via686a.c (600151b9de97bd580f9dc09199a10f0c2b65cb97) | via686a.c (9004ac8134de260b2eb9a6d8fb2dd4a37321e49b) |
---|---|
1/* | 1/* |
2 via686a.c - Part of lm_sensors, Linux kernel modules 3 for hardware monitoring | 2 * via686a.c - Part of lm_sensors, Linux kernel modules 3 * for hardware monitoring 4 * 5 * Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>, 6 * Kyösti Mälkki <kmalkki@cc.hut.fi>, 7 * Mark Studebaker <mdsxyz123@yahoo.com>, 8 * and Bob Dougherty <bobd@stanford.edu> 9 * 10 * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew 11 * <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.) 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ |
4 | 27 |
5 Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>, 6 Kyösti Mälkki <kmalkki@cc.hut.fi>, 7 Mark Studebaker <mdsxyz123@yahoo.com>, 8 and Bob Dougherty <bobd@stanford.edu> 9 (Some conversion-factor data were contributed by Jonathan Teh Soon Yew 10 <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.) 11 12 This program is free software; you can redistribute it and/or modify 13 it under the terms of the GNU General Public License as published by 14 the Free Software Foundation; either version 2 of the License, or 15 (at your option) any later version. 16 17 This program is distributed in the hope that it will be useful, 18 but WITHOUT ANY WARRANTY; without even the implied warranty of 19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 GNU General Public License for more details. 21 22 You should have received a copy of the GNU General Public License 23 along with this program; if not, write to the Free Software 24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25*/ 26 | |
27/* | 28/* |
28 Supports the Via VT82C686A, VT82C686B south bridges. 29 Reports all as a 686A. 30 Warning - only supports a single device. 31*/ | 29 * Supports the Via VT82C686A, VT82C686B south bridges. 30 * Reports all as a 686A. 31 * Warning - only supports a single device. 32 */ |
32 33#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35#include <linux/module.h> 36#include <linux/slab.h> 37#include <linux/pci.h> 38#include <linux/jiffies.h> 39#include <linux/platform_device.h> 40#include <linux/hwmon.h> 41#include <linux/hwmon-sysfs.h> 42#include <linux/err.h> 43#include <linux/init.h> 44#include <linux/mutex.h> 45#include <linux/sysfs.h> 46#include <linux/acpi.h> 47#include <linux/io.h> 48 49 | 33 34#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36#include <linux/module.h> 37#include <linux/slab.h> 38#include <linux/pci.h> 39#include <linux/jiffies.h> 40#include <linux/platform_device.h> 41#include <linux/hwmon.h> 42#include <linux/hwmon-sysfs.h> 43#include <linux/err.h> 44#include <linux/init.h> 45#include <linux/mutex.h> 46#include <linux/sysfs.h> 47#include <linux/acpi.h> 48#include <linux/io.h> 49 50 |
50/* If force_addr is set to anything different from 0, we forcibly enable 51 the device at the given address. */ | 51/* 52 * If force_addr is set to anything different from 0, we forcibly enable 53 * the device at the given address. 54 */ |
52static unsigned short force_addr; 53module_param(force_addr, ushort, 0); 54MODULE_PARM_DESC(force_addr, 55 "Initialize the base address of the sensors"); 56 57static struct platform_device *pdev; 58 59/* | 55static unsigned short force_addr; 56module_param(force_addr, ushort, 0); 57MODULE_PARM_DESC(force_addr, 58 "Initialize the base address of the sensors"); 59 60static struct platform_device *pdev; 61 62/* |
60 The Via 686a southbridge has a LM78-like chip integrated on the same IC. 61 This driver is a customized copy of lm78.c 62*/ | 63 * The Via 686a southbridge has a LM78-like chip integrated on the same IC. 64 * This driver is a customized copy of lm78.c 65 */ |
63 64/* Many VIA686A constants specified below */ 65 66/* Length of ISA address segment */ 67#define VIA686A_EXTENT 0x80 68#define VIA686A_BASE_REG 0x70 69#define VIA686A_ENABLE_REG 0x74 70 --- 15 unchanged lines hidden (view full) --- 86#define VIA686A_REG_TEMP_LOW1 0x4b 87/* 2 = bits 5-4, 3 = bits 7-6 */ 88#define VIA686A_REG_TEMP_LOW23 0x49 89 90#define VIA686A_REG_ALARM1 0x41 91#define VIA686A_REG_ALARM2 0x42 92#define VIA686A_REG_FANDIV 0x47 93#define VIA686A_REG_CONFIG 0x40 | 66 67/* Many VIA686A constants specified below */ 68 69/* Length of ISA address segment */ 70#define VIA686A_EXTENT 0x80 71#define VIA686A_BASE_REG 0x70 72#define VIA686A_ENABLE_REG 0x74 73 --- 15 unchanged lines hidden (view full) --- 89#define VIA686A_REG_TEMP_LOW1 0x4b 90/* 2 = bits 5-4, 3 = bits 7-6 */ 91#define VIA686A_REG_TEMP_LOW23 0x49 92 93#define VIA686A_REG_ALARM1 0x41 94#define VIA686A_REG_ALARM2 0x42 95#define VIA686A_REG_FANDIV 0x47 96#define VIA686A_REG_CONFIG 0x40 |
