dsa.c (bd954b826032e7bd6be8a53e30eb81c1b348aef6) | dsa.c (47d2ce03dcfb6b7f0373aac6c667715d94caba78) |
---|---|
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* | 1// SPDX-License-Identifier: GPL-2.0-or-later 2/* |
3 * net/dsa/dsa.c - Hardware switch handling | 3 * DSA topology and switch handling 4 * |
4 * Copyright (c) 2008-2009 Marvell Semiconductor 5 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org> | 5 * Copyright (c) 2008-2009 Marvell Semiconductor 6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org> |
7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch> |
|
6 */ 7 8#include <linux/device.h> | 8 */ 9 10#include <linux/device.h> |
11#include <linux/err.h> |
|
9#include <linux/list.h> 10#include <linux/module.h> 11#include <linux/netdevice.h> | 12#include <linux/list.h> 13#include <linux/module.h> 14#include <linux/netdevice.h> |
12#include <linux/sysfs.h> | 15#include <linux/slab.h> 16#include <linux/rtnetlink.h> 17#include <linux/of.h> 18#include <linux/of_mdio.h> 19#include <linux/of_net.h> 20#include <net/sch_generic.h> |
13 | 21 |
22#include "devlink.h" 23#include "dsa.h" |
|
14#include "dsa_priv.h" | 24#include "dsa_priv.h" |
25#include "master.h" 26#include "port.h" |
|
15#include "slave.h" | 27#include "slave.h" |
28#include "switch.h" |
|
16#include "tag.h" 17 | 29#include "tag.h" 30 |
31static DEFINE_MUTEX(dsa2_mutex); 32LIST_HEAD(dsa_tree_list); 33 34static struct workqueue_struct *dsa_owq; 35 36/* Track the bridges with forwarding offload enabled */ 37static unsigned long dsa_fwd_offloading_bridges; 38 39bool dsa_schedule_work(struct work_struct *work) 40{ 41 return queue_work(dsa_owq, work); 42} 43 44void dsa_flush_workqueue(void) 45{ 46 flush_workqueue(dsa_owq); 47} 48EXPORT_SYMBOL_GPL(dsa_flush_workqueue); 49 50/** 51 * dsa_lag_map() - Map LAG structure to a linear LAG array 52 * @dst: Tree in which to record the mapping. 53 * @lag: LAG structure that is to be mapped to the tree's array. 54 * 55 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the 56 * two spaces. The size of the mapping space is determined by the 57 * driver by setting ds->num_lag_ids. It is perfectly legal to leave 58 * it unset if it is not needed, in which case these functions become 59 * no-ops. 60 */ 61void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag) 62{ 63 unsigned int id; 64 65 for (id = 1; id <= dst->lags_len; id++) { 66 if (!dsa_lag_by_id(dst, id)) { 67 dst->lags[id - 1] = lag; 68 lag->id = id; 69 return; 70 } 71 } 72 73 /* No IDs left, which is OK. Some drivers do not need it. The 74 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id 75 * returns an error for this device when joining the LAG. The 76 * driver can then return -EOPNOTSUPP back to DSA, which will 77 * fall back to a software LAG. 78 */ 79} 80 81/** 82 * dsa_lag_unmap() - Remove a LAG ID mapping 83 * @dst: Tree in which the mapping is recorded. 84 * @lag: LAG structure that was mapped. 85 * 86 * As there may be multiple users of the mapping, it is only removed 87 * if there are no other references to it. 88 */ 89void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag) 90{ 91 unsigned int id; 92 93 dsa_lags_foreach_id(id, dst) { 94 if (dsa_lag_by_id(dst, id) == lag) { 95 dst->lags[id - 1] = NULL; 96 lag->id = 0; 97 break; 98 } 99 } 100} 101 102struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst, 103 const struct net_device *lag_dev) 104{ 105 struct dsa_port *dp; 106 107 list_for_each_entry(dp, &dst->ports, list) 108 if (dsa_port_lag_dev_get(dp) == lag_dev) 109 return dp->lag; 110 111 return NULL; 112} 113 114struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst, 115 const struct net_device *br) 116{ 117 struct dsa_port *dp; 118 119 list_for_each_entry(dp, &dst->ports, list) 120 if (dsa_port_bridge_dev_get(dp) == br) 121 return dp->bridge; 122 123 return NULL; 124} 125 126static int dsa_bridge_num_find(const struct net_device *bridge_dev) 127{ 128 struct dsa_switch_tree *dst; 129 130 list_for_each_entry(dst, &dsa_tree_list, list) { 131 struct dsa_bridge *bridge; 132 133 bridge = dsa_tree_bridge_find(dst, bridge_dev); 134 if (bridge) 135 return bridge->num; 136 } 137 138 return 0; 139} 140 141unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max) 142{ 143 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev); 144 145 /* Switches without FDB isolation support don't get unique 146 * bridge numbering 147 */ 148 if (!max) 149 return 0; 150 151 if (!bridge_num) { 152 /* First port that requests FDB isolation or TX forwarding 153 * offload for this bridge 154 */ 155 bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges, 156 DSA_MAX_NUM_OFFLOADING_BRIDGES, 157 1); 158 if (bridge_num >= max) 159 return 0; 160 161 set_bit(bridge_num, &dsa_fwd_offloading_bridges); 162 } 163 164 return bridge_num; 165} 166 167void dsa_bridge_num_put(const struct net_device *bridge_dev, 168 unsigned int bridge_num) 169{ 170 /* Since we refcount bridges, we know that when we call this function 171 * it is no longer in use, so we can just go ahead and remove it from 172 * the bit mask. 173 */ 174 clear_bit(bridge_num, &dsa_fwd_offloading_bridges); 