History log of /openbmc/linux/kernel/bpf/verifier.c (Results 51 – 75 of 3305)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
# bb8bf2d3 20-Nov-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: extract __check_reg_arg() utility function

commit 683b96f9606ab7308ffb23c46ab43cecdef8a241 upstream.

Split check_reg_arg() into two utility functions:
- check_reg_arg() operating on registers

bpf: extract __check_reg_arg() utility function

commit 683b96f9606ab7308ffb23c46ab43cecdef8a241 upstream.

Split check_reg_arg() into two utility functions:
- check_reg_arg() operating on registers from current verifier state;
- __check_reg_arg() operating on a specific set of registers passed as
a parameter;

The __check_reg_arg() function would be used by a follow-up change for
callbacks handling.

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-5-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


Revision tags: v6.6.2, v6.5.11, v6.6.1, v6.5.10, v6.6, v6.5.9
# ae5e9c3c 23-Oct-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: print full verifier states on infinite loop detection

commit b4d8239534fddc036abe4a0fdbf474d9894d4641 upstream.

Additional logging in is_state_visited(): if infinite loop is detected
print ful

bpf: print full verifier states on infinite loop detection

commit b4d8239534fddc036abe4a0fdbf474d9894d4641 upstream.

Additional logging in is_state_visited(): if infinite loop is detected
print full verifier state for both current and equivalent states.

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-8-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# c8f6d285 23-Oct-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: correct loop detection for iterators convergence

commit 2a0992829ea3864939d917a5c7b48be6629c6217 upstream.

It turns out that .branches > 0 in is_state_visited() is not a
sufficient condition t

bpf: correct loop detection for iterators convergence

commit 2a0992829ea3864939d917a5c7b48be6629c6217 upstream.

It turns out that .branches > 0 in is_state_visited() is not a
sufficient condition to identify if two verifier states form a loop
when iterators convergence is computed. This commit adds logic to
distinguish situations like below:

(I) initial (II) initial
| |
V V
.---------> hdr ..
| | |
| V V
| .------... .------..
| | | | |
| V V V V
| ... ... .-> hdr ..
| | | | | |
| V V | V V
| succ <- cur | succ <- cur
| | | |
| V | V
| ... | ...
| | | |
'----' '----'

For both (I) and (II) successor 'succ' of the current state 'cur' was
previously explored and has branches count at 0. However, loop entry
'hdr' corresponding to 'succ' might be a part of current DFS path.
If that is the case 'succ' and 'cur' are members of the same loop
and have to be compared exactly.

Co-developed-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Co-developed-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reviewed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# ab470fef 23-Oct-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: exact states comparison for iterator convergence checks

commit 2793a8b015f7f1caadb9bce9c63dc659f7522676 upstream.

Convergence for open coded iterators is computed in is_state_visited()
by exam

bpf: exact states comparison for iterator convergence checks

commit 2793a8b015f7f1caadb9bce9c63dc659f7522676 upstream.

Convergence for open coded iterators is computed in is_state_visited()
by examining states with branches count > 1 and using states_equal().
states_equal() computes sub-state relation using read and precision marks.
Read and precision marks are propagated from children states,
thus are not guaranteed to be complete inside a loop when branches
count > 1. This could be demonstrated using the following unsafe program:

1. r7 = -16
2. r6 = bpf_get_prandom_u32()
3. while (bpf_iter_num_next(&fp[-8])) {
4. if (r6 != 42) {
5. r7 = -32
6. r6 = bpf_get_prandom_u32()
7. continue
8. }
9. r0 = r10
10. r0 += r7
11. r8 = *(u64 *)(r0 + 0)
12. r6 = bpf_get_prandom_u32()
13. }

Here verifier would first visit path 1-3, create a checkpoint at 3
with r7=-16, continue to 4-7,3 with r7=-32.

Because instructions at 9-12 had not been visitied yet existing
checkpoint at 3 does not have read or precision mark for r7.
Thus states_equal() would return true and verifier would discard
current state, thus unsafe memory access at 11 would not be caught.

This commit fixes this loophole by introducing exact state comparisons
for iterator convergence logic:
- registers are compared using regs_exact() regardless of read or
precision marks;
- stack slots have to have identical type.

Unfortunately, this is too strict even for simple programs like below:

i = 0;
while(iter_next(&it))
i++;

At each iteration step i++ would produce a new distinct state and
eventually instruction processing limit would be reached.

To avoid such behavior speculatively forget (widen) range for
imprecise scalar registers, if those registers were not precise at the
end of the previous iteration and do not match exactly.

This a conservative heuristic that allows to verify wide range of
programs, however it precludes verification of programs that conjure
an imprecise value on the first loop iteration and use it as precise
on the second.

Test case iter_task_vma_for_each() presents one of such cases:

unsigned int seen = 0;
...
bpf_for_each(task_vma, vma, task, 0) {
if (seen >= 1000)
break;
...
seen++;
}

Here clang generates the following code:

<LBB0_4>:
24: r8 = r6 ; stash current value of
... body ... 'seen'
29: r1 = r10
30: r1 += -0x8
31: call bpf_iter_task_vma_next
32: r6 += 0x1 ; seen++;
33: if r0 == 0x0 goto +0x2 <LBB0_6> ; exit on next() == NULL
34: r7 += 0x10
35: if r8 < 0x3e7 goto -0xc <LBB0_4> ; loop on seen < 1000

<LBB0_6>:
... exit ...

