data.c (d033de5ceee8333e4fee3d59a956244d3736102a) | data.c (e2b4e2bc8865e03eecd49caa9713a2402a96bba9) |
---|---|
1/* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11#include <linux/fs.h> 12#include <linux/f2fs_fs.h> 13#include <linux/buffer_head.h> 14#include <linux/mpage.h> 15#include <linux/writeback.h> 16#include <linux/backing-dev.h> | 1/* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11#include <linux/fs.h> 12#include <linux/f2fs_fs.h> 13#include <linux/buffer_head.h> 14#include <linux/mpage.h> 15#include <linux/writeback.h> 16#include <linux/backing-dev.h> |
17#include <linux/pagevec.h> |
|
17#include <linux/blkdev.h> 18#include <linux/bio.h> 19#include <linux/prefetch.h> 20#include <linux/uio.h> 21#include <linux/cleancache.h> 22 23#include "f2fs.h" 24#include "node.h" 25#include "segment.h" 26#include "trace.h" 27#include <trace/events/f2fs.h> 28 | 18#include <linux/blkdev.h> 19#include <linux/bio.h> 20#include <linux/prefetch.h> 21#include <linux/uio.h> 22#include <linux/cleancache.h> 23 24#include "f2fs.h" 25#include "node.h" 26#include "segment.h" 27#include "trace.h" 28#include <trace/events/f2fs.h> 29 |
29static struct kmem_cache *extent_tree_slab; 30static struct kmem_cache *extent_node_slab; 31 | |
32static void f2fs_read_end_io(struct bio *bio, int err) 33{ 34 struct bio_vec *bvec; 35 int i; 36 37 if (f2fs_bio_encrypted(bio)) { 38 if (err) { 39 f2fs_release_crypto_ctx(bio->bi_private); --- 47 unchanged lines hidden (view full) --- 87/* 88 * Low-level block read/write IO operations. 89 */ 90static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 91 int npages, bool is_read) 92{ 93 struct bio *bio; 94 | 30static void f2fs_read_end_io(struct bio *bio, int err) 31{ 32 struct bio_vec *bvec; 33 int i; 34 35 if (f2fs_bio_encrypted(bio)) { 36 if (err) { 37 f2fs_release_crypto_ctx(bio->bi_private); --- 47 unchanged lines hidden (view full) --- 85/* 86 * Low-level block read/write IO operations. 87 */ 88static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 89 int npages, bool is_read) 90{ 91 struct bio *bio; 92 |
95 /* No failure on bio allocation */ 96 bio = bio_alloc(GFP_NOIO, npages); | 93 bio = f2fs_bio_alloc(npages); |
97 98 bio->bi_bdev = sbi->sb->s_bdev; 99 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 100 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 101 bio->bi_private = is_read ? NULL : sbi; 102 103 return bio; 104} --- 48 unchanged lines hidden (view full) --- 153 trace_f2fs_submit_page_bio(page, fio); 154 f2fs_trace_ios(fio, 0); 155 156 /* Allocate a new bio */ 157 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw)); 158 159 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) { 160 bio_put(bio); | 94 95 bio->bi_bdev = sbi->sb->s_bdev; 96 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 97 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 98 bio->bi_private = is_read ? NULL : sbi; 99 100 return bio; 101} --- 48 unchanged lines hidden (view full) --- 150 trace_f2fs_submit_page_bio(page, fio); 151 f2fs_trace_ios(fio, 0); 152 153 /* Allocate a new bio */ 154 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw)); 155 156 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) { 157 bio_put(bio); |
161 f2fs_put_page(page, 1); | |
162 return -EFAULT; 163 } 164 165 submit_bio(fio->rw, bio); 166 return 0; 167} 168 169void f2fs_submit_page_mbio(struct f2fs_io_info *fio) --- 91 unchanged lines hidden (view full) --- 261 262 if (dn->data_blkaddr == NULL_ADDR) 263 err = reserve_new_block(dn); 264 if (err || need_put) 265 f2fs_put_dnode(dn); 266 return err; 267} 268 | 158 return -EFAULT; 159 } 160 161 submit_bio(fio->rw, bio); 162 return 0; 163} 164 165void f2fs_submit_page_mbio(struct f2fs_io_info *fio) --- 91 unchanged lines hidden (view full) --- 257 258 if (dn->data_blkaddr == NULL_ADDR) 259 err = reserve_new_block(dn); 260 if (err || need_put) 261 f2fs_put_dnode(dn); 262 return err; 263} 264 |
269static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs, 270 struct extent_info *ei) | 265int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) |
271{ | 266{ |
272 struct f2fs_inode_info *fi = F2FS_I(inode); 273 pgoff_t start_fofs, end_fofs; 274 block_t start_blkaddr; 275 276 read_lock(&fi->ext_lock); 277 if (fi->ext.len == 0) { 278 read_unlock(&fi->ext_lock); 279 return false; 280 } 281 282 stat_inc_total_hit(inode->i_sb); 283 284 start_fofs = fi->ext.fofs; 285 end_fofs = fi->ext.fofs + fi->ext.len - 1; 286 start_blkaddr = fi->ext.blk; 287 288 if (pgofs >= start_fofs && pgofs <= end_fofs) { 289 *ei = fi->ext; 290 stat_inc_read_hit(inode->i_sb); 291 read_unlock(&fi->ext_lock); 292 return true; 293 } 294 read_unlock(&fi->ext_lock); 295 return false; 296} 297 298static bool update_extent_info(struct inode *inode, pgoff_t fofs, 299 block_t blkaddr) 300{ 301 struct f2fs_inode_info *fi = F2FS_I(inode); 302 pgoff_t start_fofs, end_fofs; 303 block_t start_blkaddr, end_blkaddr; 304 int need_update = true; 305 306 write_lock(&fi->ext_lock); 307 308 start_fofs = fi->ext.fofs; 309 end_fofs = fi->ext.fofs + fi->ext.len - 1; 310 start_blkaddr = fi->ext.blk; 311 end_blkaddr = fi->ext.blk + fi->ext.len - 1; 312 313 /* Drop and initialize the matched extent */ 314 if (fi->ext.len == 1 && fofs == start_fofs) 315 fi->ext.len = 0; 316 317 /* Initial extent */ 318 if (fi->ext.len == 0) { 319 if (blkaddr != NULL_ADDR) { 320 fi->ext.fofs = fofs; 321 fi->ext.blk = blkaddr; 322 fi->ext.len = 1; 323 } 324 goto end_update; 325 } 326 327 /* Front merge */ 328 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) { 329 fi->ext.fofs--; 330 fi->ext.blk--; 331 fi->ext.len++; 332 goto end_update; 333 } 334 335 /* Back merge */ 336 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) { 337 fi->ext.len++; 338 goto end_update; 339 } 340 341 /* Split the existing extent */ 342 if (fi->ext.len > 1 && 343 fofs >= start_fofs && fofs <= end_fofs) { 344 if ((end_fofs - fofs) < (fi->ext.len >> 1)) { 345 fi->ext.len = fofs - start_fofs; 346 } else { 347 fi->ext.fofs = fofs + 1; 348 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1; 349 fi->ext.len -= fofs - start_fofs + 1; 350 } 351 } else { 352 need_update = false; 353 } 354 355 /* Finally, if the extent is very fragmented, let's drop the cache. */ 356 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) { 357 fi->ext.len = 0; 358 set_inode_flag(fi, FI_NO_EXTENT); 359 need_update = true; 360 } 361end_update: 362 write_unlock(&fi->ext_lock); 363 return need_update; 364} 365 366static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, 367 struct extent_tree *et, struct extent_info *ei, 368 struct rb_node *parent, struct rb_node **p) 369{ 370 struct extent_node *en; 371 372 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); 373 if (!en) 374 return NULL; 375 376 en->ei = *ei; 377 INIT_LIST_HEAD(&en->list); 378 379 rb_link_node(&en->rb_node, parent, p); 380 rb_insert_color(&en->rb_node, &et->root); 381 et->count++; 