175} 176 177struct dsa_switch *dsa_switch_find(int tree_index, int sw_index) 178{ 179 struct dsa_switch_tree *dst; 180 struct dsa_port *dp; 181 182 list_for_each_entry(dst, &dsa_tree_list, list) { 183 if (dst->index != tree_index) 184 continue; 185 186 list_for_each_entry(dp, &dst->ports, list) { 187 if (dp->ds->index != sw_index) 188 continue; 189 190 return dp->ds; 191 } 192 } 193 194 return NULL; 195} 196EXPORT_SYMBOL_GPL(dsa_switch_find); 197 198static struct dsa_switch_tree *dsa_tree_find(int index) 199{ 200 struct dsa_switch_tree *dst; 201 202 list_for_each_entry(dst, &dsa_tree_list, list) 203 if (dst->index == index) 204 return dst; 205 206 return NULL; 207} 208 209static struct dsa_switch_tree *dsa_tree_alloc(int index) 210{ 211 struct dsa_switch_tree *dst; 212 213 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 214 if (!dst) 215 return NULL; 216 217 dst->index = index; 218 219 INIT_LIST_HEAD(&dst->rtable); 220 221 INIT_LIST_HEAD(&dst->ports); 222 223 INIT_LIST_HEAD(&dst->list); 224 list_add_tail(&dst->list, &dsa_tree_list); 225 226 kref_init(&dst->refcount); 227 228 return dst; 229} 230 231static void dsa_tree_free(struct dsa_switch_tree *dst) 232{ 233 if (dst->tag_ops) 234 dsa_tag_driver_put(dst->tag_ops); 235 list_del(&dst->list); 236 kfree(dst); 237} 238 239static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst) 240{ 241 if (dst) 242 kref_get(&dst->refcount); 243 244 return dst; 245} 246 247static struct dsa_switch_tree *dsa_tree_touch(int index) 248{ 249 struct dsa_switch_tree *dst; 250 251 dst = dsa_tree_find(index); 252 if (dst) 253 return dsa_tree_get(dst); 254 else 255 return dsa_tree_alloc(index); 256} 257 258static void dsa_tree_release(struct kref *ref) 259{ 260 struct dsa_switch_tree *dst; 261 262 dst = container_of(ref, struct dsa_switch_tree, refcount); 263 264 dsa_tree_free(dst); 265} 266 267static void dsa_tree_put(struct dsa_switch_tree *dst) 268{ 269 if (dst) 270 kref_put(&dst->refcount, dsa_tree_release); 271} 272 273static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst, 274 struct device_node *dn) 275{ 276 struct dsa_port *dp; 277 278 list_for_each_entry(dp, &dst->ports, list) 279 if (dp->dn == dn) 280 return dp; 281 282 return NULL; 283} 284 285static struct dsa_link *dsa_link_touch(struct dsa_port *dp, 286 struct dsa_port *link_dp) 287{ 288 struct dsa_switch *ds = dp->ds; 289 struct dsa_switch_tree *dst; 290 struct dsa_link *dl; 291 292 dst = ds->dst; 293 294 list_for_each_entry(dl, &dst->rtable, list) 295 if (dl->dp == dp && dl->link_dp == link_dp) 296 return dl; 297 298 dl = kzalloc(sizeof(*dl), GFP_KERNEL); 299 if (!dl) 300 return NULL; 301 302 dl->dp = dp; 303 dl->link_dp = link_dp; 304 305 INIT_LIST_HEAD(&dl->list); 306 list_add_tail(&dl->list, &dst->rtable); 307 308 return dl; 309} 310 311static bool dsa_port_setup_routing_table(struct dsa_port *dp) 312{ 313 struct dsa_switch *ds = dp->ds; 314 struct dsa_switch_tree *dst = ds->dst; 315 struct device_node *dn = dp->dn; 316 struct of_phandle_iterator it; 317 struct dsa_port *link_dp; 318 struct dsa_link *dl; 319 int err; 320 321 of_for_each_phandle(&it, err, dn, "link", NULL, 0) { 322 link_dp = dsa_tree_find_port_by_node(dst, it.node); 323 if (!link_dp) { 324 of_node_put(it.node); 325 return false; 326 } 327 328 dl = dsa_link_touch(dp, link_dp); 329 if (!dl) { 330 of_node_put(it.node); 331 return false; 332 } 333 } 334 335 return true; 336} 337 338static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst) 339{ 340 bool complete = true; 341 struct dsa_port *dp; 342 343 list_for_each_entry(dp, &dst->ports, list) { 344 if (dsa_port_is_dsa(dp)) { 345 complete = dsa_port_setup_routing_table(dp); 346 if (!complete) 347 break; 348 } 349 } 350 351 return complete; 352} 353 354static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst) 355{ 356 struct dsa_port *dp; 357 358 list_for_each_entry(dp, &dst->ports, list) 359 if (dsa_port_is_cpu(dp)) 360 return dp; 361 362 return NULL; 363} 364 365struct net_device *dsa_tree_find_first_master(struct dsa_switch_tree *dst) 366{ 367 struct device_node *ethernet; 368 struct net_device *master; 369 struct dsa_port *cpu_dp; 370 371 cpu_dp = dsa_tree_find_first_cpu(dst); 372 ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0); 373 master = of_find_net_device_by_node(ethernet); 374 of_node_put(ethernet); 375 376 return master; 377} 378 379/* Assign the default CPU port (the first one in the tree) to all ports of the 380 * fabric which don't already have one as part of their own switch. 381 */ 382static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst) 383{ 384 struct dsa_port *cpu_dp, *dp; 385 386 cpu_dp = dsa_tree_find_first_cpu(dst); 387 if (!cpu_dp) { 388 pr_err("DSA: tree %d has no CPU port\n", dst->index); 389 return -EINVAL; 390 } 391 392 list_for_each_entry(dp, &dst->ports, list) { 393 if (dp->cpu_dp) 394 continue; 395 396 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 397 dp->cpu_dp = cpu_dp; 398 } 399 400 return 0; 401} 402 403/* Perform initial assignment of CPU ports to user ports and DSA links in the 404 * fabric, giving preference to CPU ports local to each switch. Default to 405 * using the first CPU port in the switch tree if the port does not have a CPU 406 * port local to this switch. 