node.c (b10778a00d40b3d9fdaaf5891e802794781ff71c) | node.c (67298804f34452a53a9ec9e609d95aa35084132b) |
---|---|
1/* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as --- 17 unchanged lines hidden (view full) --- 26static struct kmem_cache *nat_entry_slab; 27static struct kmem_cache *free_nid_slab; 28static struct kmem_cache *nat_entry_set_slab; 29 30bool available_free_memory(struct f2fs_sb_info *sbi, int type) 31{ 32 struct f2fs_nm_info *nm_i = NM_I(sbi); 33 struct sysinfo val; | 1/* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as --- 17 unchanged lines hidden (view full) --- 26static struct kmem_cache *nat_entry_slab; 27static struct kmem_cache *free_nid_slab; 28static struct kmem_cache *nat_entry_set_slab; 29 30bool available_free_memory(struct f2fs_sb_info *sbi, int type) 31{ 32 struct f2fs_nm_info *nm_i = NM_I(sbi); 33 struct sysinfo val; |
34 unsigned long avail_ram; |
|
34 unsigned long mem_size = 0; 35 bool res = false; 36 37 si_meminfo(&val); | 35 unsigned long mem_size = 0; 36 bool res = false; 37 38 si_meminfo(&val); |
38 /* give 25%, 25%, 50% memory for each components respectively */ | 39 40 /* only uses low memory */ 41 avail_ram = val.totalram - val.totalhigh; 42 43 /* give 25%, 25%, 50%, 50% memory for each components respectively */ |
39 if (type == FREE_NIDS) { | 44 if (type == FREE_NIDS) { |
40 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12; 41 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2); | 45 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 46 PAGE_CACHE_SHIFT; 47 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); |
42 } else if (type == NAT_ENTRIES) { | 48 } else if (type == NAT_ENTRIES) { |
43 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12; 44 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2); | 49 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 50 PAGE_CACHE_SHIFT; 51 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); |
45 } else if (type == DIRTY_DENTS) { 46 if (sbi->sb->s_bdi->dirty_exceeded) 47 return false; 48 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); | 52 } else if (type == DIRTY_DENTS) { 53 if (sbi->sb->s_bdi->dirty_exceeded) 54 return false; 55 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); |
49 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1); | 56 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 57 } else if (type == INO_ENTRIES) { 58 int i; 59 60 if (sbi->sb->s_bdi->dirty_exceeded) 61 return false; 62 for (i = 0; i <= UPDATE_INO; i++) 63 mem_size += (sbi->im[i].ino_num * 64 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT; 65 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); |
50 } 51 return res; 52} 53 54static void clear_node_page_dirty(struct page *page) 55{ 56 struct address_space *mapping = page->mapping; | 66 } 67 return res; 68} 69 70static void clear_node_page_dirty(struct page *page) 71{ 72 struct address_space *mapping = page->mapping; |
57 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | |
58 unsigned int long flags; 59 60 if (PageDirty(page)) { 61 spin_lock_irqsave(&mapping->tree_lock, flags); 62 radix_tree_tag_clear(&mapping->page_tree, 63 page_index(page), 64 PAGECACHE_TAG_DIRTY); 65 spin_unlock_irqrestore(&mapping->tree_lock, flags); 66 67 clear_page_dirty_for_io(page); | 73 unsigned int long flags; 74 75 if (PageDirty(page)) { 76 spin_lock_irqsave(&mapping->tree_lock, flags); 77 radix_tree_tag_clear(&mapping->page_tree, 78 page_index(page), 79 PAGECACHE_TAG_DIRTY); 80 spin_unlock_irqrestore(&mapping->tree_lock, flags); 81 82 clear_page_dirty_for_io(page); |
68 dec_page_count(sbi, F2FS_DIRTY_NODES); | 83 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); |
69 } 70 ClearPageUptodate(page); 71} 72 73static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 74{ 75 pgoff_t index = current_nat_addr(sbi, nid); 76 return get_meta_page(sbi, index); --- 10 unchanged lines hidden (view full) --- 87 struct f2fs_nm_info *nm_i = NM_I(sbi); 88 89 src_off = current_nat_addr(sbi, nid); 90 dst_off = next_nat_addr(sbi, src_off); 91 92 /* get current nat block page with lock */ 93 src_page = get_meta_page(sbi, src_off); 94 dst_page = grab_meta_page(sbi, dst_off); | 84 } 85 ClearPageUptodate(page); 86} 87 88static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 89{ 90 pgoff_t index = current_nat_addr(sbi, nid); 91 return get_meta_page(sbi, index); --- 10 unchanged lines hidden (view full) --- 102 struct f2fs_nm_info *nm_i = NM_I(sbi); 103 104 src_off = current_nat_addr(sbi, nid); 105 dst_off = next_nat_addr(sbi, src_off); 106 107 /* get current nat block page with lock */ 108 src_page = get_meta_page(sbi, src_off); 109 dst_page = grab_meta_page(sbi, dst_off); |
95 f2fs_bug_on(PageDirty(src_page)); | 110 f2fs_bug_on(sbi, PageDirty(src_page)); |
96 97 src_addr = page_address(src_page); 98 dst_addr = page_address(dst_page); 99 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 100 set_page_dirty(dst_page); 101 f2fs_put_page(src_page, 1); 102 103 set_to_next_nat(nm_i, nid); --- 15 unchanged lines hidden (view full) --- 119static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 120{ 121 list_del(&e->list); 122 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 123 nm_i->nat_cnt--; 124 kmem_cache_free(nat_entry_slab, e); 125} 126 | 111 112 src_addr = page_address(src_page); 113 dst_addr = page_address(dst_page); 114 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 115 set_page_dirty(dst_page); 116 f2fs_put_page(src_page, 1); 117 118 set_to_next_nat(nm_i, nid); --- 15 unchanged lines hidden (view full) --- 134static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 135{ 136 list_del(&e->list); 137 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 138 nm_i->nat_cnt--; 139 kmem_cache_free(nat_entry_slab, e); 140} 141 |
127int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) | 142static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 143 struct nat_entry *ne) |
128{ | 144{ |
145 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 146 struct nat_entry_set *head; 147 148 if (get_nat_flag(ne, IS_DIRTY)) 149 return; 150retry: 151 head = radix_tree_lookup(&nm_i->nat_set_root, set); 152 if (!head) { 153 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC); 154 155 INIT_LIST_HEAD(&head->entry_list); 156 INIT_LIST_HEAD(&head->set_list); 157 head->set = set; 158 head->entry_cnt = 0; 159 160 if (radix_tree_insert(&nm_i->nat_set_root, set, head)) { 161 cond_resched(); 162 goto retry; 163 } 164 } 165 list_move_tail(&ne->list, &head->entry_list); 166 nm_i->dirty_nat_cnt++; 167 head->entry_cnt++; 168 set_nat_flag(ne, IS_DIRTY, true); 169} 170 171static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 172 struct nat_entry *ne) 173{ 174 nid_t set = ne->ni.nid / NAT_ENTRY_PER_BLOCK; 175 struct nat_entry_set *head; 176 177 head = radix_tree_lookup(&nm_i->nat_set_root, set); 178 if (head) { 179 list_move_tail(&ne->list, &nm_i->nat_entries); 180 set_nat_flag(ne, IS_DIRTY, false); 181 head->entry_cnt--; 182 nm_i->dirty_nat_cnt--; 183 } 184} 185 186static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 187 nid_t start, unsigned int nr, struct nat_entry_set **ep) 188{ 189 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 190 start, nr); 191} 192 193bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 194{ |
|
129 struct f2fs_nm_info *nm_i = NM_I(sbi); 130 struct nat_entry *e; | 195 struct f2fs_nm_info *nm_i = NM_I(sbi); 196 struct nat_entry *e; |
131 int is_cp = 1; | 197 bool is_cp = true; |
132 133 read_lock(&nm_i->nat_tree_lock); 134 e = __lookup_nat_cache(nm_i, nid); | 198 199 read_lock(&nm_i->nat_tree_lock); 200 e = __lookup_nat_cache(nm_i, nid); |