94/* The following register sets temp interrupt mode (bits 1-0 for temp1, 95 3-2 for temp2, 5-4 for temp3). Modes are: 96 00 interrupt stays as long as value is out-of-range 97 01 interrupt is cleared once register is read (default) 98 10 comparator mode- like 00, but ignores hysteresis 99 11 same as 00 */ | 97/* 98 * The following register sets temp interrupt mode (bits 1-0 for temp1, 99 * 3-2 for temp2, 5-4 for temp3). Modes are: 100 * 00 interrupt stays as long as value is out-of-range 101 * 01 interrupt is cleared once register is read (default) 102 * 10 comparator mode- like 00, but ignores hysteresis 103 * 11 same as 00 104 */ |
100#define VIA686A_REG_TEMP_MODE 0x4b 101/* We'll just assume that you want to set all 3 simultaneously: */ 102#define VIA686A_TEMP_MODE_MASK 0x3F 103#define VIA686A_TEMP_MODE_CONTINUOUS 0x00 104 | 105#define VIA686A_REG_TEMP_MODE 0x4b 106/* We'll just assume that you want to set all 3 simultaneously: */ 107#define VIA686A_TEMP_MODE_MASK 0x3F 108#define VIA686A_TEMP_MODE_CONTINUOUS 0x00 109 |
105/* Conversions. Limit checking is only done on the TO_REG 106 variants. 107 108********* VOLTAGE CONVERSIONS (Bob Dougherty) ******** 109 From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew): 110 voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp 111 voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V 112 voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V 113 voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V 114 voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V 115 in[i]=(data[i+2]*25.0+133)*voltagefactor[i]; 116 That is: 117 volts = (25*regVal+133)*factor 118 regVal = (volts/factor-133)/25 119 (These conversions were contributed by Jonathan Teh Soon Yew 120 <j.teh@iname.com>) */ | 110/* 111 * Conversions. Limit checking is only done on the TO_REG 112 * variants. 113 * 114 ******** VOLTAGE CONVERSIONS (Bob Dougherty) ******** 115 * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew): 116 * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp 117 * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V 118 * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V 119 * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V 120 * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V 121 * in[i]=(data[i+2]*25.0+133)*voltagefactor[i]; 122 * That is: 123 * volts = (25*regVal+133)*factor 124 * regVal = (volts/factor-133)/25 125 * (These conversions were contributed by Jonathan Teh Soon Yew 126 * <j.teh@iname.com>) 127 */ |
121static inline u8 IN_TO_REG(long val, int inNum) 122{ | 128static inline u8 IN_TO_REG(long val, int inNum) 129{ |
123 /* To avoid floating point, we multiply constants by 10 (100 for +12V). 124 Rounding is done (120500 is actually 133000 - 12500). 125 Remember that val is expressed in 0.001V/bit, which is why we divide 126 by an additional 10000 (100000 for +12V): 1000 for val and 10 (100) 127 for the constants. */ | 130 /* 131 * To avoid floating point, we multiply constants by 10 (100 for +12V). 132 * Rounding is done (120500 is actually 133000 - 12500). 133 * Remember that val is expressed in 0.001V/bit, which is why we divide 134 * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100) 135 * for the constants. 136 */ |
128 if (inNum <= 1) 129 return (u8) 130 SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255); 131 else if (inNum == 2) 132 return (u8) 133 SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255); 134 else if (inNum == 3) 135 return (u8) 136 SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255); 137 else 138 return (u8) 139 SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255); 140} 141 142static inline long IN_FROM_REG(u8 val, int inNum) 143{ | 137 if (inNum <= 1) 138 return (u8) 139 SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255); 140 else if (inNum == 2) 141 return (u8) 142 SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255); 143 else if (inNum == 3) 144 return (u8) 145 SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255); 146 else 147 return (u8) 148 SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255); 149} 150 151static inline long IN_FROM_REG(u8 val, int inNum) 152{ |
144 /* To avoid floating point, we multiply constants by 10 (100 for +12V). 145 We also multiply them by 1000 because we want 0.001V/bit for the 146 output value. Rounding is done. */ | 153 /* 154 * To avoid floating point, we multiply constants by 10 (100 for +12V). 155 * We also multiply them by 1000 because we want 0.001V/bit for the 156 * output value. Rounding is done. 157 */ |
147 if (inNum <= 1) 148 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024); 149 else if (inNum == 2) 150 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737); 151 else if (inNum == 3) 152 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108); 153 else 154 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714); 155} 156 157/********* FAN RPM CONVERSIONS ********/ | 158 if (inNum <= 1) 159 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024); 160 else if (inNum == 2) 161 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737); 162 else if (inNum == 3) 163 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108); 164 else 165 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714); 166} 167 168/********* FAN RPM CONVERSIONS ********/ |