382 atomic_inc(&sbi->total_ext_node); 383 return en; 384} 385 386static void __detach_extent_node(struct f2fs_sb_info *sbi, 387 struct extent_tree *et, struct extent_node *en) 388{ 389 rb_erase(&en->rb_node, &et->root); 390 et->count--; 391 atomic_dec(&sbi->total_ext_node); 392 393 if (et->cached_en == en) 394 et->cached_en = NULL; 395} 396 397static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi, 398 nid_t ino) 399{ 400 struct extent_tree *et; 401 402 down_read(&sbi->extent_tree_lock); 403 et = radix_tree_lookup(&sbi->extent_tree_root, ino); 404 if (!et) { 405 up_read(&sbi->extent_tree_lock); 406 return NULL; 407 } 408 atomic_inc(&et->refcount); 409 up_read(&sbi->extent_tree_lock); 410 411 return et; 412} 413 414static struct extent_tree *__grab_extent_tree(struct inode *inode) 415{ 416 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 417 struct extent_tree *et; 418 nid_t ino = inode->i_ino; 419 420 down_write(&sbi->extent_tree_lock); 421 et = radix_tree_lookup(&sbi->extent_tree_root, ino); 422 if (!et) { 423 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); 424 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); 425 memset(et, 0, sizeof(struct extent_tree)); 426 et->ino = ino; 427 et->root = RB_ROOT; 428 et->cached_en = NULL; 429 rwlock_init(&et->lock); 430 atomic_set(&et->refcount, 0); 431 et->count = 0; 432 sbi->total_ext_tree++; 433 } 434 atomic_inc(&et->refcount); 435 up_write(&sbi->extent_tree_lock); 436 437 return et; 438} 439 440static struct extent_node *__lookup_extent_tree(struct extent_tree *et, 441 unsigned int fofs) 442{ 443 struct rb_node *node = et->root.rb_node; 444 struct extent_node *en; 445 446 if (et->cached_en) { 447 struct extent_info *cei = &et->cached_en->ei; 448 449 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) 450 return et->cached_en; 451 } 452 453 while (node) { 454 en = rb_entry(node, struct extent_node, rb_node); 455 456 if (fofs < en->ei.fofs) { 457 node = node->rb_left; 458 } else if (fofs >= en->ei.fofs + en->ei.len) { 459 node = node->rb_right; 460 } else { 461 et->cached_en = en; 462 return en; 463 } 464 } 465 return NULL; 466} 467 468static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi, 469 struct extent_tree *et, struct extent_node *en) 470{ 471 struct extent_node *prev; 472 struct rb_node *node; 473 474 node = rb_prev(&en->rb_node); 475 if (!node) 476 return NULL; 477 478 prev = rb_entry(node, struct extent_node, rb_node); 479 if (__is_back_mergeable(&en->ei, &prev->ei)) { 480 en->ei.fofs = prev->ei.fofs; 481 en->ei.blk = prev->ei.blk; 482 en->ei.len += prev->ei.len; 483 __detach_extent_node(sbi, et, prev); 484 return prev; 485 } 486 return NULL; 487} 488 489static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi, 490 struct extent_tree *et, struct extent_node *en) 491{ 492 struct extent_node *next; 493 struct rb_node *node; 494 495 node = rb_next(&en->rb_node); 496 if (!node) 497 return NULL; 498 499 next = rb_entry(node, struct extent_node, rb_node); 500 if (__is_front_mergeable(&en->ei, &next->ei)) { 501 en->ei.len += next->ei.len; 502 __detach_extent_node(sbi, et, next); 503 return next; 504 } 505 return NULL; 506} 507 508static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi, 509 struct extent_tree *et, struct extent_info *ei, 510 struct extent_node **den) 511{ 512 struct rb_node **p = &et->root.rb_node; 513 struct rb_node *parent = NULL; 514 struct extent_node *en; 515 516 while (*p) { 517 parent = *p; 518 en = rb_entry(parent, struct extent_node, rb_node); 519 520 if (ei->fofs < en->ei.fofs) { 521 if (__is_front_mergeable(ei, &en->ei)) { 522 f2fs_bug_on(sbi, !den); 523 en->ei.fofs = ei->fofs; 524 en->ei.blk = ei->blk; 525 en->ei.len += ei->len; 526 *den = __try_back_merge(sbi, et, en); 527 return en; 528 } 529 p = &(*p)->rb_left; 530 } else if (ei->fofs >= en->ei.fofs + en->ei.len) { 531 if (__is_back_mergeable(ei, &en->ei)) { 532 f2fs_bug_on(sbi, !den); 533 en->ei.len += ei->len; 534 *den = __try_front_merge(sbi, et, en); 535 return en; 536 } 537 p = &(*p)->rb_right; 538 } else { 539 f2fs_bug_on(sbi, 1); 540 } 541 } 542 543 return __attach_extent_node(sbi, et, ei, parent, p); 544} 545 546static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, 547 struct extent_tree *et, bool free_all) 548{ 549 struct rb_node *node, *next; 550 struct extent_node *en; 551 unsigned int count = et->count; 552 553 node = rb_first(&et->root); 554 while (node) { 555 next = rb_next(node); 556 en = rb_entry(node, struct extent_node, rb_node); 557 558 if (free_all) { 559 spin_lock(&sbi->extent_lock); 560 if (!list_empty(&en->list)) 561 list_del_init(&en->list); 562 spin_unlock(&sbi->extent_lock); 563 } 564 565 if (free_all || list_empty(&en->list)) { 566 __detach_extent_node(sbi, et, en); 567 kmem_cache_free(extent_node_slab, en); 568 } 569 node = next; 570 } 571 572 return count - et->count; 573} 574 575static void f2fs_init_extent_tree(struct inode *inode, 576 struct f2fs_extent *i_ext) 577{ 578 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 579 struct extent_tree *et; 580 struct extent_node *en; | |
581 struct extent_info ei; | 267 struct extent_info ei; |
268 struct inode *inode = dn->inode; |
|
582 | 269 |
583 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN) 584 return; 585 586 et = __grab_extent_tree(inode); 587 588 write_lock(&et->lock); 589 if (et->count) 590 goto out; 591 592 set_extent_info(&ei, le32_to_cpu(i_ext->fofs), 593 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len)); 594 595 en = __insert_extent_tree(sbi, et, &ei, NULL); 596 if (en) { 597 et->cached_en = en; 598 599 spin_lock(&sbi->extent_lock); 600 list_add_tail(&en->list, &sbi->extent_list); 601 spin_unlock(&sbi->extent_lock); | 270 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 271 dn->data_blkaddr = ei.blk + index - ei.fofs; 272 return 0; |
602 } | 273 } |
603out: 604 write_unlock(&et->lock); 605 atomic_dec(&et->refcount); 606} | |
607 | 274 |
608static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, 609 struct extent_info *ei) 610{ 611 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 612 struct extent_tree *et; 613 struct extent_node *en; 614 615 trace_f2fs_lookup_extent_tree_start(inode, pgofs); 616 617 et = __find_extent_tree(sbi, inode->i_ino); 618 if (!et) 619 return false; 620 621 read_lock(&et->lock); 622 en = __lookup_extent_tree(et, pgofs); 623 if (en) { 624 *ei = en->ei; 625 spin_lock(&sbi->extent_lock); 626 if (!list_empty(&en->list)) 627 list_move_tail(&en->list, &sbi->extent_list); 628 spin_unlock(&sbi->extent_lock); 629 stat_inc_read_hit(sbi->sb); 630 } 631 stat_inc_total_hit(sbi->sb); 632 read_unlock(&et->lock); 633 634 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en); 635 636 atomic_dec(&et->refcount); 637 return en ? true : false; | 275 return f2fs_reserve_block(dn, index); |
638} 639 | 276} 277 |