135 if (e && !e->checkpointed) 136 is_cp = 0; | 201 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 202 is_cp = false; |
137 read_unlock(&nm_i->nat_tree_lock); 138 return is_cp; 139} 140 | 203 read_unlock(&nm_i->nat_tree_lock); 204 return is_cp; 205} 206 |
141bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid) | 207bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino) |
142{ 143 struct f2fs_nm_info *nm_i = NM_I(sbi); 144 struct nat_entry *e; | 208{ 209 struct f2fs_nm_info *nm_i = NM_I(sbi); 210 struct nat_entry *e; |
145 bool fsync_done = false; | 211 bool fsynced = false; |
146 147 read_lock(&nm_i->nat_tree_lock); | 212 213 read_lock(&nm_i->nat_tree_lock); |
148 e = __lookup_nat_cache(nm_i, nid); 149 if (e) 150 fsync_done = e->fsync_done; | 214 e = __lookup_nat_cache(nm_i, ino); 215 if (e && get_nat_flag(e, HAS_FSYNCED_INODE)) 216 fsynced = true; |
151 read_unlock(&nm_i->nat_tree_lock); | 217 read_unlock(&nm_i->nat_tree_lock); |
152 return fsync_done; | 218 return fsynced; |
153} 154 | 219} 220 |
155void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid) | 221bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) |
156{ 157 struct f2fs_nm_info *nm_i = NM_I(sbi); 158 struct nat_entry *e; | 222{ 223 struct f2fs_nm_info *nm_i = NM_I(sbi); 224 struct nat_entry *e; |
225 bool need_update = true; |
|
159 | 226 |
160 write_lock(&nm_i->nat_tree_lock); 161 e = __lookup_nat_cache(nm_i, nid); 162 if (e) 163 e->fsync_done = false; 164 write_unlock(&nm_i->nat_tree_lock); | 227 read_lock(&nm_i->nat_tree_lock); 228 e = __lookup_nat_cache(nm_i, ino); 229 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 230 (get_nat_flag(e, IS_CHECKPOINTED) || 231 get_nat_flag(e, HAS_FSYNCED_INODE))) 232 need_update = false; 233 read_unlock(&nm_i->nat_tree_lock); 234 return need_update; |
165} 166 167static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 168{ 169 struct nat_entry *new; 170 171 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); 172 if (!new) 173 return NULL; 174 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 175 kmem_cache_free(nat_entry_slab, new); 176 return NULL; 177 } 178 memset(new, 0, sizeof(struct nat_entry)); 179 nat_set_nid(new, nid); | 235} 236 237static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 238{ 239 struct nat_entry *new; 240 241 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); 242 if (!new) 243 return NULL; 244 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 245 kmem_cache_free(nat_entry_slab, new); 246 return NULL; 247 } 248 memset(new, 0, sizeof(struct nat_entry)); 249 nat_set_nid(new, nid); |
180 new->checkpointed = true; | 250 nat_reset_flag(new); |
181 list_add_tail(&new->list, &nm_i->nat_entries); 182 nm_i->nat_cnt++; 183 return new; 184} 185 186static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 187 struct f2fs_nat_entry *ne) 188{ --- 22 unchanged lines hidden (view full) --- 211 e = __lookup_nat_cache(nm_i, ni->nid); 212 if (!e) { 213 e = grab_nat_entry(nm_i, ni->nid); 214 if (!e) { 215 write_unlock(&nm_i->nat_tree_lock); 216 goto retry; 217 } 218 e->ni = *ni; | 251 list_add_tail(&new->list, &nm_i->nat_entries); 252 nm_i->nat_cnt++; 253 return new; 254} 255 256static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 257 struct f2fs_nat_entry *ne) 258{ --- 22 unchanged lines hidden (view full) --- 281 e = __lookup_nat_cache(nm_i, ni->nid); 282 if (!e) { 283 e = grab_nat_entry(nm_i, ni->nid); 284 if (!e) { 285 write_unlock(&nm_i->nat_tree_lock); 286 goto retry; 287 } 288 e->ni = *ni; |
219 f2fs_bug_on(ni->blk_addr == NEW_ADDR); | 289 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); |
220 } else if (new_blkaddr == NEW_ADDR) { 221 /* 222 * when nid is reallocated, 223 * previous nat entry can be remained in nat cache. 224 * So, reinitialize it with new information. 225 */ 226 e->ni = *ni; | 290 } else if (new_blkaddr == NEW_ADDR) { 291 /* 292 * when nid is reallocated, 293 * previous nat entry can be remained in nat cache. 294 * So, reinitialize it with new information. 295 */ 296 e->ni = *ni; |
227 f2fs_bug_on(ni->blk_addr != NULL_ADDR); | 297 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); |
228 } 229 230 /* sanity check */ | 298 } 299 300 /* sanity check */ |
231 f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr); 232 f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR && | 301 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 302 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && |
233 new_blkaddr == NULL_ADDR); | 303 new_blkaddr == NULL_ADDR); |
234 f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR && | 304 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && |
235 new_blkaddr == NEW_ADDR); | 305 new_blkaddr == NEW_ADDR); |
236 f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR && | 306 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && |
237 nat_get_blkaddr(e) != NULL_ADDR && 238 new_blkaddr == NEW_ADDR); 239 240 /* increment version no as node is removed */ 241 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 242 unsigned char version = nat_get_version(e); 243 nat_set_version(e, inc_node_version(version)); 244 } 245 246 /* change address */ 247 nat_set_blkaddr(e, new_blkaddr); | 307 nat_get_blkaddr(e) != NULL_ADDR && 308 new_blkaddr == NEW_ADDR); 309 310 /* increment version no as node is removed */ 311 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 312 unsigned char version = nat_get_version(e); 313 nat_set_version(e, inc_node_version(version)); 314 } 315 316 /* change address */ 317 nat_set_blkaddr(e, new_blkaddr); |
318 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 319 set_nat_flag(e, IS_CHECKPOINTED, false); |
|
248 __set_nat_cache_dirty(nm_i, e); 249 250 /* update fsync_mark if its inode nat entry is still alive */ 251 e = __lookup_nat_cache(nm_i, ni->ino); | 320 __set_nat_cache_dirty(nm_i, e); 321 322 /* update fsync_mark if its inode nat entry is still alive */ 323 e = __lookup_nat_cache(nm_i, ni->ino); |
252 if (e) 253 e->fsync_done = fsync_done; | 324 if (e) { 325 if (fsync_done && ni->nid == ni->ino) 326 set_nat_flag(e, HAS_FSYNCED_INODE, true); 327 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 328 } |
254 write_unlock(&nm_i->nat_tree_lock); 255} 256 257int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 258{ 259 struct f2fs_nm_info *nm_i = NM_I(sbi); 260 261 if (available_free_memory(sbi, NAT_ENTRIES)) --- 144 unchanged lines hidden (view full) --- 406/* 407 * Caller should call f2fs_put_dnode(dn). 408 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 409 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 410 * In the case of RDONLY_NODE, we don't need to care about mutex. 411 */ 412int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 413{ | 329 write_unlock(&nm_i->nat_tree_lock); 330} 331 332int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 333{ 334 struct f2fs_nm_info *nm_i = NM_I(sbi); 335 336 if (available_free_memory(sbi, NAT_ENTRIES)) --- 144 unchanged lines hidden (view full) --- 481/* 482 * Caller should call f2fs_put_dnode(dn). 483 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 484 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 485 * In the case of RDONLY_NODE, we don't need to care about mutex. 486 */ 487int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 488{ |
414 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | 489 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
