mtd.h (859f24350e6e4313626f85161dd03f025a4dac59) | mtd.h (cfa460adfdefcc30d104e1a9ee44994ee349bb7b) |
---|---|
1/* | 1/* |
2 * $Id: mtd.h,v 1.56 2004/08/09 18:46:04 dmarlin Exp $ | 2 * $Id: mtd.h,v 1.61 2005/11/07 11:14:54 gleixner Exp $ |
3 * 4 * Copyright (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> et al. 5 * 6 * Released under GPL 7 */ 8 9#ifndef __MTD_MTD_H__ 10#define __MTD_MTD_H__ | 3 * 4 * Copyright (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> et al. 5 * 6 * Released under GPL 7 */ 8 9#ifndef __MTD_MTD_H__ 10#define __MTD_MTD_H__ |
11 |
|
11#include <linux/types.h> 12#include <linux/mtd/mtd-abi.h> 13 | 12#include <linux/types.h> 13#include <linux/mtd/mtd-abi.h> 14 |
14#define MAX_MTD_DEVICES 16 | 15#define MTD_CHAR_MAJOR 90 16#define MTD_BLOCK_MAJOR 31 17#define MAX_MTD_DEVICES 32 |
15 16#define MTD_ERASE_PENDING 0x01 17#define MTD_ERASING 0x02 18#define MTD_ERASE_SUSPEND 0x04 19#define MTD_ERASE_DONE 0x08 20#define MTD_ERASE_FAILED 0x10 21 22/* If the erase fails, fail_addr might indicate exactly which block failed. If --- 13 unchanged lines hidden (view full) --- 36 u_char state; 37 struct erase_info *next; 38}; 39 40struct mtd_erase_region_info { 41 u_int32_t offset; /* At which this region starts, from the beginning of the MTD */ 42 u_int32_t erasesize; /* For this region */ 43 u_int32_t numblocks; /* Number of blocks of erasesize in this region */ | 18 19#define MTD_ERASE_PENDING 0x01 20#define MTD_ERASING 0x02 21#define MTD_ERASE_SUSPEND 0x04 22#define MTD_ERASE_DONE 0x08 23#define MTD_ERASE_FAILED 0x10 24 25/* If the erase fails, fail_addr might indicate exactly which block failed. If --- 13 unchanged lines hidden (view full) --- 39 u_char state; 40 struct erase_info *next; 41}; 42 43struct mtd_erase_region_info { 44 u_int32_t offset; /* At which this region starts, from the beginning of the MTD */ 45 u_int32_t erasesize; /* For this region */ 46 u_int32_t numblocks; /* Number of blocks of erasesize in this region */ |
47 unsigned long *lockmap; /* If keeping bitmap of locks */ |
|
44}; 45 | 48}; 49 |
50/* 51 * oob operation modes 52 * 53 * MTD_OOB_PLACE: oob data are placed at the given offset 54 * MTD_OOB_AUTO: oob data are automatically placed at the free areas 55 * which are defined by the ecclayout 56 * MTD_OOB_RAW: mode to read raw data+oob in one chunk. The oob data 57 * is inserted into the data. Thats a raw image of the 58 * flash contents. 59 */ 60typedef enum { 61 MTD_OOB_PLACE, 62 MTD_OOB_AUTO, 63 MTD_OOB_RAW, 64} mtd_oob_mode_t; 65 66/** 67 * struct mtd_oob_ops - oob operation operands 68 * @mode: operation mode 69 * 70 * @len: number of data bytes to write/read 71 * 72 * @retlen: number of data bytes written/read 73 * 74 * @ooblen: number of oob bytes to write/read 75 * @oobretlen: number of oob bytes written/read 76 * @ooboffs: offset of oob data in the oob area (only relevant when 77 * mode = MTD_OOB_PLACE) 78 * @datbuf: data buffer - if NULL only oob data are read/written 79 * @oobbuf: oob data buffer 80 * 81 * Note, it is allowed to read more then one OOB area at one go, but not write. 82 * The interface assumes that the OOB write requests program only one page's 83 * OOB area. 84 */ 85struct mtd_oob_ops { 86 mtd_oob_mode_t mode; 87 size_t len; 88 size_t retlen; 89 size_t ooblen; 90 size_t oobretlen; 91 uint32_t ooboffs; 92 uint8_t *datbuf; 93 uint8_t *oobbuf; 94}; 95 |
|
46struct mtd_info { 47 u_char type; 48 u_int32_t flags; | 96struct mtd_info { 97 u_char type; 98 u_int32_t flags; |
49 u_int32_t size; /* Total size of the MTD */ | 99 u_int32_t size; // Total size of the MTD |
50 | 100 |
51 /* "Major" erase size for the device. Na�ve users may take this | 101 /* "Major" erase size for the device. Naïve users may take this |
