that the memory can apply
506 * platform-depending swizzling of some higher address bits into bit6.
510 * cross-driver sharing. It exists since on a given platform it does uniquely
511 * identify the layout in a simple way for i915-specific userspace, which
512 * facilitated conversion of userspace to modifiers. Additionally the exact
515 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
518 * Intel Y-tiling layout
520 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
521 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
522 * chunks column-major, with a platform-dependent height. On top of that the
523 * memory can apply platform-depending swizzling of some higher address bits
528 * cross-driver sharing. It exists since on a given platform it does uniquely
529 * identify the layout in a simple way for i915-specific userspace, which
530 * facilitated conversion of userspace to modifiers. Additionally the exact
536 * Intel Yf-tiling layout
538 * This is a tiled layout using 4Kb tiles in row-major layout.
539 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
540 * are arranged in four groups (two wide, two high) with column-major layout.
541 * Each group therefore consits out of four 256 byte units, which are also laid
542 * out as 2x2 column-major.
543 * 256 byte units are made out of four 64 byte blocks of pixels, producing
544 * either a square block or a 2:1 unit.
545 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
553 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
554 * The main surface will be plane index 0 and must be Y/Yf-tiled,
555 * the CCS will be plane index 1.
557 * Each CCS tile matches a 1024x512 pixel area of the main surface.
558 * To match certain aspects of the 3D hardware the CCS is
559 * considered to be made up of normal 128Bx32 Y tiles, Thus
560 * the CCS pitch must be specified in multiples of 128 bytes.
563 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
567 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
571 * Intel color control surfaces (CCS) for Gen-12 render compression.
573 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
574 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
575 * main surface. In other words, 4 bits in CCS map to a main surface cache
576 * line pair. The main surface pitch is required to be a multiple of four
577 * Y-tile widths.
582 * Intel color control surfaces (CCS) for Gen-12 media compression
584 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
585 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
586 * main surface. In other words, 4 bits in CCS map to a main surface cache
587 * line pair. The main surface pitch is required to be a multiple of four
588 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
589 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
595 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
598 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
599 * and at index 1. The clear color is stored at index 2, and the pitch should
603 * the converted clear color of size 64 bits. The first 32 bits store the Lower
608 * corresponds to an area of 4x1 tiles in the main surface. The main surface
609 * pitch is required to be a multiple of 4 tile widths.
614 * Intel Tile 4 layout
616 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
617 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
619 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
620 * of 64B x 8 rows.
627 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
628 * outside of the GEM object in a reserved memory area dedicated for the
629 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
630 * main surface pitch is required to be a multiple of four Tile 4 widths.
637 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
638 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
639 * 0 and 1, respectively. The CCS for all planes are stored outside of the
640 * GEM object in a reserved memory area dedicated for the storage of the
642 * pitch is required to be a multiple of four Tile 4 widths.
649 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
650 * outside of the GEM object in a reserved memory area dedicated for the
651 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
652 * main surface pitch is required to be a multiple of four Tile 4 widths. The
653 * clear color is stored at plane index 1 and the pitch should be 64 bytes
654 * aligned. The format of the 256 bits of clear color data matches the one used
664 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
665 * main surface. In other words, 4 bits in CCS map to a main surface cache
666 * line pair. The main surface pitch is required to be a multiple of four
675 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
676 * main surface. In other words, 4 bits in CCS map to a main surface cache
677 * line pair. The main surface pitch is required to be a multiple of four
678 * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
679 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
689 * and at index 1. The clear color is stored at index 2, and the pitch should
693 * the converted clear color of size 64 bits. The first 32 bits store the Lower
698 * corresponds to an area of 4x1 tiles in the main surface. The main surface
699 * pitch is required to be a multiple of 4 tile widths.
704 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
706 * Macroblocks are laid in a Z-shape, and each pixel data is following the
708 * As for NV12, an image is the result of two frame buffers: one for Y,
709 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
711 * - multiple of 128 pixels for the width
712 * - multiple of 32 pixels for the height
714 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
716 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
719 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
721 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
730 * Refers to a compressed variant of the base format that is compressed.
731 * Implementation may be platform and base-format specific.
733 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
736 * Entire pixel data buffer is aligned with 4k(bytes).
738 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
744 * Implementation may be platform and base-format specific.
746 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
749 * Entire pixel data buffer is aligned with 4k(bytes).