415 struct page *npage[4]; 416 struct page *parent; 417 int offset[4]; 418 unsigned int noffset[4]; 419 nid_t nids[4]; 420 int level, i; 421 int err = 0; 422 --- 76 unchanged lines hidden (view full) --- 499release_out: 500 dn->inode_page = NULL; 501 dn->node_page = NULL; 502 return err; 503} 504 505static void truncate_node(struct dnode_of_data *dn) 506{ | 490 struct page *npage[4]; 491 struct page *parent; 492 int offset[4]; 493 unsigned int noffset[4]; 494 nid_t nids[4]; 495 int level, i; 496 int err = 0; 497 --- 76 unchanged lines hidden (view full) --- 574release_out: 575 dn->inode_page = NULL; 576 dn->node_page = NULL; 577 return err; 578} 579 580static void truncate_node(struct dnode_of_data *dn) 581{ |
507 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | 582 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
508 struct node_info ni; 509 510 get_node_info(sbi, dn->nid, &ni); 511 if (dn->inode->i_blocks == 0) { | 583 struct node_info ni; 584 585 get_node_info(sbi, dn->nid, &ni); 586 if (dn->inode->i_blocks == 0) { |
512 f2fs_bug_on(ni.blk_addr != NULL_ADDR); | 587 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); |
513 goto invalidate; 514 } | 588 goto invalidate; 589 } |
515 f2fs_bug_on(ni.blk_addr == NULL_ADDR); | 590 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); |
516 517 /* Deallocate node address */ 518 invalidate_blocks(sbi, ni.blk_addr); 519 dec_valid_node_count(sbi, dn->inode); 520 set_node_addr(sbi, &ni, NULL_ADDR, false); 521 522 if (dn->nid == dn->inode->i_ino) { 523 remove_orphan_inode(sbi, dn->nid); --- 11 unchanged lines hidden (view full) --- 535 dn->node_page->index, dn->node_page->index); 536 537 dn->node_page = NULL; 538 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 539} 540 541static int truncate_dnode(struct dnode_of_data *dn) 542{ | 591 592 /* Deallocate node address */ 593 invalidate_blocks(sbi, ni.blk_addr); 594 dec_valid_node_count(sbi, dn->inode); 595 set_node_addr(sbi, &ni, NULL_ADDR, false); 596 597 if (dn->nid == dn->inode->i_ino) { 598 remove_orphan_inode(sbi, dn->nid); --- 11 unchanged lines hidden (view full) --- 610 dn->node_page->index, dn->node_page->index); 611 612 dn->node_page = NULL; 613 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 614} 615 616static int truncate_dnode(struct dnode_of_data *dn) 617{ |
543 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
544 struct page *page; 545 546 if (dn->nid == 0) 547 return 1; 548 549 /* get direct node */ | 618 struct page *page; 619 620 if (dn->nid == 0) 621 return 1; 622 623 /* get direct node */ |
550 page = get_node_page(sbi, dn->nid); | 624 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); |
551 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 552 return 1; 553 else if (IS_ERR(page)) 554 return PTR_ERR(page); 555 556 /* Make dnode_of_data for parameter */ 557 dn->node_page = page; 558 dn->ofs_in_node = 0; 559 truncate_data_blocks(dn); 560 truncate_node(dn); 561 return 1; 562} 563 564static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 565 int ofs, int depth) 566{ | 625 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 626 return 1; 627 else if (IS_ERR(page)) 628 return PTR_ERR(page); 629 630 /* Make dnode_of_data for parameter */ 631 dn->node_page = page; 632 dn->ofs_in_node = 0; 633 truncate_data_blocks(dn); 634 truncate_node(dn); 635 return 1; 636} 637 638static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 639 int ofs, int depth) 640{ |
567 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
568 struct dnode_of_data rdn = *dn; 569 struct page *page; 570 struct f2fs_node *rn; 571 nid_t child_nid; 572 unsigned int child_nofs; 573 int freed = 0; 574 int i, ret; 575 576 if (dn->nid == 0) 577 return NIDS_PER_BLOCK + 1; 578 579 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 580 | 641 struct dnode_of_data rdn = *dn; 642 struct page *page; 643 struct f2fs_node *rn; 644 nid_t child_nid; 645 unsigned int child_nofs; 646 int freed = 0; 647 int i, ret; 648 649 if (dn->nid == 0) 650 return NIDS_PER_BLOCK + 1; 651 652 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 653 |
581 page = get_node_page(sbi, dn->nid); | 654 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); |
582 if (IS_ERR(page)) { 583 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 584 return PTR_ERR(page); 585 } 586 587 rn = F2FS_NODE(page); 588 if (depth < 3) { 589 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { --- 41 unchanged lines hidden (view full) --- 631 f2fs_put_page(page, 1); 632 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 633 return ret; 634} 635 636static int truncate_partial_nodes(struct dnode_of_data *dn, 637 struct f2fs_inode *ri, int *offset, int depth) 638{ | 655 if (IS_ERR(page)) { 656 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 657 return PTR_ERR(page); 658 } 659 660 rn = F2FS_NODE(page); 661 if (depth < 3) { 662 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { --- 41 unchanged lines hidden (view full) --- 704 f2fs_put_page(page, 1); 705 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 706 return ret; 707} 708 709static int truncate_partial_nodes(struct dnode_of_data *dn, 710 struct f2fs_inode *ri, int *offset, int depth) 711{ |
639 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
640 struct page *pages[2]; 641 nid_t nid[3]; 642 nid_t child_nid; 643 int err = 0; 644 int i; 645 int idx = depth - 2; 646 647 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 648 if (!nid[0]) 649 return 0; 650 651 /* get indirect nodes in the path */ 652 for (i = 0; i < idx + 1; i++) { 653 /* reference count'll be increased */ | 712 struct page *pages[2]; 713 nid_t nid[3]; 714 nid_t child_nid; 715 int err = 0; 716 int i; 717 int idx = depth - 2; 718 719 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 720 if (!nid[0]) 721 return 0; 722 723 /* get indirect nodes in the path */ 724 for (i = 0; i < idx + 1; i++) { 725 /* reference count'll be increased */ |
654 pages[i] = get_node_page(sbi, nid[i]); | 726 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); |
655 if (IS_ERR(pages[i])) { 656 err = PTR_ERR(pages[i]); 657 idx = i - 1; 658 goto fail; 659 } 660 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 661 } 662 --- 28 unchanged lines hidden (view full) --- 691 return err; 692} 693 694/* 695 * All the block addresses of data and nodes should be nullified. 696 */ 697int truncate_inode_blocks(struct inode *inode, pgoff_t from) 698{ | 727 if (IS_ERR(pages[i])) { 728 err = PTR_ERR(pages[i]); 729 idx = i - 1; 730 goto fail; 731 } 732 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 733 } 734 --- 28 unchanged lines hidden (view full) --- 763 return err; 764} 765 766/* 767 * All the block addresses of data and nodes should be nullified. 768 */ 769int truncate_inode_blocks(struct inode *inode, pgoff_t from) 770{ |
699 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 771 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
700 int err = 0, cont = 1; 701 int level, offset[4], noffset[4]; 702 unsigned int nofs = 0; 703 struct f2fs_inode *ri; 704 struct dnode_of_data dn; 705 struct page *page; 706 707 trace_f2fs_truncate_inode_blocks_enter(inode, from); --- 79 unchanged lines hidden (view full) --- 787fail: 788 f2fs_put_page(page, 0); 789 trace_f2fs_truncate_inode_blocks_exit(inode, err); 790 return err > 0 ? 0 : err; 791} 792 793int truncate_xattr_node(struct inode *inode, struct page *page) 794{ | 772 int err = 0, cont = 1; 773 int level, offset[4], noffset[4]; 774 unsigned int nofs = 0; 775 struct f2fs_inode *ri; 776 struct dnode_of_data dn; 777 struct page *page; 778 779 trace_f2fs_truncate_inode_blocks_enter(inode, from); --- 79 unchanged lines hidden (view full) --- 859fail: 860 f2fs_put_page(page, 0); 861 trace_f2fs_truncate_inode_blocks_exit(inode, err); 862 return err > 0 ? 0 : err; 863} 864 865int truncate_xattr_node(struct inode *inode, struct page *page) 866{ |
