big_key.c (498495dba268b20e8eadd7fe93c140c68b6cc9d2) big_key.c (d9f4bb1a0f4db493efe6d7c58ffe696a57de7eb3)
1/* Large capacity key type
2 *
3 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public Licence

--- 8 unchanged lines hidden (view full) ---

17#include <linux/shmem_fs.h>
18#include <linux/err.h>
19#include <linux/scatterlist.h>
20#include <linux/random.h>
21#include <keys/user-type.h>
22#include <keys/big_key-type.h>
23#include <crypto/aead.h>
24
1/* Large capacity key type
2 *
3 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public Licence

--- 8 unchanged lines hidden (view full) ---

17#include <linux/shmem_fs.h>
18#include <linux/err.h>
19#include <linux/scatterlist.h>
20#include <linux/random.h>
21#include <keys/user-type.h>
22#include <keys/big_key-type.h>
23#include <crypto/aead.h>
24
25struct big_key_buf {
26 unsigned int nr_pages;
27 void *virt;
28 struct scatterlist *sg;
29 struct page *pages[];
30};
31
25/*
26 * Layout of key payload words.
27 */
28enum {
29 big_key_data,
30 big_key_path,
31 big_key_path_2nd_part,
32 big_key_len,

--- 53 unchanged lines hidden (view full) ---

86/*
87 * Since changing the key affects the entire object, we need a mutex.
88 */
89static DEFINE_MUTEX(big_key_aead_lock);
90
91/*
92 * Encrypt/decrypt big_key data
93 */
32/*
33 * Layout of key payload words.
34 */
35enum {
36 big_key_data,
37 big_key_path,
38 big_key_path_2nd_part,
39 big_key_len,