158/* Higher register values = slower fans (the fan's strobe gates a counter). 159 But this chip saturates back at 0, not at 255 like all the other chips. 160 So, 0 means 0 RPM */ | 169/* 170 * Higher register values = slower fans (the fan's strobe gates a counter). 171 * But this chip saturates back at 0, not at 255 like all the other chips. 172 * So, 0 means 0 RPM 173 */ |
161static inline u8 FAN_TO_REG(long rpm, int div) 162{ 163 if (rpm == 0) 164 return 0; 165 rpm = SENSORS_LIMIT(rpm, 1, 1000000); 166 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255); 167} 168 | 174static inline u8 FAN_TO_REG(long rpm, int div) 175{ 176 if (rpm == 0) 177 return 0; 178 rpm = SENSORS_LIMIT(rpm, 1, 1000000); 179 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255); 180} 181 |
169#define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div))) | 182#define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \ 183 ((val) * (div))) |
170 171/******** TEMP CONVERSIONS (Bob Dougherty) *********/ | 184 185/******** TEMP CONVERSIONS (Bob Dougherty) *********/ |
172/* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew) 173 if(temp<169) 174 return double(temp)*0.427-32.08; 175 else if(temp>=169 && temp<=202) 176 return double(temp)*0.582-58.16; 177 else 178 return double(temp)*0.924-127.33; 179 180 A fifth-order polynomial fits the unofficial data (provided by Alex van 181 Kaam <darkside@chello.nl>) a bit better. It also give more reasonable 182 numbers on my machine (ie. they agree with what my BIOS tells me). 183 Here's the fifth-order fit to the 8-bit data: 184 temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 - 185 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0. 186 187 (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for 188 finding my typos in this formula!) 189 190 Alas, none of the elegant function-fit solutions will work because we 191 aren't allowed to use floating point in the kernel and doing it with 192 integers doesn't provide enough precision. So we'll do boring old 193 look-up table stuff. The unofficial data (see below) have effectively 194 7-bit resolution (they are rounded to the nearest degree). I'm assuming 195 that the transfer function of the device is monotonic and smooth, so a 196 smooth function fit to the data will allow us to get better precision. 197 I used the 5th-order poly fit described above and solved for 198 VIA register values 0-255. I *10 before rounding, so we get tenth-degree 199 precision. (I could have done all 1024 values for our 10-bit readings, 200 but the function is very linear in the useful range (0-80 deg C), so 201 we'll just use linear interpolation for 10-bit readings.) So, tempLUT 202 is the temp at via register values 0-255: */ 203static const s16 tempLUT[] = 204{ -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519, | 186/* 187 * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew) 188 * if(temp<169) 189 * return double(temp)*0.427-32.08; 190 * else if(temp>=169 && temp<=202) 191 * return double(temp)*0.582-58.16; 192 * else 193 * return double(temp)*0.924-127.33; 194 * 195 * A fifth-order polynomial fits the unofficial data (provided by Alex van 196 * Kaam <darkside@chello.nl>) a bit better. It also give more reasonable 197 * numbers on my machine (ie. they agree with what my BIOS tells me). 198 * Here's the fifth-order fit to the 8-bit data: 199 * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 - 200 * 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0. 201 * 202 * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for 203 * finding my typos in this formula!) 204 * 205 * Alas, none of the elegant function-fit solutions will work because we 206 * aren't allowed to use floating point in the kernel and doing it with 207 * integers doesn't provide enough precision. So we'll do boring old 208 * look-up table stuff. The unofficial data (see below) have effectively 209 * 7-bit resolution (they are rounded to the nearest degree). I'm assuming 210 * that the transfer function of the device is monotonic and smooth, so a 211 * smooth function fit to the data will allow us to get better precision. 212 * I used the 5th-order poly fit described above and solved for 213 * VIA register values 0-255. I *10 before rounding, so we get tenth-degree 214 * precision. (I could have done all 1024 values for our 10-bit readings, 215 * but the function is very linear in the useful range (0-80 deg C), so 216 * we'll just use linear interpolation for 10-bit readings.) So, tempLUT 217 * is the temp at via register values 0-255: 218 */ 219static const s16 tempLUT[] = { 220 -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519, |