795 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 867 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
796 nid_t nid = F2FS_I(inode)->i_xattr_nid; 797 struct dnode_of_data dn; 798 struct page *npage; 799 800 if (!nid) 801 return 0; 802 803 npage = get_node_page(sbi, nid); --- 31 unchanged lines hidden (view full) --- 835 } 836 837 /* remove potential inline_data blocks */ 838 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 839 S_ISLNK(inode->i_mode)) 840 truncate_data_blocks_range(&dn, 1); 841 842 /* 0 is possible, after f2fs_new_inode() has failed */ | 868 nid_t nid = F2FS_I(inode)->i_xattr_nid; 869 struct dnode_of_data dn; 870 struct page *npage; 871 872 if (!nid) 873 return 0; 874 875 npage = get_node_page(sbi, nid); --- 31 unchanged lines hidden (view full) --- 907 } 908 909 /* remove potential inline_data blocks */ 910 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 911 S_ISLNK(inode->i_mode)) 912 truncate_data_blocks_range(&dn, 1); 913 914 /* 0 is possible, after f2fs_new_inode() has failed */ |
843 f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1); | 915 f2fs_bug_on(F2FS_I_SB(inode), 916 inode->i_blocks != 0 && inode->i_blocks != 1); |
844 845 /* will put inode & node pages */ 846 truncate_node(&dn); 847} 848 849struct page *new_inode_page(struct inode *inode) 850{ 851 struct dnode_of_data dn; 852 853 /* allocate inode page for new inode */ 854 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 855 856 /* caller should f2fs_put_page(page, 1); */ 857 return new_node_page(&dn, 0, NULL); 858} 859 860struct page *new_node_page(struct dnode_of_data *dn, 861 unsigned int ofs, struct page *ipage) 862{ | 917 918 /* will put inode & node pages */ 919 truncate_node(&dn); 920} 921 922struct page *new_inode_page(struct inode *inode) 923{ 924 struct dnode_of_data dn; 925 926 /* allocate inode page for new inode */ 927 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 928 929 /* caller should f2fs_put_page(page, 1); */ 930 return new_node_page(&dn, 0, NULL); 931} 932 933struct page *new_node_page(struct dnode_of_data *dn, 934 unsigned int ofs, struct page *ipage) 935{ |
863 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | 936 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
864 struct node_info old_ni, new_ni; 865 struct page *page; 866 int err; 867 868 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 869 return ERR_PTR(-EPERM); 870 871 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid); 872 if (!page) 873 return ERR_PTR(-ENOMEM); 874 875 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 876 err = -ENOSPC; 877 goto fail; 878 } 879 880 get_node_info(sbi, dn->nid, &old_ni); 881 882 /* Reinitialize old_ni with new node page */ | 937 struct node_info old_ni, new_ni; 938 struct page *page; 939 int err; 940 941 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 942 return ERR_PTR(-EPERM); 943 944 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid); 945 if (!page) 946 return ERR_PTR(-ENOMEM); 947 948 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 949 err = -ENOSPC; 950 goto fail; 951 } 952 953 get_node_info(sbi, dn->nid, &old_ni); 954 955 /* Reinitialize old_ni with new node page */ |
883 f2fs_bug_on(old_ni.blk_addr != NULL_ADDR); | 956 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR); |
884 new_ni = old_ni; 885 new_ni.ino = dn->inode->i_ino; 886 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 887 888 f2fs_wait_on_page_writeback(page, NODE); 889 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 890 set_cold_node(dn->inode, page); 891 SetPageUptodate(page); --- 21 unchanged lines hidden (view full) --- 913/* 914 * Caller should do after getting the following values. 915 * 0: f2fs_put_page(page, 0) 916 * LOCKED_PAGE: f2fs_put_page(page, 1) 917 * error: nothing 918 */ 919static int read_node_page(struct page *page, int rw) 920{ | 957 new_ni = old_ni; 958 new_ni.ino = dn->inode->i_ino; 959 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 960 961 f2fs_wait_on_page_writeback(page, NODE); 962 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 963 set_cold_node(dn->inode, page); 964 SetPageUptodate(page); --- 21 unchanged lines hidden (view full) --- 986/* 987 * Caller should do after getting the following values. 988 * 0: f2fs_put_page(page, 0) 989 * LOCKED_PAGE: f2fs_put_page(page, 1) 990 * error: nothing 991 */ 992static int read_node_page(struct page *page, int rw) 993{ |
921 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | 994 struct f2fs_sb_info *sbi = F2FS_P_SB(page); |
922 struct node_info ni; 923 924 get_node_info(sbi, page->index, &ni); 925 926 if (unlikely(ni.blk_addr == NULL_ADDR)) { 927 f2fs_put_page(page, 1); 928 return -ENOENT; 929 } --- 59 unchanged lines hidden (view full) --- 989} 990 991/* 992 * Return a locked page for the desired node page. 993 * And, readahead MAX_RA_NODE number of node pages. 994 */ 995struct page *get_node_page_ra(struct page *parent, int start) 996{ | 995 struct node_info ni; 996 997 get_node_info(sbi, page->index, &ni); 998 999 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1000 f2fs_put_page(page, 1); 1001 return -ENOENT; 1002 } --- 59 unchanged lines hidden (view full) --- 1062} 1063 1064/* 1065 * Return a locked page for the desired node page. 1066 * And, readahead MAX_RA_NODE number of node pages. 1067 */ 1068struct page *get_node_page_ra(struct page *parent, int start) 1069{ |
997 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); | 1070 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); |
998 struct blk_plug plug; 999 struct page *page; 1000 int err, i, end; 1001 nid_t nid; 1002 1003 /* First, try getting the desired direct node. */ 1004 nid = get_nid(parent, start, false); 1005 if (!nid) --- 113 unchanged lines hidden (view full) --- 1119 goto continue_unlock; 1120 } 1121 1122 if (!clear_page_dirty_for_io(page)) 1123 goto continue_unlock; 1124 1125 /* called by fsync() */ 1126 if (ino && IS_DNODE(page)) { | 1071 struct blk_plug plug; 1072 struct page *page; 1073 int err, i, end; 1074 nid_t nid; 1075 1076 /* First, try getting the desired direct node. */ 1077 nid = get_nid(parent, start, false); 1078 if (!nid) --- 113 unchanged lines hidden (view full) --- 1192 goto continue_unlock; 1193 } 1194 1195 if (!clear_page_dirty_for_io(page)) 1196 goto continue_unlock; 1197 1198 /* called by fsync() */ 1199 if (ino && IS_DNODE(page)) { |
1127 int mark = !is_checkpointed_node(sbi, ino); | |
1128 set_fsync_mark(page, 1); | 1200 set_fsync_mark(page, 1); |
1129 if (IS_INODE(page)) 1130 set_dentry_mark(page, mark); | 1201 if (IS_INODE(page)) { 1202 if (!is_checkpointed_node(sbi, ino) && 1203 !has_fsynced_inode(sbi, ino)) 1204 set_dentry_mark(page, 1); 1205 else 1206 set_dentry_mark(page, 0); 1207 } |
1131 nwritten++; 1132 } else { 1133 set_fsync_mark(page, 0); 1134 set_dentry_mark(page, 0); 1135 } 1136 1137 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) 1138 unlock_page(page); --- 62 unchanged lines hidden (view full) --- 1201 if (!ret) 1202 ret = ret2; 1203 return ret; 1204} 1205 1206static int f2fs_write_node_page(struct page *page, 1207 struct writeback_control *wbc) 1208{ | 1208 nwritten++; 1209 } else { 1210 set_fsync_mark(page, 0); 1211 set_dentry_mark(page, 0); 1212 } 1213 1214 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) 1215 unlock_page(page); --- 62 unchanged lines hidden (view full) --- 1278 if (!ret) 1279 ret = ret2; 1280 return ret; 1281} 1282 1283static int f2fs_write_node_page(struct page *page, 1284 struct writeback_control *wbc) 1285{ |