757 * Implementation may be platform and base-format specific.
765 * Vivante 4x4 tiling layout
767 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
770 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
773 * Vivante 64x64 super-tiling layout
775 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
776 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
780 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
785 * Vivante 4x4 tiling layout for dual-pipe
787 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
789 * compared to the non-split tiled layout.
794 * Vivante 64x64 super-tiling layout for dual-pipe
796 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
798 * therefore halved compared to the non-split super-tiled layout.
800 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
803 * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
805 * separate buffer containing the clear/compression status of each tile. The
808 * number of status bits per entry.
809 * We reserve the top 8 bits of the Vivante modifier space for tile status
813 #define VIVANTE_MOD_TS_64_4 (1ULL << 48)
816 #define VIVANTE_MOD_TS_256_4 (4ULL << 48)
821 * as the TS bits get reinterpreted as compression tags instead of simple
824 #define VIVANTE_MOD_COMP_DEC400 (1ULL << 52)
834 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
836 * Pixels are arranged in simple tiles of 16 x 16 bytes.
838 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
844 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
846 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
847 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
848 * a block depth or height of "4").
850 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
855 * ---- ----- -----------------------------------------------------------------
857 * 3:0 h log2(height) of each block, in GOBs. Placed here for
859 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
861 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for
863 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
865 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
868 * Note there is no log2(width) parameter. Some portions of the
869 * hardware support a block width of two gobs, but it is impractical
870 * to use due to lack of support elsewhere, and has no known
873 * 11:9 - Reserved (To support 2D-array textures with variable array stride
878 * tables of all GPUs >= NV50. It affects the exact layout of bits
886 * since the modifier should define the layout of the associated
890 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
894 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
895 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
901 * page kind and block linear swizzles. This causes the layout of
905 * 0 = Tegra K1 - Tegra Parker/TX2 Layout.
906 * 1 = Desktop GPU and Tegra Xavier+ Layout
911 * 1 = ROP/3D, layout 1, exact compression format implied by Page
916 * 4 = CDE vertical
921 * 55:25 - Reserved for future use. Must be zero.
933 * with block-linear layouts, is remapped within drivers to the value 0xfe,
934 * which corresponds to the "generic" kind used for simple single-sample
935 * uncompressed color formats on Fermi - Volta GPUs.
949 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
950 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
952 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
954 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
958 * 1 == TWO_GOBS
961 * 4 == SIXTEEN_GOBS
964 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
973 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
979 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
984 * Some Broadcom modifiers take parameters, for example the number of
995 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
997 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
1006 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
1009 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1012 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
1013 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1014 * they're (TR, BR, BL, TL), where bottom left is start of memory.
1016 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1017 * tiles) or right-to-left (odd rows of 4k tiles).
1019 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1028 * columns are placed consecutively into memory. The width of those
1032 * The pitch between the start of each column is set to optimally
1033 * switch between SDRAM banks. This is passed as the number of lines
1034 * of column width in the modifier (we can't use the stride value due
1039 * for all of the planes, assuming that each column contains both Y
1040 * and UV. Some SAND-using hardware stores UV in a separate tiled
1054 fourcc_mod_broadcom_code(4, v)
1073 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1074 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
1081 * number of banks, and XOR address, and that it's identical between
1084 * the assumption is that a no-XOR tiling modifier will be created.
1092 * It provides fine-grained random access and minimizes the amount of data
1097 * and different devices or use-cases may support different combinations.
1099 * Further information on the use of AFBC modifiers can be found in
1104 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
1106 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1122 * size (in pixels) must be aligned to a multiple of the superblock size.
1125 * Where one superblock size is specified, it applies to all planes of the
1129 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1132 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
1135 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1140 * Indicates that the buffer makes use of the AFBC lossless colorspace
1143 #define AFBC_FORMAT_MOD_YTR (1ULL << 4)
1146 * AFBC block-split
1148 * Indicates that the payload of each superblock is split. The second
1149 * half of the payload is positioned at a predefined offset from the start
1150 * of the superblock payload.
1152 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
1157 * This flag indicates that the payload of each superblock must be stored at a
1160 * each superblock is given the same amount of space as an uncompressed
1161 * superblock of the particular format would require, rounding up to the next
1162 * multiple of 128 bytes in size.