640static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs, 641 block_t blkaddr) 642{ 643 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 644 struct extent_tree *et; 645 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL; 646 struct extent_node *den = NULL; 647 struct extent_info ei, dei; 648 unsigned int endofs; 649 650 trace_f2fs_update_extent_tree(inode, fofs, blkaddr); 651 652 et = __grab_extent_tree(inode); 653 654 write_lock(&et->lock); 655 656 /* 1. lookup and remove existing extent info in cache */ 657 en = __lookup_extent_tree(et, fofs); 658 if (!en) 659 goto update_extent; 660 661 dei = en->ei; 662 __detach_extent_node(sbi, et, en); 663 664 /* 2. if extent can be split more, split and insert the left part */ 665 if (dei.len > 1) { 666 /* insert left part of split extent into cache */ 667 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) { 668 set_extent_info(&ei, dei.fofs, dei.blk, 669 fofs - dei.fofs); 670 en1 = __insert_extent_tree(sbi, et, &ei, NULL); 671 } 672 673 /* insert right part of split extent into cache */ 674 endofs = dei.fofs + dei.len - 1; 675 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) { 676 set_extent_info(&ei, fofs + 1, 677 fofs - dei.fofs + dei.blk, endofs - fofs); 678 en2 = __insert_extent_tree(sbi, et, &ei, NULL); 679 } 680 } 681 682update_extent: 683 /* 3. update extent in extent cache */ 684 if (blkaddr) { 685 set_extent_info(&ei, fofs, blkaddr, 1); 686 en3 = __insert_extent_tree(sbi, et, &ei, &den); 687 } 688 689 /* 4. update in global extent list */ 690 spin_lock(&sbi->extent_lock); 691 if (en && !list_empty(&en->list)) 692 list_del(&en->list); 693 /* 694 * en1 and en2 split from en, they will become more and more smaller 695 * fragments after splitting several times. So if the length is smaller 696 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree. 697 */ 698 if (en1) 699 list_add_tail(&en1->list, &sbi->extent_list); 700 if (en2) 701 list_add_tail(&en2->list, &sbi->extent_list); 702 if (en3) { 703 if (list_empty(&en3->list)) 704 list_add_tail(&en3->list, &sbi->extent_list); 705 else 706 list_move_tail(&en3->list, &sbi->extent_list); 707 } 708 if (den && !list_empty(&den->list)) 709 list_del(&den->list); 710 spin_unlock(&sbi->extent_lock); 711 712 /* 5. release extent node */ 713 if (en) 714 kmem_cache_free(extent_node_slab, en); 715 if (den) 716 kmem_cache_free(extent_node_slab, den); 717 718 write_unlock(&et->lock); 719 atomic_dec(&et->refcount); 720} 721 722void f2fs_preserve_extent_tree(struct inode *inode) 723{ 724 struct extent_tree *et; 725 struct extent_info *ext = &F2FS_I(inode)->ext; 726 bool sync = false; 727 728 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE)) 729 return; 730 731 et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino); 732 if (!et) { 733 if (ext->len) { 734 ext->len = 0; 735 update_inode_page(inode); 736 } 737 return; 738 } 739 740 read_lock(&et->lock); 741 if (et->count) { 742 struct extent_node *en; 743 744 if (et->cached_en) { 745 en = et->cached_en; 746 } else { 747 struct rb_node *node = rb_first(&et->root); 748 749 if (!node) 750 node = rb_last(&et->root); 751 en = rb_entry(node, struct extent_node, rb_node); 752 } 753 754 if (__is_extent_same(ext, &en->ei)) 755 goto out; 756 757 *ext = en->ei; 758 sync = true; 759 } else if (ext->len) { 760 ext->len = 0; 761 sync = true; 762 } 763out: 764 read_unlock(&et->lock); 765 atomic_dec(&et->refcount); 766 767 if (sync) 768 update_inode_page(inode); 769} 770 771void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 772{ 773 struct extent_tree *treevec[EXT_TREE_VEC_SIZE]; 774 struct extent_node *en, *tmp; 775 unsigned long ino = F2FS_ROOT_INO(sbi); 776 struct radix_tree_iter iter; 777 void **slot; 778 unsigned int found; 779 unsigned int node_cnt = 0, tree_cnt = 0; 780 781 if (!test_opt(sbi, EXTENT_CACHE)) 782 return; 783 784 if (available_free_memory(sbi, EXTENT_CACHE)) 785 return; 786 787 spin_lock(&sbi->extent_lock); 788 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) { 789 if (!nr_shrink--) 790 break; 791 list_del_init(&en->list); 792 } 793 spin_unlock(&sbi->extent_lock); 794 795 down_read(&sbi->extent_tree_lock); 796 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root, 797 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) { 798 unsigned i; 799 800 ino = treevec[found - 1]->ino + 1; 801 for (i = 0; i < found; i++) { 802 struct extent_tree *et = treevec[i]; 803 804 atomic_inc(&et->refcount); 805 write_lock(&et->lock); 806 node_cnt += __free_extent_tree(sbi, et, false); 807 write_unlock(&et->lock); 808 atomic_dec(&et->refcount); 809 } 810 } 811 up_read(&sbi->extent_tree_lock); 812 813 down_write(&sbi->extent_tree_lock); 814 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter, 815 F2FS_ROOT_INO(sbi)) { 816 struct extent_tree *et = (struct extent_tree *)*slot; 817 818 if (!atomic_read(&et->refcount) && !et->count) { 819 radix_tree_delete(&sbi->extent_tree_root, et->ino); 820 kmem_cache_free(extent_tree_slab, et); 821 sbi->total_ext_tree--; 822 tree_cnt++; 823 } 824 } 825 up_write(&sbi->extent_tree_lock); 826 827 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); 828} 829 830void f2fs_destroy_extent_tree(struct inode *inode) 831{ 832 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 833 struct extent_tree *et; 834 unsigned int node_cnt = 0; 835 836 if (!test_opt(sbi, EXTENT_CACHE)) 837 return; 838 839 et = __find_extent_tree(sbi, inode->i_ino); 840 if (!et) 841 goto out; 842 843 /* free all extent info belong to this extent tree */ 844 write_lock(&et->lock); 845 node_cnt = __free_extent_tree(sbi, et, true); 846 write_unlock(&et->lock); 847 848 atomic_dec(&et->refcount); 849 850 /* try to find and delete extent tree entry in radix tree */ 851 down_write(&sbi->extent_tree_lock); 852 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino); 853 if (!et) { 854 up_write(&sbi->extent_tree_lock); 855 goto out; 856 } 857 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count); 858 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); 859 kmem_cache_free(extent_tree_slab, et); 860 sbi->total_ext_tree--; 861 up_write(&sbi->extent_tree_lock); 862out: 863 trace_f2fs_destroy_extent_tree(inode, node_cnt); 864 return; 865} 866 867void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext) 868{ 869 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE)) 870 f2fs_init_extent_tree(inode, i_ext); 871 872 write_lock(&F2FS_I(inode)->ext_lock); 873 get_extent_info(&F2FS_I(inode)->ext, *i_ext); 874 write_unlock(&F2FS_I(inode)->ext_lock); 875} 876 877static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 878 struct extent_info *ei) 879{ 880 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) 881 return false; 882 883 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE)) 884 return f2fs_lookup_extent_tree(inode, pgofs, ei); 885 886 return lookup_extent_info(inode, pgofs, ei); 887} 888 889void f2fs_update_extent_cache(struct dnode_of_data *dn) 890{ 891 struct f2fs_inode_info *fi = F2FS_I(dn->inode); 892 pgoff_t fofs; 893 894 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR); 895 896 if (is_inode_flag_set(fi, FI_NO_EXTENT)) 897 return; 898 899 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + 900 dn->ofs_in_node; 901 902 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE)) 903 return f2fs_update_extent_tree(dn->inode, fofs, 904 dn->data_blkaddr); 905 906 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr)) 907 sync_inode_page(dn); 908} 909 | |
910struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw) 911{ 912 struct address_space *mapping = inode->i_mapping; 913 struct dnode_of_data dn; 914 struct page *page; 915 struct extent_info ei; 916 int err; 917 struct f2fs_io_info fio = { --- 12 unchanged lines hidden (view full) --- 930 931 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 932 dn.data_blkaddr = ei.blk + index - ei.fofs; 933 goto got_it; 934 } 935 936 set_new_dnode(&dn, inode, NULL, NULL, 0); 937 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); | 278struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw) 279{ 280 struct address_space *mapping = inode->i_mapping; 281 struct dnode_of_data dn; 282 struct page *page; 283 struct extent_info ei; 284 int err; 285 struct f2fs_io_info fio = { --- 12 unchanged lines hidden (view full) --- 298 299 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 300 dn.data_blkaddr = ei.blk + index - ei.fofs; 301 goto got_it; 302 } 303 304 set_new_dnode(&dn, inode, NULL, NULL, 0); 305 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); |
938 if (err) { 939 f2fs_put_page(page, 1); 940 return ERR_PTR(err); 941 } | 306 if (err) 307 goto put_err; |
942 f2fs_put_dnode(&dn); 943 944 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { | 308 f2fs_put_dnode(&dn); 309 310 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { |
945 f2fs_put_page(page, 1); 946 return ERR_PTR(-ENOENT); | 311 err = -ENOENT; 312 goto put_err; |
947 } 948got_it: 949 if (PageUptodate(page)) { 950 unlock_page(page); 951 return page; 952 } 953 954 /* --- 8 unchanged lines hidden (view full) --- 963 unlock_page(page); 964 return page; 965 } 966 967 fio.blk_addr = dn.data_blkaddr; 968 fio.page = page; 969 err = f2fs_submit_page_bio(&fio); 970 if (err) | 313 } 314got_it: 315 if (PageUptodate(page)) { 316 unlock_page(page); 317 return page; 318 } 319 320 /* --- 8 unchanged lines hidden (view full) --- 329 unlock_page(page); 330 return page; 331 } 332 333 fio.blk_addr = dn.data_blkaddr; 334 fio.page = page; 335 err = f2fs_submit_page_bio(&fio); 336 if (err) |
971 return ERR_PTR(err); | 337 goto put_err; |
972 return page; | 338 return page; |
339 340put_err: 341 f2fs_put_page(page, 1); 342 return ERR_PTR(err); |
|
973} 974 975struct page *find_data_page(struct inode *inode, pgoff_t index) 976{ 977 struct address_space *mapping = inode->i_mapping; 978 struct page *page; 979 980 page = find_get_page(mapping, index); --- 44 unchanged lines hidden (view full) --- 1025} 1026 1027/* 1028 * Caller ensures that this data page is never allocated. 1029 * A new zero-filled data page is allocated in the page cache. 1030 * 1031 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1032 * f2fs_unlock_op(). | 343} 344 345struct page *find_data_page(struct inode *inode, pgoff_t index) 346{ 347 struct address_space *mapping = inode->i_mapping; 348 struct page *page; 349 350 page = find_get_page(mapping, index); --- 44 unchanged lines hidden (view full) --- 395} 396 397/* 398 * Caller ensures that this data page is never allocated. 399 * A new zero-filled data page is allocated in the page cache. 400 * 401 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 402 * f2fs_unlock_op(). |
1033 * Note that, ipage is set only by make_empty_dir. | 403 * Note that, ipage is set only by make_empty_dir, and if any error occur, 404 * ipage should be released by this function. |
1034 */ 1035struct page *get_new_data_page(struct inode *inode, 1036 struct page *ipage, pgoff_t index, bool new_i_size) 1037{ 1038 struct address_space *mapping = inode->i_mapping; 1039 struct page *page; 1040 struct dnode_of_data dn; 1041 int err; 1042repeat: 1043 page = grab_cache_page(mapping, index); | 405 */ 406struct page *get_new_data_page(struct inode *inode, 407 struct page *ipage, pgoff_t index, bool new_i_size) 408{ 409 struct address_space *mapping = inode->i_mapping; 410 struct page *page; 411 struct dnode_of_data dn; 412 int err; 413repeat: 414 page = grab_cache_page(mapping, index); |
1044 if (!page) | 415 if (!page) { 416 /* 417 * before exiting, we should make sure ipage will be released 418 * if any error occur. 419 */ 420 f2fs_put_page(ipage, 1); |
1045 return ERR_PTR(-ENOMEM); | 421 return ERR_PTR(-ENOMEM); |
422 } |
|
1046 1047 set_new_dnode(&dn, inode, ipage, NULL, 0); 1048 err = f2fs_reserve_block(&dn, index); 1049 if (err) { 1050 f2fs_put_page(page, 1); 1051 return ERR_PTR(err); 1052 } 1053 if (!ipage) --- 48 unchanged lines hidden (view full) --- 1102 get_node_info(sbi, dn->nid, &ni); 1103 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1104 1105 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page) 1106 seg = CURSEG_DIRECT_IO; 1107 1108 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 1109 &sum, seg); | 423 424 set_new_dnode(&dn, inode, ipage, NULL, 0); 425 err = f2fs_reserve_block(&dn, index); 426 if (err) { 427 f2fs_put_page(page, 1); 428 return ERR_PTR(err); 429 } 430 if (!ipage) --- 48 unchanged lines hidden (view full) --- 479 get_node_info(sbi, dn->nid, &ni); 480 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 481 482 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page) 483 seg = CURSEG_DIRECT_IO; 484 485 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 486 &sum, seg); |
1110 1111 /* direct IO doesn't use extent cache to maximize the performance */ | |
1112 set_data_blkaddr(dn); 1113 1114 /* update i_size */ 1115 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + 1116 dn->ofs_in_node; 1117 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT)) 1118 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT)); 1119 | 487 set_data_blkaddr(dn); 488 489 /* update i_size */ 490 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + 491 dn->ofs_in_node; 492 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT)) 493 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT)); 494 |
495 /* direct IO doesn't use extent cache to maximize the performance */ 496 f2fs_drop_largest_extent(dn->inode, fofs); 497 |
|