1209 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | 1286 struct f2fs_sb_info *sbi = F2FS_P_SB(page); |
1210 nid_t nid; 1211 block_t new_addr; 1212 struct node_info ni; 1213 struct f2fs_io_info fio = { 1214 .type = NODE, 1215 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, 1216 }; 1217 1218 trace_f2fs_writepage(page, NODE); 1219 1220 if (unlikely(sbi->por_doing)) 1221 goto redirty_out; 1222 if (unlikely(f2fs_cp_error(sbi))) 1223 goto redirty_out; 1224 1225 f2fs_wait_on_page_writeback(page, NODE); 1226 1227 /* get old block addr of this node page */ 1228 nid = nid_of_node(page); | 1287 nid_t nid; 1288 block_t new_addr; 1289 struct node_info ni; 1290 struct f2fs_io_info fio = { 1291 .type = NODE, 1292 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, 1293 }; 1294 1295 trace_f2fs_writepage(page, NODE); 1296 1297 if (unlikely(sbi->por_doing)) 1298 goto redirty_out; 1299 if (unlikely(f2fs_cp_error(sbi))) 1300 goto redirty_out; 1301 1302 f2fs_wait_on_page_writeback(page, NODE); 1303 1304 /* get old block addr of this node page */ 1305 nid = nid_of_node(page); |
1229 f2fs_bug_on(page->index != nid); | 1306 f2fs_bug_on(sbi, page->index != nid); |
1230 1231 get_node_info(sbi, nid, &ni); 1232 1233 /* This page is already truncated */ 1234 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1235 dec_page_count(sbi, F2FS_DIRTY_NODES); 1236 unlock_page(page); 1237 return 0; 1238 } 1239 | 1307 1308 get_node_info(sbi, nid, &ni); 1309 1310 /* This page is already truncated */ 1311 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1312 dec_page_count(sbi, F2FS_DIRTY_NODES); 1313 unlock_page(page); 1314 return 0; 1315 } 1316 |
1240 if (wbc->for_reclaim) 1241 goto redirty_out; 1242 1243 down_read(&sbi->node_write); | 1317 if (wbc->for_reclaim) { 1318 if (!down_read_trylock(&sbi->node_write)) 1319 goto redirty_out; 1320 } else { 1321 down_read(&sbi->node_write); 1322 } |
1244 set_page_writeback(page); 1245 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr); 1246 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page)); 1247 dec_page_count(sbi, F2FS_DIRTY_NODES); 1248 up_read(&sbi->node_write); 1249 unlock_page(page); 1250 return 0; 1251 1252redirty_out: 1253 redirty_page_for_writepage(wbc, page); 1254 return AOP_WRITEPAGE_ACTIVATE; 1255} 1256 1257static int f2fs_write_node_pages(struct address_space *mapping, 1258 struct writeback_control *wbc) 1259{ | 1323 set_page_writeback(page); 1324 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr); 1325 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page)); 1326 dec_page_count(sbi, F2FS_DIRTY_NODES); 1327 up_read(&sbi->node_write); 1328 unlock_page(page); 1329 return 0; 1330 1331redirty_out: 1332 redirty_page_for_writepage(wbc, page); 1333 return AOP_WRITEPAGE_ACTIVATE; 1334} 1335 1336static int f2fs_write_node_pages(struct address_space *mapping, 1337 struct writeback_control *wbc) 1338{ |
1260 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | 1339 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); |
1261 long diff; 1262 1263 trace_f2fs_writepages(mapping->host, wbc, NODE); 1264 1265 /* balancing f2fs's metadata in background */ 1266 f2fs_balance_fs_bg(sbi); 1267 1268 /* collect a number of dirty node pages and write together */ --- 8 unchanged lines hidden (view full) --- 1277 1278skip_write: 1279 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1280 return 0; 1281} 1282 1283static int f2fs_set_node_page_dirty(struct page *page) 1284{ | 1340 long diff; 1341 1342 trace_f2fs_writepages(mapping->host, wbc, NODE); 1343 1344 /* balancing f2fs's metadata in background */ 1345 f2fs_balance_fs_bg(sbi); 1346 1347 /* collect a number of dirty node pages and write together */ --- 8 unchanged lines hidden (view full) --- 1356 1357skip_write: 1358 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1359 return 0; 1360} 1361 1362static int f2fs_set_node_page_dirty(struct page *page) 1363{ |
1285 struct address_space *mapping = page->mapping; 1286 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1287 | |
1288 trace_f2fs_set_page_dirty(page, NODE); 1289 1290 SetPageUptodate(page); 1291 if (!PageDirty(page)) { 1292 __set_page_dirty_nobuffers(page); | 1364 trace_f2fs_set_page_dirty(page, NODE); 1365 1366 SetPageUptodate(page); 1367 if (!PageDirty(page)) { 1368 __set_page_dirty_nobuffers(page); |
1293 inc_page_count(sbi, F2FS_DIRTY_NODES); | 1369 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); |
1294 SetPagePrivate(page); 1295 return 1; 1296 } 1297 return 0; 1298} 1299 1300static void f2fs_invalidate_node_page(struct page *page, unsigned int offset, 1301 unsigned int length) 1302{ 1303 struct inode *inode = page->mapping->host; | 1370 SetPagePrivate(page); 1371 return 1; 1372 } 1373 return 0; 1374} 1375 1376static void f2fs_invalidate_node_page(struct page *page, unsigned int offset, 1377 unsigned int length) 1378{ 1379 struct inode *inode = page->mapping->host; |
1304 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
1305 if (PageDirty(page)) | 1380 if (PageDirty(page)) |
1306 dec_page_count(sbi, F2FS_DIRTY_NODES); | 1381 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES); |
1307 ClearPagePrivate(page); 1308} 1309 1310static int f2fs_release_node_page(struct page *page, gfp_t wait) 1311{ 1312 ClearPagePrivate(page); 1313 return 1; 1314} --- 36 unchanged lines hidden (view full) --- 1351 if (unlikely(nid == 0)) 1352 return 0; 1353 1354 if (build) { 1355 /* do not add allocated nids */ 1356 read_lock(&nm_i->nat_tree_lock); 1357 ne = __lookup_nat_cache(nm_i, nid); 1358 if (ne && | 1382 ClearPagePrivate(page); 1383} 1384 1385static int f2fs_release_node_page(struct page *page, gfp_t wait) 1386{ 1387 ClearPagePrivate(page); 1388 return 1; 1389} --- 36 unchanged lines hidden (view full) --- 1426 if (unlikely(nid == 0)) 1427 return 0; 1428 1429 if (build) { 1430 /* do not add allocated nids */ 1431 read_lock(&nm_i->nat_tree_lock); 1432 ne = __lookup_nat_cache(nm_i, nid); 1433 if (ne && |
1359 (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR)) | 1434 (!get_nat_flag(ne, IS_CHECKPOINTED) || 1435 nat_get_blkaddr(ne) != NULL_ADDR)) |
1360 allocated = true; 1361 read_unlock(&nm_i->nat_tree_lock); 1362 if (allocated) 1363 return 0; 1364 } 1365 1366 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1367 i->nid = nid; --- 40 unchanged lines hidden (view full) --- 1408 i = start_nid % NAT_ENTRY_PER_BLOCK; 1409 1410 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1411 1412 if (unlikely(start_nid >= nm_i->max_nid)) 1413 break; 1414 1415 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); | 1436 allocated = true; 1437 read_unlock(&nm_i->nat_tree_lock); 1438 if (allocated) 1439 return 0; 1440 } 1441 1442 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1443 i->nid = nid; --- 40 unchanged lines hidden (view full) --- 1484 i = start_nid % NAT_ENTRY_PER_BLOCK; 1485 1486 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1487 1488 if (unlikely(start_nid >= nm_i->max_nid)) 1489 break; 1490 1491 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); |
1416 f2fs_bug_on(blk_addr == NEW_ADDR); | 1492 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); |
1417 if (blk_addr == NULL_ADDR) { 1418 if (add_free_nid(sbi, start_nid, true) < 0) 1419 break; 1420 } 1421 } 1422} 1423 1424static void build_free_nids(struct f2fs_sb_info *sbi) --- 53 unchanged lines hidden (view full) --- 1478retry: 1479 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids)) 1480 return false; 1481 1482 spin_lock(&nm_i->free_nid_list_lock); 1483 1484 /* We should not use stale free nids created by build_free_nids */ 1485 if (nm_i->fcnt && !on_build_free_nids(nm_i)) { | 1493 if (blk_addr == NULL_ADDR) { 1494 if (add_free_nid(sbi, start_nid, true) < 0) 1495 break; 1496 } 1497 } 1498} 1499 1500static void build_free_nids(struct f2fs_sb_info *sbi) --- 53 unchanged lines hidden (view full) --- 1554retry: 1555 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids)) 1556 return false; 1557 1558 spin_lock(&nm_i->free_nid_list_lock); 1559 1560 /* We should not use stale free nids created by build_free_nids */ 1561 if (nm_i->fcnt && !on_build_free_nids(nm_i)) { |
