avc.c (e5a5ca96a42ca7eee19cf8694377308771350950) avc.c (6b6bc6205d98796361962ee282a063f18ba8dc57)
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.

--- 68 unchanged lines hidden (view full) ---

77};
78
79struct avc_callback_node {
80 int (*callback) (u32 event);
81 u32 events;
82 struct avc_callback_node *next;
83};
84
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.

--- 68 unchanged lines hidden (view full) ---

77};
78
79struct avc_callback_node {
80 int (*callback) (u32 event);
81 u32 events;
82 struct avc_callback_node *next;
83};
84
85/* Exported via selinufs */
86unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
87
88#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
89DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
90#endif
91
85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
87#endif
88
92static struct avc_cache avc_cache;
89struct selinux_avc {
90 unsigned int avc_cache_threshold;
91 struct avc_cache avc_cache;
92};
93
94static struct selinux_avc selinux_avc;
95
96void selinux_avc_init(struct selinux_avc **avc)
97{
98 int i;
99
100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
101 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
104 }
105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
107 *avc = &selinux_avc;
108}
109
110unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
111{
112 return avc->avc_cache_threshold;
113}
114
115void avc_set_cache_threshold(struct selinux_avc *avc,
116 unsigned int cache_threshold)
117{
118 avc->avc_cache_threshold = cache_threshold;
119}
120
93static struct avc_callback_node *avc_callbacks;
94static struct kmem_cache *avc_node_cachep;
95static struct kmem_cache *avc_xperms_data_cachep;
96static struct kmem_cache *avc_xperms_decision_cachep;
97static struct kmem_cache *avc_xperms_cachep;
98
99static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
100{

--- 37 unchanged lines hidden (view full) ---

138}
139
140/**
141 * avc_dump_query - Display a SID pair and a class in human-readable form.
142 * @ssid: source security identifier
143 * @tsid: target security identifier
144 * @tclass: target security class
145 */
121static struct avc_callback_node *avc_callbacks;
122static struct kmem_cache *avc_node_cachep;
123static struct kmem_cache *avc_xperms_data_cachep;
124static struct kmem_cache *avc_xperms_decision_cachep;
125static struct kmem_cache *avc_xperms_cachep;
126
127static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
128{

--- 37 unchanged lines hidden (view full) ---

166}
167
168/**
169 * avc_dump_query - Display a SID pair and a class in human-readable form.
170 * @ssid: source security identifier
171 * @tsid: target security identifier
172 * @tclass: target security class
173 */
146static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
174static void avc_dump_query(struct audit_buffer *ab, struct selinux_state *state,
175 u32 ssid, u32 tsid, u16 tclass)
147{
148 int rc;
149 char *scontext;
150 u32 scontext_len;
151
176{
177 int rc;
178 char *scontext;
179 u32 scontext_len;
180
152 rc = security_sid_to_context(&selinux_state, ssid,
153 &scontext, &scontext_len);
181 rc = security_sid_to_context(state, ssid, &scontext, &scontext_len);
154 if (rc)
155 audit_log_format(ab, "ssid=%d", ssid);
156 else {
157 audit_log_format(ab, "scontext=%s", scontext);
158 kfree(scontext);
159 }
160
182 if (rc)
183 audit_log_format(ab, "ssid=%d", ssid);
184 else {
185 audit_log_format(ab, "scontext=%s", scontext);
186 kfree(scontext);
187 }
188
161 rc = security_sid_to_context(&selinux_state, tsid,
162 &scontext, &scontext_len);
189 rc = security_sid_to_context(state, tsid, &scontext, &scontext_len);
163 if (rc)
164 audit_log_format(ab, " tsid=%d", tsid);
165 else {
166 audit_log_format(ab, " tcontext=%s", scontext);
167 kfree(scontext);
168 }
169
170 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
171 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
172}
173
174/**
175 * avc_init - Initialize the AVC.
176 *
177 * Initialize the access vector cache.
178 */
179void __init avc_init(void)
180{
190 if (rc)
191 audit_log_format(ab, " tsid=%d", tsid);
192 else {
193 audit_log_format(ab, " tcontext=%s", scontext);
194 kfree(scontext);
195 }
196
197 BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
198 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
199}
200
201/**
202 * avc_init - Initialize the AVC.
203 *
204 * Initialize the access vector cache.
205 */
206void __init avc_init(void)
207{
181 int i;
182
183 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
184 INIT_HLIST_HEAD(&avc_cache.slots[i]);
185 spin_lock_init(&avc_cache.slots_lock[i]);
186 }
187 atomic_set(&avc_cache.active_nodes, 0);
188 atomic_set(&avc_cache.lru_hint, 0);
189
190 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
191 0, SLAB_PANIC, NULL);
192 avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
193 sizeof(struct avc_xperms_node),
194 0, SLAB_PANIC, NULL);
195 avc_xperms_decision_cachep = kmem_cache_create(
196 "avc_xperms_decision_node",
197 sizeof(struct avc_xperms_decision_node),
198 0, SLAB_PANIC, NULL);
199 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
200 sizeof(struct extended_perms_data),
201 0, SLAB_PANIC, NULL);
202}
203
208 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
209 0, SLAB_PANIC, NULL);
210 avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
211 sizeof(struct avc_xperms_node),
212 0, SLAB_PANIC, NULL);
213 avc_xperms_decision_cachep = kmem_cache_create(
214 "avc_xperms_decision_node",
215 sizeof(struct avc_xperms_decision_node),
216 0, SLAB_PANIC, NULL);
217 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
218 sizeof(struct extended_perms_data),
219 0, SLAB_PANIC, NULL);
220}
221
204int avc_get_hash_stats(char *page)
222int avc_get_hash_stats(struct selinux_avc *avc, char *page)
205{
206 int i, chain_len, max_chain_len, slots_used;
207 struct avc_node *node;
208 struct hlist_head *head;
209
210 rcu_read_lock();
211
212 slots_used = 0;
213 max_chain_len = 0;
214 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
223{
224 int i, chain_len, max_chain_len, slots_used;
225 struct avc_node *node;
226 struct hlist_head *head;
227
228 rcu_read_lock();
229
230 slots_used = 0;
231 max_chain_len = 0;
232 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
215 head = &avc_cache.slots[i];
233 head = &avc->avc_cache.slots[i];
216 if (!hlist_empty(head)) {
217 slots_used++;
218 chain_len = 0;
219 hlist_for_each_entry_rcu(node, head, list)
220 chain_len++;
221 if (chain_len > max_chain_len)
222 max_chain_len = chain_len;
223 }
224 }
225
226 rcu_read_unlock();
227
228 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
229 "longest chain: %d\n",
234 if (!hlist_empty(head)) {
235 slots_used++;
236 chain_len = 0;
237 hlist_for_each_entry_rcu(node, head, list)
238 chain_len++;
239 if (chain_len > max_chain_len)
240 max_chain_len = chain_len;
241 }
242 }
243
244 rcu_read_unlock();
245
246 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
247 "longest chain: %d\n",
230 atomic_read(&avc_cache.active_nodes),
248 atomic_read(&avc->avc_cache.active_nodes),
231 slots_used, AVC_CACHE_SLOTS, max_chain_len);
232}
233
234/*
235 * using a linked list for extended_perms_decision lookup because the list is
236 * always small. i.e. less than 5, typically 1
237 */
238static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,