Note that counter in r6 is copied to r8 and then incremented,
conditional jump is done using r8. Because of this precision mark for
r6 lags one state behind of precision mark on r8 and widening logic
kicks in.

Adding barrier_var(seen) after conditional is sufficient to force
clang use the same register for both counting and conditional jump.

This issue was discussed in the thread [1] which was started by
Andrew Werner <awerner32@gmail.com> demonstrating a similar bug
in callback functions handling. The callbacks would be addressed
in a followup patch.

[1] https://lore.kernel.org/bpf/97a90da09404c65c8e810cf83c94ac703705dc0e.camel@gmail.com/

Co-developed-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Co-developed-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# b8615d7f 23-Oct-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: extract same_callsites() as utility function

commit 4c97259abc9bc8df7712f76f58ce385581876857 upstream.

Extract same_callsites() from clean_live_states() as a utility function.
This function wo

bpf: extract same_callsites() as utility function

commit 4c97259abc9bc8df7712f76f58ce385581876857 upstream.

Extract same_callsites() from clean_live_states() as a utility function.
This function would be used by the next patch in the set.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-3-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 4c6352f3 23-Oct-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: move explored_state() closer to the beginning of verifier.c

commit 3c4e420cb6536026ddd50eaaff5f30e4f144200d upstream.

Subsequent patches would make use of explored_state() function.
Move it up

bpf: move explored_state() closer to the beginning of verifier.c

commit 3c4e420cb6536026ddd50eaaff5f30e4f144200d upstream.

Subsequent patches would make use of explored_state() function.
Move it up to avoid adding unnecessary prototype.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# e8d3872b 15-Jan-2024 Hao Sun <sunhao.th@gmail.com>

bpf: Reject variable offset alu on PTR_TO_FLOW_KEYS

[ Upstream commit 22c7fa171a02d310e3a3f6ed46a698ca8a0060ed ]

For PTR_TO_FLOW_KEYS, check_flow_keys_access() only uses fixed off
for validation. H

bpf: Reject variable offset alu on PTR_TO_FLOW_KEYS

[ Upstream commit 22c7fa171a02d310e3a3f6ed46a698ca8a0060ed ]

For PTR_TO_FLOW_KEYS, check_flow_keys_access() only uses fixed off
for validation. However, variable offset ptr alu is not prohibited
for this ptr kind. So the variable offset is not checked.

The following prog is accepted:

func#0 @0
0: R1=ctx() R10=fp0
0: (bf) r6 = r1 ; R1=ctx() R6_w=ctx()
1: (79) r7 = *(u64 *)(r6 +144) ; R6_w=ctx() R7_w=flow_keys()
2: (b7) r8 = 1024 ; R8_w=1024
3: (37) r8 /= 1 ; R8_w=scalar()
4: (57) r8 &= 1024 ; R8_w=scalar(smin=smin32=0,
smax=umax=smax32=umax32=1024,var_off=(0x0; 0x400))
5: (0f) r7 += r8
mark_precise: frame0: last_idx 5 first_idx 0 subseq_idx -1
mark_precise: frame0: regs=r8 stack= before 4: (57) r8 &= 1024
mark_precise: frame0: regs=r8 stack= before 3: (37) r8 /= 1
mark_precise: frame0: regs=r8 stack= before 2: (b7) r8 = 1024
6: R7_w=flow_keys(smin=smin32=0,smax=umax=smax32=umax32=1024,var_off
=(0x0; 0x400)) R8_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1024,
var_off=(0x0; 0x400))
6: (79) r0 = *(u64 *)(r7 +0) ; R0_w=scalar()
7: (95) exit

This prog loads flow_keys to r7, and adds the variable offset r8
to r7, and finally causes out-of-bounds access:

BUG: unable to handle page fault for address: ffffc90014c80038
[...]
Call Trace:
<TASK>
bpf_dispatcher_nop_func include/linux/bpf.h:1231 [inline]
__bpf_prog_run include/linux/filter.h:651 [inline]
bpf_prog_run include/linux/filter.h:658 [inline]
bpf_prog_run_pin_on_cpu include/linux/filter.h:675 [inline]
bpf_flow_dissect+0x15f/0x350 net/core/flow_dissector.c:991
bpf_prog_test_run_flow_dissector+0x39d/0x620 net/bpf/test_run.c:1359
bpf_prog_test_run kernel/bpf/syscall.c:4107 [inline]
__sys_bpf+0xf8f/0x4560 kernel/bpf/syscall.c:5475
__do_sys_bpf kernel/bpf/syscall.c:5561 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5559 [inline]
__x64_sys_bpf+0x73/0xb0 kernel/bpf/syscall.c:5559
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b

Fix this by rejecting ptr alu with variable offset on flow_keys.
Applying the patch rejects the program with "R7 pointer arithmetic
on flow_keys prohibited".