1486 f2fs_bug_on(list_empty(&nm_i->free_nid_list)); | 1562 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); |
1487 list_for_each_entry(i, &nm_i->free_nid_list, list) 1488 if (i->state == NID_NEW) 1489 break; 1490 | 1563 list_for_each_entry(i, &nm_i->free_nid_list, list) 1564 if (i->state == NID_NEW) 1565 break; 1566 |
1491 f2fs_bug_on(i->state != NID_NEW); | 1567 f2fs_bug_on(sbi, i->state != NID_NEW); |
1492 *nid = i->nid; 1493 i->state = NID_ALLOC; 1494 nm_i->fcnt--; 1495 spin_unlock(&nm_i->free_nid_list_lock); 1496 return true; 1497 } 1498 spin_unlock(&nm_i->free_nid_list_lock); 1499 --- 9 unchanged lines hidden (view full) --- 1509 */ 1510void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1511{ 1512 struct f2fs_nm_info *nm_i = NM_I(sbi); 1513 struct free_nid *i; 1514 1515 spin_lock(&nm_i->free_nid_list_lock); 1516 i = __lookup_free_nid_list(nm_i, nid); | 1568 *nid = i->nid; 1569 i->state = NID_ALLOC; 1570 nm_i->fcnt--; 1571 spin_unlock(&nm_i->free_nid_list_lock); 1572 return true; 1573 } 1574 spin_unlock(&nm_i->free_nid_list_lock); 1575 --- 9 unchanged lines hidden (view full) --- 1585 */ 1586void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1587{ 1588 struct f2fs_nm_info *nm_i = NM_I(sbi); 1589 struct free_nid *i; 1590 1591 spin_lock(&nm_i->free_nid_list_lock); 1592 i = __lookup_free_nid_list(nm_i, nid); |
1517 f2fs_bug_on(!i || i->state != NID_ALLOC); | 1593 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); |
1518 __del_from_free_nid_list(nm_i, i); 1519 spin_unlock(&nm_i->free_nid_list_lock); 1520 1521 kmem_cache_free(free_nid_slab, i); 1522} 1523 1524/* 1525 * alloc_nid() should be called prior to this function. --- 4 unchanged lines hidden (view full) --- 1530 struct free_nid *i; 1531 bool need_free = false; 1532 1533 if (!nid) 1534 return; 1535 1536 spin_lock(&nm_i->free_nid_list_lock); 1537 i = __lookup_free_nid_list(nm_i, nid); | 1594 __del_from_free_nid_list(nm_i, i); 1595 spin_unlock(&nm_i->free_nid_list_lock); 1596 1597 kmem_cache_free(free_nid_slab, i); 1598} 1599 1600/* 1601 * alloc_nid() should be called prior to this function. --- 4 unchanged lines hidden (view full) --- 1606 struct free_nid *i; 1607 bool need_free = false; 1608 1609 if (!nid) 1610 return; 1611 1612 spin_lock(&nm_i->free_nid_list_lock); 1613 i = __lookup_free_nid_list(nm_i, nid); |
1538 f2fs_bug_on(!i || i->state != NID_ALLOC); | 1614 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); |
1539 if (!available_free_memory(sbi, FREE_NIDS)) { 1540 __del_from_free_nid_list(nm_i, i); 1541 need_free = true; 1542 } else { 1543 i->state = NID_NEW; 1544 nm_i->fcnt++; 1545 } 1546 spin_unlock(&nm_i->free_nid_list_lock); 1547 1548 if (need_free) 1549 kmem_cache_free(free_nid_slab, i); 1550} 1551 1552void recover_inline_xattr(struct inode *inode, struct page *page) 1553{ | 1615 if (!available_free_memory(sbi, FREE_NIDS)) { 1616 __del_from_free_nid_list(nm_i, i); 1617 need_free = true; 1618 } else { 1619 i->state = NID_NEW; 1620 nm_i->fcnt++; 1621 } 1622 spin_unlock(&nm_i->free_nid_list_lock); 1623 1624 if (need_free) 1625 kmem_cache_free(free_nid_slab, i); 1626} 1627 1628void recover_inline_xattr(struct inode *inode, struct page *page) 1629{ |
1554 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
1555 void *src_addr, *dst_addr; 1556 size_t inline_size; 1557 struct page *ipage; 1558 struct f2fs_inode *ri; 1559 | 1630 void *src_addr, *dst_addr; 1631 size_t inline_size; 1632 struct page *ipage; 1633 struct f2fs_inode *ri; 1634 |
1560 ipage = get_node_page(sbi, inode->i_ino); 1561 f2fs_bug_on(IS_ERR(ipage)); | 1635 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 1636 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); |
1562 1563 ri = F2FS_INODE(page); 1564 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 1565 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR); 1566 goto update_inode; 1567 } 1568 1569 dst_addr = inline_xattr_addr(ipage); --- 4 unchanged lines hidden (view full) --- 1574 memcpy(dst_addr, src_addr, inline_size); 1575update_inode: 1576 update_inode(inode, ipage); 1577 f2fs_put_page(ipage, 1); 1578} 1579 1580void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 1581{ | 1637 1638 ri = F2FS_INODE(page); 1639 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 1640 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR); 1641 goto update_inode; 1642 } 1643 1644 dst_addr = inline_xattr_addr(ipage); --- 4 unchanged lines hidden (view full) --- 1649 memcpy(dst_addr, src_addr, inline_size); 1650update_inode: 1651 update_inode(inode, ipage); 1652 f2fs_put_page(ipage, 1); 1653} 1654 1655void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 1656{ |
1582 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 1657 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
1583 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 1584 nid_t new_xnid = nid_of_node(page); 1585 struct node_info ni; 1586 1587 /* 1: invalidate the previous xattr nid */ 1588 if (!prev_xnid) 1589 goto recover_xnid; 1590 1591 /* Deallocate node address */ 1592 get_node_info(sbi, prev_xnid, &ni); | 1658 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 1659 nid_t new_xnid = nid_of_node(page); 1660 struct node_info ni; 1661 1662 /* 1: invalidate the previous xattr nid */ 1663 if (!prev_xnid) 1664 goto recover_xnid; 1665 1666 /* Deallocate node address */ 1667 get_node_info(sbi, prev_xnid, &ni); |
1593 f2fs_bug_on(ni.blk_addr == NULL_ADDR); | 1668 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); |
1594 invalidate_blocks(sbi, ni.blk_addr); 1595 dec_valid_node_count(sbi, inode); 1596 set_node_addr(sbi, &ni, NULL_ADDR, false); 1597 1598recover_xnid: 1599 /* 2: allocate new xattr nid */ 1600 if (unlikely(!inc_valid_node_count(sbi, inode))) | 1669 invalidate_blocks(sbi, ni.blk_addr); 1670 dec_valid_node_count(sbi, inode); 1671 set_node_addr(sbi, &ni, NULL_ADDR, false); 1672 1673recover_xnid: 1674 /* 2: allocate new xattr nid */ 1675 if (unlikely(!inc_valid_node_count(sbi, inode))) |
1601 f2fs_bug_on(1); | 1676 f2fs_bug_on(sbi, 1); |
1602 1603 remove_free_nid(NM_I(sbi), new_xnid); 1604 get_node_info(sbi, new_xnid, &ni); 1605 ni.ino = inode->i_ino; 1606 set_node_addr(sbi, &ni, NEW_ADDR, false); 1607 F2FS_I(inode)->i_xattr_nid = new_xnid; 1608 1609 /* 3: update xattr blkaddr */ --- 76 unchanged lines hidden (view full) --- 1686 1687int restore_node_summary(struct f2fs_sb_info *sbi, 1688 unsigned int segno, struct f2fs_summary_block *sum) 1689{ 1690 struct f2fs_node *rn; 1691 struct f2fs_summary *sum_entry; 1692 struct inode *inode = sbi->sb->s_bdev->bd_inode; 1693 block_t addr; | 1677 1678 remove_free_nid(NM_I(sbi), new_xnid); 1679 get_node_info(sbi, new_xnid, &ni); 1680 ni.ino = inode->i_ino; 1681 set_node_addr(sbi, &ni, NEW_ADDR, false); 1682 F2FS_I(inode)->i_xattr_nid = new_xnid; 1683 1684 /* 3: update xattr blkaddr */ --- 76 unchanged lines hidden (view full) --- 1761 1762int restore_node_summary(struct f2fs_sb_info *sbi, 1763 unsigned int segno, struct f2fs_summary_block *sum) 1764{ 1765 struct f2fs_node *rn; 1766 struct f2fs_summary *sum_entry; 1767 struct inode *inode = sbi->sb->s_bdev->bd_inode; 1768 block_t addr; |
