inode.c (275d38585c742acdd6b8ab20f2588552f04c5d31) | inode.c (60ad4466821a96913a9b567115e194ed1087c2d7) |
---|---|
1/* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * | 1/* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * |
15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 | |
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25#include <linux/module.h> 26#include <linux/fs.h> --- 15 unchanged lines hidden (view full) --- 42#include <linux/printk.h> 43#include <linux/slab.h> 44#include <linux/ratelimit.h> 45 46#include "ext4_jbd2.h" 47#include "xattr.h" 48#include "acl.h" 49#include "ext4_extents.h" | 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21#include <linux/module.h> 22#include <linux/fs.h> --- 15 unchanged lines hidden (view full) --- 38#include <linux/printk.h> 39#include <linux/slab.h> 40#include <linux/ratelimit.h> 41 42#include "ext4_jbd2.h" 43#include "xattr.h" 44#include "acl.h" 45#include "ext4_extents.h" |
46#include "truncate.h" |
|
50 51#include <trace/events/ext4.h> 52 53#define MPAGE_DA_EXTENT_TAIL 0x01 54 55static inline int ext4_begin_ordered_truncate(struct inode *inode, 56 loff_t new_size) 57{ --- 26 unchanged lines hidden (view full) --- 84{ 85 int ea_blocks = EXT4_I(inode)->i_file_acl ? 86 (inode->i_sb->s_blocksize >> 9) : 0; 87 88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 89} 90 91/* | 47 48#include <trace/events/ext4.h> 49 50#define MPAGE_DA_EXTENT_TAIL 0x01 51 52static inline int ext4_begin_ordered_truncate(struct inode *inode, 53 loff_t new_size) 54{ --- 26 unchanged lines hidden (view full) --- 81{ 82 int ea_blocks = EXT4_I(inode)->i_file_acl ? 83 (inode->i_sb->s_blocksize >> 9) : 0; 84 85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 86} 87 88/* |
92 * Work out how many blocks we need to proceed with the next chunk of a 93 * truncate transaction. 94 */ 95static unsigned long blocks_for_truncate(struct inode *inode) 96{ 97 ext4_lblk_t needed; 98 99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 100 101 /* Give ourselves just enough room to cope with inodes in which 102 * i_blocks is corrupt: we've seen disk corruptions in the past 103 * which resulted in random data in an inode which looked enough 104 * like a regular file for ext4 to try to delete it. Things 105 * will go a bit crazy if that happens, but at least we should 106 * try not to panic the whole kernel. */ 107 if (needed < 2) 108 needed = 2; 109 110 /* But we need to bound the transaction so we don't overflow the 111 * journal. */ 112 if (needed > EXT4_MAX_TRANS_DATA) 113 needed = EXT4_MAX_TRANS_DATA; 114 115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 116} 117 118/* 119 * Truncate transactions can be complex and absolutely huge. So we need to 120 * be able to restart the transaction at a conventient checkpoint to make 121 * sure we don't overflow the journal. 122 * 123 * start_transaction gets us a new handle for a truncate transaction, 124 * and extend_transaction tries to extend the existing one a bit. If 125 * extend fails, we need to propagate the failure up and restart the 126 * transaction in the top-level truncate loop. --sct 127 */ 128static handle_t *start_transaction(struct inode *inode) 129{ 130 handle_t *result; 131 132 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 133 if (!IS_ERR(result)) 134 return result; 135 136 ext4_std_error(inode->i_sb, PTR_ERR(result)); 137 return result; 138} 139 140/* 141 * Try to extend this transaction for the purposes of truncation. 142 * 143 * Returns 0 if we managed to create more room. If we can't create more 144 * room, and the transaction must be restarted we return 1. 145 */ 146static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 147{ 148 if (!ext4_handle_valid(handle)) 149 return 0; 150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 151 return 0; 152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 153 return 0; 154 return 1; 155} 156 157/* | |
158 * Restart the transaction associated with *handle. This does a commit, 159 * so before we call here everything must be consistently dirtied against 160 * this transaction. 161 */ 162int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 163 int nblocks) 164{ 165 int ret; --- 19 unchanged lines hidden (view full) --- 185 */ 186void ext4_evict_inode(struct inode *inode) 187{ 188 handle_t *handle; 189 int err; 190 191 trace_ext4_evict_inode(inode); 192 if (inode->i_nlink) { | 89 * Restart the transaction associated with *handle. This does a commit, 90 * so before we call here everything must be consistently dirtied against 91 * this transaction. 92 */ 93int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 94 int nblocks) 95{ 96 int ret; --- 19 unchanged lines hidden (view full) --- 116 */ 117void ext4_evict_inode(struct inode *inode) 118{ 119 handle_t *handle; 120 int err; 121 122 trace_ext4_evict_inode(inode); 123 if (inode->i_nlink) { |
124 /* 125 * When journalling data dirty buffers are tracked only in the 126 * journal. So although mm thinks everything is clean and 127 * ready for reaping the inode might still have some pages to 128 * write in the running transaction or waiting to be 129 * checkpointed. Thus calling jbd2_journal_invalidatepage() 130 * (via truncate_inode_pages()) to discard these buffers can 131 * cause data loss. Also even if we did not discard these 132 * buffers, we would have no way to find them after the inode 133 * is reaped and thus user could see stale data if he tries to 134 * read them before the transaction is checkpointed. So be 135 * careful and force everything to disk here... We use 136 * ei->i_datasync_tid to store the newest transaction 137 * containing inode's data. 138 * 139 * Note that directories do not have this problem because they 140 * don't use page cache. 141 */ 142 if (ext4_should_journal_data(inode) && 143 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 144 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 145 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 146 147 jbd2_log_start_commit(journal, commit_tid); 148 jbd2_log_wait_commit(journal, commit_tid); 149 filemap_write_and_wait(&inode->i_data); 150 } |
|
193 truncate_inode_pages(&inode->i_data, 0); 194 goto no_delete; 195 } 196 197 if (!is_bad_inode(inode)) 198 dquot_initialize(inode); 199 200 if (ext4_should_order_data(inode)) 201 ext4_begin_ordered_truncate(inode, 0); 202 truncate_inode_pages(&inode->i_data, 0); 203 204 if (is_bad_inode(inode)) 205 goto no_delete; 206 | 151 truncate_inode_pages(&inode->i_data, 0); 152 goto no_delete; 153 } 154 155 if (!is_bad_inode(inode)) 156 dquot_initialize(inode); 157 158 if (ext4_should_order_data(inode)) 159 ext4_begin_ordered_truncate(inode, 0); 160 truncate_inode_pages(&inode->i_data, 0); 161 162 if (is_bad_inode(inode)) 163 goto no_delete; 164 |
207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); | 165 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); |
208 if (IS_ERR(handle)) { 209 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 210 /* 211 * If we're going to skip the normal cleanup, we still need to 212 * make sure that the in-core orphan linked list is properly 213 * cleaned up. 214 */ 215 ext4_orphan_del(NULL, inode); --- 56 unchanged lines hidden (view full) --- 272 else 273 ext4_free_inode(handle, inode); 274 ext4_journal_stop(handle); 275 return; 276no_delete: 277 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 278} 279 | 166 if (IS_ERR(handle)) { 167 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 168 /* 169 * If we're going to skip the normal cleanup, we still need to 170 * make sure that the in-core orphan linked list is properly 171 * cleaned up. 172 */ 173 ext4_orphan_del(NULL, inode); --- 56 unchanged lines hidden (view full) --- 230 else 231 ext4_free_inode(handle, inode); 232 ext4_journal_stop(handle); 233 return; 234no_delete: 235 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 236} 237 |