Fixes: d58e468b1112 ("flow_dissector: implements flow dissector BPF hook")
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20240115082028.9992-1-sunhao.th@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 0954982d 07-Dec-2023 Andrei Matei <andreimatei1@gmail.com>

bpf: Fix accesses to uninit stack slots

[ Upstream commit 6b4a64bafd107e521c01eec3453ce94a3fb38529 ]

Privileged programs are supposed to be able to read uninitialized stack
memory (ever since 6715d

bpf: Fix accesses to uninit stack slots

[ Upstream commit 6b4a64bafd107e521c01eec3453ce94a3fb38529 ]

Privileged programs are supposed to be able to read uninitialized stack
memory (ever since 6715df8d5) but, before this patch, these accesses
were permitted inconsistently. In particular, accesses were permitted
above state->allocated_stack, but not below it. In other words, if the
stack was already "large enough", the access was permitted, but
otherwise the access was rejected instead of being allowed to "grow the
stack". This undesired rejection was happening in two places:
- in check_stack_slot_within_bounds()
- in check_stack_range_initialized()
This patch arranges for these accesses to be permitted. A bunch of tests
that were relying on the old rejection had to change; all of them were
changed to add also run unprivileged, in which case the old behavior
persists. One tests couldn't be updated - global_func16 - because it
can't run unprivileged for other reasons.

This patch also fixes the tracking of the stack size for variable-offset
reads. This second fix is bundled in the same commit as the first one
because they're inter-related. Before this patch, writes to the stack
using registers containing a variable offset (as opposed to registers
with fixed, known values) were not properly contributing to the
function's needed stack size. As a result, it was possible for a program
to verify, but then to attempt to read out-of-bounds data at runtime
because a too small stack had been allocated for it.

Each function tracks the size of the stack it needs in
bpf_subprog_info.stack_depth, which is maintained by
update_stack_depth(). For regular memory accesses, check_mem_access()
was calling update_state_depth() but it was passing in only the fixed
part of the offset register, ignoring the variable offset. This was
incorrect; the minimum possible value of that register should be used
instead.

This tracking is now fixed by centralizing the tracking of stack size in
grow_stack_state(), and by lifting the calls to grow_stack_state() to
check_stack_access_within_bounds() as suggested by Andrii. The code is
now simpler and more convincingly tracks the correct maximum stack size.
check_stack_range_initialized() can now rely on enough stack having been
allocated for the access; this helps with the fix for the first issue.

A few tests were changed to also check the stack depth computation. The
one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.

Fixes: 01f810ace9ed3 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231208032519.260451-3-andreimatei1@gmail.com

Closes: https://lore.kernel.org/bpf/CABWLsev9g8UP_c3a=1qbuZUi20tGoUXoU07FPf-5FLvhOKOY+Q@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# ad140fc8 06-Dec-2023 Andrei Matei <andreimatei1@gmail.com>

bpf: Guard stack limits against 32bit overflow

[ Upstream commit 1d38a9ee81570c4bd61f557832dead4d6f816760 ]

This patch promotes the arithmetic around checking stack bounds to be
done in the 64-bit

bpf: Guard stack limits against 32bit overflow

[ Upstream commit 1d38a9ee81570c4bd61f557832dead4d6f816760 ]

This patch promotes the arithmetic around checking stack bounds to be
done in the 64-bit domain, instead of the current 32bit. The arithmetic
implies adding together a 64-bit register with a int offset. The
register was checked to be below 1<<29 when it was variable, but not
when it was fixed. The offset either comes from an instruction (in which
case it is 16 bit), from another register (in which case the caller
checked it to be below 1<<29 [1]), or from the size of an argument to a
kfunc (in which case it can be a u32 [2]). Between the register being
inconsistently checked to be below 1<<29, and the offset being up to an
u32, it appears that we were open to overflowing the `int`s which were
currently used for arithmetic.

[1] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L7494-L7498
[2] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L11904

Reported-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-4-andreimatei1@gmail.com
Stable-dep-of: 6b4a64bafd10 ("bpf: Fix accesses to uninit stack slots")
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 08b91bab 06-Dec-2023 Andrei Matei <andreimatei1@gmail.com>

bpf: Fix verification of indirect var-off stack access

[ Upstream commit a833a17aeac73b33f79433d7cee68d5cafd71e4f ]

This patch fixes a bug around the verification of possibly-zero-sized
stack acces

bpf: Fix verification of indirect var-off stack access

[ Upstream commit a833a17aeac73b33f79433d7cee68d5cafd71e4f ]

This patch fixes a bug around the verification of possibly-zero-sized
stack accesses. When the access was done through a var-offset stack
pointer, check_stack_access_within_bounds was incorrectly computing the
maximum-offset of a zero-sized read to be the same as the register's min
offset. Instead, we have to take in account the register's maximum
possible value. The patch also simplifies how the max offset is checked;
the check is now simpler than for min offset.

The bug was allowing accesses to erroneously pass the
check_stack_access_within_bounds() checks, only to later crash in
check_stack_range_initialized() when all the possibly-affected stack
slots are iterated (this time with a correct max offset).
check_stack_range_initialized() is relying on
check_stack_access_within_bounds() for its accesses to the
stack-tracking vector to be within bounds; in the case of zero-sized
accesses, we were essentially only verifying that the lowest possible
slot was within bounds. We would crash when the max-offset of the stack
pointer was >= 0 (which shouldn't pass verification, and hopefully is
not something anyone's code attempts to do in practice).