--- 220 unchanged lines hidden (view full) ---

459 audited &= ~requested;
460 }
461 }
462
463 *deniedp = denied;
464 return audited;
465}
466
249 slots_used, AVC_CACHE_SLOTS, max_chain_len);
250}
251
252/*
253 * using a linked list for extended_perms_decision lookup because the list is
254 * always small. i.e. less than 5, typically 1
255 */
256static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,

--- 220 unchanged lines hidden (view full) ---

477 audited &= ~requested;
478 }
479 }
480
481 *deniedp = denied;
482 return audited;
483}
484
467static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
468 u32 requested, struct av_decision *avd,
469 struct extended_perms_decision *xpd,
470 u8 perm, int result,
471 struct common_audit_data *ad)
485static inline int avc_xperms_audit(struct selinux_state *state,
486 u32 ssid, u32 tsid, u16 tclass,
487 u32 requested, struct av_decision *avd,
488 struct extended_perms_decision *xpd,
489 u8 perm, int result,
490 struct common_audit_data *ad)
472{
473 u32 audited, denied;
474
475 audited = avc_xperms_audit_required(
476 requested, avd, xpd, perm, result, &denied);
477 if (likely(!audited))
478 return 0;
491{
492 u32 audited, denied;
493
494 audited = avc_xperms_audit_required(
495 requested, avd, xpd, perm, result, &denied);
496 if (likely(!audited))
497 return 0;
479 return slow_avc_audit(ssid, tsid, tclass, requested,
498 return slow_avc_audit(state, ssid, tsid, tclass, requested,
480 audited, denied, result, ad, 0);
481}
482
483static void avc_node_free(struct rcu_head *rhead)
484{
485 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
486 avc_xperms_free(node->ae.xp_node);
487 kmem_cache_free(avc_node_cachep, node);
488 avc_cache_stats_incr(frees);
489}
490
499 audited, denied, result, ad, 0);
500}
501
502static void avc_node_free(struct rcu_head *rhead)
503{
504 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
505 avc_xperms_free(node->ae.xp_node);
506 kmem_cache_free(avc_node_cachep, node);
507 avc_cache_stats_incr(frees);
508}
509
491static void avc_node_delete(struct avc_node *node)
510static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
492{
493 hlist_del_rcu(&node->list);
494 call_rcu(&node->rhead, avc_node_free);
511{
512 hlist_del_rcu(&node->list);
513 call_rcu(&node->rhead, avc_node_free);
495 atomic_dec(&avc_cache.active_nodes);
514 atomic_dec(&avc->avc_cache.active_nodes);
496}
497
515}
516
498static void avc_node_kill(struct avc_node *node)
517static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
499{
500 avc_xperms_free(node->ae.xp_node);
501 kmem_cache_free(avc_node_cachep, node);
502 avc_cache_stats_incr(frees);
518{
519 avc_xperms_free(node->ae.xp_node);
520 kmem_cache_free(avc_node_cachep, node);
521 avc_cache_stats_incr(frees);
503 atomic_dec(&avc_cache.active_nodes);
522 atomic_dec(&avc->avc_cache.active_nodes);
504}
505
523}
524
506static void avc_node_replace(struct avc_node *new, struct avc_node *old)
525static void avc_node_replace(struct selinux_avc *avc,
526 struct avc_node *new, struct avc_node *old)
507{
508 hlist_replace_rcu(&old->list, &new->list);
509 call_rcu(&old->rhead, avc_node_free);
527{
528 hlist_replace_rcu(&old->list, &new->list);
529 call_rcu(&old->rhead, avc_node_free);
510 atomic_dec(&avc_cache.active_nodes);
530 atomic_dec(&avc->avc_cache.active_nodes);
511}
512
531}
532
513static inline int avc_reclaim_node(void)
533static inline int avc_reclaim_node(struct selinux_avc *avc)
514{
515 struct avc_node *node;
516 int hvalue, try, ecx;
517 unsigned long flags;
518 struct hlist_head *head;
519 spinlock_t *lock;
520
521 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
534{
535 struct avc_node *node;
536 int hvalue, try, ecx;
537 unsigned long flags;
538 struct hlist_head *head;
539 spinlock_t *lock;
540
541 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
522 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
523 head = &avc_cache.slots[hvalue];
524 lock = &avc_cache.slots_lock[hvalue];
542 hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
543 (AVC_CACHE_SLOTS - 1);
544 head = &avc->avc_cache.slots[hvalue];
545 lock = &avc->avc_cache.slots_lock[hvalue];
525
526 if (!spin_trylock_irqsave(lock, flags))
527 continue;
528
529 rcu_read_lock();
530 hlist_for_each_entry(node, head, list) {
546
547 if (!spin_trylock_irqsave(lock, flags))
548 continue;
549
550 rcu_read_lock();
551 hlist_for_each_entry(node, head, list) {
531 avc_node_delete(node);
552 avc_node_delete(avc, node);
532 avc_cache_stats_incr(reclaims);
533 ecx++;
534 if (ecx >= AVC_CACHE_RECLAIM) {
535 rcu_read_unlock();
536 spin_unlock_irqrestore(lock, flags);
537 goto out;
538 }
539 }
540 rcu_read_unlock();
541 spin_unlock_irqrestore(lock, flags);
542 }
543out:
544 return ecx;
545}
546
553 avc_cache_stats_incr(reclaims);
554 ecx++;
555 if (ecx >= AVC_CACHE_RECLAIM) {
556 rcu_read_unlock();
557 spin_unlock_irqrestore(lock, flags);
558 goto out;
559 }
560 }
561 rcu_read_unlock();
562 spin_unlock_irqrestore(lock, flags);
563 }
564out:
565 return ecx;
566}
567
547static struct avc_node *avc_alloc_node(void)
568static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
548{
549 struct avc_node *node;
550
551 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
552 if (!node)
553 goto out;
554
555 INIT_HLIST_NODE(&node->list);
556 avc_cache_stats_incr(allocations);
557
569{
570 struct avc_node *node;
571
572 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
573 if (!node)
574 goto out;
575
576 INIT_HLIST_NODE(&node->list);
577 avc_cache_stats_incr(allocations);
578
558 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
559 avc_reclaim_node();
579 if (atomic_inc_return(&avc->avc_cache.active_nodes) >
580 avc->avc_cache_threshold)
581 avc_reclaim_node(avc);
560
561out:
562 return node;
563}
564
565static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
566{
567 node->ae.ssid = ssid;
568 node->ae.tsid = tsid;
569 node->ae.tclass = tclass;
570 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
571}
572
582
583out:
584 return node;
585}
586
587static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
588{
589 node->ae.ssid = ssid;
590 node->ae.tsid = tsid;
591 node->ae.tclass = tclass;
592 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
593}
594
573static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
595static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
596 u32 ssid, u32 tsid, u16 tclass)
574{
575 struct avc_node *node, *ret = NULL;
576 int hvalue;
577 struct hlist_head *head;
578
579 hvalue = avc_hash(ssid, tsid, tclass);
597{
598 struct avc_node *node, *ret = NULL;
599 int hvalue;
600 struct hlist_head *head;
601
602 hvalue = avc_hash(ssid, tsid, tclass);
580 head = &avc_cache.slots[hvalue];
603 head = &avc->avc_cache.slots[hvalue];
581 hlist_for_each_entry_rcu(node, head, list) {
582 if (ssid == node->ae.ssid &&
583 tclass == node->ae.tclass &&
584 tsid == node->ae.tsid) {
585 ret = node;
586 break;
587 }
588 }