52 * to be the only erase size available, or may use the more detailed 53 * information below if they desire 54 */ 55 u_int32_t erasesize; | 102 * to be the only erase size available, or may use the more detailed 103 * information below if they desire 104 */ 105 u_int32_t erasesize; |
106 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 107 * though individual bits can be cleared), in case of NAND flash it is 108 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 109 * it is of ECC block size, etc. It is illegal to have writesize = 0. 110 * Any driver registering a struct mtd_info must ensure a writesize of 111 * 1 or larger. 112 */ 113 u_int32_t writesize; |
|
56 | 114 |
57 u_int32_t oobblock; /* Size of OOB blocks (e.g. 512) */ 58 u_int32_t oobsize; /* Amount of OOB data per block (e.g. 16) */ 59 u_int32_t oobavail; /* Number of bytes in OOB area available for fs */ 60 u_int32_t ecctype; 61 u_int32_t eccsize; | 115 u_int32_t oobsize; // Amount of OOB data per block (e.g. 16) 116 u_int32_t oobavail; // Available OOB bytes per block |
62 | 117 |
63 64 /* Kernel-only stuff starts here. */ | 118 // Kernel-only stuff starts here. |
65 char *name; 66 int index; 67 | 119 char *name; 120 int index; 121 |
68 /* oobinfo is a nand_oobinfo structure, which can be set by iotcl (MEMSETOOBINFO) */ 69 struct nand_oobinfo oobinfo; | 122 /* ecc layout structure pointer - read only ! */ 123 struct nand_ecclayout *ecclayout; |
70 71 /* Data for variable erase regions. If numeraseregions is zero, 72 * it means that the whole device has erasesize as given above. 73 */ 74 int numeraseregions; 75 struct mtd_erase_region_info *eraseregions; 76 | 124 125 /* Data for variable erase regions. If numeraseregions is zero, 126 * it means that the whole device has erasesize as given above. 127 */ 128 int numeraseregions; 129 struct mtd_erase_region_info *eraseregions; 130 |
77 /* This really shouldn't be here. It can go away in 2.5 */ 78 u_int32_t bank_size; 79 | |
80 int (*erase) (struct mtd_info *mtd, struct erase_info *instr); 81 82 /* This stuff for eXecute-In-Place */ 83 int (*point) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf); 84 85 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 86 void (*unpoint) (struct mtd_info *mtd, u_char * addr, loff_t from, size_t len); 87 88 89 int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 90 int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); 91 | 131 int (*erase) (struct mtd_info *mtd, struct erase_info *instr); 132 133 /* This stuff for eXecute-In-Place */ 134 int (*point) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf); 135 136 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 137 void (*unpoint) (struct mtd_info *mtd, u_char * addr, loff_t from, size_t len); 138 139 140 int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 141 int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); 142 |
92 int (*read_ecc) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); 93 int (*write_ecc) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); | 143 int (*read_oob) (struct mtd_info *mtd, loff_t from, 144 struct mtd_oob_ops *ops); 145 int (*write_oob) (struct mtd_info *mtd, loff_t to, 146 struct mtd_oob_ops *ops); |
94 | 147 |
95 int (*read_oob) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 96 int (*write_oob) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); 97 | |
98 /* 99 * Methods to access the protection register area, present in some 100 * flash devices. The user data is one time programmable but the 101 * factory data is read only. 102 */ | 148 /* 149 * Methods to access the protection register area, present in some 150 * flash devices. The user data is one time programmable but the 151 * factory data is read only. 152 */ |