Thanks Hao for reporting!

Fixes: 01f810ace9ed3 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-2-andreimatei1@gmail.com

Closes: https://lore.kernel.org/bpf/CACkBjsZGEUaRCHsmaX=h-efVogsRfK1FPxmkgb0Os_frnHiNdw@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 8dc15b06 05-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix check for attempt to corrupt spilled pointer

[ Upstream commit ab125ed3ec1c10ccc36bc98c7a4256ad114a3dae ]

When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[B

bpf: fix check for attempt to corrupt spilled pointer

[ Upstream commit ab125ed3ec1c10ccc36bc98c7a4256ad114a3dae ]

When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[BPF_REG_SIZE - 1] (plus potentially few more below it,
depending on actual spill size). So to check if some stack slot has
spilled register we need to consult slot_type[7], not slot_type[0].

To avoid the need to remember and double-check this in the future, just
use is_spilled_reg() helper.

Fixes: 27113c59b6d0 ("bpf: Check the other end of slot_type for STACK_SPILL")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 0866f642 02-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: enforce precision of R0 on callback return

[ Upstream commit 0acd03a5bd188b0c501d285d938439618bd855c4 ]

Given verifier checks actual value, r0 has to be precise, so we need to
propagate precis

bpf: enforce precision of R0 on callback return

[ Upstream commit 0acd03a5bd188b0c501d285d938439618bd855c4 ]

Given verifier checks actual value, r0 has to be precise, so we need to
propagate precision properly. r0 also has to be marked as read,
otherwise subsequent state comparisons will ignore such register as
unimportant and precision won't really help here.

Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# b97d6790 13-Dec-2023 Joel Stanley <joel@jms.id.au>

Merge tag 'v6.6.6' into dev-6.6

This is the 6.6.6 stable release

Signed-off-by: Joel Stanley <joel@jms.id.au>


# 226b46d5 02-Nov-2023 Shung-Hsi Yu <shung-hsi.yu@suse.com>

bpf: Fix precision tracking for BPF_ALU | BPF_TO_BE | BPF_END

commit 291d044fd51f8484066300ee42afecf8c8db7b3a upstream.

BPF_END and BPF_NEG has a different specification for the source bit in
the o

bpf: Fix precision tracking for BPF_ALU | BPF_TO_BE | BPF_END

commit 291d044fd51f8484066300ee42afecf8c8db7b3a upstream.

BPF_END and BPF_NEG has a different specification for the source bit in
the opcode compared to other ALU/ALU64 instructions, and is either
reserved or use to specify the byte swap endianness. In both cases the
source bit does not encode source operand location, and src_reg is a
reserved field.

backtrack_insn() currently does not differentiate BPF_END and BPF_NEG
from other ALU/ALU64 instructions, which leads to r0 being incorrectly
marked as precise when processing BPF_ALU | BPF_TO_BE | BPF_END
instructions. This commit teaches backtrack_insn() to correctly mark
precision for such case.

While precise tracking of BPF_NEG and other BPF_END instructions are
correct and does not need fixing, this commit opt to process all BPF_NEG
and BPF_END instructions within the same if-clause to better align with
current convention used in the verifier (e.g. check_alu_op).

Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Cc: stable@vger.kernel.org
Reported-by: Mohamed Mahmoud <mmahmoud@redhat.com>
Closes: https://lore.kernel.org/r/87jzrrwptf.fsf@toke.dk
Tested-by: Toke Høiland-Jørgensen <toke@redhat.com>
Tested-by: Tao Lyu <tao.lyu@epfl.ch>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231102053913.12004-2-shung-hsi.yu@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 156a9b74 01-Nov-2023 Hao Sun <sunhao.th@gmail.com>

bpf: Fix check_stack_write_fixed_off() to correctly spill imm

commit 811c363645b33e6e22658634329e95f383dfc705 upstream.

In check_stack_write_fixed_off(), imm value is cast to u32 before being
spill

bpf: Fix check_stack_write_fixed_off() to correctly spill imm

commit 811c363645b33e6e22658634329e95f383dfc705 upstream.

In check_stack_write_fixed_off(), imm value is cast to u32 before being
spilled to the stack. Therefore, the sign information is lost, and the
range information is incorrect when load from the stack again.

For the following prog:
0: r2 = r10
1: *(u64*)(r2 -40) = -44
2: r0 = *(u64*)(r2 - 40)
3: if r0 s<= 0xa goto +2
4: r0 = 1
5: exit
6: r0 = 0
7: exit

The verifier gives:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
1: (7a) *(u64 *)(r2 -40) = -44 ; R2_w=fp0 fp-40_w=4294967252
2: (79) r0 = *(u64 *)(r2 -40) ; R0_w=4294967252 R2_w=fp0
fp-40_w=4294967252
3: (c5) if r0 s< 0xa goto pc+2
mark_precise: frame0: last_idx 3 first_idx 0 subseq_idx -1
mark_precise: frame0: regs=r0 stack= before 2: (79) r0 = *(u64 *)(r2 -40)
3: R0_w=4294967252
4: (b7) r0 = 1 ; R0_w=1
5: (95) exit
verification time 7971 usec
stack depth 40
processed 6 insns (limit 1000000) max_states_per_insn 0 total_states 0
peak_states 0 mark_read 0

So remove the incorrect cast, since imm field is declared as s32, and
__mark_reg_known() takes u64, so imm would be correctly sign extended
by compiler.