--- 8 unchanged lines hidden (view full) ---

597 * @tclass: target security class
598 *
599 * Look up an AVC entry that is valid for the
600 * (@ssid, @tsid), interpreting the permissions
601 * based on @tclass. If a valid AVC entry exists,
602 * then this function returns the avc_node.
603 * Otherwise, this function returns NULL.
604 */
604 hlist_for_each_entry_rcu(node, head, list) {
605 if (ssid == node->ae.ssid &&
606 tclass == node->ae.tclass &&
607 tsid == node->ae.tsid) {
608 ret = node;
609 break;
610 }
611 }

--- 8 unchanged lines hidden (view full) ---

620 * @tclass: target security class
621 *
622 * Look up an AVC entry that is valid for the
623 * (@ssid, @tsid), interpreting the permissions
624 * based on @tclass. If a valid AVC entry exists,
625 * then this function returns the avc_node.
626 * Otherwise, this function returns NULL.
627 */
605static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
628static struct avc_node *avc_lookup(struct selinux_avc *avc,
629 u32 ssid, u32 tsid, u16 tclass)
606{
607 struct avc_node *node;
608
609 avc_cache_stats_incr(lookups);
630{
631 struct avc_node *node;
632
633 avc_cache_stats_incr(lookups);
610 node = avc_search_node(ssid, tsid, tclass);
634 node = avc_search_node(avc, ssid, tsid, tclass);
611
612 if (node)
613 return node;
614
615 avc_cache_stats_incr(misses);
616 return NULL;
617}
618
635
636 if (node)
637 return node;
638
639 avc_cache_stats_incr(misses);
640 return NULL;
641}
642
619static int avc_latest_notif_update(int seqno, int is_insert)
643static int avc_latest_notif_update(struct selinux_avc *avc,
644 int seqno, int is_insert)
620{
621 int ret = 0;
622 static DEFINE_SPINLOCK(notif_lock);
623 unsigned long flag;
624
625 spin_lock_irqsave(&notif_lock, flag);
626 if (is_insert) {
645{
646 int ret = 0;
647 static DEFINE_SPINLOCK(notif_lock);
648 unsigned long flag;
649
650 spin_lock_irqsave(&notif_lock, flag);
651 if (is_insert) {
627 if (seqno < avc_cache.latest_notif) {
652 if (seqno < avc->avc_cache.latest_notif) {
628 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
653 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
629 seqno, avc_cache.latest_notif);
654 seqno, avc->avc_cache.latest_notif);
630 ret = -EAGAIN;
631 }
632 } else {
655 ret = -EAGAIN;
656 }
657 } else {
633 if (seqno > avc_cache.latest_notif)
634 avc_cache.latest_notif = seqno;
658 if (seqno > avc->avc_cache.latest_notif)
659 avc->avc_cache.latest_notif = seqno;
635 }
636 spin_unlock_irqrestore(&notif_lock, flag);
637
638 return ret;
639}
640
641/**
642 * avc_insert - Insert an AVC entry.