280typedef struct { 281 __le32 *p; 282 __le32 key; 283 struct buffer_head *bh; 284} Indirect; 285 286static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 287{ 288 p->key = *(p->p = v); 289 p->bh = bh; 290} 291 292/** 293 * ext4_block_to_path - parse the block number into array of offsets 294 * @inode: inode in question (we are only interested in its superblock) 295 * @i_block: block number to be parsed 296 * @offsets: array to store the offsets in 297 * @boundary: set this non-zero if the referred-to block is likely to be 298 * followed (on disk) by an indirect block. 299 * 300 * To store the locations of file's data ext4 uses a data structure common 301 * for UNIX filesystems - tree of pointers anchored in the inode, with 302 * data blocks at leaves and indirect blocks in intermediate nodes. 303 * This function translates the block number into path in that tree - 304 * return value is the path length and @offsets[n] is the offset of 305 * pointer to (n+1)th node in the nth one. If @block is out of range 306 * (negative or too large) warning is printed and zero returned. 307 * 308 * Note: function doesn't find node addresses, so no IO is needed. All 309 * we need to know is the capacity of indirect blocks (taken from the 310 * inode->i_sb). 311 */ 312 313/* 314 * Portability note: the last comparison (check that we fit into triple 315 * indirect block) is spelled differently, because otherwise on an 316 * architecture with 32-bit longs and 8Kb pages we might get into trouble 317 * if our filesystem had 8Kb blocks. We might use long long, but that would 318 * kill us on x86. Oh, well, at least the sign propagation does not matter - 319 * i_block would have to be negative in the very beginning, so we would not 320 * get there at all. 321 */ 322 323static int ext4_block_to_path(struct inode *inode, 324 ext4_lblk_t i_block, 325 ext4_lblk_t offsets[4], int *boundary) 326{ 327 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 328 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 329 const long direct_blocks = EXT4_NDIR_BLOCKS, 330 indirect_blocks = ptrs, 331 double_blocks = (1 << (ptrs_bits * 2)); 332 int n = 0; 333 int final = 0; 334 335 if (i_block < direct_blocks) { 336 offsets[n++] = i_block; 337 final = direct_blocks; 338 } else if ((i_block -= direct_blocks) < indirect_blocks) { 339 offsets[n++] = EXT4_IND_BLOCK; 340 offsets[n++] = i_block; 341 final = ptrs; 342 } else if ((i_block -= indirect_blocks) < double_blocks) { 343 offsets[n++] = EXT4_DIND_BLOCK; 344 offsets[n++] = i_block >> ptrs_bits; 345 offsets[n++] = i_block & (ptrs - 1); 346 final = ptrs; 347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 348 offsets[n++] = EXT4_TIND_BLOCK; 349 offsets[n++] = i_block >> (ptrs_bits * 2); 350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 351 offsets[n++] = i_block & (ptrs - 1); 352 final = ptrs; 353 } else { 354 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 355 i_block + direct_blocks + 356 indirect_blocks + double_blocks, inode->i_ino); 357 } 358 if (boundary) 359 *boundary = final - 1 - (i_block & (ptrs - 1)); 360 return n; 361} 362 363static int __ext4_check_blockref(const char *function, unsigned int line, 364 struct inode *inode, 365 __le32 *p, unsigned int max) 366{ 367 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 368 __le32 *bref = p; 369 unsigned int blk; 370 371 while (bref < p+max) { 372 blk = le32_to_cpu(*bref++); 373 if (blk && 374 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 375 blk, 1))) { 376 es->s_last_error_block = cpu_to_le64(blk); 377 ext4_error_inode(inode, function, line, blk, 378 "invalid block"); 379 return -EIO; 380 } 381 } 382 return 0; 383} 384 385 386#define ext4_check_indirect_blockref(inode, bh) \ 387 __ext4_check_blockref(__func__, __LINE__, inode, \ 388 (__le32 *)(bh)->b_data, \ 389 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 390 391#define ext4_check_inode_blockref(inode) \ 392 __ext4_check_blockref(__func__, __LINE__, inode, \ 393 EXT4_I(inode)->i_data, \ 394 EXT4_NDIR_BLOCKS) 395 396/** 397 * ext4_get_branch - read the chain of indirect blocks leading to data 398 * @inode: inode in question 399 * @depth: depth of the chain (1 - direct pointer, etc.) 400 * @offsets: offsets of pointers in inode/indirect blocks 401 * @chain: place to store the result 402 * @err: here we store the error value 403 * 404 * Function fills the array of triples <key, p, bh> and returns %NULL 405 * if everything went OK or the pointer to the last filled triple 406 * (incomplete one) otherwise. Upon the return chain[i].key contains 407 * the number of (i+1)-th block in the chain (as it is stored in memory, 408 * i.e. little-endian 32-bit), chain[i].p contains the address of that 409 * number (it points into struct inode for i==0 and into the bh->b_data 410 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 411 * block for i>0 and NULL for i==0. In other words, it holds the block 412 * numbers of the chain, addresses they were taken from (and where we can 413 * verify that chain did not change) and buffer_heads hosting these 414 * numbers. 415 * 416 * Function stops when it stumbles upon zero pointer (absent block) 417 * (pointer to last triple returned, *@err == 0) 418 * or when it gets an IO error reading an indirect block 419 * (ditto, *@err == -EIO) 420 * or when it reads all @depth-1 indirect blocks successfully and finds 421 * the whole chain, all way to the data (returns %NULL, *err == 0). 422 * 423 * Need to be called with 424 * down_read(&EXT4_I(inode)->i_data_sem) 425 */ 426static Indirect *ext4_get_branch(struct inode *inode, int depth, 427 ext4_lblk_t *offsets, 428 Indirect chain[4], int *err) 429{ 430 struct super_block *sb = inode->i_sb; 431 Indirect *p = chain; 432 struct buffer_head *bh; 433 434 *err = 0; 435 /* i_data is not going away, no lock needed */ 436 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 437 if (!p->key) 438 goto no_block; 439 while (--depth) { 440 bh = sb_getblk(sb, le32_to_cpu(p->key)); 441 if (unlikely(!bh)) 442 goto failure; 443 444 if (!bh_uptodate_or_lock(bh)) { 445 if (bh_submit_read(bh) < 0) { 446 put_bh(bh); 447 goto failure; 448 } 449 /* validate block references */ 450 if (ext4_check_indirect_blockref(inode, bh)) { 451 put_bh(bh); 452 goto failure; 453 } 454 } 455 456 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 457 /* Reader: end */ 458 if (!p->key) 459 goto no_block; 460 } 461 return NULL; 462 463failure: 464 *err = -EIO; 465no_block: 466 return p; 467} 468 469/** 470 * ext4_find_near - find a place for allocation with sufficient locality 471 * @inode: owner 472 * @ind: descriptor of indirect block. 473 * 474 * This function returns the preferred place for block allocation. 475 * It is used when heuristic for sequential allocation fails. 476 * Rules are: 477 * + if there is a block to the left of our position - allocate near it. 478 * + if pointer will live in indirect block - allocate near that block. 479 * + if pointer will live in inode - allocate in the same 480 * cylinder group. 481 * 482 * In the latter case we colour the starting block by the callers PID to 483 * prevent it from clashing with concurrent allocations for a different inode 484 * in the same block group. The PID is used here so that functionally related 485 * files will be close-by on-disk. 486 * 487 * Caller must make sure that @ind is valid and will stay that way. 488 */ 489static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 490{ 491 struct ext4_inode_info *ei = EXT4_I(inode); 492 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 493 __le32 *p; 494 ext4_fsblk_t bg_start; 495 ext4_fsblk_t last_block; 496 ext4_grpblk_t colour; 497 ext4_group_t block_group; 498 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 499 500 /* Try to find previous block */ 501 for (p = ind->p - 1; p >= start; p--) { 502 if (*p) 503 return le32_to_cpu(*p); 504 } 505 506 /* No such thing, so let's try location of indirect block */ 507 if (ind->bh) 508 return ind->bh->b_blocknr; 509 510 /* 511 * It is going to be referred to from the inode itself? OK, just put it 512 * into the same cylinder group then. 513 */ 514 block_group = ei->i_block_group; 515 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 516 block_group &= ~(flex_size-1); 517 if (S_ISREG(inode->i_mode)) 518 block_group++; 519 } 520 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 521 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 522 523 /* 524 * If we are doing delayed allocation, we don't need take 525 * colour into account. 526 */ 527 if (test_opt(inode->i_sb, DELALLOC)) 528 return bg_start; 529 530 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 531 colour = (current->pid % 16) * 532 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 533 else 534 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 535 return bg_start + colour; 536} 537 538/** 539 * ext4_find_goal - find a preferred place for allocation. 