Fixes: ecdf985d7615 ("bpf: track immediate values written to stack by BPF_ST instruction")
Cc: stable@vger.kernel.org
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231101-fix-check-stack-write-v3-1-f05c2b1473d5@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 9549f53a 10-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix control-flow graph checking in privileged mode

[ Upstream commit 10e14e9652bf9e8104151bfd9200433083deae3d ]

When BPF program is verified in privileged mode, BPF verifier allows
bounded loo

bpf: fix control-flow graph checking in privileged mode

[ Upstream commit 10e14e9652bf9e8104151bfd9200433083deae3d ]

When BPF program is verified in privileged mode, BPF verifier allows
bounded loops. This means that from CFG point of view there are
definitely some back-edges. Original commit adjusted check_cfg() logic
to not detect back-edges in control flow graph if they are resulting
from conditional jumps, which the idea that subsequent full BPF
verification process will determine whether such loops are bounded or
not, and either accept or reject the BPF program. At least that's my
reading of the intent.

Unfortunately, the implementation of this idea doesn't work correctly in
all possible situations. Conditional jump might not result in immediate
back-edge, but just a few unconditional instructions later we can arrive
at back-edge. In such situations check_cfg() would reject BPF program
even in privileged mode, despite it might be bounded loop. Next patch
adds one simple program demonstrating such scenario.

To keep things simple, instead of trying to detect back edges in
privileged mode, just assume every back edge is valid and let subsequent
BPF verification prove or reject bounded loops.

Note a few test changes. For unknown reason, we have a few tests that
are specified to detect a back-edge in a privileged mode, but looking at
their code it seems like the right outcome is passing check_cfg() and
letting subsequent verification to make a decision about bounded or not
bounded looping.

Bounded recursion case is also interesting. The example should pass, as
recursion is limited to just a few levels and so we never reach maximum
number of nested frames and never exhaust maximum stack depth. But the
way that max stack depth logic works today it falsely detects this as
exceeding max nested frame count. This patch series doesn't attempt to
fix this orthogonal problem, so we just adjust expected verifier failure.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Fixes: 2589726d12a1 ("bpf: introduce bounded loops")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110061412.2995786-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 2595f4eb 09-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix precision backtracking instruction iteration

[ Upstream commit 4bb7ea946a370707315ab774432963ce47291946 ]

Fix an edge case in __mark_chain_precision() which prematurely stops
backtracking

bpf: fix precision backtracking instruction iteration

[ Upstream commit 4bb7ea946a370707315ab774432963ce47291946 ]

Fix an edge case in __mark_chain_precision() which prematurely stops
backtracking instructions in a state if it happens that state's first
and last instruction indexes are the same. This situations doesn't
necessarily mean that there were no instructions simulated in a state,
but rather that we starting from the instruction, jumped around a bit,
and then ended up at the same instruction before checkpointing or
marking precision.

To distinguish between these two possible situations, we need to consult
jump history. If it's empty or contain a single record "bridging" parent
state and first instruction of processed state, then we indeed
backtracked all instructions in this state. But if history is not empty,
we are definitely not done yet.

Move this logic inside get_prev_insn_idx() to contain it more nicely.
Use -ENOENT return code to denote "we are out of instructions"
situation.

This bug was exposed by verifier_loop1.c's bounded_recursion subtest, once
the next fix in this patch set is applied.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110002638.4168352-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 3c49b49d 09-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: handle ldimm64 properly in check_cfg()

[ Upstream commit 3feb263bb516ee7e1da0acd22b15afbb9a7daa19 ]

ldimm64 instructions are 16-byte long, and so have to be handled
appropriately in check_cfg(

bpf: handle ldimm64 properly in check_cfg()

[ Upstream commit 3feb263bb516ee7e1da0acd22b15afbb9a7daa19 ]

ldimm64 instructions are 16-byte long, and so have to be handled
appropriately in check_cfg(), just like the rest of BPF verifier does.

This has implications in three places:
- when determining next instruction for non-jump instructions;
- when determining next instruction for callback address ldimm64
instructions (in visit_func_call_insn());
- when checking for unreachable instructions, where second half of
ldimm64 is expected to be unreachable;

We take this also as an opportunity to report jump into the middle of
ldimm64. And adjust few test_verifier tests accordingly.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Reported-by: Hao Sun <sunhao.th@gmail.com>
Fixes: 475fb78fbf48 ("bpf: verifier (add branch/goto checks)")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110002638.4168352-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


Revision tags: v6.5.8
# aa4dd55a 11-Oct-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Ensure proper register state printing for cond jumps

[ Upstream commit 1a8a315f008a58f54fecb012b928aa6a494435b3 ]

Verifier emits relevant register state involved in any given instruction
next

bpf: Ensure proper register state printing for cond jumps

[ Upstream commit 1a8a315f008a58f54fecb012b928aa6a494435b3 ]

Verifier emits relevant register state involved in any given instruction
next to it after `;` to the right, if possible. Or, worst case, on the
separate line repeating instruction index.