407 */ 408static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst) 409{ 410 struct dsa_port *cpu_dp, *dp; 411 412 list_for_each_entry(cpu_dp, &dst->ports, list) { 413 if (!dsa_port_is_cpu(cpu_dp)) 414 continue; 415 416 /* Prefer a local CPU port */ 417 dsa_switch_for_each_port(dp, cpu_dp->ds) { 418 /* Prefer the first local CPU port found */ 419 if (dp->cpu_dp) 420 continue; 421 422 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 423 dp->cpu_dp = cpu_dp; 424 } 425 } 426 427 return dsa_tree_setup_default_cpu(dst); 428} 429 430static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst) 431{ 432 struct dsa_port *dp; 433 434 list_for_each_entry(dp, &dst->ports, list) 435 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 436 dp->cpu_dp = NULL; 437} 438 439static int dsa_port_setup(struct dsa_port *dp) 440{ 441 bool dsa_port_link_registered = false; 442 struct dsa_switch *ds = dp->ds; 443 bool dsa_port_enabled = false; 444 int err = 0; 445 446 if (dp->setup) 447 return 0; 448 449 err = dsa_port_devlink_setup(dp); 450 if (err) 451 return err; 452 453 switch (dp->type) { 454 case DSA_PORT_TYPE_UNUSED: 455 dsa_port_disable(dp); 456 break; 457 case DSA_PORT_TYPE_CPU: 458 if (dp->dn) { 459 err = dsa_shared_port_link_register_of(dp); 460 if (err) 461 break; 462 dsa_port_link_registered = true; 463 } else { 464 dev_warn(ds->dev, 465 "skipping link registration for CPU port %d\n", 466 dp->index); 467 } 468 469 err = dsa_port_enable(dp, NULL); 470 if (err) 471 break; 472 dsa_port_enabled = true; 473 474 break; 475 case DSA_PORT_TYPE_DSA: 476 if (dp->dn) { 477 err = dsa_shared_port_link_register_of(dp); 478 if (err) 479 break; 480 dsa_port_link_registered = true; 481 } else { 482 dev_warn(ds->dev, 483 "skipping link registration for DSA port %d\n", 484 dp->index); 485 } 486 487 err = dsa_port_enable(dp, NULL); 488 if (err) 489 break; 490 dsa_port_enabled = true; 491 492 break; 493 case DSA_PORT_TYPE_USER: 494 of_get_mac_address(dp->dn, dp->mac); 495 err = dsa_slave_create(dp); 496 break; 497 } 498 499 if (err && dsa_port_enabled) 500 dsa_port_disable(dp); 501 if (err && dsa_port_link_registered) 502 dsa_shared_port_link_unregister_of(dp); 503 if (err) { 504 dsa_port_devlink_teardown(dp); 505 return err; 506 } 507 508 dp->setup = true; 509 510 return 0; 511} 512 513static void dsa_port_teardown(struct dsa_port *dp) 514{ 515 if (!dp->setup) 516 return; 517 518 switch (dp->type) { 519 case DSA_PORT_TYPE_UNUSED: 520 break; 521 case DSA_PORT_TYPE_CPU: 522 dsa_port_disable(dp); 523 if (dp->dn) 524 dsa_shared_port_link_unregister_of(dp); 525 break; 526 case DSA_PORT_TYPE_DSA: 527 dsa_port_disable(dp); 528 if (dp->dn) 529 dsa_shared_port_link_unregister_of(dp); 530 break; 531 case DSA_PORT_TYPE_USER: 532 if (dp->slave) { 533 dsa_slave_destroy(dp->slave); 534 dp->slave = NULL; 535 } 536 break; 537 } 538 539 dsa_port_devlink_teardown(dp); 540 541 dp->setup = false; 542} 543 544static int dsa_port_setup_as_unused(struct dsa_port *dp) 545{ 546 dp->type = DSA_PORT_TYPE_UNUSED; 547 return dsa_port_setup(dp); 548} 549 550static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds) 551{ 552 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; 553 struct dsa_switch_tree *dst = ds->dst; 554 int err; 555 556 if (tag_ops->proto == dst->default_proto) 557 goto connect; 558 559 rtnl_lock(); 560 err = ds->ops->change_tag_protocol(ds, tag_ops->proto); 561 rtnl_unlock(); 562 if (err) { 563 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n", 564 tag_ops->name, ERR_PTR(err)); 565 return err; 566 } 567 568connect: 569 if (tag_ops->connect) { 570 err = tag_ops->connect(ds); 571 if (err) 572 return err; 573 } 574 575 if (ds->ops->connect_tag_protocol) { 576 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto); 577 if (err) { 578 dev_err(ds->dev, 579 "Unable to connect to tag protocol \"%s\": %pe\n", 580 tag_ops->name, ERR_PTR(err)); 581 goto disconnect; 582 } 583 } 584 585 return 0; 586 587disconnect: 588 if (tag_ops->disconnect) 589 tag_ops->disconnect(ds); 590 591 return err; 592} 593 594static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds) 595{ 596 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; 597 598 if (tag_ops->disconnect) 599 tag_ops->disconnect(ds); 600} 601 602static int dsa_switch_setup(struct dsa_switch *ds) 603{ 604 struct device_node *dn; 605 int err; 606 607 if (ds->setup) 608 return 0; 609 610 /* Initialize ds->phys_mii_mask before registering the slave MDIO bus 611 * driver and before ops->setup() has run, since the switch drivers and 612 * the slave MDIO bus driver rely on these values for probing PHY 613 * devices or not 614 */ 615 ds->phys_mii_mask |= dsa_user_ports(ds); 616 617 err = dsa_switch_devlink_alloc(ds); 618 if (err) 619 return err; 620 621 err = dsa_switch_register_notifier(ds); 622 if (err) 623 goto devlink_free; 624 625 ds->configure_vlan_while_not_filtering = true; 626 627 err = ds->ops->setup(ds); 628 if (err < 0) 629 goto unregister_notifier; 630 631 err = dsa_switch_setup_tag_protocol(ds); 