--- 8 unchanged lines hidden (view full) ---

651 * The access vectors and the sequence number are
652 * normally provided by the security server in
653 * response to a security_compute_av() call. If the
654 * sequence number @avd->seqno is not less than the latest
655 * revocation notification, then the function copies
656 * the access vectors into a cache entry, returns
657 * avc_node inserted. Otherwise, this function returns NULL.
658 */
660 }
661 spin_unlock_irqrestore(&notif_lock, flag);
662
663 return ret;
664}
665
666/**
667 * avc_insert - Insert an AVC entry.

--- 8 unchanged lines hidden (view full) ---

676 * The access vectors and the sequence number are
677 * normally provided by the security server in
678 * response to a security_compute_av() call. If the
679 * sequence number @avd->seqno is not less than the latest
680 * revocation notification, then the function copies
681 * the access vectors into a cache entry, returns
682 * avc_node inserted. Otherwise, this function returns NULL.
683 */
659static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass,
660 struct av_decision *avd,
661 struct avc_xperms_node *xp_node)
684static struct avc_node *avc_insert(struct selinux_avc *avc,
685 u32 ssid, u32 tsid, u16 tclass,
686 struct av_decision *avd,
687 struct avc_xperms_node *xp_node)
662{
663 struct avc_node *pos, *node = NULL;
664 int hvalue;
665 unsigned long flag;
666
688{
689 struct avc_node *pos, *node = NULL;
690 int hvalue;
691 unsigned long flag;
692
667 if (avc_latest_notif_update(avd->seqno, 1))
693 if (avc_latest_notif_update(avc, avd->seqno, 1))
668 goto out;
669
694 goto out;
695
670 node = avc_alloc_node();
696 node = avc_alloc_node(avc);
671 if (node) {
672 struct hlist_head *head;
673 spinlock_t *lock;
674 int rc = 0;
675
676 hvalue = avc_hash(ssid, tsid, tclass);
677 avc_node_populate(node, ssid, tsid, tclass, avd);
678 rc = avc_xperms_populate(node, xp_node);
679 if (rc) {
680 kmem_cache_free(avc_node_cachep, node);
681 return NULL;
682 }
697 if (node) {
698 struct hlist_head *head;
699 spinlock_t *lock;
700 int rc = 0;
701
702 hvalue = avc_hash(ssid, tsid, tclass);
703 avc_node_populate(node, ssid, tsid, tclass, avd);
704 rc = avc_xperms_populate(node, xp_node);
705 if (rc) {
706 kmem_cache_free(avc_node_cachep, node);
707 return NULL;
708 }
683 head = &avc_cache.slots[hvalue];
684 lock = &avc_cache.slots_lock[hvalue];
709 head = &avc->avc_cache.slots[hvalue];
710 lock = &avc->avc_cache.slots_lock[hvalue];
685
686 spin_lock_irqsave(lock, flag);
687 hlist_for_each_entry(pos, head, list) {
688 if (pos->ae.ssid == ssid &&
689 pos->ae.tsid == tsid &&
690 pos->ae.tclass == tclass) {
711
712 spin_lock_irqsave(lock, flag);
713 hlist_for_each_entry(pos, head, list) {
714 if (pos->ae.ssid == ssid &&
715 pos->ae.tsid == tsid &&
716 pos->ae.tclass == tclass) {
691 avc_node_replace(node, pos);
717 avc_node_replace(avc, node, pos);
692 goto found;
693 }
694 }
695 hlist_add_head_rcu(&node->list, head);
696found:
697 spin_unlock_irqrestore(lock, flag);
698 }
699out:

--- 21 unchanged lines hidden (view full) ---

721 * will be called by generic audit code
722 * @ab: the audit buffer
723 * @a: audit_data
724 */
725static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
726{
727 struct common_audit_data *ad = a;
728 audit_log_format(ab, " ");
718 goto found;
719 }
720 }
721 hlist_add_head_rcu(&node->list, head);
722found:
723 spin_unlock_irqrestore(lock, flag);
724 }
725out:

--- 21 unchanged lines hidden (view full) ---

747 * will be called by generic audit code
748 * @ab: the audit buffer
749 * @a: audit_data
750 */
751static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
752{
753 struct common_audit_data *ad = a;
754 audit_log_format(ab, " ");
729 avc_dump_query(ab, ad->selinux_audit_data->ssid,
730 ad->selinux_audit_data->tsid,
731 ad->selinux_audit_data->tclass);
755 avc_dump_query(ab, ad->selinux_audit_data->state,
756 ad->selinux_audit_data->ssid,
757 ad->selinux_audit_data->tsid,
758 ad->selinux_audit_data->tclass);
732 if (ad->selinux_audit_data->denied) {
733 audit_log_format(ab, " permissive=%u",
734 ad->selinux_audit_data->result ? 0 : 1);
735 }
736}
737
738/* This is the slow part of avc audit with big stack footprint */
759 if (ad->selinux_audit_data->denied) {
760 audit_log_format(ab, " permissive=%u",
761 ad->selinux_audit_data->result ? 0 : 1);
762 }
763}
764
765/* This is the slow part of avc audit with big stack footprint */
739noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
740 u32 requested, u32 audited, u32 denied, int result,
741 struct common_audit_data *a,
742 unsigned flags)
766noinline int slow_avc_audit(struct selinux_state *state,
767 u32 ssid, u32 tsid, u16 tclass,
768 u32 requested, u32 audited, u32 denied, int result,
769 struct common_audit_data *a,
770 unsigned int flags)
743{
744 struct common_audit_data stack_data;
745 struct selinux_audit_data sad;
746
747 if (!a) {
748 a = &stack_data;
749 a->type = LSM_AUDIT_DATA_NONE;
750 }