205 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375, 206 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265, 207 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180, 208 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114, 209 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49, 210 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16, 211 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84, 212 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138, --- 7 unchanged lines hidden (view full) --- 220 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614, 221 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718, 222 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856, 223 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044, 224 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252, 225 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462 226}; 227 | 221 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375, 222 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265, 223 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180, 224 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114, 225 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49, 226 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16, 227 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84, 228 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138, --- 7 unchanged lines hidden (view full) --- 236 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614, 237 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718, 238 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856, 239 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044, 240 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252, 241 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462 242}; 243 |
228/* the original LUT values from Alex van Kaam <darkside@chello.nl> 229 (for via register values 12-240): 230{-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31, 231-30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15, 232-15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3, 233-3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12, 23412,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22, 23522,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33, 23633,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45, 23745,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60, 23861,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84, 23985,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110}; 240 241 242 Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed 243 an extra term for a good fit to these inverse data!) and then 244 solving for each temp value from -50 to 110 (the useable range for 245 this chip). Here's the fit: 246 viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4 247 - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01) 248 Note that n=161: */ 249static const u8 viaLUT[] = 250{ 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23, | 244/* 245 * the original LUT values from Alex van Kaam <darkside@chello.nl> 246 * (for via register values 12-240): 247 * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31, 248 * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15, 249 * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3, 250 * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12, 251 * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22, 252 * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33, 253 * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45, 254 * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60, 255 * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84, 256 * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110}; 257 * 258 * 259 * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed 260 * an extra term for a good fit to these inverse data!) and then 261 * solving for each temp value from -50 to 110 (the useable range for 262 * this chip). Here's the fit: 263 * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4 264 * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01) 265 * Note that n=161: 266 */ 267static const u8 viaLUT[] = { 268 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23, |
251 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 252 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66, 253 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100, 254 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129, 255 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156, 256 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 257 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199, 258 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 259 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224, 260 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232, 261 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 262 239, 240 263}; 264 | 269 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 270 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66, 271 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100, 272 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129, 273 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156, 274 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 275 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199, 276 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 277 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224, 278 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232, 279 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 280 239, 240 281}; 282 |