632 if (err) 633 goto teardown; 634 635 if (!ds->slave_mii_bus && ds->ops->phy_read) { 636 ds->slave_mii_bus = mdiobus_alloc(); 637 if (!ds->slave_mii_bus) { 638 err = -ENOMEM; 639 goto teardown; 640 } 641 642 dsa_slave_mii_bus_init(ds); 643 644 dn = of_get_child_by_name(ds->dev->of_node, "mdio"); 645 646 err = of_mdiobus_register(ds->slave_mii_bus, dn); 647 of_node_put(dn); 648 if (err < 0) 649 goto free_slave_mii_bus; 650 } 651 652 dsa_switch_devlink_register(ds); 653 654 ds->setup = true; 655 return 0; 656 657free_slave_mii_bus: 658 if (ds->slave_mii_bus && ds->ops->phy_read) 659 mdiobus_free(ds->slave_mii_bus); 660teardown: 661 if (ds->ops->teardown) 662 ds->ops->teardown(ds); 663unregister_notifier: 664 dsa_switch_unregister_notifier(ds); 665devlink_free: 666 dsa_switch_devlink_free(ds); 667 return err; 668} 669 670static void dsa_switch_teardown(struct dsa_switch *ds) 671{ 672 if (!ds->setup) 673 return; 674 675 dsa_switch_devlink_unregister(ds); 676 677 if (ds->slave_mii_bus && ds->ops->phy_read) { 678 mdiobus_unregister(ds->slave_mii_bus); 679 mdiobus_free(ds->slave_mii_bus); 680 ds->slave_mii_bus = NULL; 681 } 682 683 dsa_switch_teardown_tag_protocol(ds); 684 685 if (ds->ops->teardown) 686 ds->ops->teardown(ds); 687 688 dsa_switch_unregister_notifier(ds); 689 690 dsa_switch_devlink_free(ds); 691 692 ds->setup = false; 693} 694 695/* First tear down the non-shared, then the shared ports. This ensures that 696 * all work items scheduled by our switchdev handlers for user ports have 697 * completed before we destroy the refcounting kept on the shared ports. 698 */ 699static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst) 700{ 701 struct dsa_port *dp; 702 703 list_for_each_entry(dp, &dst->ports, list) 704 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) 705 dsa_port_teardown(dp); 706 707 dsa_flush_workqueue(); 708 709 list_for_each_entry(dp, &dst->ports, list) 710 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) 711 dsa_port_teardown(dp); 712} 713 714static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst) 715{ 716 struct dsa_port *dp; 717 718 list_for_each_entry(dp, &dst->ports, list) 719 dsa_switch_teardown(dp->ds); 720} 721 722/* Bring shared ports up first, then non-shared ports */ 723static int dsa_tree_setup_ports(struct dsa_switch_tree *dst) 724{ 725 struct dsa_port *dp; 726 int err = 0; 727 728 list_for_each_entry(dp, &dst->ports, list) { 729 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) { 730 err = dsa_port_setup(dp); 731 if (err) 732 goto teardown; 733 } 734 } 735 736 list_for_each_entry(dp, &dst->ports, list) { 737 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) { 738 err = dsa_port_setup(dp); 739 if (err) { 740 err = dsa_port_setup_as_unused(dp); 741 if (err) 742 goto teardown; 743 } 744 } 745 } 746 747 return 0; 748 749teardown: 750 dsa_tree_teardown_ports(dst); 751 752 return err; 753} 754 755static int dsa_tree_setup_switches(struct dsa_switch_tree *dst) 756{ 757 struct dsa_port *dp; 758 int err = 0; 759 760 list_for_each_entry(dp, &dst->ports, list) { 761 err = dsa_switch_setup(dp->ds); 762 if (err) { 763 dsa_tree_teardown_switches(dst); 764 break; 765 } 766 } 767 768 return err; 769} 770 771static int dsa_tree_setup_master(struct dsa_switch_tree *dst) 772{ 773 struct dsa_port *cpu_dp; 774 int err = 0; 775 776 rtnl_lock(); 777 778 dsa_tree_for_each_cpu_port(cpu_dp, dst) { 779 struct net_device *master = cpu_dp->master; 780 bool admin_up = (master->flags & IFF_UP) && 781 !qdisc_tx_is_noop(master); 782 783 err = dsa_master_setup(master, cpu_dp); 784 if (err) 785 break; 786 787 /* Replay master state event */ 788 dsa_tree_master_admin_state_change(dst, master, admin_up); 789 dsa_tree_master_oper_state_change(dst, master, 790 netif_oper_up(master)); 791 } 792 793 rtnl_unlock(); 794 795 return err; 796} 797 798static void dsa_tree_teardown_master(struct dsa_switch_tree *dst) 799{ 800 struct dsa_port *cpu_dp; 801 802 rtnl_lock(); 803 804 dsa_tree_for_each_cpu_port(cpu_dp, dst) { 805 struct net_device *master = cpu_dp->master; 806 807 /* Synthesizing an "admin down" state is sufficient for 808 * the switches to get a notification if the master is 809 * currently up and running. 810 */ 811 dsa_tree_master_admin_state_change(dst, master, false); 812 813 dsa_master_teardown(master); 814 } 815 816 rtnl_unlock(); 817} 818 819static int dsa_tree_setup_lags(struct dsa_switch_tree *dst) 820{ 821 unsigned int len = 0; 822 struct dsa_port *dp; 823 824 list_for_each_entry(dp, &dst->ports, list) { 825 if (dp->ds->num_lag_ids > len) 826 len = dp->ds->num_lag_ids; 827 } 828 829 if (!len) 830 return 0; 831 832 dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL); 833 if (!dst->lags) 834 return -ENOMEM; 835 836 dst->lags_len = len; 837 return 0; 838} 839 840static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst) 841{ 842 kfree(dst->lags); 843} 844 845static int dsa_tree_setup(struct dsa_switch_tree *dst) 846{ 847 bool complete; 848 int err; 849 850 if (dst->setup) { 851 pr_err("DSA: tree %d already setup! Disjoint trees?