--- 11 unchanged lines hidden (view full) ---

762
763 sad.tclass = tclass;
764 sad.requested = requested;
765 sad.ssid = ssid;
766 sad.tsid = tsid;
767 sad.audited = audited;
768 sad.denied = denied;
769 sad.result = result;
771{
772 struct common_audit_data stack_data;
773 struct selinux_audit_data sad;
774
775 if (!a) {
776 a = &stack_data;
777 a->type = LSM_AUDIT_DATA_NONE;
778 }

--- 11 unchanged lines hidden (view full) ---

790
791 sad.tclass = tclass;
792 sad.requested = requested;
793 sad.ssid = ssid;
794 sad.tsid = tsid;
795 sad.audited = audited;
796 sad.denied = denied;
797 sad.result = result;
798 sad.state = state;
770
771 a->selinux_audit_data = &sad;
772
773 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
774 return 0;
775}
776
777/**

--- 32 unchanged lines hidden (view full) ---

810 * @seqno : sequence number when decision was made
811 * @xpd: extended_perms_decision to be added to the node
812 *
813 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
814 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
815 * otherwise, this function updates the AVC entry. The original AVC-entry object
816 * will release later by RCU.
817 */
799
800 a->selinux_audit_data = &sad;
801
802 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
803 return 0;
804}
805
806/**

--- 32 unchanged lines hidden (view full) ---

839 * @seqno : sequence number when decision was made
840 * @xpd: extended_perms_decision to be added to the node
841 *
842 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
843 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
844 * otherwise, this function updates the AVC entry. The original AVC-entry object
845 * will release later by RCU.
846 */
818static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
819 u32 tsid, u16 tclass, u32 seqno,
820 struct extended_perms_decision *xpd,
821 u32 flags)
847static int avc_update_node(struct selinux_avc *avc,
848 u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
849 u32 tsid, u16 tclass, u32 seqno,
850 struct extended_perms_decision *xpd,
851 u32 flags)
822{
823 int hvalue, rc = 0;
824 unsigned long flag;
825 struct avc_node *pos, *node, *orig = NULL;
826 struct hlist_head *head;
827 spinlock_t *lock;
828
852{
853 int hvalue, rc = 0;
854 unsigned long flag;
855 struct avc_node *pos, *node, *orig = NULL;
856 struct hlist_head *head;
857 spinlock_t *lock;
858
829 node = avc_alloc_node();
859 node = avc_alloc_node(avc);
830 if (!node) {
831 rc = -ENOMEM;
832 goto out;
833 }
834
835 /* Lock the target slot */
836 hvalue = avc_hash(ssid, tsid, tclass);
837
860 if (!node) {
861 rc = -ENOMEM;
862 goto out;
863 }
864
865 /* Lock the target slot */
866 hvalue = avc_hash(ssid, tsid, tclass);
867
838 head = &avc_cache.slots[hvalue];
839 lock = &avc_cache.slots_lock[hvalue];
868 head = &avc->avc_cache.slots[hvalue];
869 lock = &avc->avc_cache.slots_lock[hvalue];
840
841 spin_lock_irqsave(lock, flag);
842
843 hlist_for_each_entry(pos, head, list) {
844 if (ssid == pos->ae.ssid &&
845 tsid == pos->ae.tsid &&
846 tclass == pos->ae.tclass &&
847 seqno == pos->ae.avd.seqno){
848 orig = pos;
849 break;
850 }
851 }
852
853 if (!orig) {
854 rc = -ENOENT;
870
871 spin_lock_irqsave(lock, flag);
872
873 hlist_for_each_entry(pos, head, list) {
874 if (ssid == pos->ae.ssid &&
875 tsid == pos->ae.tsid &&
876 tclass == pos->ae.tclass &&
877 seqno == pos->ae.avd.seqno){
878 orig = pos;
879 break;
880 }
881 }
882
883 if (!orig) {
884 rc = -ENOENT;
855 avc_node_kill(node);
885 avc_node_kill(avc, node);
856 goto out_unlock;
857 }
858
859 /*
860 * Copy and replace original node.
861 */
862
863 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);

--- 27 unchanged lines hidden (view full) ---

891 break;
892 case AVC_CALLBACK_AUDITDENY_DISABLE:
893 node->ae.avd.auditdeny &= ~perms;
894 break;
895 case AVC_CALLBACK_ADD_XPERMS:
896 avc_add_xperms_decision(node, xpd);
897 break;
898 }
886 goto out_unlock;
887 }
888
889 /*
890 * Copy and replace original node.
891 */
892
893 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);