540 * @inode: owner 541 * @block: block we want 542 * @partial: pointer to the last triple within a chain 543 * 544 * Normally this function find the preferred place for block allocation, 545 * returns it. 546 * Because this is only used for non-extent files, we limit the block nr 547 * to 32 bits. 548 */ 549static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 550 Indirect *partial) 551{ 552 ext4_fsblk_t goal; 553 554 /* 555 * XXX need to get goal block from mballoc's data structures 556 */ 557 558 goal = ext4_find_near(inode, partial); 559 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 560 return goal; 561} 562 563/** 564 * ext4_blks_to_allocate - Look up the block map and count the number 565 * of direct blocks need to be allocated for the given branch. 566 * 567 * @branch: chain of indirect blocks 568 * @k: number of blocks need for indirect blocks 569 * @blks: number of data blocks to be mapped. 570 * @blocks_to_boundary: the offset in the indirect block 571 * 572 * return the total number of blocks to be allocate, including the 573 * direct and indirect blocks. 574 */ 575static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 576 int blocks_to_boundary) 577{ 578 unsigned int count = 0; 579 580 /* 581 * Simple case, [t,d]Indirect block(s) has not allocated yet 582 * then it's clear blocks on that path have not allocated 583 */ 584 if (k > 0) { 585 /* right now we don't handle cross boundary allocation */ 586 if (blks < blocks_to_boundary + 1) 587 count += blks; 588 else 589 count += blocks_to_boundary + 1; 590 return count; 591 } 592 593 count++; 594 while (count < blks && count <= blocks_to_boundary && 595 le32_to_cpu(*(branch[0].p + count)) == 0) { 596 count++; 597 } 598 return count; 599} 600 601/** 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 603 * @handle: handle for this transaction 604 * @inode: inode which needs allocated blocks 605 * @iblock: the logical block to start allocated at 606 * @goal: preferred physical block of allocation 607 * @indirect_blks: the number of blocks need to allocate for indirect 608 * blocks 609 * @blks: number of desired blocks 610 * @new_blocks: on return it will store the new block numbers for 611 * the indirect blocks(if needed) and the first direct block, 612 * @err: on return it will store the error code 613 * 614 * This function will return the number of blocks allocated as 615 * requested by the passed-in parameters. 616 */ 617static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 618 ext4_lblk_t iblock, ext4_fsblk_t goal, 619 int indirect_blks, int blks, 620 ext4_fsblk_t new_blocks[4], int *err) 621{ 622 struct ext4_allocation_request ar; 623 int target, i; 624 unsigned long count = 0, blk_allocated = 0; 625 int index = 0; 626 ext4_fsblk_t current_block = 0; 627 int ret = 0; 628 629 /* 630 * Here we try to allocate the requested multiple blocks at once, 631 * on a best-effort basis. 632 * To build a branch, we should allocate blocks for 633 * the indirect blocks(if not allocated yet), and at least 634 * the first direct block of this branch. That's the 635 * minimum number of blocks need to allocate(required) 636 */ 637 /* first we try to allocate the indirect blocks */ 638 target = indirect_blks; 639 while (target > 0) { 640 count = target; 641 /* allocating blocks for indirect blocks and direct blocks */ 642 current_block = ext4_new_meta_blocks(handle, inode, goal, 643 0, &count, err); 644 if (*err) 645 goto failed_out; 646 647 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 648 EXT4_ERROR_INODE(inode, 649 "current_block %llu + count %lu > %d!", 650 current_block, count, 651 EXT4_MAX_BLOCK_FILE_PHYS); 652 *err = -EIO; 653 goto failed_out; 654 } 655 656 target -= count; 657 /* allocate blocks for indirect blocks */ 658 while (index < indirect_blks && count) { 659 new_blocks[index++] = current_block++; 660 count--; 661 } 662 if (count > 0) { 663 /* 664 * save the new block number 665 * for the first direct block 666 */ 667 new_blocks[index] = current_block; 668 printk(KERN_INFO "%s returned more blocks than " 669 "requested\n", __func__); 670 WARN_ON(1); 671 break; 672 } 673 } 674 675 target = blks - count ; 676 blk_allocated = count; 677 if (!target) 678 goto allocated; 679 /* Now allocate data blocks */ 680 memset(&ar, 0, sizeof(ar)); 681 ar.inode = inode; 682 ar.goal = goal; 683 ar.len = target; 684 ar.logical = iblock; 685 if (S_ISREG(inode->i_mode)) 686 /* enable in-core preallocation only for regular files */ 687 ar.flags = EXT4_MB_HINT_DATA; 688 689 current_block = ext4_mb_new_blocks(handle, &ar, err); 690 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 691 EXT4_ERROR_INODE(inode, 692 "current_block %llu + ar.len %d > %d!", 693 current_block, ar.len, 694 EXT4_MAX_BLOCK_FILE_PHYS); 695 *err = -EIO; 696 goto failed_out; 697 } 698 699 if (*err && (target == blks)) { 700 /* 701 * if the allocation failed and we didn't allocate 702 * any blocks before 703 */ 704 goto failed_out; 705 } 706 if (!*err) { 707 if (target == blks) { 708 /* 709 * save the new block number 710 * for the first direct block 711 */ 712 new_blocks[index] = current_block; 713 } 714 blk_allocated += ar.len; 715 } 716allocated: 717 /* total number of blocks allocated for direct blocks */ 718 ret = blk_allocated; 719 *err = 0; 720 return ret; 721failed_out: 722 for (i = 0; i < index; i++) 723 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 724 return ret; 725} 726 727/** 728 * ext4_alloc_branch - allocate and set up a chain of blocks. 729 * @handle: handle for this transaction 730 * @inode: owner 731 * @indirect_blks: number of allocated indirect blocks 732 * @blks: number of allocated direct blocks 733 * @goal: preferred place for allocation 734 * @offsets: offsets (in the blocks) to store the pointers to next. 735 * @branch: place to store the chain in. 736 * 737 * This function allocates blocks, zeroes out all but the last one, 738 * links them into chain and (if we are synchronous) writes them to disk. 739 * In other words, it prepares a branch that can be spliced onto the 740 * inode. It stores the information about that chain in the branch[], in 741 * the same format as ext4_get_branch() would do. We are calling it after 742 * we had read the existing part of chain and partial points to the last 743 * triple of that (one with zero ->key). Upon the exit we have the same 744 * picture as after the successful ext4_get_block(), except that in one 745 * place chain is disconnected - *branch->p is still zero (we did not 746 * set the last link), but branch->key contains the number that should 747 * be placed into *branch->p to fill that gap. 748 * 749 * If allocation fails we free all blocks we've allocated (and forget 750 * their buffer_heads) and return the error value the from failed 751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 752 * as described above and return 0. 753 */ 754static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 755 ext4_lblk_t iblock, int indirect_blks, 756 int *blks, ext4_fsblk_t goal, 757 ext4_lblk_t *offsets, Indirect *branch) 758{ 759 int blocksize = inode->i_sb->s_blocksize; 760 int i, n = 0; 761 int err = 0; 762 struct buffer_head *bh; 763 int num; 764 ext4_fsblk_t new_blocks[4]; 765 ext4_fsblk_t current_block; 766 767 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 768 *blks, new_blocks, &err); 769 if (err) 770 return err; 771 772 branch[0].key = cpu_to_le32(new_blocks[0]); 773 /* 774 * metadata blocks and data blocks are allocated. 775 */ 776 for (n = 1; n <= indirect_blks; n++) { 777 /* 778 * Get buffer_head for parent block, zero it out 779 * and set the pointer to new one, then send 780 * parent to disk. 781 */ 782 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 783 if (unlikely(!bh)) { 784 err = -EIO; 785 goto failed; 786 } 787 788 branch[n].bh = bh; 789 lock_buffer(bh); 790 BUFFER_TRACE(bh, "call get_create_access"); 791 err = ext4_journal_get_create_access(handle, bh); 792 if (err) { 793 /* Don't brelse(bh) here; it's done in 794 * ext4_journal_forget() below */ 795 unlock_buffer(bh); 796 goto failed; 797 } 798 799 memset(bh->b_data, 0, blocksize); 800 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 801 branch[n].key = cpu_to_le32(new_blocks[n]); 802 *branch[n].p = branch[n].key; 803 if (n == indirect_blks) { 804 current_block = new_blocks[n]; 805 /* 806 * End of chain, update the last new metablock of 807 * the chain to point to the new allocated 808 * data blocks numbers 809 */ 810 for (i = 1; i < num; i++) 811 *(branch[n].p + i) = cpu_to_le32(++current_block); 812 } 813 BUFFER_TRACE(bh, "marking uptodate"); 814 set_buffer_uptodate(bh); 815 unlock_buffer(bh); 816 817 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 818 err = ext4_handle_dirty_metadata(handle, inode, bh); 819 if (err) 820 goto failed; 821 } 822 *blks = num; 823 return err; 824failed: 825 /* Allocation failed, free what we already allocated */ 826 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0); 827 for (i = 1; i <= n ; i++) { 828 /* 829 * branch[i].bh is newly allocated, so there is no 830 * need to revoke the block, which is why we don't 831 * need to set EXT4_FREE_BLOCKS_METADATA. 