1694 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi)); | 1769 int bio_blocks = MAX_BIO_BLOCKS(sbi); |
1695 struct page *pages[bio_blocks]; 1696 int i, idx, last_offset, nrpages, err = 0; 1697 1698 /* scan the node segment */ 1699 last_offset = sbi->blocks_per_seg; 1700 addr = START_BLOCK(sbi, segno); 1701 sum_entry = &sum->entries[0]; 1702 --- 25 unchanged lines hidden (view full) --- 1728 } 1729 1730 invalidate_mapping_pages(inode->i_mapping, addr, 1731 addr + nrpages); 1732 } 1733 return err; 1734} 1735 | 1770 struct page *pages[bio_blocks]; 1771 int i, idx, last_offset, nrpages, err = 0; 1772 1773 /* scan the node segment */ 1774 last_offset = sbi->blocks_per_seg; 1775 addr = START_BLOCK(sbi, segno); 1776 sum_entry = &sum->entries[0]; 1777 --- 25 unchanged lines hidden (view full) --- 1803 } 1804 1805 invalidate_mapping_pages(inode->i_mapping, addr, 1806 addr + nrpages); 1807 } 1808 return err; 1809} 1810 |
1736static struct nat_entry_set *grab_nat_entry_set(void) 1737{ 1738 struct nat_entry_set *nes = 1739 f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC); 1740 1741 nes->entry_cnt = 0; 1742 INIT_LIST_HEAD(&nes->set_list); 1743 INIT_LIST_HEAD(&nes->entry_list); 1744 return nes; 1745} 1746 1747static void release_nat_entry_set(struct nat_entry_set *nes, 1748 struct f2fs_nm_info *nm_i) 1749{ 1750 f2fs_bug_on(!list_empty(&nes->entry_list)); 1751 1752 nm_i->dirty_nat_cnt -= nes->entry_cnt; 1753 list_del(&nes->set_list); 1754 kmem_cache_free(nat_entry_set_slab, nes); 1755} 1756 1757static void adjust_nat_entry_set(struct nat_entry_set *nes, 1758 struct list_head *head) 1759{ 1760 struct nat_entry_set *next = nes; 1761 1762 if (list_is_last(&nes->set_list, head)) 1763 return; 1764 1765 list_for_each_entry_continue(next, head, set_list) 1766 if (nes->entry_cnt <= next->entry_cnt) 1767 break; 1768 1769 list_move_tail(&nes->set_list, &next->set_list); 1770} 1771 1772static void add_nat_entry(struct nat_entry *ne, struct list_head *head) 1773{ 1774 struct nat_entry_set *nes; 1775 nid_t start_nid = START_NID(ne->ni.nid); 1776 1777 list_for_each_entry(nes, head, set_list) { 1778 if (nes->start_nid == start_nid) { 1779 list_move_tail(&ne->list, &nes->entry_list); 1780 nes->entry_cnt++; 1781 adjust_nat_entry_set(nes, head); 1782 return; 1783 } 1784 } 1785 1786 nes = grab_nat_entry_set(); 1787 1788 nes->start_nid = start_nid; 1789 list_move_tail(&ne->list, &nes->entry_list); 1790 nes->entry_cnt++; 1791 list_add(&nes->set_list, head); 1792} 1793 1794static void merge_nats_in_set(struct f2fs_sb_info *sbi) 1795{ 1796 struct f2fs_nm_info *nm_i = NM_I(sbi); 1797 struct list_head *dirty_list = &nm_i->dirty_nat_entries; 1798 struct list_head *set_list = &nm_i->nat_entry_set; 1799 struct nat_entry *ne, *tmp; 1800 1801 write_lock(&nm_i->nat_tree_lock); 1802 list_for_each_entry_safe(ne, tmp, dirty_list, list) { 1803 if (nat_get_blkaddr(ne) == NEW_ADDR) 1804 continue; 1805 add_nat_entry(ne, set_list); 1806 nm_i->dirty_nat_cnt++; 1807 } 1808 write_unlock(&nm_i->nat_tree_lock); 1809} 1810 1811static bool __has_cursum_space(struct f2fs_summary_block *sum, int size) 1812{ 1813 if (nats_in_cursum(sum) + size <= NAT_JOURNAL_ENTRIES) 1814 return true; 1815 else 1816 return false; 1817} 1818 | |
1819static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 1820{ 1821 struct f2fs_nm_info *nm_i = NM_I(sbi); 1822 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1823 struct f2fs_summary_block *sum = curseg->sum_blk; 1824 int i; 1825 1826 mutex_lock(&curseg->curseg_mutex); --- 18 unchanged lines hidden (view full) --- 1845found: 1846 __set_nat_cache_dirty(nm_i, ne); 1847 write_unlock(&nm_i->nat_tree_lock); 1848 } 1849 update_nats_in_cursum(sum, -i); 1850 mutex_unlock(&curseg->curseg_mutex); 1851} 1852 | 1811static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 1812{ 1813 struct f2fs_nm_info *nm_i = NM_I(sbi); 1814 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1815 struct f2fs_summary_block *sum = curseg->sum_blk; 1816 int i; 1817 1818 mutex_lock(&curseg->curseg_mutex); --- 18 unchanged lines hidden (view full) --- 1837found: 1838 __set_nat_cache_dirty(nm_i, ne); 1839 write_unlock(&nm_i->nat_tree_lock); 1840 } 1841 update_nats_in_cursum(sum, -i); 1842 mutex_unlock(&curseg->curseg_mutex); 1843} 1844 |
1853/* 1854 * This function is called during the checkpointing process. 1855 */ 1856void flush_nat_entries(struct f2fs_sb_info *sbi) | 1845static void __adjust_nat_entry_set(struct nat_entry_set *nes, 1846 struct list_head *head, int max) |
1857{ | 1847{ |
1858 struct f2fs_nm_info *nm_i = NM_I(sbi); 1859 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1860 struct f2fs_summary_block *sum = curseg->sum_blk; 1861 struct nat_entry_set *nes, *tmp; 1862 struct list_head *head = &nm_i->nat_entry_set; 1863 bool to_journal = true; | 1848 struct nat_entry_set *cur; |
1864 | 1849 |
1865 /* merge nat entries of dirty list to nat entry set temporarily */ 1866 merge_nats_in_set(sbi); | 1850 if (nes->entry_cnt >= max) 1851 goto add_out; |
1867 | 1852 |
1868 /* 1869 * if there are no enough space in journal to store dirty nat 1870 * entries, remove all entries from journal and merge them 1871 * into nat entry set. 1872 */ 1873 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt)) { 1874 remove_nats_in_journal(sbi); 1875 1876 /* 1877 * merge nat entries of dirty list to nat entry set temporarily 1878 */ 1879 merge_nats_in_set(sbi); | 1853 list_for_each_entry(cur, head, set_list) { 1854 if (cur->entry_cnt >= nes->entry_cnt) { 1855 list_add(&nes->set_list, cur->set_list.prev); 1856 return; 1857 } |
1880 } | 1858 } |
1859add_out: 1860 list_add_tail(&nes->set_list, head); 1861} |
|
1881 | 1862 |
1882 if (!nm_i->dirty_nat_cnt) 1883 return; | 1863static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 1864 struct nat_entry_set *set) 1865{ 1866 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1867 struct f2fs_summary_block *sum = curseg->sum_blk; 1868 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 1869 bool to_journal = true; 1870 struct f2fs_nat_block *nat_blk; 1871 struct nat_entry *ne, *cur; 1872 struct page *page = NULL; |
1884 1885 /* 1886 * there are two steps to flush nat entries: 1887 * #1, flush nat entries to journal in current hot data summary block. 1888 * #2, flush nat entries to nat page. 1889 */ | 1873 1874 /* 1875 * there are two steps to flush nat entries: 1876 * #1, flush nat entries to journal in current hot data summary block. 1877 * #2, flush nat entries to nat page. 1878 */ |
1890 list_for_each_entry_safe(nes, tmp, head, set_list) { 1891 struct f2fs_nat_block *nat_blk; 1892 struct nat_entry *ne, *cur; 1893 struct page *page; 1894 nid_t start_nid = nes->start_nid; | 1879 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL)) 1880 to_journal = false; |
1895 | 1881 |
1896 if (to_journal && !__has_cursum_space(sum, nes->entry_cnt)) 1897 to_journal = false; | 1882 if (to_journal) { 1883 mutex_lock(&curseg->curseg_mutex); 1884 } else { 1885 page = get_next_nat_page(sbi, start_nid); 1886 nat_blk = page_address(page); 1887 f2fs_bug_on(sbi, !nat_blk); 1888 } |
1898 | 1889 |
1890 /* flush dirty nats in nat entry set */ 1891 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 1892 struct f2fs_nat_entry *raw_ne; 1893 nid_t nid = nat_get_nid(ne); 1894 int offset; 1895 1896 if (nat_get_blkaddr(ne) == NEW_ADDR) 1897 continue; 1898 |
|
1899 if (to_journal) { | 1899 if (to_journal) { |
1900 mutex_lock(&curseg->curseg_mutex); | 1900 offset = lookup_journal_in_cursum(sum, 1901 NAT_JOURNAL, nid, 1); 1902 f2fs_bug_on(sbi, offset < 0); 1903 raw_ne = &nat_in_journal(sum, offset); 1904 nid_in_journal(sum, offset) = cpu_to_le32(nid); |