--- 27 unchanged lines hidden (view full) ---

921 break;
922 case AVC_CALLBACK_AUDITDENY_DISABLE:
923 node->ae.avd.auditdeny &= ~perms;
924 break;
925 case AVC_CALLBACK_ADD_XPERMS:
926 avc_add_xperms_decision(node, xpd);
927 break;
928 }
899 avc_node_replace(node, orig);
929 avc_node_replace(avc, node, orig);
900out_unlock:
901 spin_unlock_irqrestore(lock, flag);
902out:
903 return rc;
904}
905
906/**
907 * avc_flush - Flush the cache
908 */
930out_unlock:
931 spin_unlock_irqrestore(lock, flag);
932out:
933 return rc;
934}
935
936/**
937 * avc_flush - Flush the cache
938 */
909static void avc_flush(void)
939static void avc_flush(struct selinux_avc *avc)
910{
911 struct hlist_head *head;
912 struct avc_node *node;
913 spinlock_t *lock;
914 unsigned long flag;
915 int i;
916
917 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
940{
941 struct hlist_head *head;
942 struct avc_node *node;
943 spinlock_t *lock;
944 unsigned long flag;
945 int i;
946
947 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
918 head = &avc_cache.slots[i];
919 lock = &avc_cache.slots_lock[i];
948 head = &avc->avc_cache.slots[i];
949 lock = &avc->avc_cache.slots_lock[i];
920
921 spin_lock_irqsave(lock, flag);
922 /*
923 * With preemptable RCU, the outer spinlock does not
924 * prevent RCU grace periods from ending.
925 */
926 rcu_read_lock();
927 hlist_for_each_entry(node, head, list)
950
951 spin_lock_irqsave(lock, flag);
952 /*
953 * With preemptable RCU, the outer spinlock does not
954 * prevent RCU grace periods from ending.
955 */
956 rcu_read_lock();
957 hlist_for_each_entry(node, head, list)
928 avc_node_delete(node);
958 avc_node_delete(avc, node);
929 rcu_read_unlock();
930 spin_unlock_irqrestore(lock, flag);
931 }
932}
933
934/**
935 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
936 * @seqno: policy sequence number
937 */
959 rcu_read_unlock();
960 spin_unlock_irqrestore(lock, flag);
961 }
962}
963
964/**
965 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
966 * @seqno: policy sequence number
967 */
938int avc_ss_reset(u32 seqno)
968int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
939{
940 struct avc_callback_node *c;
941 int rc = 0, tmprc;
942
969{
970 struct avc_callback_node *c;
971 int rc = 0, tmprc;
972
943 avc_flush();
973 avc_flush(avc);
944
945 for (c = avc_callbacks; c; c = c->next) {
946 if (c->events & AVC_CALLBACK_RESET) {
947 tmprc = c->callback(AVC_CALLBACK_RESET);
948 /* save the first error encountered for the return
949 value and continue processing the callbacks */
950 if (!rc)
951 rc = tmprc;
952 }
953 }
954
974
975 for (c = avc_callbacks; c; c = c->next) {
976 if (c->events & AVC_CALLBACK_RESET) {
977 tmprc = c->callback(AVC_CALLBACK_RESET);
978 /* save the first error encountered for the return
979 value and continue processing the callbacks */
980 if (!rc)
981 rc = tmprc;
982 }
983 }
984
955 avc_latest_notif_update(seqno, 0);
985 avc_latest_notif_update(avc, seqno, 0);
956 return rc;
957}
958
959/*
960 * Slow-path helper function for avc_has_perm_noaudit,
961 * when the avc_node lookup fails. We get called with
962 * the RCU read lock held, and need to return with it
963 * still held, but drop if for the security compute.
964 *
965 * Don't inline this, since it's the slow-path and just
966 * results in a bigger stack frame.
967 */
986 return rc;
987}
988
989/*
990 * Slow-path helper function for avc_has_perm_noaudit,
991 * when the avc_node lookup fails. We get called with
992 * the RCU read lock held, and need to return with it
993 * still held, but drop if for the security compute.
994 *
995 * Don't inline this, since it's the slow-path and just
996 * results in a bigger stack frame.
997 */
968static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
969 u16 tclass, struct av_decision *avd,
970 struct avc_xperms_node *xp_node)
998static noinline
999struct avc_node *avc_compute_av(struct selinux_state *state,
1000 u32 ssid, u32 tsid,
1001 u16 tclass, struct av_decision *avd,
1002 struct avc_xperms_node *xp_node)
971{
972 rcu_read_unlock();
973 INIT_LIST_HEAD(&xp_node->xpd_head);
1003{
1004 rcu_read_unlock();
1005 INIT_LIST_HEAD(&xp_node->xpd_head);
974 security_compute_av(&selinux_state, ssid, tsid, tclass,
975 avd, &xp_node->xp);
1006 security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
976 rcu_read_lock();
1007 rcu_read_lock();
977 return avc_insert(ssid, tsid, tclass, avd, xp_node);
1008 return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
978}
979
1009}
1010
980static noinline int avc_denied(u32 ssid, u32 tsid,
981 u16 tclass, u32 requested,
982 u8 driver, u8 xperm, unsigned flags,
983 struct av_decision *avd)
1011static noinline int avc_denied(struct selinux_state *state,
1012 u32 ssid, u32 tsid,
1013 u16 tclass, u32 requested,
1014 u8 driver, u8 xperm, unsigned int flags,
1015 struct av_decision *avd)
984{
985 if (flags & AVC_STRICT)
986 return -EACCES;
987
1016{
1017 if (flags & AVC_STRICT)
1018 return -EACCES;
1019
988 if (enforcing_enabled(&selinux_state) &&
1020 if (enforcing_enabled(state) &&
989 !(avd->flags & AVD_FLAGS_PERMISSIVE))
990 return -EACCES;
991
1021 !(avd->flags & AVD_FLAGS_PERMISSIVE))
1022 return -EACCES;
1023
992 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid,
993 tsid, tclass, avd->seqno, NULL, flags);
1024 avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1025 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
994 return 0;
995}
996
997/*
998 * The avc extended permissions logic adds an additional 256 bits of
999 * permissions to an avc node when extended permissions for that node are
1000 * specified in the avtab. If the additional 256 permissions is not adequate,
1001 * as-is the case with ioctls, then multiple may be chained together and the
1002 * driver field is used to specify which set contains the permission.
1003 */
1026 return 0;
1027}
1028
1029/*
1030 * The avc extended permissions logic adds an additional 256 bits of
1031 * permissions to an avc node when extended permissions for that node are
1032 * specified in the avtab. If the additional 256 permissions is not adequate,
1033 * as-is the case with ioctls, then multiple may be chained together and the
1034 * driver field is used to specify which set contains the permission.
1035 */
1004int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1005 u8 driver, u8 xperm, struct common_audit_data *ad)
1036int avc_has_extended_perms(struct selinux_state *state,
1037 u32 ssid, u32 tsid, u16 tclass, u32 requested,
1038 u8 driver, u8 xperm, struct common_audit_data *ad)
1006{
1007 struct avc_node *node;
1008 struct av_decision avd;
1009 u32 denied;
1010 struct extended_perms_decision local_xpd;
1011 struct extended_perms_decision *xpd = NULL;
1012 struct extended_perms_data allowed;
1013 struct extended_perms_data auditallow;
1014 struct extended_perms_data dontaudit;
1015 struct avc_xperms_node local_xp_node;
1016 struct avc_xperms_node *xp_node;
1017 int rc = 0, rc2;
1018
1019 xp_node = &local_xp_node;
1020 BUG_ON(!requested);
1021
1022 rcu_read_lock();
1023
1039{
1040 struct avc_node *node;
1041 struct av_decision avd;
1042 u32 denied;
1043 struct extended_perms_decision local_xpd;
1044 struct extended_perms_decision *xpd = NULL;
1045 struct extended_perms_data allowed;
1046 struct extended_perms_data auditallow;
1047 struct extended_perms_data dontaudit;
1048 struct avc_xperms_node local_xp_node;
1049 struct avc_xperms_node *xp_node;
1050 int rc = 0, rc2;
1051
1052 xp_node = &local_xp_node;
1053 BUG_ON(!requested);
1054
1055 rcu_read_lock();
1056
1024 node = avc_lookup(ssid, tsid, tclass);
1057 node = avc_lookup(state->avc, ssid, tsid, tclass);
1025 if (unlikely(!node)) {
1058 if (unlikely(!node)) {
1026 node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1059 node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1027 } else {
1028 memcpy(&avd, &node->ae.avd, sizeof(avd));
1029 xp_node = node->ae.xp_node;
1030 }
1031 /* if extended permissions are not defined, only consider av_decision */
1032 if (!xp_node || !xp_node->xp.len)
1033 goto decision;
1034