832 */ 833 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 834 EXT4_FREE_BLOCKS_FORGET); 835 } 836 for (i = n+1; i < indirect_blks; i++) 837 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 838 839 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0); 840 841 return err; 842} 843 844/** 845 * ext4_splice_branch - splice the allocated branch onto inode. 846 * @handle: handle for this transaction 847 * @inode: owner 848 * @block: (logical) number of block we are adding 849 * @chain: chain of indirect blocks (with a missing link - see 850 * ext4_alloc_branch) 851 * @where: location of missing link 852 * @num: number of indirect blocks we are adding 853 * @blks: number of direct blocks we are adding 854 * 855 * This function fills the missing link and does all housekeeping needed in 856 * inode (->i_blocks, etc.). In case of success we end up with the full 857 * chain to new block and return 0. 858 */ 859static int ext4_splice_branch(handle_t *handle, struct inode *inode, 860 ext4_lblk_t block, Indirect *where, int num, 861 int blks) 862{ 863 int i; 864 int err = 0; 865 ext4_fsblk_t current_block; 866 867 /* 868 * If we're splicing into a [td]indirect block (as opposed to the 869 * inode) then we need to get write access to the [td]indirect block 870 * before the splice. 871 */ 872 if (where->bh) { 873 BUFFER_TRACE(where->bh, "get_write_access"); 874 err = ext4_journal_get_write_access(handle, where->bh); 875 if (err) 876 goto err_out; 877 } 878 /* That's it */ 879 880 *where->p = where->key; 881 882 /* 883 * Update the host buffer_head or inode to point to more just allocated 884 * direct blocks blocks 885 */ 886 if (num == 0 && blks > 1) { 887 current_block = le32_to_cpu(where->key) + 1; 888 for (i = 1; i < blks; i++) 889 *(where->p + i) = cpu_to_le32(current_block++); 890 } 891 892 /* We are done with atomic stuff, now do the rest of housekeeping */ 893 /* had we spliced it onto indirect block? */ 894 if (where->bh) { 895 /* 896 * If we spliced it onto an indirect block, we haven't 897 * altered the inode. Note however that if it is being spliced 898 * onto an indirect block at the very end of the file (the 899 * file is growing) then we *will* alter the inode to reflect 900 * the new i_size. But that is not done here - it is done in 901 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 902 */ 903 jbd_debug(5, "splicing indirect only\n"); 904 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 905 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 906 if (err) 907 goto err_out; 908 } else { 909 /* 910 * OK, we spliced it into the inode itself on a direct block. 911 */ 912 ext4_mark_inode_dirty(handle, inode); 913 jbd_debug(5, "splicing direct\n"); 914 } 915 return err; 916 917err_out: 918 for (i = 1; i <= num; i++) { 919 /* 920 * branch[i].bh is newly allocated, so there is no 921 * need to revoke the block, which is why we don't 922 * need to set EXT4_FREE_BLOCKS_METADATA. 923 */ 924 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 925 EXT4_FREE_BLOCKS_FORGET); 926 } 927 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key), 928 blks, 0); 929 930 return err; 931} 932 933/* 934 * The ext4_ind_map_blocks() function handles non-extents inodes 935 * (i.e., using the traditional indirect/double-indirect i_blocks 936 * scheme) for ext4_map_blocks(). 937 * 938 * Allocation strategy is simple: if we have to allocate something, we will 939 * have to go the whole way to leaf. So let's do it before attaching anything 940 * to tree, set linkage between the newborn blocks, write them if sync is 941 * required, recheck the path, free and repeat if check fails, otherwise 942 * set the last missing link (that will protect us from any truncate-generated 943 * removals - all blocks on the path are immune now) and possibly force the 944 * write on the parent block. 945 * That has a nice additional property: no special recovery from the failed 946 * allocations is needed - we simply release blocks and do not touch anything 947 * reachable from inode. 948 * 949 * `handle' can be NULL if create == 0. 950 * 951 * return > 0, # of blocks mapped or allocated. 952 * return = 0, if plain lookup failed. 953 * return < 0, error case. 954 * 955 * The ext4_ind_get_blocks() function should be called with 956 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 957 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 958 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 959 * blocks. 960 */ 961static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 962 struct ext4_map_blocks *map, 963 int flags) 964{ 965 int err = -EIO; 966 ext4_lblk_t offsets[4]; 967 Indirect chain[4]; 968 Indirect *partial; 969 ext4_fsblk_t goal; 970 int indirect_blks; 971 int blocks_to_boundary = 0; 972 int depth; 973 int count = 0; 974 ext4_fsblk_t first_block = 0; 975 976 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 977 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 978 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 979 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 980 &blocks_to_boundary); 981 982 if (depth == 0) 983 goto out; 984 985 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 986 987 /* Simplest case - block found, no allocation needed */ 988 if (!partial) { 989 first_block = le32_to_cpu(chain[depth - 1].key); 990 count++; 991 /*map more blocks*/ 992 while (count < map->m_len && count <= blocks_to_boundary) { 993 ext4_fsblk_t blk; 994 995 blk = le32_to_cpu(*(chain[depth-1].p + count)); 996 997 if (blk == first_block + count) 998 count++; 999 else 1000 break; 1001 } 1002 goto got_it; 1003 } 1004 1005 /* Next simple case - plain lookup or failed read of indirect block */ 1006 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 1007 goto cleanup; 1008 1009 /* 1010 * Okay, we need to do block allocation. 1011 */ 1012 goal = ext4_find_goal(inode, map->m_lblk, partial); 1013 1014 /* the number of blocks need to allocate for [d,t]indirect blocks */ 1015 indirect_blks = (chain + depth) - partial - 1; 1016 1017 /* 1018 * Next look up the indirect map to count the totoal number of 1019 * direct blocks to allocate for this branch. 1020 */ 1021 count = ext4_blks_to_allocate(partial, indirect_blks, 1022 map->m_len, blocks_to_boundary); 1023 /* 1024 * Block out ext4_truncate while we alter the tree 1025 */ 1026 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 1027 &count, goal, 1028 offsets + (partial - chain), partial); 1029 1030 /* 1031 * The ext4_splice_branch call will free and forget any buffers 1032 * on the new chain if there is a failure, but that risks using 1033 * up transaction credits, especially for bitmaps where the 1034 * credits cannot be returned. Can we handle this somehow? We 1035 * may need to return -EAGAIN upwards in the worst case. --sct 1036 */ 1037 if (!err) 1038 err = ext4_splice_branch(handle, inode, map->m_lblk, 1039 partial, indirect_blks, count); 1040 if (err) 1041 goto cleanup; 1042 1043 map->m_flags |= EXT4_MAP_NEW; 1044 1045 ext4_update_inode_fsync_trans(handle, inode, 1); 1046got_it: 1047 map->m_flags |= EXT4_MAP_MAPPED; 1048 map->m_pblk = le32_to_cpu(chain[depth-1].key); 1049 map->m_len = count; 1050 if (count > blocks_to_boundary) 1051 map->m_flags |= EXT4_MAP_BOUNDARY; 1052 err = count; 1053 /* Clean up and exit */ 1054 partial = chain + depth - 1; /* the whole chain */ 1055cleanup: 1056 while (partial > chain) { 1057 BUFFER_TRACE(partial->bh, "call brelse"); 1058 brelse(partial->bh); 1059 partial--; 1060 } 1061out: 1062 trace_ext4_ind_map_blocks_exit(inode, map->m_lblk, 1063 map->m_pblk, map->m_len, err); 1064 return err; 1065} 1066 | |
1067#ifdef CONFIG_QUOTA 1068qsize_t *ext4_get_reserved_space(struct inode *inode) 1069{ 1070 return &EXT4_I(inode)->i_reserved_quota; 1071} 1072#endif 1073 1074/* 1075 * Calculate the number of metadata blocks need to reserve | 238#ifdef CONFIG_QUOTA 239qsize_t *ext4_get_reserved_space(struct inode *inode) 240{ 241 return &EXT4_I(inode)->i_reserved_quota; 242} 243#endif 244 245/* 246 * Calculate the number of metadata blocks need to reserve |