E.g., a nice and simple case would be:

2: (d5) if r0 s<= 0x0 goto pc+1 ; R0_w=0

But if there is some intervening extra output (e.g., precision
backtracking log) involved, we are supposed to see the state after the
precision backtrack log:

4: (75) if r0 s>= 0x0 goto pc+1
mark_precise: frame0: last_idx 4 first_idx 0 subseq_idx -1
mark_precise: frame0: regs=r0 stack= before 2: (d5) if r0 s<= 0x0 goto pc+1
mark_precise: frame0: regs=r0 stack= before 1: (b7) r0 = 0
6: R0_w=0

First off, note that in `6: R0_w=0` instruction index corresponds to the
next instruction, not to the conditional jump instruction itself, which
is wrong and we'll get to that.

But besides that, the above is a happy case that does work today. Yet,
if it so happens that precision backtracking had to traverse some of the
parent states, this `6: R0_w=0` state output would be missing.

This is due to a quirk of print_verifier_state() routine, which performs
mark_verifier_state_clean(env) at the end. This marks all registers as
"non-scratched", which means that subsequent logic to print *relevant*
registers (that is, "scratched ones") fails and doesn't see anything
relevant to print and skips the output altogether.

print_verifier_state() is used both to print instruction context, but
also to print an **entire** verifier state indiscriminately, e.g.,
during precision backtracking (and in a few other situations, like
during entering or exiting subprogram). Which means if we have to print
entire parent state before getting to printing instruction context
state, instruction context is marked as clean and is omitted.

Long story short, this is definitely not intentional. So we fix this
behavior in this patch by teaching print_verifier_state() to clear
scratch state only if it was used to print instruction state, not the
parent/callback state. This is determined by print_all option, so if
it's not set, we don't clear scratch state. This fixes missing
instruction state for these cases.

As for the mismatched instruction index, we fix that by making sure we
call print_insn_state() early inside check_cond_jmp_op() before we
adjusted insn_idx based on jump branch taken logic. And with that we get
desired correct information:

9: (16) if w4 == 0x1 goto pc+9
mark_precise: frame0: last_idx 9 first_idx 9 subseq_idx -1
mark_precise: frame0: parent state regs=r4 stack=: R2_w=1944 R4_rw=P1 R10=fp0
mark_precise: frame0: last_idx 8 first_idx 0 subseq_idx 9
mark_precise: frame0: regs=r4 stack= before 8: (66) if w4 s> 0x3 goto pc+5
mark_precise: frame0: regs=r4 stack= before 7: (b7) r4 = 1
9: R4=1

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20231011223728.3188086-6-andrii@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


Revision tags: v6.5.7, v6.5.6, v6.5.5, v6.5.4, v6.5.3
# 99251305 12-Sep-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix kfunc callback register type handling

[ Upstream commit 06d686f771ddc27a8554cd8f5b22e071040dc90e ]

The kfunc code to handle KF_ARG_PTR_TO_CALLBACK does not check the reg
type before using

bpf: Fix kfunc callback register type handling

[ Upstream commit 06d686f771ddc27a8554cd8f5b22e071040dc90e ]

The kfunc code to handle KF_ARG_PTR_TO_CALLBACK does not check the reg
type before using reg->subprogno. This can accidently permit invalid
pointers from being passed into callback helpers (e.g. silently from
different paths). Likewise, reg->subprogno from the per-register type
union may not be meaningful either. We need to reject any other type
except PTR_TO_FUNC.

Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Fixes: 5d92ddc3de1b ("bpf: Add callback validation to kfunc verifier logic")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 8f873cc3 12-Sep-2023 Leon Hwang <hffilwlqm@gmail.com>

bpf, x64: Fix tailcall infinite loop

[ Upstream commit 2b5dcb31a19a2e0acd869b12c9db9b2d696ef544 ]

From commit ebf7d1f508a73871 ("bpf, x64: rework pro/epilogue and tailcall
handling in JIT"), the ta

bpf, x64: Fix tailcall infinite loop

[ Upstream commit 2b5dcb31a19a2e0acd869b12c9db9b2d696ef544 ]

From commit ebf7d1f508a73871 ("bpf, x64: rework pro/epilogue and tailcall
handling in JIT"), the tailcall on x64 works better than before.

From commit e411901c0b775a3a ("bpf: allow for tailcalls in BPF subprograms
for x64 JIT"), tailcall is able to run in BPF subprograms on x64.

From commit 5b92a28aae4dd0f8 ("bpf: Support attaching tracing BPF program
to other BPF programs"), BPF program is able to trace other BPF programs.

How about combining them all together?

1. FENTRY/FEXIT on a BPF subprogram.
2. A tailcall runs in the BPF subprogram.
3. The tailcall calls the subprogram's caller.

As a result, a tailcall infinite loop comes up. And the loop would halt
the machine.

As we know, in tail call context, the tail_call_cnt propagates by stack
and rax register between BPF subprograms. So do in trampolines.

Fixes: ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Fixes: e411901c0b77 ("bpf: allow for tailcalls in BPF subprograms for x64 JIT")
Reviewed-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Leon Hwang <hffilwlqm@gmail.com>
Link: https://lore.kernel.org/r/20230912150442.2009-3-hffilwlqm@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# e8c127b0 12-Oct-2023 Linus Torvalds <torvalds@linux-foundation.org>

Merge tag 'net-6.6-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net

Pull networking fixes from Paolo Abeni:
"Including fixes from CAN and BPF.