--- 7 unchanged lines hidden (view full) ---

1042 * Compute the extended_perms_decision only if the driver
1043 * is flagged
1044 */
1045 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1046 avd.allowed &= ~requested;
1047 goto decision;
1048 }
1049 rcu_read_unlock();
1060 } else {
1061 memcpy(&avd, &node->ae.avd, sizeof(avd));
1062 xp_node = node->ae.xp_node;
1063 }
1064 /* if extended permissions are not defined, only consider av_decision */
1065 if (!xp_node || !xp_node->xp.len)
1066 goto decision;
1067

--- 7 unchanged lines hidden (view full) ---

1075 * Compute the extended_perms_decision only if the driver
1076 * is flagged
1077 */
1078 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1079 avd.allowed &= ~requested;
1080 goto decision;
1081 }
1082 rcu_read_unlock();
1050 security_compute_xperms_decision(&selinux_state, ssid, tsid,
1051 tclass, driver, &local_xpd);
1083 security_compute_xperms_decision(state, ssid, tsid, tclass,
1084 driver, &local_xpd);
1052 rcu_read_lock();
1085 rcu_read_lock();
1053 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm,
1054 ssid, tsid, tclass, avd.seqno, &local_xpd, 0);
1086 avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1087 driver, xperm, ssid, tsid, tclass, avd.seqno,
1088 &local_xpd, 0);
1055 } else {
1056 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1057 }
1058 xpd = &local_xpd;
1059
1060 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1061 avd.allowed &= ~requested;
1062
1063decision:
1064 denied = requested & ~(avd.allowed);
1065 if (unlikely(denied))
1089 } else {
1090 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1091 }
1092 xpd = &local_xpd;
1093
1094 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1095 avd.allowed &= ~requested;
1096
1097decision:
1098 denied = requested & ~(avd.allowed);
1099 if (unlikely(denied))
1066 rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm,
1067 AVC_EXTENDED_PERMS, &avd);
1100 rc = avc_denied(state, ssid, tsid, tclass, requested,
1101 driver, xperm, AVC_EXTENDED_PERMS, &avd);
1068
1069 rcu_read_unlock();
1070
1102
1103 rcu_read_unlock();
1104
1071 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1105 rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1072 &avd, xpd, xperm, rc, ad);
1073 if (rc2)
1074 return rc2;
1075 return rc;
1076}
1077
1078/**
1079 * avc_has_perm_noaudit - Check permissions but perform no auditing.

--- 10 unchanged lines hidden (view full) ---

1090 * a new decision and add it to the cache. Return a copy of the decisions
1091 * in @avd. Return %0 if all @requested permissions are granted,
1092 * -%EACCES if any permissions are denied, or another -errno upon
1093 * other errors. This function is typically called by avc_has_perm(),
1094 * but may also be called directly to separate permission checking from
1095 * auditing, e.g. in cases where a lock must be held for the check but
1096 * should be released for the auditing.
1097 */
1106 &avd, xpd, xperm, rc, ad);
1107 if (rc2)
1108 return rc2;
1109 return rc;
1110}
1111
1112/**
1113 * avc_has_perm_noaudit - Check permissions but perform no auditing.