1076 * to allocate a new block at @lblocks for non extent file based file 1077 */ 1078static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1079 sector_t lblock) 1080{ 1081 struct ext4_inode_info *ei = EXT4_I(inode); 1082 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 1083 int blk_bits; 1084 1085 if (lblock < EXT4_NDIR_BLOCKS) 1086 return 0; 1087 1088 lblock -= EXT4_NDIR_BLOCKS; 1089 1090 if (ei->i_da_metadata_calc_len && 1091 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1092 ei->i_da_metadata_calc_len++; 1093 return 0; 1094 } 1095 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1096 ei->i_da_metadata_calc_len = 1; 1097 blk_bits = order_base_2(lblock); 1098 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1099} 1100 1101/* 1102 * Calculate the number of metadata blocks need to reserve | |
1103 * to allocate a block located at @lblock 1104 */ 1105static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 1106{ 1107 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1108 return ext4_ext_calc_metadata_amount(inode, lblock); 1109 | 247 * to allocate a block located at @lblock 248 */ 249static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 250{ 251 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 252 return ext4_ext_calc_metadata_amount(inode, lblock); 253 |
1110 return ext4_indirect_calc_metadata_amount(inode, lblock); | 254 return ext4_ind_calc_metadata_amount(inode, lblock); |
1111} 1112 1113/* 1114 * Called with i_data_sem down, which is important since we can call 1115 * ext4_discard_preallocations() from here. 1116 */ 1117void ext4_da_update_reserve_space(struct inode *inode, 1118 int used, int quota_claim) --- 465 unchanged lines hidden (view full) --- 1584 if (dirty) 1585 clear_buffer_dirty(bh); 1586 ret = ext4_journal_get_write_access(handle, bh); 1587 if (!ret && dirty) 1588 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1589 return ret; 1590} 1591 | 255} 256 257/* 258 * Called with i_data_sem down, which is important since we can call 259 * ext4_discard_preallocations() from here. 260 */ 261void ext4_da_update_reserve_space(struct inode *inode, 262 int used, int quota_claim) --- 465 unchanged lines hidden (view full) --- 728 if (dirty) 729 clear_buffer_dirty(bh); 730 ret = ext4_journal_get_write_access(handle, bh); 731 if (!ret && dirty) 732 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 733 return ret; 734} 735 |
1592/* 1593 * Truncate blocks that were not used by write. We have to truncate the 1594 * pagecache as well so that corresponding buffers get properly unmapped. 1595 */ 1596static void ext4_truncate_failed_write(struct inode *inode) 1597{ 1598 truncate_inode_pages(inode->i_mapping, inode->i_size); 1599 ext4_truncate(inode); 1600} 1601 | |
1602static int ext4_get_block_write(struct inode *inode, sector_t iblock, 1603 struct buffer_head *bh_result, int create); 1604static int ext4_write_begin(struct file *file, struct address_space *mapping, 1605 loff_t pos, unsigned len, unsigned flags, 1606 struct page **pagep, void **fsdata) 1607{ 1608 struct inode *inode = mapping->host; 1609 int ret, needed_blocks; --- 248 unchanged lines hidden (view full) --- 1858 ret = walk_page_buffers(handle, page_buffers(page), from, 1859 to, &partial, write_end_fn); 1860 if (!partial) 1861 SetPageUptodate(page); 1862 new_i_size = pos + copied; 1863 if (new_i_size > inode->i_size) 1864 i_size_write(inode, pos+copied); 1865 ext4_set_inode_state(inode, EXT4_STATE_JDATA); | 736static int ext4_get_block_write(struct inode *inode, sector_t iblock, 737 struct buffer_head *bh_result, int create); 738static int ext4_write_begin(struct file *file, struct address_space *mapping, 739 loff_t pos, unsigned len, unsigned flags, 740 struct page **pagep, void **fsdata) 741{ 742 struct inode *inode = mapping->host; 743 int ret, needed_blocks; --- 248 unchanged lines hidden (view full) --- 992 ret = walk_page_buffers(handle, page_buffers(page), from, 993 to, &partial, write_end_fn); 994 if (!partial) 995 SetPageUptodate(page); 996 new_i_size = pos + copied; 997 if (new_i_size > inode->i_size) 998 i_size_write(inode, pos+copied); 999 ext4_set_inode_state(inode, EXT4_STATE_JDATA); |
1000 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; |
|
1866 if (new_i_size > EXT4_I(inode)->i_disksize) { 1867 ext4_update_i_disksize(inode, new_i_size); 1868 ret2 = ext4_mark_inode_dirty(handle, inode); 1869 if (!ret) 1870 ret = ret2; 1871 } 1872 1873 unlock_page(page); --- 692 unchanged lines hidden (view full) --- 2566 2567 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2568 do_journal_get_write_access); 2569 2570 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2571 write_end_fn); 2572 if (ret == 0) 2573 ret = err; | 1001 if (new_i_size > EXT4_I(inode)->i_disksize) { 1002 ext4_update_i_disksize(inode, new_i_size); 1003 ret2 = ext4_mark_inode_dirty(handle, inode); 1004 if (!ret) 1005 ret = ret2; 1006 } 1007 1008 unlock_page(page); --- 692 unchanged lines hidden (view full) --- 1701 1702 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1703 do_journal_get_write_access); 1704 1705 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1706 write_end_fn); 1707 if (ret == 0) 1708 ret = err; |
1709 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; |
|
2574 err = ext4_journal_stop(handle); 2575 if (!ret) 2576 ret = err; 2577 2578 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2579 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2580out: 2581 return ret; --- 863 unchanged lines hidden (view full) --- 3445 return 0; 3446 if (journal) 3447 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3448 else 3449 return try_to_free_buffers(page); 3450} 3451 3452/* | 1710 err = ext4_journal_stop(handle); 1711 if (!ret) 1712 ret = err; 1713 1714 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1715 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1716out: 1717 return ret; --- 863 unchanged lines hidden (view full) --- 2581 return 0; 2582 if (journal) 2583 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2584 else 2585 return try_to_free_buffers(page); 2586} 2587 2588/* |
3453 * O_DIRECT for ext3 (or indirect map) based files 3454 * 3455 * If the O_DIRECT write will extend the file then add this inode to the 3456 * orphan list. So recovery will truncate it back to the original size 3457 * if the machine crashes during the write. 3458 * 3459 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3460 * crashes then stale disk data _may_ be exposed inside the file. But current 3461 * VFS code falls back into buffered path in that case so we are safe. 3462 */ 3463static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3464 const struct iovec *iov, loff_t offset, 3465 unsigned long nr_segs) 3466{ 3467 struct file *file = iocb->ki_filp; 3468 struct inode *inode = file->f_mapping->host; 3469 struct ext4_inode_info *ei = EXT4_I(inode); 3470 handle_t *handle; 3471 ssize_t ret; 3472 int orphan = 0; 3473 size_t count = iov_length(iov, nr_segs); 3474 int retries = 0; 3475 3476 if (rw == WRITE) { 3477 loff_t final_size = offset + count; 3478 3479 if (final_size > inode->i_size) { 3480 /* Credits for sb + inode write */ 3481 handle = ext4_journal_start(inode, 2); 3482 if (IS_ERR(handle)) { 3483 ret = PTR_ERR(handle); 3484 goto out; 3485 } 3486 ret = ext4_orphan_add(handle, inode); 3487 if (ret) { 3488 ext4_journal_stop(handle); 3489 goto out; 3490 } 3491 orphan = 1; 3492 ei->i_disksize = inode->i_size; 3493 ext4_journal_stop(handle); 3494 } 3495 } 3496 3497retry: 3498 if (rw == READ && ext4_should_dioread_nolock(inode)) 3499 ret = __blockdev_direct_IO(rw, iocb, inode, 3500 inode->i_sb->s_bdev, iov, 3501 offset, nr_segs, 3502 ext4_get_block, NULL, NULL, 0); 3503 else { 3504 ret = blockdev_direct_IO(rw, iocb, inode, iov, 3505 offset, nr_segs, ext4_get_block); 3506 3507 if (unlikely((rw & WRITE) && ret < 0)) { 3508 loff_t isize = i_size_read(inode); 3509 loff_t end = offset + iov_length(iov, nr_segs); 3510 3511 if (end > isize) 3512 ext4_truncate_failed_write(inode); 3513 } 3514 } 3515 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3516 goto retry; 3517 3518 if (orphan) { 3519 int err; 3520 3521 /* Credits for sb + inode write */ 3522 handle = ext4_journal_start(inode, 2); 3523 if (IS_ERR(handle)) { 3524 /* This is really bad luck. We've written the data 3525 * but cannot extend i_size. Bail out and pretend 3526 * the write failed... */ 3527 ret = PTR_ERR(handle); 3528 if (inode->i_nlink) 3529 ext4_orphan_del(NULL, inode); 3530 3531 goto out; 3532 } 3533 if (inode->i_nlink) 3534 ext4_orphan_del(handle, inode); 3535 if (ret > 0) { 3536 loff_t end = offset + ret; 3537 if (end > inode->i_size) { 3538 ei->i_disksize = end; 3539 i_size_write(inode, end); 3540 /* 3541 * We're going to return a positive `ret' 3542 * here due to non-zero-length I/O, so there's 3543 * no way of reporting error returns from 3544 * ext4_mark_inode_dirty() to userspace. So 3545 * ignore it. 3546 */ 3547 ext4_mark_inode_dirty(handle, inode); 3548 } 3549 } 3550 err = ext4_journal_stop(handle); 3551 if (ret == 0) 3552 ret = err; 3553 } 3554out: 3555 return ret; 3556} 3557 3558/* | |