\n", 852 dst->index); 853 return -EEXIST; 854 } 855 856 complete = dsa_tree_setup_routing_table(dst); 857 if (!complete) 858 return 0; 859 860 err = dsa_tree_setup_cpu_ports(dst); 861 if (err) 862 return err; 863 864 err = dsa_tree_setup_switches(dst); 865 if (err) 866 goto teardown_cpu_ports; 867 868 err = dsa_tree_setup_ports(dst); 869 if (err) 870 goto teardown_switches; 871 872 err = dsa_tree_setup_master(dst); 873 if (err) 874 goto teardown_ports; 875 876 err = dsa_tree_setup_lags(dst); 877 if (err) 878 goto teardown_master; 879 880 dst->setup = true; 881 882 pr_info("DSA: tree %d setup\n", dst->index); 883 884 return 0; 885 886teardown_master: 887 dsa_tree_teardown_master(dst); 888teardown_ports: 889 dsa_tree_teardown_ports(dst); 890teardown_switches: 891 dsa_tree_teardown_switches(dst); 892teardown_cpu_ports: 893 dsa_tree_teardown_cpu_ports(dst); 894 895 return err; 896} 897 898static void dsa_tree_teardown(struct dsa_switch_tree *dst) 899{ 900 struct dsa_link *dl, *next; 901 902 if (!dst->setup) 903 return; 904 905 dsa_tree_teardown_lags(dst); 906 907 dsa_tree_teardown_master(dst); 908 909 dsa_tree_teardown_ports(dst); 910 911 dsa_tree_teardown_switches(dst); 912 913 dsa_tree_teardown_cpu_ports(dst); 914 915 list_for_each_entry_safe(dl, next, &dst->rtable, list) { 916 list_del(&dl->list); 917 kfree(dl); 918 } 919 920 pr_info("DSA: tree %d torn down\n", dst->index); 921 922 dst->setup = false; 923} 924 925static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst, 926 const struct dsa_device_ops *tag_ops) 927{ 928 const struct dsa_device_ops *old_tag_ops = dst->tag_ops; 929 struct dsa_notifier_tag_proto_info info; 930 int err; 931 932 dst->tag_ops = tag_ops; 933 934 /* Notify the switches from this tree about the connection 935 * to the new tagger 936 */ 937 info.tag_ops = tag_ops; 938 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info); 939 if (err && err != -EOPNOTSUPP) 940 goto out_disconnect; 941 942 /* Notify the old tagger about the disconnection from this tree */ 943 info.tag_ops = old_tag_ops; 944 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); 945 946 return 0; 947 948out_disconnect: 949 info.tag_ops = tag_ops; 950 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); 951 dst->tag_ops = old_tag_ops; 952 953 return err; 954} 955 956/* Since the dsa/tagging sysfs device attribute is per master, the assumption 957 * is that all DSA switches within a tree share the same tagger, otherwise 958 * they would have formed disjoint trees (different "dsa,member" values). 959 */ 960int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst, 961 const struct dsa_device_ops *tag_ops, 962 const struct dsa_device_ops *old_tag_ops) 963{ 964 struct dsa_notifier_tag_proto_info info; 965 struct dsa_port *dp; 966 int err = -EBUSY; 967 968 if (!rtnl_trylock()) 969 return restart_syscall(); 970 971 /* At the moment we don't allow changing the tag protocol under 972 * traffic. The rtnl_mutex also happens to serialize concurrent 973 * attempts to change the tagging protocol. If we ever lift the IFF_UP 974 * restriction, there needs to be another mutex which serializes this. 975 */ 976 dsa_tree_for_each_user_port(dp, dst) { 977 if (dsa_port_to_master(dp)->flags & IFF_UP) 978 goto out_unlock; 979 980 if (dp->slave->flags & IFF_UP) 981 goto out_unlock; 982 } 983 984 /* Notify the tag protocol change */ 985 info.tag_ops = tag_ops; 986 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); 987 if (err) 988 goto out_unwind_tagger; 989 990 err = dsa_tree_bind_tag_proto(dst, tag_ops); 991 if (err) 992 goto out_unwind_tagger; 993 994 rtnl_unlock(); 995 996 return 0; 997 998out_unwind_tagger: 999 info.tag_ops = old_tag_ops; 1000 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); 1001out_unlock: 1002 rtnl_unlock(); 1003 return err; 1004} 1005 1006static void dsa_tree_master_state_change(struct dsa_switch_tree *dst, 1007 struct net_device *master) 1008{ 1009 struct dsa_notifier_master_state_info info; 1010 struct dsa_port *cpu_dp = master->dsa_ptr; 1011 1012 info.master = master; 1013 info.operational = dsa_port_master_is_operational(cpu_dp); 1014 1015 dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info); 1016} 1017 1018void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst, 1019 struct net_device *master, 1020 bool up) 1021{ 1022 struct dsa_port *cpu_dp = master->dsa_ptr; 1023 bool notify = false; 1024 1025 /* Don't keep track of admin state on LAG DSA masters, 1026 * but rather just of physical DSA masters 1027 */ 1028 if (netif_is_lag_master(master)) 1029 return; 1030 1031 if ((dsa_port_master_is_operational(cpu_dp)) != 1032 (up && cpu_dp->master_oper_up)) 1033 notify = true; 1034 1035 cpu_dp->master_admin_up = up; 1036 1037 if (notify) 1038 dsa_tree_master_state_change(dst, master); 1039} 1040 1041void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst, 1042 struct net_device *master, 1043 bool up) 1044{ 1045 struct dsa_port *cpu_dp = master->dsa_ptr; 1046 bool notify = false; 1047 1048 /* Don't keep track of oper state on LAG DSA masters, 1049 * but rather just of physical DSA masters 1050 */ 1051 if (netif_is_lag_master(master)) 1052 return; 1053 1054 if ((dsa_port_master_is_operational(cpu_dp)) != 