We have a regression in TC currentl

Merge tag 'net-6.6-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net

Pull networking fixes from Paolo Abeni:
"Including fixes from CAN and BPF.

We have a regression in TC currently under investigation, otherwise
the things that stand off most are probably the TCP and AF_PACKET
fixes, with both issues coming from 6.5.

Previous releases - regressions:

- af_packet: fix fortified memcpy() without flex array.

- tcp: fix crashes trying to free half-baked MTU probes

- xdp: fix zero-size allocation warning in xskq_create()

- can: sja1000: always restart the tx queue after an overrun

- eth: mlx5e: again mutually exclude RX-FCS and RX-port-timestamp

- eth: nfp: avoid rmmod nfp crash issues

- eth: octeontx2-pf: fix page pool frag allocation warning

Previous releases - always broken:

- mctp: perform route lookups under a RCU read-side lock

- bpf: s390: fix clobbering the caller's backchain in the trampoline

- phy: lynx-28g: cancel the CDR check work item on the remove path

- dsa: qca8k: fix qca8k driver for Turris 1.x

- eth: ravb: fix use-after-free issue in ravb_tx_timeout_work()

- eth: ixgbe: fix crash with empty VF macvlan list"

* tag 'net-6.6-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (54 commits)
rswitch: Fix imbalance phy_power_off() calling
rswitch: Fix renesas_eth_sw_remove() implementation
octeontx2-pf: Fix page pool frag allocation warning
nfc: nci: assert requested protocol is valid
af_packet: Fix fortified memcpy() without flex array.
net: tcp: fix crashes trying to free half-baked MTU probes
net/smc: Fix pos miscalculation in statistics
nfp: flower: avoid rmmod nfp crash issues
net: usb: dm9601: fix uninitialized variable use in dm9601_mdio_read
ethtool: Fix mod state of verbose no_mask bitset
net: nfc: fix races in nfc_llcp_sock_get() and nfc_llcp_sock_get_sn()
mctp: perform route lookups under a RCU read-side lock
net: skbuff: fix kernel-doc typos
s390/bpf: Fix unwinding past the trampoline
s390/bpf: Fix clobbering the caller's backchain in the trampoline
net/mlx5e: Again mutually exclude RX-FCS and RX-port-timestamp
net/smc: Fix dependency of SMC on ISM
ixgbe: fix crash with empty VF macvlan list
net/mlx5e: macsec: use update_pn flag instead of PN comparation
net: phy: mscc: macsec: reject PN update requests
...

show more ...


# ad98426a 10-Oct-2023 Jakub Kicinski <kuba@kernel.org>

Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf

Daniel Borkmann says:

====================
pull-request: bpf 2023-10-11

We've added 14 non-merge commits during th

Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf

Daniel Borkmann says:

====================
pull-request: bpf 2023-10-11

We've added 14 non-merge commits during the last 5 day(s) which contain
a total of 12 files changed, 398 insertions(+), 104 deletions(-).

The main changes are:

1) Fix s390 JIT backchain issues in the trampoline code generation which
previously clobbered the caller's backchain, from Ilya Leoshkevich.

2) Fix zero-size allocation warning in xsk sockets when the configured
ring size was close to SIZE_MAX, from Andrew Kanner.

3) Fixes for bpf_mprog API that were found when implementing support
in the ebpf-go library along with selftests, from Daniel Borkmann
and Lorenz Bauer.

4) Fix riscv JIT to properly sign-extend the return register in programs.
This fixes various test_progs selftests on riscv, from Björn Töpel.

5) Fix verifier log for async callback return values where the allowed
range was displayed incorrectly, from David Vernet.

* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
s390/bpf: Fix unwinding past the trampoline
s390/bpf: Fix clobbering the caller's backchain in the trampoline
selftests/bpf: Add testcase for async callback return value failure
bpf: Fix verifier log for async callback return values
xdp: Fix zero-size allocation warning in xskq_create()
riscv, bpf: Track both a0 (RISC-V ABI) and a5 (BPF) return values
riscv, bpf: Sign-extend return values
selftests/bpf: Make seen_tc* variable tests more robust
selftests/bpf: Test query on empty mprog and pass revision into attach
selftests/bpf: Adapt assert_mprog_count to always expect 0 count
selftests/bpf: Test bpf_mprog query API via libbpf and raw syscall
bpf: Refuse unused attributes in bpf_prog_{attach,detach}
bpf: Handle bpf_mprog_query with NULL entry
bpf: Fix BPF_PROG_QUERY last field check
====================

Link: https://lore.kernel.org/r/20231010223610.3984-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>

show more ...