3559 * ext4_get_block used when preparing for a DIO write or buffer write. 3560 * We allocate an uinitialized extent if blocks haven't been allocated. 3561 * The extent will be converted to initialized after the IO is complete. 3562 */ 3563static int ext4_get_block_write(struct inode *inode, sector_t iblock, 3564 struct buffer_head *bh_result, int create) 3565{ 3566 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", --- 461 unchanged lines hidden (view full) --- 4028 } 4029 4030unlock: 4031 unlock_page(page); 4032 page_cache_release(page); 4033 return err; 4034} 4035 | 2589 * ext4_get_block used when preparing for a DIO write or buffer write. 2590 * We allocate an uinitialized extent if blocks haven't been allocated. 2591 * The extent will be converted to initialized after the IO is complete. 2592 */ 2593static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2594 struct buffer_head *bh_result, int create) 2595{ 2596 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", --- 461 unchanged lines hidden (view full) --- 3058 } 3059 3060unlock: 3061 unlock_page(page); 3062 page_cache_release(page); 3063 return err; 3064} 3065 |
4036/* 4037 * Probably it should be a library function... search for first non-zero word 4038 * or memcmp with zero_page, whatever is better for particular architecture. 4039 * Linus? 4040 */ 4041static inline int all_zeroes(__le32 *p, __le32 *q) 4042{ 4043 while (p < q) 4044 if (*p++) 4045 return 0; 4046 return 1; 4047} 4048 4049/** 4050 * ext4_find_shared - find the indirect blocks for partial truncation. 4051 * @inode: inode in question 4052 * @depth: depth of the affected branch 4053 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4054 * @chain: place to store the pointers to partial indirect blocks 4055 * @top: place to the (detached) top of branch 4056 * 4057 * This is a helper function used by ext4_truncate(). 4058 * 4059 * When we do truncate() we may have to clean the ends of several 4060 * indirect blocks but leave the blocks themselves alive. Block is 4061 * partially truncated if some data below the new i_size is referred 4062 * from it (and it is on the path to the first completely truncated 4063 * data block, indeed). We have to free the top of that path along 4064 * with everything to the right of the path. Since no allocation 4065 * past the truncation point is possible until ext4_truncate() 4066 * finishes, we may safely do the latter, but top of branch may 4067 * require special attention - pageout below the truncation point 4068 * might try to populate it. 4069 * 4070 * We atomically detach the top of branch from the tree, store the 4071 * block number of its root in *@top, pointers to buffer_heads of 4072 * partially truncated blocks - in @chain[].bh and pointers to 4073 * their last elements that should not be removed - in 4074 * @chain[].p. Return value is the pointer to last filled element 4075 * of @chain. 4076 * 4077 * The work left to caller to do the actual freeing of subtrees: 4078 * a) free the subtree starting from *@top 4079 * b) free the subtrees whose roots are stored in 4080 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4081 * c) free the subtrees growing from the inode past the @chain[0]. 4082 * (no partially truncated stuff there). */ 4083 4084static Indirect *ext4_find_shared(struct inode *inode, int depth, 4085 ext4_lblk_t offsets[4], Indirect chain[4], 4086 __le32 *top) 4087{ 4088 Indirect *partial, *p; 4089 int k, err; 4090 4091 *top = 0; 4092 /* Make k index the deepest non-null offset + 1 */ 4093 for (k = depth; k > 1 && !offsets[k-1]; k--) 4094 ; 4095 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4096 /* Writer: pointers */ 4097 if (!partial) 4098 partial = chain + k-1; 4099 /* 4100 * If the branch acquired continuation since we've looked at it - 4101 * fine, it should all survive and (new) top doesn't belong to us. 4102 */ 4103 if (!partial->key && *partial->p) 4104 /* Writer: end */ 4105 goto no_top; 4106 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4107 ; 4108 /* 4109 * OK, we've found the last block that must survive. The rest of our 4110 * branch should be detached before unlocking. However, if that rest 4111 * of branch is all ours and does not grow immediately from the inode 4112 * it's easier to cheat and just decrement partial->p. 4113 */ 4114 if (p == chain + k - 1 && p > chain) { 4115 p->p--; 4116 } else { 4117 *top = *p->p; 4118 /* Nope, don't do this in ext4. Must leave the tree intact */ 4119#if 0 4120 *p->p = 0; 4121#endif 4122 } 4123 /* Writer: end */ 4124 4125 while (partial > p) { 4126 brelse(partial->bh); 4127 partial--; 4128 } 4129no_top: 4130 return partial; 4131} 4132 4133/* 4134 * Zero a number of block pointers in either an inode or an indirect block. 4135 * If we restart the transaction we must again get write access to the 4136 * indirect block for further modification. 4137 * 4138 * We release `count' blocks on disk, but (last - first) may be greater 4139 * than `count' because there can be holes in there. 4140 * 4141 * Return 0 on success, 1 on invalid block range 4142 * and < 0 on fatal error. 4143 */ 4144static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 4145 struct buffer_head *bh, 4146 ext4_fsblk_t block_to_free, 4147 unsigned long count, __le32 *first, 4148 __le32 *last) 4149{ 4150 __le32 *p; 4151 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 4152 int err; 4153 4154 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4155 flags |= EXT4_FREE_BLOCKS_METADATA; 4156 4157 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 4158 count)) { 4159 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 4160 "blocks %llu len %lu", 4161 (unsigned long long) block_to_free, count); 4162 return 1; 4163 } 4164 4165 if (try_to_extend_transaction(handle, inode)) { 4166 if (bh) { 4167 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4168 err = ext4_handle_dirty_metadata(handle, inode, bh); 4169 if (unlikely(err)) 4170 goto out_err; 4171 } 4172 err = ext4_mark_inode_dirty(handle, inode); 4173 if (unlikely(err)) 4174 goto out_err; 4175 err = ext4_truncate_restart_trans(handle, inode, 4176 blocks_for_truncate(inode)); 4177 if (unlikely(err)) 4178 goto out_err; 4179 if (bh) { 4180 BUFFER_TRACE(bh, "retaking write access"); 4181 err = ext4_journal_get_write_access(handle, bh); 4182 if (unlikely(err)) 4183 goto out_err; 4184 } 4185 } 4186 4187 for (p = first; p < last; p++) 4188 *p = 0; 4189 4190 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 4191 return 0; 4192out_err: 4193 ext4_std_error(inode->i_sb, err); 4194 return err; 4195} 4196 4197/** 4198 * ext4_free_data - free a list of data blocks 4199 * @handle: handle for this transaction 4200 * @inode: inode we are dealing with 4201 * @this_bh: indirect buffer_head which contains *@first and *@last 4202 * @first: array of block numbers 4203 * @last: points immediately past the end of array 4204 * 4205 * We are freeing all blocks referred from that array (numbers are stored as 4206 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4207 * 4208 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4209 * blocks are contiguous then releasing them at one time will only affect one 4210 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4211 * actually use a lot of journal space. 4212 * 4213 * @this_bh will be %NULL if @first and @last point into the inode's direct 4214 * block pointers. 