265/* Converting temps to (8-bit) hyst and over registers 266 No interpolation here. 267 The +50 is because the temps start at -50 */ | 283/* 284 * Converting temps to (8-bit) hyst and over registers 285 * No interpolation here. 286 * The +50 is because the temps start at -50 287 */ |
268static inline u8 TEMP_TO_REG(long val) 269{ 270 return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 : 271 (val < 0 ? val - 500 : val + 500) / 1000 + 50]; 272} 273 274/* for 8-bit temperature hyst and over registers */ 275#define TEMP_FROM_REG(val) ((long)tempLUT[val] * 100) --- 9 unchanged lines hidden (view full) --- 285 return TEMP_FROM_REG(eightBits); 286 287 /* do some linear interpolation */ 288 return (tempLUT[eightBits] * (4 - twoBits) + 289 tempLUT[eightBits + 1] * twoBits) * 25; 290} 291 292#define DIV_FROM_REG(val) (1 << (val)) | 288static inline u8 TEMP_TO_REG(long val) 289{ 290 return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 : 291 (val < 0 ? val - 500 : val + 500) / 1000 + 50]; 292} 293 294/* for 8-bit temperature hyst and over registers */ 295#define TEMP_FROM_REG(val) ((long)tempLUT[val] * 100) --- 9 unchanged lines hidden (view full) --- 305 return TEMP_FROM_REG(eightBits); 306 307 /* do some linear interpolation */ 308 return (tempLUT[eightBits] * (4 - twoBits) + 309 tempLUT[eightBits + 1] * twoBits) * 25; 310} 311 312#define DIV_FROM_REG(val) (1 << (val)) |
293#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1) | 313#define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1) |
294 | 314 |
295/* For each registered chip, we need to keep some data in memory. 296 The structure is dynamically allocated. */ | 315/* 316 * For each registered chip, we need to keep some data in memory. 317 * The structure is dynamically allocated. 318 */ |
297struct via686a_data { 298 unsigned short addr; 299 const char *name; 300 struct device *hwmon_dev; 301 struct mutex update_lock; 302 char valid; /* !=0 if following fields are valid */ 303 unsigned long last_updated; /* In jiffies */ 304 --- 55 unchanged lines hidden (view full) --- 360 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr)); 361} 362 363static ssize_t set_in_min(struct device *dev, struct device_attribute *da, 364 const char *buf, size_t count) { 365 struct via686a_data *data = dev_get_drvdata(dev); 366 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 367 int nr = attr->index; | 319struct via686a_data { 320 unsigned short addr; 321 const char *name; 322 struct device *hwmon_dev; 323 struct mutex update_lock; 324 char valid; /* !=0 if following fields are valid */ 325 unsigned long last_updated; /* In jiffies */ 326 --- 55 unchanged lines hidden (view full) --- 382 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr)); 383} 384 385static ssize_t set_in_min(struct device *dev, struct device_attribute *da, 386 const char *buf, size_t count) { 387 struct via686a_data *data = dev_get_drvdata(dev); 388 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 389 int nr = attr->index; |
368 unsigned long val = simple_strtoul(buf, NULL, 10); | 390 unsigned long val; 391 int err; |
369 | 392 |
393 err = kstrtoul(buf, 10, &val); 394 if (err) 395 return err; 396 |
|
370 mutex_lock(&data->update_lock); 371 data->in_min[nr] = IN_TO_REG(val, nr); 372 via686a_write_value(data, VIA686A_REG_IN_MIN(nr), 373 data->in_min[nr]); 374 mutex_unlock(&data->update_lock); 375 return count; 376} 377static ssize_t set_in_max(struct device *dev, struct device_attribute *da, 378 const char *buf, size_t count) { 379 struct via686a_data *data = dev_get_drvdata(dev); 380 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 381 int nr = attr->index; | 397 mutex_lock(&data->update_lock); 398 data->in_min[nr] = IN_TO_REG(val, nr); 399 via686a_write_value(data, VIA686A_REG_IN_MIN(nr), 400 data->in_min[nr]); 401 mutex_unlock(&data->update_lock); 402 return count; 403} 404static ssize_t set_in_max(struct device *dev, struct device_attribute *da, 405 const char *buf, size_t count) { 406 struct via686a_data *data = dev_get_drvdata(dev); 407 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 408 int nr = attr->index; |
382 unsigned long val = simple_strtoul(buf, NULL, 10); | 409 unsigned long val; 410 int err; |
383 | 411 |
412 err = kstrtoul(buf, 10, &val); 413 if (err) 414 return err; 415 |
|