--- 53 unchanged lines hidden (view full) ---

93/*
94 * Since changing the key affects the entire object, we need a mutex.
95 */
96static DEFINE_MUTEX(big_key_aead_lock);
97
98/*
99 * Encrypt/decrypt big_key data
100 */
94static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key)
101static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
95{
96 int ret;
102{
103 int ret;
97 struct scatterlist sgio;
98 struct aead_request *aead_req;
99 /* We always use a zero nonce. The reason we can get away with this is
100 * because we're using a different randomly generated key for every
101 * different encryption. Notably, too, key_type_big_key doesn't define
102 * an .update function, so there's no chance we'll wind up reusing the
103 * key to encrypt updated data. Simply put: one key, one encryption.
104 */
105 u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];
106
107 aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
108 if (!aead_req)
109 return -ENOMEM;
110
111 memset(zero_nonce, 0, sizeof(zero_nonce));
104 struct aead_request *aead_req;
105 /* We always use a zero nonce. The reason we can get away with this is
106 * because we're using a different randomly generated key for every
107 * different encryption. Notably, too, key_type_big_key doesn't define
108 * an .update function, so there's no chance we'll wind up reusing the
109 * key to encrypt updated data. Simply put: one key, one encryption.
110 */
111 u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];
112
113 aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
114 if (!aead_req)
115 return -ENOMEM;
116
117 memset(zero_nonce, 0, sizeof(zero_nonce));
112 sg_init_one(&sgio, data, datalen + (op == BIG_KEY_ENC ? ENC_AUTHTAG_SIZE : 0));
113 aead_request_set_crypt(aead_req, &sgio, &sgio, datalen, zero_nonce);
118 aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
114 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
115 aead_request_set_ad(aead_req, 0);
116
117 mutex_lock(&big_key_aead_lock);
118 if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
119 ret = -EAGAIN;
120 goto error;
121 }
122 if (op == BIG_KEY_ENC)
123 ret = crypto_aead_encrypt(aead_req);
124 else
125 ret = crypto_aead_decrypt(aead_req);
126error:
127 mutex_unlock(&big_key_aead_lock);
128 aead_request_free(aead_req);
129 return ret;
130}
131
132/*
119 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
120 aead_request_set_ad(aead_req, 0);
121
122 mutex_lock(&big_key_aead_lock);
123 if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
124 ret = -EAGAIN;
125 goto error;
126 }
127 if (op == BIG_KEY_ENC)
128 ret = crypto_aead_encrypt(aead_req);
129 else
130 ret = crypto_aead_decrypt(aead_req);
131error:
132 mutex_unlock(&big_key_aead_lock);
133 aead_request_free(aead_req);
134 return ret;
135}
136
137/*
138 * Free up the buffer.
139 */
140static void big_key_free_buffer(struct big_key_buf *buf)
141{
142 unsigned int i;
143
144 if (buf->virt) {
145 memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
146 vunmap(buf->virt);
147 }
148
149 for (i = 0; i < buf->nr_pages; i++)
150 if (buf->pages[i])
151 __free_page(buf->pages[i]);
152
153 kfree(buf);
154}
155
156/*
157 * Allocate a buffer consisting of a set of pages with a virtual mapping
158 * applied over them.
159 */
160static void *big_key_alloc_buffer(size_t len)
161{
162 struct big_key_buf *buf;
163 unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
164 unsigned int i, l;
165
166 buf = kzalloc(sizeof(struct big_key_buf) +
167 sizeof(struct page) * npg +
168 sizeof(struct scatterlist) * npg,
169 GFP_KERNEL);
170 if (!buf)
171 return NULL;
172
173 buf->nr_pages = npg;
174 buf->sg = (void *)(buf->pages + npg);
175 sg_init_table(buf->sg, npg);
176
177 for (i = 0; i < buf->nr_pages; i++) {
178 buf->pages[i] = alloc_page(GFP_KERNEL);
179 if (!buf->pages[i])
180 goto nomem;
181
182 l = min_t(size_t, len, PAGE_SIZE);
183 sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
184 len -= l;
185 }
186
187 buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
188 if (!buf->virt)
189 goto nomem;
190
191 return buf;
192
193nomem:
194 big_key_free_buffer(buf);
195 return NULL;
196}
197
198/*
133 * Preparse a big key
134 */
135int big_key_preparse(struct key_preparsed_payload *prep)
136{
199 * Preparse a big key
200 */
201int big_key_preparse(struct key_preparsed_payload *prep)
202{
203 struct big_key_buf *buf;
137 struct path *path = (struct path *)&prep->payload.data[big_key_path];
138 struct file *file;
139 u8 *enckey;
204 struct path *path = (struct path *)&prep->payload.data[big_key_path];
205 struct file *file;
206 u8 *enckey;
140 u8 *data = NULL;
141 ssize_t written;
207 ssize_t written;
142 size_t datalen = prep->datalen;
208 size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
143 int ret;
144
209 int ret;
210
145 ret = -EINVAL;
146 if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
211 if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
147 goto error;
212 return -EINVAL;
148
149 /* Set an arbitrary quota */
150 prep->quotalen = 16;
151
152 prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
153
154 if (datalen > BIG_KEY_FILE_THRESHOLD) {
155 /* Create a shmem file to store the data in. This will permit the data
156 * to be swapped out if needed.
157 *
158 * File content is stored encrypted with randomly generated key.
159 */
213
214 /* Set an arbitrary quota */
215 prep->quotalen = 16;
216
217 prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
218
219 if (datalen > BIG_KEY_FILE_THRESHOLD) {
220 /* Create a shmem file to store the data in. This will permit the data
221 * to be swapped out if needed.
222 *
223 * File content is stored encrypted with randomly generated key.
224 */
160 size_t enclen = datalen + ENC_AUTHTAG_SIZE;
161 loff_t pos = 0;
162
225 loff_t pos = 0;
226
163 data = kmalloc(enclen, GFP_KERNEL);
164 if (!data)
227 buf = big_key_alloc_buffer(enclen);
228 if (!buf)
165 return -ENOMEM;
229 return -ENOMEM;
166 memcpy(data, prep->data, datalen);
230 memcpy(buf->virt, prep->data, datalen);
167
168 /* generate random key */
169 enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
170 if (!enckey) {
171 ret = -ENOMEM;
172 goto error;
173 }
174 ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
175 if (unlikely(ret))
176 goto err_enckey;
177
178 /* encrypt aligned data */
231
232 /* generate random key */
233 enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
234 if (!enckey) {
235 ret = -ENOMEM;
236 goto error;
237 }
238 ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
239 if (unlikely(ret))
240 goto err_enckey;
241
242 /* encrypt aligned data */
179 ret = big_key_crypt(BIG_KEY_ENC, data, datalen, enckey);
243 ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
180 if (ret)
181 goto err_enckey;
182
183 /* save aligned data to file */
184 file = shmem_kernel_file_setup("", enclen, 0);
185 if (IS_ERR(file)) {
186 ret = PTR_ERR(file);
187 goto err_enckey;
188 }
189
244 if (ret)
245 goto err_enckey;
246
247 /* save aligned data to file */
248 file = shmem_kernel_file_setup("", enclen, 0);
249 if (IS_ERR(file)) {
250 ret = PTR_ERR(file);
251 goto err_enckey;
252 }
253
190 written = kernel_write(file, data, enclen, &pos);
254 written = kernel_write(file, buf->virt, enclen, &pos);
191 if (written != enclen) {
192 ret = written;
193 if (written >= 0)
194 ret = -ENOMEM;
195 goto err_fput;
196 }
197
198 /* Pin the mount and dentry to the key so that we can open it again
199 * later
200 */
201 prep->payload.data[big_key_data] = enckey;
202 *path = file->f_path;
203 path_get(path);
204 fput(file);
255 if (written != enclen) {
256 ret = written;
257 if (written >= 0)
258 ret = -ENOMEM;
259 goto err_fput;
260 }
261
262 /* Pin the mount and dentry to the key so that we can open it again
263 * later
264 */
265 prep->payload.data[big_key_data] = enckey;
266 *path = file->f_path;
267 path_get(path);
268 fput(file);
205 kzfree(data);
269 big_key_free_buffer(buf);
206 } else {
207 /* Just store the data in a buffer */
208 void *data = kmalloc(datalen, GFP_KERNEL);
209
210 if (!data)
211 return -ENOMEM;
212
213 prep->payload.data[big_key_data] = data;
214 memcpy(data, prep->data, prep->datalen);
215 }
216 return 0;
217
218err_fput:
219 fput(file);
220err_enckey:
221 kzfree(enckey);
222error:
270 } else {
271 /* Just store the data in a buffer */
272 void *data = kmalloc(datalen, GFP_KERNEL);
273
274 if (!data)
275 return -ENOMEM;
276
277 prep->payload.data[big_key_data] = data;
278 memcpy(data, prep->data, prep->datalen);
279 }
280 return 0;
281
282err_fput:
283 fput(file);
284err_enckey:
285 kzfree(enckey);
286error:
223 kzfree(data);
287 big_key_free_buffer(buf);
224 return ret;
225}
226
227/*
228 * Clear preparsement.
229 */
230void big_key_free_preparse(struct key_preparsed_payload *prep)
231{