# 82995598 09-Oct-2023 David Vernet <void@manifault.com>

bpf: Fix verifier log for async callback return values

The verifier, as part of check_return_code(), verifies that async
callbacks such as from e.g. timers, will return 0. It does this by
correctly

bpf: Fix verifier log for async callback return values

The verifier, as part of check_return_code(), verifies that async
callbacks such as from e.g. timers, will return 0. It does this by
correctly checking that R0->var_off is in tnum_const(0), which
effectively checks that it's in a range of 0. If this condition fails,
however, it prints an error message which says that the value should
have been in (0x0; 0x1). This results in possibly confusing output such
as the following in which an async callback returns 1:

At async callback the register R0 has value (0x1; 0x0) should have been in (0x0; 0x1)

The fix is easy -- we should just pass the tnum_const(0) as the correct
range to verbose_invalid_scalar(), which will then print the following:

At async callback the register R0 has value (0x1; 0x0) should have been in (0x0; 0x0)

Fixes: bfc6bb74e4f1 ("bpf: Implement verifier support for validation of async callbacks.")
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231009161414.235829-1-void@manifault.com

show more ...


# f291209e 05-Oct-2023 Linus Torvalds <torvalds@linux-foundation.org>

Merge tag 'net-6.6-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net

Pull networking fixes from Jakub Kicinski:
"Including fixes from Bluetooth, netfilter, BPF and WiFi.

I didn't

Merge tag 'net-6.6-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net

Pull networking fixes from Jakub Kicinski:
"Including fixes from Bluetooth, netfilter, BPF and WiFi.

I didn't collect precise data but feels like we've got a lot of 6.5
fixes here. WiFi fixes are most user-awaited.

Current release - regressions:

- Bluetooth: fix hci_link_tx_to RCU lock usage

Current release - new code bugs:

- bpf: mprog: fix maximum program check on mprog attachment

- eth: ti: icssg-prueth: fix signedness bug in prueth_init_tx_chns()

Previous releases - regressions:

- ipv6: tcp: add a missing nf_reset_ct() in 3WHS handling

- vringh: don't use vringh_kiov_advance() in vringh_iov_xfer(), it
doesn't handle zero length like we expected

- wifi:
- cfg80211: fix cqm_config access race, fix crashes with brcmfmac
- iwlwifi: mvm: handle PS changes in vif_cfg_changed
- mac80211: fix mesh id corruption on 32 bit systems
- mt76: mt76x02: fix MT76x0 external LNA gain handling

- Bluetooth: fix handling of HCI_QUIRK_STRICT_DUPLICATE_FILTER

- l2tp: fix handling of transhdrlen in __ip{,6}_append_data()

- dsa: mv88e6xxx: avoid EEPROM timeout when EEPROM is absent

- eth: stmmac: fix the incorrect parameter after refactoring

Previous releases - always broken:

- net: replace calls to sock->ops->connect() with kernel_connect(),
prevent address rewrite in kernel_bind(); otherwise BPF hooks may
modify arguments, unexpectedly to the caller

- tcp: fix delayed ACKs when reads and writes align with MSS

- bpf:
- verifier: unconditionally reset backtrack_state masks on global
func exit
- s390: let arch_prepare_bpf_trampoline return program size, fix
struct_ops offsets
- sockmap: fix accounting of available bytes in presence of PEEKs
- sockmap: reject sk_msg egress redirects to non-TCP sockets

- ipv4/fib: send netlink notify when delete source address routes

- ethtool: plca: fix width of reads when parsing netlink commands

- netfilter: nft_payload: rebuild vlan header on h_proto access

- Bluetooth: hci_codec: fix leaking memory of local_codecs

- eth: intel: ice: always add legacy 32byte RXDID in supported_rxdids

- eth: stmmac:
- dwmac-stm32: fix resume on STM32 MCU
- remove buggy and unneeded stmmac_poll_controller, depend on NAPI

- ibmveth: always recompute TCP pseudo-header checksum, fix use of
the driver with Open vSwitch

- wifi:
- rtw88: rtw8723d: fix MAC address offset in EEPROM
- mt76: fix lock dependency problem for wed_lock
- mwifiex: sanity check data reported by the device
- iwlwifi: ensure ack flag is properly cleared
- iwlwifi: mvm: fix a memory corruption due to bad pointer arithm
- iwlwifi: mvm: fix incorrect usage of scan API

Misc:

- wifi: mac80211: work around Cisco AP 9115 VHT MPDU length"

* tag 'net-6.6-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (99 commits)
MAINTAINERS: update Matthieu's email address
mptcp: userspace pm allow creating id 0 subflow
mptcp: fix delegated action races
net: stmmac: remove unneeded stmmac_poll_controller
net: lan743x: also select PHYLIB
net: ethernet: mediatek: disable irq before schedule napi
net: mana: Fix oversized sge0 for GSO packets
net: mana: Fix the tso_bytes calculation
net: mana: Fix TX CQE error handling
netlink: annotate data-races around sk->sk_err
sctp: update hb timer immediately after users change hb_interval
sctp: update transport state when processing a dupcook packet
tcp: fix delayed ACKs for MSS boundary condition
tcp: fix quick-ack counting to count actual ACKs of new data
page_pool: fix documentation typos
tipc: fix a potential deadlock on &tx->lock
net: stmmac: dwmac-stm32: fix resume on STM32 MCU
ipv4: Set offload_failed flag in fibmatch results
netfilter: nf_tables: nft_set_rbtree: fix spurious insertion failure
netfilter: nf_tables: Deduplicate nft_register_obj audit logs
...

show more ...


12345678910>>...133