384 mutex_lock(&data->update_lock); 385 data->in_max[nr] = IN_TO_REG(val, nr); 386 via686a_write_value(data, VIA686A_REG_IN_MAX(nr), 387 data->in_max[nr]); 388 mutex_unlock(&data->update_lock); 389 return count; 390} 391#define show_in_offset(offset) \ --- 32 unchanged lines hidden (view full) --- 424 int nr = attr->index; 425 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr])); 426} 427static ssize_t set_temp_over(struct device *dev, struct device_attribute *da, 428 const char *buf, size_t count) { 429 struct via686a_data *data = dev_get_drvdata(dev); 430 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 431 int nr = attr->index; | 416 mutex_lock(&data->update_lock); 417 data->in_max[nr] = IN_TO_REG(val, nr); 418 via686a_write_value(data, VIA686A_REG_IN_MAX(nr), 419 data->in_max[nr]); 420 mutex_unlock(&data->update_lock); 421 return count; 422} 423#define show_in_offset(offset) \ --- 32 unchanged lines hidden (view full) --- 456 int nr = attr->index; 457 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr])); 458} 459static ssize_t set_temp_over(struct device *dev, struct device_attribute *da, 460 const char *buf, size_t count) { 461 struct via686a_data *data = dev_get_drvdata(dev); 462 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 463 int nr = attr->index; |
432 int val = simple_strtol(buf, NULL, 10); | 464 long val; 465 int err; |
433 | 466 |
467 err = kstrtol(buf, 10, &val); 468 if (err) 469 return err; 470 |
|
434 mutex_lock(&data->update_lock); 435 data->temp_over[nr] = TEMP_TO_REG(val); 436 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr], 437 data->temp_over[nr]); 438 mutex_unlock(&data->update_lock); 439 return count; 440} 441static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da, 442 const char *buf, size_t count) { 443 struct via686a_data *data = dev_get_drvdata(dev); 444 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 445 int nr = attr->index; | 471 mutex_lock(&data->update_lock); 472 data->temp_over[nr] = TEMP_TO_REG(val); 473 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr], 474 data->temp_over[nr]); 475 mutex_unlock(&data->update_lock); 476 return count; 477} 478static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da, 479 const char *buf, size_t count) { 480 struct via686a_data *data = dev_get_drvdata(dev); 481 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 482 int nr = attr->index; |
446 int val = simple_strtol(buf, NULL, 10); | 483 long val; 484 int err; |
447 | 485 |
486 err = kstrtol(buf, 10, &val); 487 if (err) 488 return err; 489 |
|
448 mutex_lock(&data->update_lock); 449 data->temp_hyst[nr] = TEMP_TO_REG(val); 450 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr], 451 data->temp_hyst[nr]); 452 mutex_unlock(&data->update_lock); 453 return count; 454} 455#define show_temp_offset(offset) \ --- 10 unchanged lines hidden (view full) --- 466 467/* 2 Fans */ 468static ssize_t show_fan(struct device *dev, struct device_attribute *da, 469 char *buf) { 470 struct via686a_data *data = via686a_update_device(dev); 471 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 472 int nr = attr->index; 473 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], | 490 mutex_lock(&data->update_lock); 491 data->temp_hyst[nr] = TEMP_TO_REG(val); 492 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr], 493 data->temp_hyst[nr]); 494 mutex_unlock(&data->update_lock); 495 return count; 496} 497#define show_temp_offset(offset) \ --- 10 unchanged lines hidden (view full) --- 508 509/* 2 Fans */ 510static ssize_t show_fan(struct device *dev, struct device_attribute *da, 511 char *buf) { 512 struct via686a_data *data = via686a_update_device(dev); 513 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 514 int nr = attr->index; 515 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], |
474 DIV_FROM_REG(data->fan_div[nr])) ); | 516 DIV_FROM_REG(data->fan_div[nr]))); |
475} 476static ssize_t show_fan_min(struct device *dev, struct device_attribute *da, 477 char *buf) { 478 struct via686a_data *data = via686a_update_device(dev); 479 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 480 int nr = attr->index; 481 return sprintf(buf, "%d\n", | 517} 518static ssize_t show_fan_min(struct device *dev, struct device_attribute *da, 519 char *buf) { 520 struct via686a_data *data = via686a_update_device(dev); 521 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 522 int nr = attr->index; 523 return sprintf(buf, "%d\n", |
482 FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) ); | 524 FAN_FROM_REG(data->fan_min[nr], 525 DIV_FROM_REG(data->fan_div[nr]))); |
483} 484static ssize_t show_fan_div(struct device *dev, struct device_attribute *da, 485 char *buf) { 486 struct via686a_data *data = via686a_update_device(dev); 487 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 488 int nr = attr->index; | 526} 527static ssize_t show_fan_div(struct device *dev, struct device_attribute *da, 528 char *buf) { 529 struct via686a_data *data = via686a_update_device(dev); 530 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 531 int nr = attr->index; |
489 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) ); | 532 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); |