1055 (cpu_dp->master_admin_up && up)) 1056 notify = true; 1057 1058 cpu_dp->master_oper_up = up; 1059 1060 if (notify) 1061 dsa_tree_master_state_change(dst, master); 1062} 1063 1064static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index) 1065{ 1066 struct dsa_switch_tree *dst = ds->dst; 1067 struct dsa_port *dp; 1068 1069 dsa_switch_for_each_port(dp, ds) 1070 if (dp->index == index) 1071 return dp; 1072 1073 dp = kzalloc(sizeof(*dp), GFP_KERNEL); 1074 if (!dp) 1075 return NULL; 1076 1077 dp->ds = ds; 1078 dp->index = index; 1079 1080 mutex_init(&dp->addr_lists_lock); 1081 mutex_init(&dp->vlans_lock); 1082 INIT_LIST_HEAD(&dp->fdbs); 1083 INIT_LIST_HEAD(&dp->mdbs); 1084 INIT_LIST_HEAD(&dp->vlans); 1085 INIT_LIST_HEAD(&dp->list); 1086 list_add_tail(&dp->list, &dst->ports); 1087 1088 return dp; 1089} 1090 1091static int dsa_port_parse_user(struct dsa_port *dp, const char *name) 1092{ 1093 dp->type = DSA_PORT_TYPE_USER; 1094 dp->name = name; 1095 1096 return 0; 1097} 1098 1099static int dsa_port_parse_dsa(struct dsa_port *dp) 1100{ 1101 dp->type = DSA_PORT_TYPE_DSA; 1102 1103 return 0; 1104} 1105 1106static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp, 1107 struct net_device *master) 1108{ 1109 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE; 1110 struct dsa_switch *mds, *ds = dp->ds; 1111 unsigned int mdp_upstream; 1112 struct dsa_port *mdp; 1113 1114 /* It is possible to stack DSA switches onto one another when that 1115 * happens the switch driver may want to know if its tagging protocol 1116 * is going to work in such a configuration. 1117 */ 1118 if (dsa_slave_dev_check(master)) { 1119 mdp = dsa_slave_to_port(master); 1120 mds = mdp->ds; 1121 mdp_upstream = dsa_upstream_port(mds, mdp->index); 1122 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream, 1123 DSA_TAG_PROTO_NONE); 1124 } 1125 1126 /* If the master device is not itself a DSA slave in a disjoint DSA 1127 * tree, then return immediately. 1128 */ 1129 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol); 1130} 1131 1132static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master, 1133 const char *user_protocol) 1134{ 1135 const struct dsa_device_ops *tag_ops = NULL; 1136 struct dsa_switch *ds = dp->ds; 1137 struct dsa_switch_tree *dst = ds->dst; 1138 enum dsa_tag_protocol default_proto; 1139 1140 /* Find out which protocol the switch would prefer. */ 1141 default_proto = dsa_get_tag_protocol(dp, master); 1142 if (dst->default_proto) { 1143 if (dst->default_proto != default_proto) { 1144 dev_err(ds->dev, 1145 "A DSA switch tree can have only one tagging protocol\n"); 1146 return -EINVAL; 1147 } 1148 } else { 1149 dst->default_proto = default_proto; 1150 } 1151 1152 /* See if the user wants to override that preference. */ 1153 if (user_protocol) { 1154 if (!ds->ops->change_tag_protocol) { 1155 dev_err(ds->dev, "Tag protocol cannot be modified\n"); 1156 return -EINVAL; 1157 } 1158 1159 tag_ops = dsa_tag_driver_get_by_name(user_protocol); 1160 if (IS_ERR(tag_ops)) { 1161 dev_warn(ds->dev, 1162 "Failed to find a tagging driver for protocol %s, using default\n", 1163 user_protocol); 1164 tag_ops = NULL; 1165 } 1166 } 1167 1168 if (!tag_ops) 1169 tag_ops = dsa_tag_driver_get_by_id(default_proto); 1170 1171 if (IS_ERR(tag_ops)) { 1172 if (PTR_ERR(tag_ops) == -ENOPROTOOPT) 1173 return -EPROBE_DEFER; 1174 1175 dev_warn(ds->dev, "No tagger for this switch\n"); 1176 return PTR_ERR(tag_ops); 1177 } 1178 1179 if (dst->tag_ops) { 1180 if (dst->tag_ops != tag_ops) { 1181 dev_err(ds->dev, 1182 "A DSA switch tree can have only one tagging protocol\n"); 1183 1184 dsa_tag_driver_put(tag_ops); 1185 return -EINVAL; 1186 } 1187 1188 /* In the case of multiple CPU ports per switch, the tagging 1189 * protocol is still reference-counted only per switch tree. 1190 */ 1191 dsa_tag_driver_put(tag_ops); 1192 } else { 1193 dst->tag_ops = tag_ops; 1194 } 1195 1196 dp->master = master; 1197 dp->type = DSA_PORT_TYPE_CPU; 1198 dsa_port_set_tag_protocol(dp, dst->tag_ops); 1199 dp->dst = dst; 1200 1201 /* At this point, the tree may be configured to use a different 1202 * tagger than the one chosen by the switch driver during 1203 * .setup, in the case when a user selects a custom protocol 1204 * through the DT. 1205 * 1206 * This is resolved by syncing the driver with the tree in 1207 * dsa_switch_setup_tag_protocol once .setup has run and the 1208 * driver is ready to accept calls to .change_tag_protocol. If 1209 * the driver does not support the custom protocol at that 1210 * point, the tree is wholly rejected, thereby ensuring that the 1211 * tree and driver are always in agreement on the protocol to 1212 * use. 1213 */ 1214 return 0; 1215} 1216 1217static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn) 1218{ 1219 struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0); 1220 const char *name = of_get_property(dn, "label", NULL); 1221 bool link = of_property_read_bool(dn, "link"); 1222 1223 dp->dn = dn; 1224 1225 if (ethernet) { 1226 struct net_device *master; 1227 const char *user_protocol; 1228 1229 master = of_find_net_device_by_node(ethernet); 1230 