--- 10 unchanged lines hidden (view full) ---

1124 * a new decision and add it to the cache. Return a copy of the decisions
1125 * in @avd. Return %0 if all @requested permissions are granted,
1126 * -%EACCES if any permissions are denied, or another -errno upon
1127 * other errors. This function is typically called by avc_has_perm(),
1128 * but may also be called directly to separate permission checking from
1129 * auditing, e.g. in cases where a lock must be held for the check but
1130 * should be released for the auditing.
1131 */
1098inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1099 u16 tclass, u32 requested,
1100 unsigned flags,
1101 struct av_decision *avd)
1132inline int avc_has_perm_noaudit(struct selinux_state *state,
1133 u32 ssid, u32 tsid,
1134 u16 tclass, u32 requested,
1135 unsigned int flags,
1136 struct av_decision *avd)
1102{
1103 struct avc_node *node;
1104 struct avc_xperms_node xp_node;
1105 int rc = 0;
1106 u32 denied;
1107
1108 BUG_ON(!requested);
1109
1110 rcu_read_lock();
1111
1137{
1138 struct avc_node *node;
1139 struct avc_xperms_node xp_node;
1140 int rc = 0;
1141 u32 denied;
1142
1143 BUG_ON(!requested);
1144
1145 rcu_read_lock();
1146
1112 node = avc_lookup(ssid, tsid, tclass);
1147 node = avc_lookup(state->avc, ssid, tsid, tclass);
1113 if (unlikely(!node))
1148 if (unlikely(!node))
1114 node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1149 node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1115 else
1116 memcpy(avd, &node->ae.avd, sizeof(*avd));
1117
1118 denied = requested & ~(avd->allowed);
1119 if (unlikely(denied))
1150 else
1151 memcpy(avd, &node->ae.avd, sizeof(*avd));
1152
1153 denied = requested & ~(avd->allowed);
1154 if (unlikely(denied))
1120 rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd);
1155 rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1156 flags, avd);
1121
1122 rcu_read_unlock();
1123 return rc;
1124}
1125
1126/**
1127 * avc_has_perm - Check permissions and perform any appropriate auditing.
1128 * @ssid: source security identifier

--- 5 unchanged lines hidden (view full) ---

1134 * Check the AVC to determine whether the @requested permissions are granted
1135 * for the SID pair (@ssid, @tsid), interpreting the permissions
1136 * based on @tclass, and call the security server on a cache miss to obtain
1137 * a new decision and add it to the cache. Audit the granting or denial of
1138 * permissions in accordance with the policy. Return %0 if all @requested
1139 * permissions are granted, -%EACCES if any permissions are denied, or
1140 * another -errno upon other errors.
1141 */
1157
1158 rcu_read_unlock();
1159 return rc;
1160}
1161
1162/**
1163 * avc_has_perm - Check permissions and perform any appropriate auditing.
1164 * @ssid: source security identifier

--- 5 unchanged lines hidden (view full) ---

1170 * Check the AVC to determine whether the @requested permissions are granted
1171 * for the SID pair (@ssid, @tsid), interpreting the permissions
1172 * based on @tclass, and call the security server on a cache miss to obtain
1173 * a new decision and add it to the cache. Audit the granting or denial of
1174 * permissions in accordance with the policy. Return %0 if all @requested
1175 * permissions are granted, -%EACCES if any permissions are denied, or
1176 * another -errno upon other errors.
1177 */
1142int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1178int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1143 u32 requested, struct common_audit_data *auditdata)
1144{
1145 struct av_decision avd;
1146 int rc, rc2;
1147
1179 u32 requested, struct common_audit_data *auditdata)
1180{
1181 struct av_decision avd;
1182 int rc, rc2;
1183
1148 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1184 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1185 &avd);
1149
1186
1150 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 0);
1187 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1188 auditdata, 0);
1151 if (rc2)
1152 return rc2;
1153 return rc;
1154}
1155
1189 if (rc2)
1190 return rc2;
1191 return rc;
1192}
1193
1156int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
1157 u32 requested, struct common_audit_data *auditdata,
1194int avc_has_perm_flags(struct selinux_state *state,
1195 u32 ssid, u32 tsid, u16 tclass, u32 requested,
1196 struct common_audit_data *auditdata,
1158 int flags)
1159{
1160 struct av_decision avd;
1161 int rc, rc2;
1162
1197 int flags)
1198{
1199 struct av_decision avd;
1200 int rc, rc2;
1201
1163 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1202 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1203 &avd);
1164
1204
1165 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1205 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1166 auditdata, flags);
1167 if (rc2)
1168 return rc2;
1169 return rc;
1170}
1171
1206 auditdata, flags);
1207 if (rc2)
1208 return rc2;
1209 return rc;
1210}
1211
1172u32 avc_policy_seqno(void)
1212u32 avc_policy_seqno(struct selinux_state *state)
1173{
1213{
1174 return avc_cache.latest_notif;
1214 return state->avc->avc_cache.latest_notif;
1175}
1176
1177void avc_disable(void)
1178{
1179 /*
1180 * If you are looking at this because you have realized that we are
1181 * not destroying the avc_node_cachep it might be easy to fix, but
1182 * I don't know the memory barrier semantics well enough to know. It's
1183 * possible that some other task dereferenced security_ops when
1184 * it still pointed to selinux operations. If that is the case it's
1185 * possible that it is about to use the avc and is about to need the
1186 * avc_node_cachep. I know I could wrap the security.c security_ops call
1187 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
1188 * the cache and get that memory back.
1189 */
1190 if (avc_node_cachep) {
1215}
1216
1217void avc_disable(void)
1218{
1219 /*
1220 * If you are looking at this because you have realized that we are
1221 * not destroying the avc_node_cachep it might be easy to fix, but
1222 * I don't know the memory barrier semantics well enough to know. It's
1223 * possible that some other task dereferenced security_ops when
1224 * it still pointed to selinux operations. If that is the case it's
1225 * possible that it is about to use the avc and is about to need the
1226 * avc_node_cachep. I know I could wrap the security.c security_ops call
1227 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
1228 * the cache and get that memory back.
1229 */
1230 if (avc_node_cachep) {
1191 avc_flush();
1231 avc_flush(selinux_state.avc);
1192 /* kmem_cache_destroy(avc_node_cachep); */
1193 }
1194}
1232 /* kmem_cache_destroy(avc_node_cachep); */
1233 }
1234}