4215 */ 4216static void ext4_free_data(handle_t *handle, struct inode *inode, 4217 struct buffer_head *this_bh, 4218 __le32 *first, __le32 *last) 4219{ 4220 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4221 unsigned long count = 0; /* Number of blocks in the run */ 4222 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4223 corresponding to 4224 block_to_free */ 4225 ext4_fsblk_t nr; /* Current block # */ 4226 __le32 *p; /* Pointer into inode/ind 4227 for current block */ 4228 int err = 0; 4229 4230 if (this_bh) { /* For indirect block */ 4231 BUFFER_TRACE(this_bh, "get_write_access"); 4232 err = ext4_journal_get_write_access(handle, this_bh); 4233 /* Important: if we can't update the indirect pointers 4234 * to the blocks, we can't free them. */ 4235 if (err) 4236 return; 4237 } 4238 4239 for (p = first; p < last; p++) { 4240 nr = le32_to_cpu(*p); 4241 if (nr) { 4242 /* accumulate blocks to free if they're contiguous */ 4243 if (count == 0) { 4244 block_to_free = nr; 4245 block_to_free_p = p; 4246 count = 1; 4247 } else if (nr == block_to_free + count) { 4248 count++; 4249 } else { 4250 err = ext4_clear_blocks(handle, inode, this_bh, 4251 block_to_free, count, 4252 block_to_free_p, p); 4253 if (err) 4254 break; 4255 block_to_free = nr; 4256 block_to_free_p = p; 4257 count = 1; 4258 } 4259 } 4260 } 4261 4262 if (!err && count > 0) 4263 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4264 count, block_to_free_p, p); 4265 if (err < 0) 4266 /* fatal error */ 4267 return; 4268 4269 if (this_bh) { 4270 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4271 4272 /* 4273 * The buffer head should have an attached journal head at this 4274 * point. However, if the data is corrupted and an indirect 4275 * block pointed to itself, it would have been detached when 4276 * the block was cleared. Check for this instead of OOPSing. 4277 */ 4278 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4279 ext4_handle_dirty_metadata(handle, inode, this_bh); 4280 else 4281 EXT4_ERROR_INODE(inode, 4282 "circular indirect block detected at " 4283 "block %llu", 4284 (unsigned long long) this_bh->b_blocknr); 4285 } 4286} 4287 4288/** 4289 * ext4_free_branches - free an array of branches 4290 * @handle: JBD handle for this transaction 4291 * @inode: inode we are dealing with 4292 * @parent_bh: the buffer_head which contains *@first and *@last 4293 * @first: array of block numbers 4294 * @last: pointer immediately past the end of array 4295 * @depth: depth of the branches to free 4296 * 4297 * We are freeing all blocks referred from these branches (numbers are 4298 * stored as little-endian 32-bit) and updating @inode->i_blocks 4299 * appropriately. 4300 */ 4301static void ext4_free_branches(handle_t *handle, struct inode *inode, 4302 struct buffer_head *parent_bh, 4303 __le32 *first, __le32 *last, int depth) 4304{ 4305 ext4_fsblk_t nr; 4306 __le32 *p; 4307 4308 if (ext4_handle_is_aborted(handle)) 4309 return; 4310 4311 if (depth--) { 4312 struct buffer_head *bh; 4313 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4314 p = last; 4315 while (--p >= first) { 4316 nr = le32_to_cpu(*p); 4317 if (!nr) 4318 continue; /* A hole */ 4319 4320 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 4321 nr, 1)) { 4322 EXT4_ERROR_INODE(inode, 4323 "invalid indirect mapped " 4324 "block %lu (level %d)", 4325 (unsigned long) nr, depth); 4326 break; 4327 } 4328 4329 /* Go read the buffer for the next level down */ 4330 bh = sb_bread(inode->i_sb, nr); 4331 4332 /* 4333 * A read failure? Report error and clear slot 4334 * (should be rare). 4335 */ 4336 if (!bh) { 4337 EXT4_ERROR_INODE_BLOCK(inode, nr, 4338 "Read failure"); 4339 continue; 4340 } 4341 4342 /* This zaps the entire block. Bottom up. */ 4343 BUFFER_TRACE(bh, "free child branches"); 4344 ext4_free_branches(handle, inode, bh, 4345 (__le32 *) bh->b_data, 4346 (__le32 *) bh->b_data + addr_per_block, 4347 depth); 4348 brelse(bh); 4349 4350 /* 4351 * Everything below this this pointer has been 4352 * released. Now let this top-of-subtree go. 4353 * 4354 * We want the freeing of this indirect block to be 4355 * atomic in the journal with the updating of the 4356 * bitmap block which owns it. So make some room in 4357 * the journal. 4358 * 4359 * We zero the parent pointer *after* freeing its 4360 * pointee in the bitmaps, so if extend_transaction() 4361 * for some reason fails to put the bitmap changes and 4362 * the release into the same transaction, recovery 4363 * will merely complain about releasing a free block, 4364 * rather than leaking blocks. 4365 */ 4366 if (ext4_handle_is_aborted(handle)) 4367 return; 4368 if (try_to_extend_transaction(handle, inode)) { 4369 ext4_mark_inode_dirty(handle, inode); 4370 ext4_truncate_restart_trans(handle, inode, 4371 blocks_for_truncate(inode)); 4372 } 4373 4374 /* 4375 * The forget flag here is critical because if 4376 * we are journaling (and not doing data 4377 * journaling), we have to make sure a revoke 4378 * record is written to prevent the journal 4379 * replay from overwriting the (former) 4380 * indirect block if it gets reallocated as a 4381 * data block. This must happen in the same 4382 * transaction where the data blocks are 4383 * actually freed. 4384 */ 4385 ext4_free_blocks(handle, inode, NULL, nr, 1, 4386 EXT4_FREE_BLOCKS_METADATA| 4387 EXT4_FREE_BLOCKS_FORGET); 4388 4389 if (parent_bh) { 4390 /* 4391 * The block which we have just freed is 4392 * pointed to by an indirect block: journal it 4393 */ 4394 BUFFER_TRACE(parent_bh, "get_write_access"); 4395 if (!ext4_journal_get_write_access(handle, 4396 parent_bh)){ 4397 *p = 0; 4398 BUFFER_TRACE(parent_bh, 4399 "call ext4_handle_dirty_metadata"); 4400 ext4_handle_dirty_metadata(handle, 4401 inode, 4402 parent_bh); 4403 } 4404 } 4405 } 4406 } else { 4407 /* We have reached the bottom of the tree. */ 4408 BUFFER_TRACE(parent_bh, "free data blocks"); 4409 ext4_free_data(handle, inode, parent_bh, first, last); 4410 } 4411} 4412 | |
4413int ext4_can_truncate(struct inode *inode) 4414{ 4415 if (S_ISREG(inode->i_mode)) 4416 return 1; 4417 if (S_ISDIR(inode->i_mode)) 4418 return 1; 4419 if (S_ISLNK(inode->i_mode)) 4420 return !ext4_inode_is_fast_symlink(inode); --- 50 unchanged lines hidden (view full) --- 4471 * that this inode's truncate did not complete and it will again call 4472 * ext4_truncate() to have another go. So there will be instantiated blocks 4473 * to the right of the truncation point in a crashed ext4 filesystem. But 4474 * that's fine - as long as they are linked from the inode, the post-crash 4475 * ext4_truncate() run will find them and release them. 4476 */ 4477void ext4_truncate(struct inode *inode) 4478{ | 3066int ext4_can_truncate(struct inode *inode) 3067{ 3068 if (S_ISREG(inode->i_mode)) 3069 return 1; 3070 if (S_ISDIR(inode->i_mode)) 3071 return 1; 3072 if (S_ISLNK(inode->i_mode)) 3073 return !ext4_inode_is_fast_symlink(inode); --- 50 unchanged lines hidden (view full) --- 3124 * that this inode's truncate did not complete and it will again call 3125 * ext4_truncate() to have another go. So there will be instantiated blocks 3126 * to the right of the truncation point in a crashed ext4 filesystem. But 3127 * that's fine - as long as they are linked from the inode, the post-crash 3128 * ext4_truncate() run will find them and release them. 3129 */ 3130void ext4_truncate(struct inode *inode) 3131{ |
4479 handle_t *handle; 4480 struct ext4_inode_info *ei = EXT4_I(inode); 4481 __le32 *i_data = ei->i_data; 4482 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4483 struct address_space *mapping = inode->i_mapping; 4484 ext4_lblk_t offsets[4]; 4485 Indirect chain[4]; 4486 Indirect *partial; 4487 __le32 nr = 0; 4488 int n = 0; 4489 ext4_lblk_t last_block, max_block; 4490 unsigned blocksize = inode->i_sb->s_blocksize; 4491 | |
4492 trace_ext4_truncate_enter(inode); 4493 4494 if (!ext4_can_truncate(inode)) 4495 return; 4496 4497 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4498 4499 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4500 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4501 | 3132 trace_ext4_truncate_enter(inode); 3133 3134 if (!ext4_can_truncate(inode)) 3135 return; 3136 3137 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3138 3139 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3140 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3141 |
4502 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 3142 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) |
4503 ext4_ext_truncate(inode); | 3143 ext4_ext_truncate(inode); |
4504 trace_ext4_truncate_exit(inode); 4505 return; 4506 } | 3144 else 3145 ext4_ind_truncate(inode); |
4507 | 3146 |