of_node_put(ethernet); 1231 if (!master) 1232 return -EPROBE_DEFER; 1233 1234 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL); 1235 return dsa_port_parse_cpu(dp, master, user_protocol); 1236 } 1237 1238 if (link) 1239 return dsa_port_parse_dsa(dp); 1240 1241 return dsa_port_parse_user(dp, name); 1242} 1243 1244static int dsa_switch_parse_ports_of(struct dsa_switch *ds, 1245 struct device_node *dn) 1246{ 1247 struct device_node *ports, *port; 1248 struct dsa_port *dp; 1249 int err = 0; 1250 u32 reg; 1251 1252 ports = of_get_child_by_name(dn, "ports"); 1253 if (!ports) { 1254 /* The second possibility is "ethernet-ports" */ 1255 ports = of_get_child_by_name(dn, "ethernet-ports"); 1256 if (!ports) { 1257 dev_err(ds->dev, "no ports child node found\n"); 1258 return -EINVAL; 1259 } 1260 } 1261 1262 for_each_available_child_of_node(ports, port) { 1263 err = of_property_read_u32(port, "reg", ®); 1264 if (err) { 1265 of_node_put(port); 1266 goto out_put_node; 1267 } 1268 1269 if (reg >= ds->num_ports) { 1270 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n", 1271 port, reg, ds->num_ports); 1272 of_node_put(port); 1273 err = -EINVAL; 1274 goto out_put_node; 1275 } 1276 1277 dp = dsa_to_port(ds, reg); 1278 1279 err = dsa_port_parse_of(dp, port); 1280 if (err) { 1281 of_node_put(port); 1282 goto out_put_node; 1283 } 1284 } 1285 1286out_put_node: 1287 of_node_put(ports); 1288 return err; 1289} 1290 1291static int dsa_switch_parse_member_of(struct dsa_switch *ds, 1292 struct device_node *dn) 1293{ 1294 u32 m[2] = { 0, 0 }; 1295 int sz; 1296 1297 /* Don't error out if this optional property isn't found */ 1298 sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2); 1299 if (sz < 0 && sz != -EINVAL) 1300 return sz; 1301 1302 ds->index = m[1]; 1303 1304 ds->dst = dsa_tree_touch(m[0]); 1305 if (!ds->dst) 1306 return -ENOMEM; 1307 1308 if (dsa_switch_find(ds->dst->index, ds->index)) { 1309 dev_err(ds->dev, 1310 "A DSA switch with index %d already exists in tree %d\n", 1311 ds->index, ds->dst->index); 1312 return -EEXIST; 1313 } 1314 1315 if (ds->dst->last_switch < ds->index) 1316 ds->dst->last_switch = ds->index; 1317 1318 return 0; 1319} 1320 1321static int dsa_switch_touch_ports(struct dsa_switch *ds) 1322{ 1323 struct dsa_port *dp; 1324 int port; 1325 1326 for (port = 0; port < ds->num_ports; port++) { 1327 dp = dsa_port_touch(ds, port); 1328 if (!dp) 1329 return -ENOMEM; 1330 } 1331 1332 return 0; 1333} 1334 1335static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn) 1336{ 1337 int err; 1338 1339 err = dsa_switch_parse_member_of(ds, dn); 1340 if (err) 1341 return err; 1342 1343 err = dsa_switch_touch_ports(ds); 1344 if (err) 1345 return err; 1346 1347 return dsa_switch_parse_ports_of(ds, dn); 1348} 1349 |
|
18static int dev_is_class(struct device *dev, void *class) 19{ 20 if (dev->class != NULL && !strcmp(dev->class->name, class)) 21 return 1; 22 23 return 0; 24} 25 26static struct device *dev_find_class(struct device *parent, char *class) 27{ 28 if (dev_is_class(parent, class)) { 29 get_device(parent); 30 return parent; 31 } 32 33 return device_find_child(parent, class, dev_is_class); 34} 35 | 1350static int dev_is_class(struct device *dev, void *class) 1351{ 1352 if (dev->class != NULL && !strcmp(dev->class->name, class)) 1353 return 1; 1354 1355 return 0; 1356} 1357 1358static struct device *dev_find_class(struct device *parent, char *class) 1359{ 1360 if (dev_is_class(parent, class)) { 1361 get_device(parent); 1362 return parent; 1363 } 1364 1365 return device_find_child(parent, class, dev_is_class); 1366} 1367 |
36struct net_device *dsa_dev_to_net_device(struct device *dev) | 1368static struct net_device *dsa_dev_to_net_device(struct device *dev) |
37{ 38 struct device *d; 39 40 d = dev_find_class(dev, "net"); 41 if (d != NULL) { 42 struct net_device *nd; 43 44 nd = to_net_dev(d); 45 dev_hold(nd); 46 put_device(d); 47 48 return nd; 49 } 50 51 return NULL; 52} 53 | 1369{ 1370 struct device *d; 1371 1372 d = dev_find_class(dev, "net"); 1373 if (d != NULL) { 1374 struct net_device *nd; 1375 1376 nd = to_net_dev(d); 1377 dev_hold(nd); 1378 put_device(d); 1379 1380 return nd; 1381 } 1382 1383 return NULL; 1384} 1385 |
1386static int dsa_port_parse(struct dsa_port *dp, const char *name, 1387 struct device *dev) 1388{ 1389 if (!strcmp(name, "cpu")) { 1390 struct net_device *master; 1391 1392 master = dsa_dev_to_net_device(dev); 1393 if (!master) 1394 return -EPROBE_DEFER; 1395 1396 dev_put(master); 1397 1398 return dsa_port_parse_cpu(dp, master, NULL); 1399 } 1400 1401 if (!strcmp(name, "dsa")) 1402 return dsa_port_parse_dsa(dp); 1403 1404 return dsa_port_parse_user(dp, name); 1405} 1406 1407static int dsa_switch_parse_ports(struct dsa_switch *ds, 1408 struct dsa_chip_data *cd) 1409{ 1410 bool valid_name_found = false; 1411 struct dsa_port *dp; 1412 struct device *dev; 1413 const char *name; 1414 unsigned int i; 1415 int err; 1416 1417 for (i = 0; i < DSA_MAX_PORTS; i++) { 1418 name = cd->port_names[i]; 1419 dev = cd->netdev[i]; 1420 dp = dsa_to_port(ds, i); 1421 1422 if (!name) 1423 continue; 1424 1425 err = dsa_port_parse(dp, name, dev); 1426 