1120 return 0; 1121} 1122 1123static void __allocate_data_blocks(struct inode *inode, loff_t offset, 1124 size_t count) 1125{ 1126 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1127 struct dnode_of_data dn; --- 50 unchanged lines hidden (view full) --- 1178 * f2fs_map_blocks structure. 1179 * If original data blocks are allocated, then give them to blockdev. 1180 * Otherwise, 1181 * a. preallocate requested block addresses 1182 * b. do not use extent cache for better performance 1183 * c. give the block addresses to blockdev 1184 */ 1185static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, | 498 return 0; 499} 500 501static void __allocate_data_blocks(struct inode *inode, loff_t offset, 502 size_t count) 503{ 504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 505 struct dnode_of_data dn; --- 50 unchanged lines hidden (view full) --- 556 * f2fs_map_blocks structure. 557 * If original data blocks are allocated, then give them to blockdev. 558 * Otherwise, 559 * a. preallocate requested block addresses 560 * b. do not use extent cache for better performance 561 * c. give the block addresses to blockdev 562 */ 563static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, |
1186 int create, bool fiemap) | 564 int create, int flag) |
1187{ 1188 unsigned int maxblocks = map->m_len; 1189 struct dnode_of_data dn; 1190 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA; 1191 pgoff_t pgofs, end_offset; 1192 int err = 0, ofs = 1; 1193 struct extent_info ei; 1194 bool allocated = false; --- 17 unchanged lines hidden (view full) --- 1212 /* When reading holes, we need its node page */ 1213 set_new_dnode(&dn, inode, NULL, NULL, 0); 1214 err = get_dnode_of_data(&dn, pgofs, mode); 1215 if (err) { 1216 if (err == -ENOENT) 1217 err = 0; 1218 goto unlock_out; 1219 } | 565{ 566 unsigned int maxblocks = map->m_len; 567 struct dnode_of_data dn; 568 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA; 569 pgoff_t pgofs, end_offset; 570 int err = 0, ofs = 1; 571 struct extent_info ei; 572 bool allocated = false; --- 17 unchanged lines hidden (view full) --- 590 /* When reading holes, we need its node page */ 591 set_new_dnode(&dn, inode, NULL, NULL, 0); 592 err = get_dnode_of_data(&dn, pgofs, mode); 593 if (err) { 594 if (err == -ENOENT) 595 err = 0; 596 goto unlock_out; 597 } |
1220 if (dn.data_blkaddr == NEW_ADDR && !fiemap) 1221 goto put_out; | 598 if (dn.data_blkaddr == NEW_ADDR) { 599 if (flag == F2FS_GET_BLOCK_BMAP) { 600 err = -ENOENT; 601 goto put_out; 602 } else if (flag == F2FS_GET_BLOCK_READ || 603 flag == F2FS_GET_BLOCK_DIO) { 604 goto put_out; 605 } 606 /* 607 * if it is in fiemap call path (flag = F2FS_GET_BLOCK_FIEMAP), 608 * mark it as mapped and unwritten block. 609 */ 610 } |
1222 1223 if (dn.data_blkaddr != NULL_ADDR) { 1224 map->m_flags = F2FS_MAP_MAPPED; 1225 map->m_pblk = dn.data_blkaddr; 1226 if (dn.data_blkaddr == NEW_ADDR) 1227 map->m_flags |= F2FS_MAP_UNWRITTEN; 1228 } else if (create) { 1229 err = __allocate_data_block(&dn); 1230 if (err) 1231 goto put_out; 1232 allocated = true; 1233 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED; 1234 map->m_pblk = dn.data_blkaddr; 1235 } else { | 611 612 if (dn.data_blkaddr != NULL_ADDR) { 613 map->m_flags = F2FS_MAP_MAPPED; 614 map->m_pblk = dn.data_blkaddr; 615 if (dn.data_blkaddr == NEW_ADDR) 616 map->m_flags |= F2FS_MAP_UNWRITTEN; 617 } else if (create) { 618 err = __allocate_data_block(&dn); 619 if (err) 620 goto put_out; 621 allocated = true; 622 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED; 623 map->m_pblk = dn.data_blkaddr; 624 } else { |
625 if (flag == F2FS_GET_BLOCK_BMAP) 626 err = -ENOENT; |
|
1236 goto put_out; 1237 } 1238 1239 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); 1240 map->m_len = 1; 1241 dn.ofs_in_node++; 1242 pgofs++; 1243 --- 6 unchanged lines hidden (view full) --- 1250 1251 set_new_dnode(&dn, inode, NULL, NULL, 0); 1252 err = get_dnode_of_data(&dn, pgofs, mode); 1253 if (err) { 1254 if (err == -ENOENT) 1255 err = 0; 1256 goto unlock_out; 1257 } | 627 goto put_out; 628 } 629 630 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); 631 map->m_len = 1; 632 dn.ofs_in_node++; 633 pgofs++; 634 --- 6 unchanged lines hidden (view full) --- 641 642 set_new_dnode(&dn, inode, NULL, NULL, 0); 643 err = get_dnode_of_data(&dn, pgofs, mode); 644 if (err) { 645 if (err == -ENOENT) 646 err = 0; 647 goto unlock_out; 648 } |
1258 if (dn.data_blkaddr == NEW_ADDR && !fiemap) | 649 650 if (dn.data_blkaddr == NEW_ADDR && 651 flag != F2FS_GET_BLOCK_FIEMAP) |
1259 goto put_out; 1260 1261 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); 1262 } 1263 1264 if (maxblocks > map->m_len) { 1265 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 1266 if (blkaddr == NULL_ADDR && create) { --- 25 unchanged lines hidden (view full) --- 1292 if (create) 1293 f2fs_unlock_op(F2FS_I_SB(inode)); 1294out: 1295 trace_f2fs_map_blocks(inode, map, err); 1296 return err; 1297} 1298 1299static int __get_data_block(struct inode *inode, sector_t iblock, | 652 goto put_out; 653 654 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); 655 } 656 657 if (maxblocks > map->m_len) { 658 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 659 if (blkaddr == NULL_ADDR && create) { --- 25 unchanged lines hidden (view full) --- 685 if (create) 686 f2fs_unlock_op(F2FS_I_SB(inode)); 687out: 688 trace_f2fs_map_blocks(inode, map, err); 689 return err; 690} 691 692static int __get_data_block(struct inode *inode, sector_t iblock, |
1300 struct buffer_head *bh, int create, bool fiemap) | 693 struct buffer_head *bh, int create, int flag) |
1301{ 1302 struct f2fs_map_blocks map; 1303 int ret; 1304 1305 map.m_lblk = iblock; 1306 map.m_len = bh->b_size >> inode->i_blkbits; 1307 | 694{ 695 struct f2fs_map_blocks map; 696 int ret; 697 698 map.m_lblk = iblock; 699 map.m_len = bh->b_size >> inode->i_blkbits; 700 |
1308 ret = f2fs_map_blocks(inode, &map, create, fiemap); | 701 ret = f2fs_map_blocks(inode, &map, create, flag); |
1309 if (!ret) { 1310 map_bh(bh, inode->i_sb, map.m_pblk); 1311 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1312 bh->b_size = map.m_len << inode->i_blkbits; 1313 } 1314 return ret; 1315} 1316 1317static int get_data_block(struct inode *inode, sector_t iblock, | 702 if (!ret) { 703 map_bh(bh, inode->i_sb, map.m_pblk); 704 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 705 bh->b_size = map.m_len << inode->i_blkbits; 706 } 707 return ret; 708} 709 710static int get_data_block(struct inode *inode, sector_t iblock, |
711 struct buffer_head *bh_result, int create, int flag) 712{ 713 return __get_data_block(inode, iblock, bh_result, create, flag); 714} 715 716static int get_data_block_dio(struct inode *inode, sector_t iblock, |
|
1318 struct buffer_head *bh_result, int create) 1319{ | 717 struct buffer_head *bh_result, int create) 718{ |
1320 return __get_data_block(inode, iblock, bh_result, create, false); | 719 return __get_data_block(inode, iblock, bh_result, create, 720 F2FS_GET_BLOCK_DIO); |
1321} 1322 | 721} 722 |
1323static int get_data_block_fiemap(struct inode *inode, sector_t iblock, | 723static int get_data_block_bmap(struct inode *inode, sector_t iblock, |
1324 struct buffer_head *bh_result, int create) 1325{ | 724 struct buffer_head *bh_result, int create) 725{ |