1901 } else { | 1905 } else { |
1902 page = get_next_nat_page(sbi, start_nid); 1903 nat_blk = page_address(page); 1904 f2fs_bug_on(!nat_blk); | 1906 raw_ne = &nat_blk->entries[nid - start_nid]; |
1905 } | 1907 } |
1908 raw_nat_from_node_info(raw_ne, &ne->ni); |
|
1906 | 1909 |
1907 /* flush dirty nats in nat entry set */ 1908 list_for_each_entry_safe(ne, cur, &nes->entry_list, list) { 1909 struct f2fs_nat_entry *raw_ne; 1910 nid_t nid = nat_get_nid(ne); 1911 int offset; | 1910 write_lock(&NM_I(sbi)->nat_tree_lock); 1911 nat_reset_flag(ne); 1912 __clear_nat_cache_dirty(NM_I(sbi), ne); 1913 write_unlock(&NM_I(sbi)->nat_tree_lock); |
1912 | 1914 |
1913 if (to_journal) { 1914 offset = lookup_journal_in_cursum(sum, 1915 NAT_JOURNAL, nid, 1); 1916 f2fs_bug_on(offset < 0); 1917 raw_ne = &nat_in_journal(sum, offset); 1918 nid_in_journal(sum, offset) = cpu_to_le32(nid); 1919 } else { 1920 raw_ne = &nat_blk->entries[nid - start_nid]; 1921 } 1922 raw_nat_from_node_info(raw_ne, &ne->ni); | 1915 if (nat_get_blkaddr(ne) == NULL_ADDR) 1916 add_free_nid(sbi, nid, false); 1917 } |
1923 | 1918 |
1924 if (nat_get_blkaddr(ne) == NULL_ADDR && 1925 add_free_nid(sbi, nid, false) <= 0) { 1926 write_lock(&nm_i->nat_tree_lock); 1927 __del_from_nat_cache(nm_i, ne); 1928 write_unlock(&nm_i->nat_tree_lock); 1929 } else { 1930 write_lock(&nm_i->nat_tree_lock); 1931 __clear_nat_cache_dirty(nm_i, ne); 1932 write_unlock(&nm_i->nat_tree_lock); 1933 } 1934 } | 1919 if (to_journal) 1920 mutex_unlock(&curseg->curseg_mutex); 1921 else 1922 f2fs_put_page(page, 1); |
1935 | 1923 |
1936 if (to_journal) 1937 mutex_unlock(&curseg->curseg_mutex); 1938 else 1939 f2fs_put_page(page, 1); | 1924 if (!set->entry_cnt) { 1925 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 1926 kmem_cache_free(nat_entry_set_slab, set); 1927 } 1928} |
1940 | 1929 |
1941 release_nat_entry_set(nes, nm_i); | 1930/* 1931 * This function is called during the checkpointing process. 1932 */ 1933void flush_nat_entries(struct f2fs_sb_info *sbi) 1934{ 1935 struct f2fs_nm_info *nm_i = NM_I(sbi); 1936 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1937 struct f2fs_summary_block *sum = curseg->sum_blk; 1938 struct nat_entry_set *setvec[NATVEC_SIZE]; 1939 struct nat_entry_set *set, *tmp; 1940 unsigned int found; 1941 nid_t set_idx = 0; 1942 LIST_HEAD(sets); 1943 1944 /* 1945 * if there are no enough space in journal to store dirty nat 1946 * entries, remove all entries from journal and merge them 1947 * into nat entry set. 1948 */ 1949 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 1950 remove_nats_in_journal(sbi); 1951 1952 if (!nm_i->dirty_nat_cnt) 1953 return; 1954 1955 while ((found = __gang_lookup_nat_set(nm_i, 1956 set_idx, NATVEC_SIZE, setvec))) { 1957 unsigned idx; 1958 set_idx = setvec[found - 1]->set + 1; 1959 for (idx = 0; idx < found; idx++) 1960 __adjust_nat_entry_set(setvec[idx], &sets, 1961 MAX_NAT_JENTRIES(sum)); |
1942 } 1943 | 1962 } 1963 |
1944 f2fs_bug_on(!list_empty(head)); 1945 f2fs_bug_on(nm_i->dirty_nat_cnt); | 1964 /* flush dirty nats in nat entry set */ 1965 list_for_each_entry_safe(set, tmp, &sets, set_list) 1966 __flush_nat_entry_set(sbi, set); 1967 1968 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); |
1946} 1947 1948static int init_node_manager(struct f2fs_sb_info *sbi) 1949{ 1950 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1951 struct f2fs_nm_info *nm_i = NM_I(sbi); 1952 unsigned char *version_bitmap; 1953 unsigned int nat_segs, nat_blocks; --- 10 unchanged lines hidden (view full) --- 1964 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM; 1965 nm_i->fcnt = 0; 1966 nm_i->nat_cnt = 0; 1967 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 1968 1969 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 1970 INIT_LIST_HEAD(&nm_i->free_nid_list); 1971 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); | 1969} 1970 1971static int init_node_manager(struct f2fs_sb_info *sbi) 1972{ 1973 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1974 struct f2fs_nm_info *nm_i = NM_I(sbi); 1975 unsigned char *version_bitmap; 1976 unsigned int nat_segs, nat_blocks; --- 10 unchanged lines hidden (view full) --- 1987 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM; 1988 nm_i->fcnt = 0; 1989 nm_i->nat_cnt = 0; 1990 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 1991 1992 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 1993 INIT_LIST_HEAD(&nm_i->free_nid_list); 1994 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); |
1995 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_ATOMIC); |
|
1972 INIT_LIST_HEAD(&nm_i->nat_entries); | 1996 INIT_LIST_HEAD(&nm_i->nat_entries); |
1973 INIT_LIST_HEAD(&nm_i->dirty_nat_entries); 1974 INIT_LIST_HEAD(&nm_i->nat_entry_set); | |
1975 1976 mutex_init(&nm_i->build_lock); 1977 spin_lock_init(&nm_i->free_nid_list_lock); 1978 rwlock_init(&nm_i->nat_tree_lock); 1979 1980 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1981 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 1982 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); --- 32 unchanged lines hidden (view full) --- 2015 unsigned int found; 2016 2017 if (!nm_i) 2018 return; 2019 2020 /* destroy free nid list */ 2021 spin_lock(&nm_i->free_nid_list_lock); 2022 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { | 1997 1998 mutex_init(&nm_i->build_lock); 1999 spin_lock_init(&nm_i->free_nid_list_lock); 2000 rwlock_init(&nm_i->nat_tree_lock); 2001 2002 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2003 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2004 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); --- 32 unchanged lines hidden (view full) --- 2037 unsigned int found; 2038 2039 if (!nm_i) 2040 return; 2041 2042 /* destroy free nid list */ 2043 spin_lock(&nm_i->free_nid_list_lock); 2044 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { |
2023 f2fs_bug_on(i->state == NID_ALLOC); | 2045 f2fs_bug_on(sbi, i->state == NID_ALLOC); |
2024 __del_from_free_nid_list(nm_i, i); 2025 nm_i->fcnt--; 2026 spin_unlock(&nm_i->free_nid_list_lock); 2027 kmem_cache_free(free_nid_slab, i); 2028 spin_lock(&nm_i->free_nid_list_lock); 2029 } | 2046 __del_from_free_nid_list(nm_i, i); 2047 nm_i->fcnt--; 2048 spin_unlock(&nm_i->free_nid_list_lock); 2049 kmem_cache_free(free_nid_slab, i); 2050 spin_lock(&nm_i->free_nid_list_lock); 2051 } |
2030 f2fs_bug_on(nm_i->fcnt); | 2052 f2fs_bug_on(sbi, nm_i->fcnt); |
2031 spin_unlock(&nm_i->free_nid_list_lock); 2032 2033 /* destroy nat cache */ 2034 write_lock(&nm_i->nat_tree_lock); 2035 while ((found = __gang_lookup_nat_cache(nm_i, 2036 nid, NATVEC_SIZE, natvec))) { 2037 unsigned idx; 2038 nid = nat_get_nid(natvec[found - 1]) + 1; 2039 for (idx = 0; idx < found; idx++) 2040 __del_from_nat_cache(nm_i, natvec[idx]); 2041 } | 2053 spin_unlock(&nm_i->free_nid_list_lock); 2054 2055 /* destroy nat cache */ 2056 write_lock(&nm_i->nat_tree_lock); 2057 while ((found = __gang_lookup_nat_cache(nm_i, 2058 nid, NATVEC_SIZE, natvec))) { 2059 unsigned idx; 2060 nid = nat_get_nid(natvec[found - 1]) + 1; 2061 for (idx = 0; idx < found; idx++) 2062 __del_from_nat_cache(nm_i, natvec[idx]); 2063 } |
2042 f2fs_bug_on(nm_i->nat_cnt); | 2064 f2fs_bug_on(sbi, nm_i->nat_cnt); |
2043 write_unlock(&nm_i->nat_tree_lock); 2044 2045 kfree(nm_i->nat_bitmap); 2046 sbi->nm_info = NULL; 2047 kfree(nm_i); 2048} 2049 2050int __init create_node_manager_caches(void) --- 31 unchanged lines hidden --- | 2065 write_unlock(&nm_i->nat_tree_lock); 2066 2067 kfree(nm_i->nat_bitmap); 2068 sbi->nm_info = NULL; 2069 kfree(nm_i); 2070} 2071 2072int __init create_node_manager_caches(void) --- 31 unchanged lines hidden --- |