1164 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
1167 * AFBC copy-block restrict
1169 * Buffers with this flag must obey the copy-block restriction. The restriction
1170 * is such that there are no copy-blocks referring across the border of 8x8
1173 #define AFBC_FORMAT_MOD_CBR (1ULL << 7)
1178 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1180 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1185 #define AFBC_FORMAT_MOD_TILED (1ULL << 8)
1190 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1193 #define AFBC_FORMAT_MOD_SC (1ULL << 9)
1196 * AFBC double-buffer
1198 * Indicates that the buffer is allocated in a layout safe for front-buffer
1201 #define AFBC_FORMAT_MOD_DB (1ULL << 10)
1206 * Indicates that the buffer includes per-superblock content hints.
1208 #define AFBC_FORMAT_MOD_BCH (1ULL << 11)
1216 * affects the storage mode of the individual superblocks. Note that even a
1220 #define AFBC_FORMAT_MOD_USM (1ULL << 12)
1223 * Arm Fixed-Rate Compression (AFRC) modifiers
1227 * reductions in graphics and media use-cases.
1229 * AFRC buffers consist of one or more planes, with the same components
1234 * fixed size (in bytes). All coding units within a given plane of a buffer
1235 * store the same number of values, and have the same compressed size.
1237 * The coding unit size is configurable, allowing different rates of compression.
1239 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1243 * ---------------- ---------------
1249 * to a multiple of the paging tile dimensions.
1250 * The dimensions of each paging tile depend on whether the buffer is optimised for
1254 * ------ ----------------- ------------------
1255 * SCAN 16 coding units 4 coding units
1258 * The dimensions of each coding unit depend on the number of components
1262 * Number of Components in Plane Layout Coding Unit Width Coding Unit Height
1263 * ----------------------------- --------- ----------------- ------------------
1264 * 1 SCAN 16 samples 4 samples
1266 * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1267 * ----------------------------- --------- ----------------- ------------------
1268 * 1 ROT 8 samples 8 samples
1270 * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1271 * ----------------------------- --------- ----------------- ------------------
1272 * 2 DONT CARE 8 samples 4 samples
1273 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1274 * ----------------------------- --------- ----------------- ------------------
1275 * 3 DONT CARE 4 samples 4 samples
1276 * Example: 4x4 pixels in an RGB buffer without alpha
1277 * ----------------------------- --------- ----------------- ------------------
1278 * 4 DONT CARE 4 samples 4 samples
1279 * Example: 4x4 pixels in an RGB buffer with alpha
1290 * Indicates the number of bytes used to store each compressed coding unit for
1294 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1295 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1296 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1299 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1301 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1303 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1305 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1309 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1314 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1319 * Indicates if the buffer uses the scanline-optimised layout
1320 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1323 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1326 * Arm 16x16 Block U-Interleaved modifier
1333 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1345 * both in row-major order.
1347 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1359 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1361 * - DRM_FORMAT_YUV420_8BIT
1362 * - DRM_FORMAT_YUV420_10BIT
1364 * The first 8 bits of the mode defines the layout, then the following 8 bits
1368 * combinations of layout and options.
1385 * The basic layout is composed of:
1386 * - a body content organized in 64x32 superblocks with 4096 bytes per
1388 * - a 32 bytes per 128x64 header block
1392 #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
1405 * Due to the nature of the layout, these buffers are not expected to
1406 * be accessible by the user-space clients, but only accessible by the
1409 * The user-space clients should expect a failure while trying to mmap
1410 * the DMA-BUF handle returned by the producer.
1419 * Indicates the storage is packed when pixel size is multiple of word
1427 #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
1435 * - main surface
1438 * - main surface in plane 0
1439 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1442 * - main surface in plane 0
1443 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1444 * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1446 * For multi-plane formats the above surfaces get merged into one plane for
1450 * ----- ------------------------ ---------------------------------------------
1466 * 55:36 - Reserved for future use, must be zero
1473 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1476 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1486 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1498 * 0 - LINEAR
1499 * 1 - 256B_2D - 2D block dimensions
1500 * 2 - 4KB_2D
1501 * 3 - 64KB_2D
1502 * 4 - 256KB_2D
1503 * 5 - 4KB_3D - 3D block dimensions
1504 * 6 - 64KB_3D
1505 * 7 - 256KB_3D
1507 #define AMD_FMT_MOD_TILE_GFX12_256B_2D 1
1510 #define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1513 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1527 * one which is not-aligned.