1326 return __get_data_block(inode, iblock, bh_result, create, true); | 726 return __get_data_block(inode, iblock, bh_result, create, 727 F2FS_GET_BLOCK_BMAP); |
1327} 1328 1329static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1330{ 1331 return (offset >> inode->i_blkbits); 1332} 1333 1334static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) --- 27 unchanged lines hidden (view full) --- 1362 len = blk_to_logical(inode, 1); 1363 1364 start_blk = logical_to_blk(inode, start); 1365 last_blk = logical_to_blk(inode, start + len - 1); 1366next: 1367 memset(&map_bh, 0, sizeof(struct buffer_head)); 1368 map_bh.b_size = len; 1369 | 728} 729 730static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 731{ 732 return (offset >> inode->i_blkbits); 733} 734 735static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) --- 27 unchanged lines hidden (view full) --- 763 len = blk_to_logical(inode, 1); 764 765 start_blk = logical_to_blk(inode, start); 766 last_blk = logical_to_blk(inode, start + len - 1); 767next: 768 memset(&map_bh, 0, sizeof(struct buffer_head)); 769 map_bh.b_size = len; 770 |
1370 ret = get_data_block_fiemap(inode, start_blk, &map_bh, 0); | 771 ret = get_data_block(inode, start_blk, &map_bh, 0, 772 F2FS_GET_BLOCK_FIEMAP); |
1371 if (ret) 1372 goto out; 1373 1374 /* HOLE */ 1375 if (!buffer_mapped(&map_bh)) { 1376 start_blk++; 1377 1378 if (!past_eof && blk_to_logical(inode, start_blk) >= isize) --- 386 unchanged lines hidden (view full) --- 1765 void *data) 1766{ 1767 struct address_space *mapping = data; 1768 int ret = mapping->a_ops->writepage(page, wbc); 1769 mapping_set_error(mapping, ret); 1770 return ret; 1771} 1772 | 773 if (ret) 774 goto out; 775 776 /* HOLE */ 777 if (!buffer_mapped(&map_bh)) { 778 start_blk++; 779 780 if (!past_eof && blk_to_logical(inode, start_blk) >= isize) --- 386 unchanged lines hidden (view full) --- 1167 void *data) 1168{ 1169 struct address_space *mapping = data; 1170 int ret = mapping->a_ops->writepage(page, wbc); 1171 mapping_set_error(mapping, ret); 1172 return ret; 1173} 1174 |
1175/* 1176 * This function was copied from write_cche_pages from mm/page-writeback.c. 1177 * The major change is making write step of cold data page separately from 1178 * warm/hot data page. 1179 */ 1180static int f2fs_write_cache_pages(struct address_space *mapping, 1181 struct writeback_control *wbc, writepage_t writepage, 1182 void *data) 1183{ 1184 int ret = 0; 1185 int done = 0; 1186 struct pagevec pvec; 1187 int nr_pages; 1188 pgoff_t uninitialized_var(writeback_index); 1189 pgoff_t index; 1190 pgoff_t end; /* Inclusive */ 1191 pgoff_t done_index; 1192 int cycled; 1193 int range_whole = 0; 1194 int tag; 1195 int step = 0; 1196 1197 pagevec_init(&pvec, 0); 1198next: 1199 if (wbc->range_cyclic) { 1200 writeback_index = mapping->writeback_index; /* prev offset */ 1201 index = writeback_index; 1202 if (index == 0) 1203 cycled = 1; 1204 else 1205 cycled = 0; 1206 end = -1; 1207 } else { 1208 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1209 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1210 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1211 range_whole = 1; 1212 cycled = 1; /* ignore range_cyclic tests */ 1213 } 1214 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1215 tag = PAGECACHE_TAG_TOWRITE; 1216 else 1217 tag = PAGECACHE_TAG_DIRTY; 1218retry: 1219 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1220 tag_pages_for_writeback(mapping, index, end); 1221 done_index = index; 1222 while (!done && (index <= end)) { 1223 int i; 1224 1225 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1226 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1227 if (nr_pages == 0) 1228 break; 1229 1230 for (i = 0; i < nr_pages; i++) { 1231 struct page *page = pvec.pages[i]; 1232 1233 if (page->index > end) { 1234 done = 1; 1235 break; 1236 } 1237 1238 done_index = page->index; 1239 1240 lock_page(page); 1241 1242 if (unlikely(page->mapping != mapping)) { 1243continue_unlock: 1244 unlock_page(page); 1245 continue; 1246 } 1247 1248 if (!PageDirty(page)) { 1249 /* someone wrote it for us */ 1250 goto continue_unlock; 1251 } 1252 1253 if (step == is_cold_data(page)) 1254 goto continue_unlock; 1255 1256 if (PageWriteback(page)) { 1257 if (wbc->sync_mode != WB_SYNC_NONE) 1258 f2fs_wait_on_page_writeback(page, DATA); 1259 else 1260 goto continue_unlock; 1261 } 1262 1263 BUG_ON(PageWriteback(page)); 1264 if (!clear_page_dirty_for_io(page)) 1265 goto continue_unlock; 1266 1267 ret = (*writepage)(page, wbc, data); 1268 if (unlikely(ret)) { 1269 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1270 unlock_page(page); 1271 ret = 0; 1272 } else { 1273 done_index = page->index + 1; 1274 done = 1; 1275 break; 1276 } 1277 } 1278 1279 if (--wbc->nr_to_write <= 0 && 1280 wbc->sync_mode == WB_SYNC_NONE) { 1281 done = 1; 1282 break; 1283 } 1284 } 1285 pagevec_release(&pvec); 1286 cond_resched(); 1287 } 1288 1289 if (step < 1) { 1290 step++; 1291 goto next; 1292 } 1293 1294 if (!cycled && !done) { 1295 cycled = 1; 1296 index = 0; 1297 end = writeback_index - 1; 1298 goto retry; 1299 } 1300 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1301 mapping->writeback_index = done_index; 1302 1303 return ret; 1304} 1305 |
|
1773static int f2fs_write_data_pages(struct address_space *mapping, 1774 struct writeback_control *wbc) 1775{ 1776 struct inode *inode = mapping->host; 1777 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1778 bool locked = false; 1779 int ret; 1780 long diff; 1781 1782 trace_f2fs_writepages(mapping->host, wbc, DATA); 1783 1784 /* deal with chardevs and other special file */ 1785 if (!mapping->a_ops->writepage) 1786 return 0; 1787 | 1306static int f2fs_write_data_pages(struct address_space *mapping, 1307 struct writeback_control *wbc) 1308{ 1309 struct inode *inode = mapping->host; 1310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1311 bool locked = false; 1312 int ret; 1313 long diff; 1314 1315 trace_f2fs_writepages(mapping->host, wbc, DATA); 1316 1317 /* deal with chardevs and other special file */ 1318 if (!mapping->a_ops->writepage) 1319 return 0; 1320 |
1321 /* skip writing if there is no dirty page in this inode */ 1322 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1323 return 0; 1324 |
|
1788 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1789 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1790 available_free_memory(sbi, DIRTY_DENTS)) 1791 goto skip_write; 1792 1793 /* during POR, we don't need to trigger writepage at all. */ 1794 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1795 goto skip_write; 1796 1797 diff = nr_pages_to_write(sbi, DATA, wbc); 1798 1799 if (!S_ISDIR(inode->i_mode)) { 1800 mutex_lock(&sbi->writepages); 1801 locked = true; 1802 } | 1325 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1326 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1327 available_free_memory(sbi, DIRTY_DENTS)) 1328 goto skip_write; 1329 1330 /* during POR, we don't need to trigger writepage at all. */ 1331 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1332 goto skip_write; 1333 1334 diff = nr_pages_to_write(sbi, DATA, wbc); 1335 1336 if (!S_ISDIR(inode->i_mode)) { 1337 mutex_lock(&sbi->writepages); 1338 locked = true; 1339 } |