if (err) 1427 return err; 1428 1429 valid_name_found = true; 1430 } 1431 1432 if (!valid_name_found && i == DSA_MAX_PORTS) 1433 return -EINVAL; 1434 1435 return 0; 1436} 1437 1438static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd) 1439{ 1440 int err; 1441 1442 ds->cd = cd; 1443 1444 /* We don't support interconnected switches nor multiple trees via 1445 * platform data, so this is the unique switch of the tree. 1446 */ 1447 ds->index = 0; 1448 ds->dst = dsa_tree_touch(0); 1449 if (!ds->dst) 1450 return -ENOMEM; 1451 1452 err = dsa_switch_touch_ports(ds); 1453 if (err) 1454 return err; 1455 1456 return dsa_switch_parse_ports(ds, cd); 1457} 1458 1459static void dsa_switch_release_ports(struct dsa_switch *ds) 1460{ 1461 struct dsa_port *dp, *next; 1462 1463 dsa_switch_for_each_port_safe(dp, next, ds) { 1464 WARN_ON(!list_empty(&dp->fdbs)); 1465 WARN_ON(!list_empty(&dp->mdbs)); 1466 WARN_ON(!list_empty(&dp->vlans)); 1467 list_del(&dp->list); 1468 kfree(dp); 1469 } 1470} 1471 1472static int dsa_switch_probe(struct dsa_switch *ds) 1473{ 1474 struct dsa_switch_tree *dst; 1475 struct dsa_chip_data *pdata; 1476 struct device_node *np; 1477 int err; 1478 1479 if (!ds->dev) 1480 return -ENODEV; 1481 1482 pdata = ds->dev->platform_data; 1483 np = ds->dev->of_node; 1484 1485 if (!ds->num_ports) 1486 return -EINVAL; 1487 1488 if (np) { 1489 err = dsa_switch_parse_of(ds, np); 1490 if (err) 1491 dsa_switch_release_ports(ds); 1492 } else if (pdata) { 1493 err = dsa_switch_parse(ds, pdata); 1494 if (err) 1495 dsa_switch_release_ports(ds); 1496 } else { 1497 err = -ENODEV; 1498 } 1499 1500 if (err) 1501 return err; 1502 1503 dst = ds->dst; 1504 dsa_tree_get(dst); 1505 err = dsa_tree_setup(dst); 1506 if (err) { 1507 dsa_switch_release_ports(ds); 1508 dsa_tree_put(dst); 1509 } 1510 1511 return err; 1512} 1513 1514int dsa_register_switch(struct dsa_switch *ds) 1515{ 1516 int err; 1517 1518 mutex_lock(&dsa2_mutex); 1519 err = dsa_switch_probe(ds); 1520 dsa_tree_put(ds->dst); 1521 mutex_unlock(&dsa2_mutex); 1522 1523 return err; 1524} 1525EXPORT_SYMBOL_GPL(dsa_register_switch); 1526 1527static void dsa_switch_remove(struct dsa_switch *ds) 1528{ 1529 struct dsa_switch_tree *dst = ds->dst; 1530 1531 dsa_tree_teardown(dst); 1532 dsa_switch_release_ports(ds); 1533 dsa_tree_put(dst); 1534} 1535 1536void dsa_unregister_switch(struct dsa_switch *ds) 1537{ 1538 mutex_lock(&dsa2_mutex); 1539 dsa_switch_remove(ds); 1540 mutex_unlock(&dsa2_mutex); 1541} 1542EXPORT_SYMBOL_GPL(dsa_unregister_switch); 1543 1544/* If the DSA master chooses to unregister its net_device on .shutdown, DSA is 1545 * blocking that operation from completion, due to the dev_hold taken inside 1546 * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of 1547 * the DSA master, so that the system can reboot successfully. 1548 */ 1549void dsa_switch_shutdown(struct dsa_switch *ds) 1550{ 1551 struct net_device *master, *slave_dev; 1552 struct dsa_port *dp; 1553 1554 mutex_lock(&dsa2_mutex); 1555 1556 if (!ds->setup) 1557 goto out; 1558 1559 rtnl_lock(); 1560 1561 dsa_switch_for_each_user_port(dp, ds) { 1562 master = dsa_port_to_master(dp); 1563 slave_dev = dp->slave; 1564 1565 netdev_upper_dev_unlink(master, slave_dev); 1566 } 1567 1568 /* Disconnect from further netdevice notifiers on the master, 1569 * since netdev_uses_dsa() will now return false. 1570 */ 1571 dsa_switch_for_each_cpu_port(dp, ds) 1572 dp->master->dsa_ptr = NULL; 1573 1574 rtnl_unlock(); 1575out: 1576 mutex_unlock(&dsa2_mutex); 1577} 1578EXPORT_SYMBOL_GPL(dsa_switch_shutdown); 1579 |
|
54#ifdef CONFIG_PM_SLEEP 55static bool dsa_port_is_initialized(const struct dsa_port *dp) 56{ 57 return dp->type == DSA_PORT_TYPE_USER && dp->slave; 58} 59 60int dsa_switch_suspend(struct dsa_switch *ds) 61{ --- 38 unchanged lines hidden (view full) --- 100 return ret; 101 } 102 103 return 0; 104} 105EXPORT_SYMBOL_GPL(dsa_switch_resume); 106#endif 107 | 1580#ifdef CONFIG_PM_SLEEP 1581static bool dsa_port_is_initialized(const struct dsa_port *dp) 1582{ 1583 return dp->type == DSA_PORT_TYPE_USER && dp->slave; 1584} 1585 1586int dsa_switch_suspend(struct dsa_switch *ds) 1587{ --- 38 unchanged lines hidden (view full) --- 1626 return ret; 1627 } 1628 1629 return 0; 1630} 1631EXPORT_SYMBOL_GPL(dsa_switch_resume); 1632#endif 1633 |
108static struct workqueue_struct *dsa_owq; 109 110bool dsa_schedule_work(struct work_struct *work) 111{ 112 return queue_work(dsa_owq, work); 113} 114 115void dsa_flush_workqueue(void) 116{ 117 flush_workqueue(dsa_owq); 118} 119EXPORT_SYMBOL_GPL(dsa_flush_workqueue); 120 | |
121struct dsa_port *dsa_port_from_netdev(struct net_device *netdev) 122{ 123 if (!netdev || !dsa_slave_dev_check(netdev)) 124 return ERR_PTR(-ENODEV); 125 126 return dsa_slave_to_port(netdev); 127} 128EXPORT_SYMBOL_GPL(dsa_port_from_netdev); --- 106 unchanged lines hidden --- | 1634struct dsa_port *dsa_port_from_netdev(struct net_device *netdev) 1635{ 1636 if (!netdev || !dsa_slave_dev_check(netdev)) 1637 return ERR_PTR(-ENODEV); 1638 1639 return dsa_slave_to_port(netdev); 1640} 1641EXPORT_SYMBOL_GPL(dsa_port_from_netdev); --- 106 unchanged lines hidden --- |