103 int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); 104 | 153 int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len); |
105 int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); | 154 int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); |
106 107 /* This function is not yet implemented */ | 155 int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len); 156 int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); |
108 int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); | 157 int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); |
158 int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len); 159 160/* XXX U-BOOT XXX */ |
|
109#if 0 | 161#if 0 |
110 /* kvec-based read/write methods. We need these especially for NAND flash, 111 with its limited number of write cycles per erase. | 162 /* kvec-based read/write methods. |
112 NB: The 'count' parameter is the number of _vectors_, each of 113 which contains an (ofs, len) tuple. 114 */ | 163 NB: The 'count' parameter is the number of _vectors_, each of 164 which contains an (ofs, len) tuple. 165 */ |
115 int (*readv) (struct mtd_info *mtd, struct kvec *vecs, unsigned long count, loff_t from, size_t *retlen); 116 int (*readv_ecc) (struct mtd_info *mtd, struct kvec *vecs, unsigned long count, loff_t from, 117 size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel); | |
118 int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen); | 166 int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen); |
119 int (*writev_ecc) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, 120 size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel); | |
121#endif | 167#endif |
168 |
|
122 /* Sync */ 123 void (*sync) (struct mtd_info *mtd); | 169 /* Sync */ 170 void (*sync) (struct mtd_info *mtd); |
124#if 0 | 171 |
125 /* Chip-supported device locking */ 126 int (*lock) (struct mtd_info *mtd, loff_t ofs, size_t len); 127 int (*unlock) (struct mtd_info *mtd, loff_t ofs, size_t len); 128 129 /* Power Management functions */ 130 int (*suspend) (struct mtd_info *mtd); 131 void (*resume) (struct mtd_info *mtd); | 172 /* Chip-supported device locking */ 173 int (*lock) (struct mtd_info *mtd, loff_t ofs, size_t len); 174 int (*unlock) (struct mtd_info *mtd, loff_t ofs, size_t len); 175 176 /* Power Management functions */ 177 int (*suspend) (struct mtd_info *mtd); 178 void (*resume) (struct mtd_info *mtd); |
132#endif | 179 |
133 /* Bad block management functions */ 134 int (*block_isbad) (struct mtd_info *mtd, loff_t ofs); 135 int (*block_markbad) (struct mtd_info *mtd, loff_t ofs); 136 | 180 /* Bad block management functions */ 181 int (*block_isbad) (struct mtd_info *mtd, loff_t ofs); 182 int (*block_markbad) (struct mtd_info *mtd, loff_t ofs); 183 |
184/* XXX U-BOOT XXX */ 185#if 0 186 struct notifier_block reboot_notifier; /* default mode before reboot */ 187#endif 188 189 /* ECC status information */ 190 struct mtd_ecc_stats ecc_stats; 191 /* Subpage shift (NAND) */ 192 int subpage_sft; 193 |
|
137 void *priv; 138 139 struct module *owner; 140 int usecount; | 194 void *priv; 195 196 struct module *owner; 197 int usecount; |
198 199 /* If the driver is something smart, like UBI, it may need to maintain 200 * its own reference counting. The below functions are only for driver. 201 * The driver may register its callbacks. These callbacks are not 202 * supposed to be called by MTD users */ 203 int (*get_device) (struct mtd_info *mtd); 204 void (*put_device) (struct mtd_info *mtd); |
|