1803 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping); | 1340 ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping); 1341 f2fs_submit_merged_bio(sbi, DATA, WRITE); |
1804 if (locked) 1805 mutex_unlock(&sbi->writepages); 1806 | 1342 if (locked) 1343 mutex_unlock(&sbi->writepages); 1344 |
1807 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1808 | |
1809 remove_dirty_dir_inode(inode); 1810 1811 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1812 return ret; 1813 1814skip_write: 1815 wbc->pages_skipped += get_dirty_pages(inode); 1816 return 0; --- 10 unchanged lines hidden (view full) --- 1827} 1828 1829static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1830 loff_t pos, unsigned len, unsigned flags, 1831 struct page **pagep, void **fsdata) 1832{ 1833 struct inode *inode = mapping->host; 1834 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 1345 remove_dirty_dir_inode(inode); 1346 1347 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1348 return ret; 1349 1350skip_write: 1351 wbc->pages_skipped += get_dirty_pages(inode); 1352 return 0; --- 10 unchanged lines hidden (view full) --- 1363} 1364 1365static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1366 loff_t pos, unsigned len, unsigned flags, 1367 struct page **pagep, void **fsdata) 1368{ 1369 struct inode *inode = mapping->host; 1370 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
1835 struct page *page, *ipage; | 1371 struct page *page = NULL; 1372 struct page *ipage; |
1836 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT; 1837 struct dnode_of_data dn; 1838 int err = 0; 1839 1840 trace_f2fs_write_begin(inode, pos, len, flags); 1841 1842 f2fs_balance_fs(sbi); 1843 --- 33 unchanged lines hidden (view full) --- 1877 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1878 sync_inode_page(&dn); 1879 goto put_next; 1880 } 1881 err = f2fs_convert_inline_page(&dn, page); 1882 if (err) 1883 goto put_fail; 1884 } | 1373 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT; 1374 struct dnode_of_data dn; 1375 int err = 0; 1376 1377 trace_f2fs_write_begin(inode, pos, len, flags); 1378 1379 f2fs_balance_fs(sbi); 1380 --- 33 unchanged lines hidden (view full) --- 1414 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1415 sync_inode_page(&dn); 1416 goto put_next; 1417 } 1418 err = f2fs_convert_inline_page(&dn, page); 1419 if (err) 1420 goto put_fail; 1421 } |
1885 err = f2fs_reserve_block(&dn, index); | 1422 1423 err = f2fs_get_block(&dn, index); |
1886 if (err) 1887 goto put_fail; 1888put_next: 1889 f2fs_put_dnode(&dn); 1890 f2fs_unlock_op(sbi); 1891 | 1424 if (err) 1425 goto put_fail; 1426put_next: 1427 f2fs_put_dnode(&dn); 1428 f2fs_unlock_op(sbi); 1429 |
1892 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page)) 1893 return 0; 1894 | |
1895 f2fs_wait_on_page_writeback(page, DATA); 1896 | 1430 f2fs_wait_on_page_writeback(page, DATA); 1431 |
1432 if (len == PAGE_CACHE_SIZE) 1433 goto out_update; 1434 if (PageUptodate(page)) 1435 goto out_clear; 1436 |
|
1897 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) { 1898 unsigned start = pos & (PAGE_CACHE_SIZE - 1); 1899 unsigned end = start + len; 1900 1901 /* Reading beyond i_size is simple: memset to zero */ 1902 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE); | 1437 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) { 1438 unsigned start = pos & (PAGE_CACHE_SIZE - 1); 1439 unsigned end = start + len; 1440 1441 /* Reading beyond i_size is simple: memset to zero */ 1442 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE); |
1903 goto out; | 1443 goto out_update; |
1904 } 1905 1906 if (dn.data_blkaddr == NEW_ADDR) { 1907 zero_user_segment(page, 0, PAGE_CACHE_SIZE); 1908 } else { 1909 struct f2fs_io_info fio = { 1910 .sbi = sbi, 1911 .type = DATA, 1912 .rw = READ_SYNC, 1913 .blk_addr = dn.data_blkaddr, 1914 .page = page, 1915 .encrypted_page = NULL, 1916 }; 1917 err = f2fs_submit_page_bio(&fio); 1918 if (err) 1919 goto fail; 1920 1921 lock_page(page); 1922 if (unlikely(!PageUptodate(page))) { | 1444 } 1445 1446 if (dn.data_blkaddr == NEW_ADDR) { 1447 zero_user_segment(page, 0, PAGE_CACHE_SIZE); 1448 } else { 1449 struct f2fs_io_info fio = { 1450 .sbi = sbi, 1451 .type = DATA, 1452 .rw = READ_SYNC, 1453 .blk_addr = dn.data_blkaddr, 1454 .page = page, 1455 .encrypted_page = NULL, 1456 }; 1457 err = f2fs_submit_page_bio(&fio); 1458 if (err) 1459 goto fail; 1460 1461 lock_page(page); 1462 if (unlikely(!PageUptodate(page))) { |
1923 f2fs_put_page(page, 1); | |
1924 err = -EIO; 1925 goto fail; 1926 } 1927 if (unlikely(page->mapping != mapping)) { 1928 f2fs_put_page(page, 1); 1929 goto repeat; 1930 } 1931 1932 /* avoid symlink page */ 1933 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1934 err = f2fs_decrypt_one(inode, page); | 1463 err = -EIO; 1464 goto fail; 1465 } 1466 if (unlikely(page->mapping != mapping)) { 1467 f2fs_put_page(page, 1); 1468 goto repeat; 1469 } 1470 1471 /* avoid symlink page */ 1472 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1473 err = f2fs_decrypt_one(inode, page); |
1935 if (err) { 1936 f2fs_put_page(page, 1); | 1474 if (err) |
1937 goto fail; | 1475 goto fail; |
1938 } | |
1939 } 1940 } | 1476 } 1477 } |
1941out: | 1478out_update: |
1942 SetPageUptodate(page); | 1479 SetPageUptodate(page); |
1480out_clear: |
|
1943 clear_cold_data(page); 1944 return 0; 1945 1946put_fail: 1947 f2fs_put_dnode(&dn); 1948unlock_fail: 1949 f2fs_unlock_op(sbi); | 1481 clear_cold_data(page); 1482 return 0; 1483 1484put_fail: 1485 f2fs_put_dnode(&dn); 1486unlock_fail: 1487 f2fs_unlock_op(sbi); |
1950 f2fs_put_page(page, 1); | |
1951fail: | 1488fail: |
1489 f2fs_put_page(page, 1); |
|
1952 f2fs_write_failed(mapping, pos + len); 1953 return err; 1954} 1955 1956static int f2fs_write_end(struct file *file, 1957 struct address_space *mapping, 1958 loff_t pos, unsigned len, unsigned copied, 1959 struct page *page, void *fsdata) --- 14 unchanged lines hidden (view full) --- 1974 return copied; 1975} 1976 1977static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1978 loff_t offset) 1979{ 1980 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1981 | 1490 f2fs_write_failed(mapping, pos + len); 1491 return err; 1492} 1493 1494static int f2fs_write_end(struct file *file, 1495 struct address_space *mapping, 1496 loff_t pos, unsigned len, unsigned copied, 1497 struct page *page, void *fsdata) --- 14 unchanged lines hidden (view full) --- 1512 return copied; 1513} 1514 1515static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1516 loff_t offset) 1517{ 1518 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1519 |
1982 if (iov_iter_rw(iter) == READ) 1983 return 0; 1984 | |