4508 handle = start_transaction(inode); 4509 if (IS_ERR(handle)) 4510 return; /* AKPM: return what? */ 4511 4512 last_block = (inode->i_size + blocksize-1) 4513 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4514 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 4515 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4516 4517 if (inode->i_size & (blocksize - 1)) 4518 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4519 goto out_stop; 4520 4521 if (last_block != max_block) { 4522 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4523 if (n == 0) 4524 goto out_stop; /* error */ 4525 } 4526 4527 /* 4528 * OK. This truncate is going to happen. We add the inode to the 4529 * orphan list, so that if this truncate spans multiple transactions, 4530 * and we crash, we will resume the truncate when the filesystem 4531 * recovers. It also marks the inode dirty, to catch the new size. 4532 * 4533 * Implication: the file must always be in a sane, consistent 4534 * truncatable state while each transaction commits. 4535 */ 4536 if (ext4_orphan_add(handle, inode)) 4537 goto out_stop; 4538 4539 /* 4540 * From here we block out all ext4_get_block() callers who want to 4541 * modify the block allocation tree. 4542 */ 4543 down_write(&ei->i_data_sem); 4544 4545 ext4_discard_preallocations(inode); 4546 4547 /* 4548 * The orphan list entry will now protect us from any crash which 4549 * occurs before the truncate completes, so it is now safe to propagate 4550 * the new, shorter inode size (held for now in i_size) into the 4551 * on-disk inode. We do this via i_disksize, which is the value which 4552 * ext4 *really* writes onto the disk inode. 4553 */ 4554 ei->i_disksize = inode->i_size; 4555 4556 if (last_block == max_block) { 4557 /* 4558 * It is unnecessary to free any data blocks if last_block is 4559 * equal to the indirect block limit. 4560 */ 4561 goto out_unlock; 4562 } else if (n == 1) { /* direct blocks */ 4563 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4564 i_data + EXT4_NDIR_BLOCKS); 4565 goto do_indirects; 4566 } 4567 4568 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4569 /* Kill the top of shared branch (not detached) */ 4570 if (nr) { 4571 if (partial == chain) { 4572 /* Shared branch grows from the inode */ 4573 ext4_free_branches(handle, inode, NULL, 4574 &nr, &nr+1, (chain+n-1) - partial); 4575 *partial->p = 0; 4576 /* 4577 * We mark the inode dirty prior to restart, 4578 * and prior to stop. No need for it here. 4579 */ 4580 } else { 4581 /* Shared branch grows from an indirect block */ 4582 BUFFER_TRACE(partial->bh, "get_write_access"); 4583 ext4_free_branches(handle, inode, partial->bh, 4584 partial->p, 4585 partial->p+1, (chain+n-1) - partial); 4586 } 4587 } 4588 /* Clear the ends of indirect blocks on the shared branch */ 4589 while (partial > chain) { 4590 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4591 (__le32*)partial->bh->b_data+addr_per_block, 4592 (chain+n-1) - partial); 4593 BUFFER_TRACE(partial->bh, "call brelse"); 4594 brelse(partial->bh); 4595 partial--; 4596 } 4597do_indirects: 4598 /* Kill the remaining (whole) subtrees */ 4599 switch (offsets[0]) { 4600 default: 4601 nr = i_data[EXT4_IND_BLOCK]; 4602 if (nr) { 4603 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4604 i_data[EXT4_IND_BLOCK] = 0; 4605 } 4606 case EXT4_IND_BLOCK: 4607 nr = i_data[EXT4_DIND_BLOCK]; 4608 if (nr) { 4609 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4610 i_data[EXT4_DIND_BLOCK] = 0; 4611 } 4612 case EXT4_DIND_BLOCK: 4613 nr = i_data[EXT4_TIND_BLOCK]; 4614 if (nr) { 4615 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4616 i_data[EXT4_TIND_BLOCK] = 0; 4617 } 4618 case EXT4_TIND_BLOCK: 4619 ; 4620 } 4621 4622out_unlock: 4623 up_write(&ei->i_data_sem); 4624 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4625 ext4_mark_inode_dirty(handle, inode); 4626 4627 /* 4628 * In a multi-transaction truncate, we only make the final transaction 4629 * synchronous 4630 */ 4631 if (IS_SYNC(inode)) 4632 ext4_handle_sync(handle); 4633out_stop: 4634 /* 4635 * If this was a simple ftruncate(), and the file will remain alive 4636 * then we need to clear up the orphan record which we created above. 4637 * However, if this was a real unlink then we were called by 4638 * ext4_delete_inode(), and we allow that function to clean up the 4639 * orphan info for us. 4640 */ 4641 if (inode->i_nlink) 4642 ext4_orphan_del(handle, inode); 4643 4644 ext4_journal_stop(handle); | |
4645 trace_ext4_truncate_exit(inode); 4646} 4647 4648/* 4649 * ext4_get_inode_loc returns with an extra refcount against the inode's 4650 * underlying buffer_head on success. If 'in_mem' is true, we have all 4651 * data in memory that is needed to recreate the on-disk version of this 4652 * inode. --- 354 unchanged lines hidden (view full) --- 5007 (S_ISLNK(inode->i_mode) && 5008 !ext4_inode_is_fast_symlink(inode))) 5009 /* Validate extent which is part of inode */ 5010 ret = ext4_ext_check_inode(inode); 5011 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5012 (S_ISLNK(inode->i_mode) && 5013 !ext4_inode_is_fast_symlink(inode))) { 5014 /* Validate block references which are part of inode */ | 3147 trace_ext4_truncate_exit(inode); 3148} 3149 3150/* 3151 * ext4_get_inode_loc returns with an extra refcount against the inode's 3152 * underlying buffer_head on success. If 'in_mem' is true, we have all 3153 * data in memory that is needed to recreate the on-disk version of this 3154 * inode. --- 354 unchanged lines hidden (view full) --- 3509 (S_ISLNK(inode->i_mode) && 3510 !ext4_inode_is_fast_symlink(inode))) 3511 /* Validate extent which is part of inode */ 3512 ret = ext4_ext_check_inode(inode); 3513 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3514 (S_ISLNK(inode->i_mode) && 3515 !ext4_inode_is_fast_symlink(inode))) { 3516 /* Validate block references which are part of inode */ |
5015 ret = ext4_check_inode_blockref(inode); | 3517 ret = ext4_ind_check_inode(inode); |
5016 } 5017 if (ret) 5018 goto bad_inode; 5019 5020 if (S_ISREG(inode->i_mode)) { 5021 inode->i_op = &ext4_file_inode_operations; 5022 inode->i_fop = &ext4_file_operations; 5023 ext4_set_aops(inode); --- 430 unchanged lines hidden (view full) --- 5454 * blocks for this file. 5455 */ 5456 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5457 5458 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5459 return 0; 5460} 5461 | 3518 } 3519 if (ret) 3520 goto bad_inode; 3521 3522 if (S_ISREG(inode->i_mode)) { 3523 inode->i_op = &ext4_file_inode_operations; 3524 inode->i_fop = &ext4_file_operations; 3525 ext4_set_aops(inode); --- 430 unchanged lines hidden (view full) --- 3956 * blocks for this file. 3957 */ 3958 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 3959 3960 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 3961 return 0; 3962} 3963 |
5462static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5463 int chunk) 5464{ 5465 int indirects; 5466 5467 /* if nrblocks are contiguous */ 5468 if (chunk) { 5469 /* 5470 * With N contiguous data blocks, we need at most 5471 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 5472 * 2 dindirect blocks, and 1 tindirect block 5473 */ 5474 return DIV_ROUND_UP(nrblocks, 5475 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 5476 } 5477 /* 5478 * if nrblocks are not contiguous, worse case, each block touch 5479 * a indirect block, and each indirect block touch a double indirect 5480 * block, plus a triple indirect block 5481 */ 5482 indirects = nrblocks * 2 + 1; 5483 return indirects; 5484} 5485 | |
5486static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5487{ 5488 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) | 3964static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 3965{ 3966 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) |
5489 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); | 3967 return ext4_ind_trans_blocks(inode, nrblocks, chunk); |
5490 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5491} 5492 5493/* 5494 * Account for index blocks, block groups bitmaps and block group 5495 * descriptor blocks if modify datablocks and index blocks 5496 * worse case, the indexs blocks spread over different block groups 5497 * --- 436 unchanged lines hidden --- | 3968 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 3969} 3970 3971/* 3972 * Account for index blocks, block groups bitmaps and block group 3973 * descriptor blocks if modify datablocks and index blocks 3974 * worse case, the indexs blocks spread over different block groups 3975 * --- 436 unchanged lines hidden --- |