141}; 142 143 144 /* Kernel-side ioctl definitions */ 145 146extern int add_mtd_device(struct mtd_info *mtd); 147extern int del_mtd_device (struct mtd_info *mtd); 148 149extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); | 205}; 206 207 208 /* Kernel-side ioctl definitions */ 209 210extern int add_mtd_device(struct mtd_info *mtd); 211extern int del_mtd_device (struct mtd_info *mtd); 212 213extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); |
214extern struct mtd_info *get_mtd_device_nm(const char *name); |
|
150 151extern void put_mtd_device(struct mtd_info *mtd); 152 | 215 216extern void put_mtd_device(struct mtd_info *mtd); 217 |
218/* XXX U-BOOT XXX */ |
|
153#if 0 154struct mtd_notifier { 155 void (*add)(struct mtd_info *mtd); 156 void (*remove)(struct mtd_info *mtd); 157 struct list_head list; 158}; 159 | 219#if 0 220struct mtd_notifier { 221 void (*add)(struct mtd_info *mtd); 222 void (*remove)(struct mtd_info *mtd); 223 struct list_head list; 224}; 225 |
160 | |
161extern void register_mtd_user (struct mtd_notifier *new); 162extern int unregister_mtd_user (struct mtd_notifier *old); 163 164int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 165 unsigned long count, loff_t to, size_t *retlen); 166 167int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs, 168 unsigned long count, loff_t from, size_t *retlen); 169#endif 170 | 226extern void register_mtd_user (struct mtd_notifier *new); 227extern int unregister_mtd_user (struct mtd_notifier *old); 228 229int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 230 unsigned long count, loff_t to, size_t *retlen); 231 232int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs, 233 unsigned long count, loff_t from, size_t *retlen); 234#endif 235 |
171#define MTD_ERASE(mtd, args...) (*(mtd->erase))(mtd, args) 172#define MTD_POINT(mtd, a,b,c,d) (*(mtd->point))(mtd, a,b,c, (u_char **)(d)) 173#define MTD_UNPOINT(mtd, arg) (*(mtd->unpoint))(mtd, (u_char *)arg) 174#define MTD_READ(mtd, args...) (*(mtd->read))(mtd, args) 175#define MTD_WRITE(mtd, args...) (*(mtd->write))(mtd, args) 176#define MTD_READV(mtd, args...) (*(mtd->readv))(mtd, args) 177#define MTD_WRITEV(mtd, args...) (*(mtd->writev))(mtd, args) 178#define MTD_READECC(mtd, args...) (*(mtd->read_ecc))(mtd, args) 179#define MTD_WRITEECC(mtd, args...) (*(mtd->write_ecc))(mtd, args) 180#define MTD_READOOB(mtd, args...) (*(mtd->read_oob))(mtd, args) 181#define MTD_WRITEOOB(mtd, args...) (*(mtd->write_oob))(mtd, args) 182#define MTD_SYNC(mtd) do { if (mtd->sync) (*(mtd->sync))(mtd); } while (0) 183 184 | |
185#ifdef CONFIG_MTD_PARTITIONS 186void mtd_erase_callback(struct erase_info *instr); 187#else 188static inline void mtd_erase_callback(struct erase_info *instr) 189{ 190 if (instr->callback) 191 instr->callback(instr); 192} --- 10 unchanged lines hidden (view full) --- 203#ifdef CONFIG_MTD_DEBUG 204#define MTDDEBUG(n, args...) \ 205 do { \ 206 if (n <= CONFIG_MTD_DEBUG_VERBOSE) \ 207 printk(KERN_INFO args); \ 208 } while(0) 209#else /* CONFIG_MTD_DEBUG */ 210#define MTDDEBUG(n, args...) do { } while(0) | 236#ifdef CONFIG_MTD_PARTITIONS 237void mtd_erase_callback(struct erase_info *instr); 238#else 239static inline void mtd_erase_callback(struct erase_info *instr) 240{ 241 if (instr->callback) 242 instr->callback(instr); 243} --- 10 unchanged lines hidden (view full) --- 254#ifdef CONFIG_MTD_DEBUG 255#define MTDDEBUG(n, args...) \ 256 do { \ 257 if (n <= CONFIG_MTD_DEBUG_VERBOSE) \ 258 printk(KERN_INFO args); \ 259 } while(0) 260#else /* CONFIG_MTD_DEBUG */ 261#define MTDDEBUG(n, args...) do { } while(0) |
211 | |
212#endif /* CONFIG_MTD_DEBUG */ 213 214#endif /* __MTD_MTD_H__ */ | 262#endif /* CONFIG_MTD_DEBUG */ 263 264#endif /* __MTD_MTD_H__ */ |