1985 if (offset & blocksize_mask) 1986 return -EINVAL; 1987 1988 if (iov_iter_alignment(iter) & blocksize_mask) 1989 return -EINVAL; 1990 1991 return 0; 1992} --- 12 unchanged lines hidden (view full) --- 2005 err = f2fs_convert_inline_inode(inode); 2006 if (err) 2007 return err; 2008 } 2009 2010 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 2011 return 0; 2012 | 1520 if (offset & blocksize_mask) 1521 return -EINVAL; 1522 1523 if (iov_iter_alignment(iter) & blocksize_mask) 1524 return -EINVAL; 1525 1526 return 0; 1527} --- 12 unchanged lines hidden (view full) --- 1540 err = f2fs_convert_inline_inode(inode); 1541 if (err) 1542 return err; 1543 } 1544 1545 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1546 return 0; 1547 |
2013 if (check_direct_IO(inode, iter, offset)) 2014 return 0; | 1548 err = check_direct_IO(inode, iter, offset); 1549 if (err) 1550 return err; |
2015 2016 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 2017 2018 if (iov_iter_rw(iter) == WRITE) 2019 __allocate_data_blocks(inode, offset, count); 2020 | 1551 1552 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 1553 1554 if (iov_iter_rw(iter) == WRITE) 1555 __allocate_data_blocks(inode, offset, count); 1556 |
2021 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block); | 1557 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio); |
2022 if (err < 0 && iov_iter_rw(iter) == WRITE) 2023 f2fs_write_failed(mapping, offset + count); 2024 2025 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err); 2026 2027 return err; 2028} 2029 --- 10 unchanged lines hidden (view full) --- 2040 if (PageDirty(page)) { 2041 if (inode->i_ino == F2FS_META_INO(sbi)) 2042 dec_page_count(sbi, F2FS_DIRTY_META); 2043 else if (inode->i_ino == F2FS_NODE_INO(sbi)) 2044 dec_page_count(sbi, F2FS_DIRTY_NODES); 2045 else 2046 inode_dec_dirty_pages(inode); 2047 } | 1558 if (err < 0 && iov_iter_rw(iter) == WRITE) 1559 f2fs_write_failed(mapping, offset + count); 1560 1561 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err); 1562 1563 return err; 1564} 1565 --- 10 unchanged lines hidden (view full) --- 1576 if (PageDirty(page)) { 1577 if (inode->i_ino == F2FS_META_INO(sbi)) 1578 dec_page_count(sbi, F2FS_DIRTY_META); 1579 else if (inode->i_ino == F2FS_NODE_INO(sbi)) 1580 dec_page_count(sbi, F2FS_DIRTY_NODES); 1581 else 1582 inode_dec_dirty_pages(inode); 1583 } |
1584 1585 /* This is atomic written page, keep Private */ 1586 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1587 return; 1588 |
|
2048 ClearPagePrivate(page); 2049} 2050 2051int f2fs_release_page(struct page *page, gfp_t wait) 2052{ 2053 /* If this is dirty page, keep PagePrivate */ 2054 if (PageDirty(page)) 2055 return 0; 2056 | 1589 ClearPagePrivate(page); 1590} 1591 1592int f2fs_release_page(struct page *page, gfp_t wait) 1593{ 1594 /* If this is dirty page, keep PagePrivate */ 1595 if (PageDirty(page)) 1596 return 0; 1597 |
1598 /* This is atomic written page, keep Private */ 1599 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1600 return 0; 1601 |
|
2057 ClearPagePrivate(page); 2058 return 1; 2059} 2060 2061static int f2fs_set_data_page_dirty(struct page *page) 2062{ 2063 struct address_space *mapping = page->mapping; 2064 struct inode *inode = mapping->host; 2065 2066 trace_f2fs_set_page_dirty(page, DATA); 2067 2068 SetPageUptodate(page); 2069 2070 if (f2fs_is_atomic_file(inode)) { | 1602 ClearPagePrivate(page); 1603 return 1; 1604} 1605 1606static int f2fs_set_data_page_dirty(struct page *page) 1607{ 1608 struct address_space *mapping = page->mapping; 1609 struct inode *inode = mapping->host; 1610 1611 trace_f2fs_set_page_dirty(page, DATA); 1612 1613 SetPageUptodate(page); 1614 1615 if (f2fs_is_atomic_file(inode)) { |
2071 register_inmem_page(inode, page); 2072 return 1; | 1616 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 1617 register_inmem_page(inode, page); 1618 return 1; 1619 } 1620 /* 1621 * Previously, this page has been registered, we just 1622 * return here. 1623 */ 1624 return 0; |
2073 } 2074 2075 if (!PageDirty(page)) { 2076 __set_page_dirty_nobuffers(page); 2077 update_dirty_page(inode, page); 2078 return 1; 2079 } 2080 return 0; --- 4 unchanged lines hidden (view full) --- 2085 struct inode *inode = mapping->host; 2086 2087 /* we don't need to use inline_data strictly */ 2088 if (f2fs_has_inline_data(inode)) { 2089 int err = f2fs_convert_inline_inode(inode); 2090 if (err) 2091 return err; 2092 } | 1625 } 1626 1627 if (!PageDirty(page)) { 1628 __set_page_dirty_nobuffers(page); 1629 update_dirty_page(inode, page); 1630 return 1; 1631 } 1632 return 0; --- 4 unchanged lines hidden (view full) --- 1637 struct inode *inode = mapping->host; 1638 1639 /* we don't need to use inline_data strictly */ 1640 if (f2fs_has_inline_data(inode)) { 1641 int err = f2fs_convert_inline_inode(inode); 1642 if (err) 1643 return err; 1644 } |
2093 return generic_block_bmap(mapping, block, get_data_block); | 1645 return generic_block_bmap(mapping, block, get_data_block_bmap); |
2094} 2095 | 1646} 1647 |
2096void init_extent_cache_info(struct f2fs_sb_info *sbi) 2097{ 2098 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); 2099 init_rwsem(&sbi->extent_tree_lock); 2100 INIT_LIST_HEAD(&sbi->extent_list); 2101 spin_lock_init(&sbi->extent_lock); 2102 sbi->total_ext_tree = 0; 2103 atomic_set(&sbi->total_ext_node, 0); 2104} 2105 2106int __init create_extent_cache(void) 2107{ 2108 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", 2109 sizeof(struct extent_tree)); 2110 if (!extent_tree_slab) 2111 return -ENOMEM; 2112 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", 2113 sizeof(struct extent_node)); 2114 if (!extent_node_slab) { 2115 kmem_cache_destroy(extent_tree_slab); 2116 return -ENOMEM; 2117 } 2118 return 0; 2119} 2120 2121void destroy_extent_cache(void) 2122{ 2123 kmem_cache_destroy(extent_node_slab); 2124 kmem_cache_destroy(extent_tree_slab); 2125} 2126 | |
2127const struct address_space_operations f2fs_dblock_aops = { 2128 .readpage = f2fs_read_data_page, 2129 .readpages = f2fs_read_data_pages, 2130 .writepage = f2fs_write_data_page, 2131 .writepages = f2fs_write_data_pages, 2132 .write_begin = f2fs_write_begin, 2133 .write_end = f2fs_write_end, 2134 .set_page_dirty = f2fs_set_data_page_dirty, 2135 .invalidatepage = f2fs_invalidate_page, 2136 .releasepage = f2fs_release_page, 2137 .direct_IO = f2fs_direct_IO, 2138 .bmap = f2fs_bmap, 2139}; | 1648const struct address_space_operations f2fs_dblock_aops = { 1649 .readpage = f2fs_read_data_page, 1650 .readpages = f2fs_read_data_pages, 1651 .writepage = f2fs_write_data_page, 1652 .writepages = f2fs_write_data_pages, 1653 .write_begin = f2fs_write_begin, 1654 .write_end = f2fs_write_end, 1655 .set_page_dirty = f2fs_set_data_page_dirty, 1656 .invalidatepage = f2fs_invalidate_page, 1657 .releasepage = f2fs_release_page, 1658 .direct_IO = f2fs_direct_IO, 1659 .bmap = f2fs_bmap, 1660}; |