--- 61 unchanged lines hidden (view full) ---

293{
294 size_t datalen = (size_t)key->payload.data[big_key_len];
295 long ret;
296
297 if (!buffer || buflen < datalen)
298 return datalen;
299
300 if (datalen > BIG_KEY_FILE_THRESHOLD) {
288 return ret;
289}
290
291/*
292 * Clear preparsement.
293 */
294void big_key_free_preparse(struct key_preparsed_payload *prep)
295{

--- 61 unchanged lines hidden (view full) ---

357{
358 size_t datalen = (size_t)key->payload.data[big_key_len];
359 long ret;
360
361 if (!buffer || buflen < datalen)
362 return datalen;
363
364 if (datalen > BIG_KEY_FILE_THRESHOLD) {
365 struct big_key_buf *buf;
301 struct path *path = (struct path *)&key->payload.data[big_key_path];
302 struct file *file;
366 struct path *path = (struct path *)&key->payload.data[big_key_path];
367 struct file *file;
303 u8 *data;
304 u8 *enckey = (u8 *)key->payload.data[big_key_data];
305 size_t enclen = datalen + ENC_AUTHTAG_SIZE;
306 loff_t pos = 0;
307
368 u8 *enckey = (u8 *)key->payload.data[big_key_data];
369 size_t enclen = datalen + ENC_AUTHTAG_SIZE;
370 loff_t pos = 0;
371
308 data = kmalloc(enclen, GFP_KERNEL);
309 if (!data)
372 buf = big_key_alloc_buffer(enclen);
373 if (!buf)
310 return -ENOMEM;
311
312 file = dentry_open(path, O_RDONLY, current_cred());
313 if (IS_ERR(file)) {
314 ret = PTR_ERR(file);
315 goto error;
316 }
317
318 /* read file to kernel and decrypt */
374 return -ENOMEM;
375
376 file = dentry_open(path, O_RDONLY, current_cred());
377 if (IS_ERR(file)) {
378 ret = PTR_ERR(file);
379 goto error;
380 }
381
382 /* read file to kernel and decrypt */
319 ret = kernel_read(file, data, enclen, &pos);
383 ret = kernel_read(file, buf->virt, enclen, &pos);
320 if (ret >= 0 && ret != enclen) {
321 ret = -EIO;
322 goto err_fput;
323 }
324
384 if (ret >= 0 && ret != enclen) {
385 ret = -EIO;
386 goto err_fput;
387 }
388
325 ret = big_key_crypt(BIG_KEY_DEC, data, enclen, enckey);
389 ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
326 if (ret)
327 goto err_fput;
328
329 ret = datalen;
330
331 /* copy decrypted data to user */
390 if (ret)
391 goto err_fput;
392
393 ret = datalen;
394
395 /* copy decrypted data to user */
332 if (copy_to_user(buffer, data, datalen) != 0)
396 if (copy_to_user(buffer, buf->virt, datalen) != 0)
333 ret = -EFAULT;
334
335err_fput:
336 fput(file);
337error:
397 ret = -EFAULT;
398
399err_fput:
400 fput(file);
401error:
338 kzfree(data);
402 big_key_free_buffer(buf);
339 } else {
340 ret = datalen;
341 if (copy_to_user(buffer, key->payload.data[big_key_data],
342 datalen) != 0)
343 ret = -EFAULT;
344 }
345
346 return ret;

--- 36 unchanged lines hidden ---
403 } else {
404 ret = datalen;
405 if (copy_to_user(buffer, key->payload.data[big_key_data],
406 datalen) != 0)
407 ret = -EFAULT;
408 }
409
410 return ret;

--- 36 unchanged lines hidden ---