490} 491static ssize_t set_fan_min(struct device *dev, struct device_attribute *da, 492 const char *buf, size_t count) { 493 struct via686a_data *data = dev_get_drvdata(dev); 494 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 495 int nr = attr->index; | 533} 534static ssize_t set_fan_min(struct device *dev, struct device_attribute *da, 535 const char *buf, size_t count) { 536 struct via686a_data *data = dev_get_drvdata(dev); 537 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 538 int nr = attr->index; |
496 int val = simple_strtol(buf, NULL, 10); | 539 unsigned long val; 540 int err; |
497 | 541 |
542 err = kstrtoul(buf, 10, &val); 543 if (err) 544 return err; 545 |
|
498 mutex_lock(&data->update_lock); 499 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 500 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]); 501 mutex_unlock(&data->update_lock); 502 return count; 503} 504static ssize_t set_fan_div(struct device *dev, struct device_attribute *da, 505 const char *buf, size_t count) { 506 struct via686a_data *data = dev_get_drvdata(dev); 507 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 508 int nr = attr->index; | 546 mutex_lock(&data->update_lock); 547 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 548 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]); 549 mutex_unlock(&data->update_lock); 550 return count; 551} 552static ssize_t set_fan_div(struct device *dev, struct device_attribute *da, 553 const char *buf, size_t count) { 554 struct via686a_data *data = dev_get_drvdata(dev); 555 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 556 int nr = attr->index; |
509 int val = simple_strtol(buf, NULL, 10); | |
510 int old; | 557 int old; |
558 unsigned long val; 559 int err; |
|
511 | 560 |
561 err = kstrtoul(buf, 10, &val); 562 if (err) 563 return err; 564 |
|
512 mutex_lock(&data->update_lock); 513 old = via686a_read_value(data, VIA686A_REG_FANDIV); 514 data->fan_div[nr] = DIV_TO_REG(val); 515 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4); 516 via686a_write_value(data, VIA686A_REG_FANDIV, old); 517 mutex_unlock(&data->update_lock); 518 return count; 519} --- 5 unchanged lines hidden (view full) --- 525 show_fan_min, set_fan_min, offset - 1); \ 526static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ 527 show_fan_div, set_fan_div, offset - 1); 528 529show_fan_offset(1); 530show_fan_offset(2); 531 532/* Alarms */ | 565 mutex_lock(&data->update_lock); 566 old = via686a_read_value(data, VIA686A_REG_FANDIV); 567 data->fan_div[nr] = DIV_TO_REG(val); 568 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4); 569 via686a_write_value(data, VIA686A_REG_FANDIV, old); 570 mutex_unlock(&data->update_lock); 571 return count; 572} --- 5 unchanged lines hidden (view full) --- 578 show_fan_min, set_fan_min, offset - 1); \ 579static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ 580 show_fan_div, set_fan_div, offset - 1); 581 582show_fan_offset(1); 583show_fan_offset(2); 584 585/* Alarms */ |
533static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { | 586static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, 587 char *buf) 588{ |
534 struct via686a_data *data = via686a_update_device(dev); 535 return sprintf(buf, "%u\n", data->alarms); 536} | 589 struct via686a_data *data = via686a_update_device(dev); 590 return sprintf(buf, "%u\n", data->alarms); 591} |
592 |
|
537static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); 538 539static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 540 char *buf) 541{ 542 int bitnr = to_sensor_dev_attr(attr)->index; 543 struct via686a_data *data = via686a_update_device(dev); 544 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); --- 91 unchanged lines hidden (view full) --- 636 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 637 if (!request_region(res->start, VIA686A_EXTENT, 638 via686a_driver.driver.name)) { 639 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n", 640 (unsigned long)res->start, (unsigned long)res->end); 641 return -ENODEV; 642 } 643 | 593static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); 594 595static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 596 char *buf) 597{ 598 int bitnr = to_sensor_dev_attr(attr)->index; 599 struct via686a_data *data = via686a_update_device(dev); 600 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); --- 91 unchanged lines hidden (view full) --- 692 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 693 if (!request_region(res->start, VIA686A_EXTENT, 694 via686a_driver.driver.name)) { 695 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n", 696 (unsigned long)res->start, (unsigned long)res->end); 697 return -ENODEV; 698 } 699 |
644 if (!(data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL))) { | 700 data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL); 701 if (!data) { |
645 err = -ENOMEM; 646 goto exit_release; 647 } 648 649 platform_set_drvdata(pdev, data); 650 data->addr = res->start; 651 data->name = "via686a"; 652 mutex_init(&data->update_lock); 653 654 /* Initialize the VIA686A chip */ 655 via686a_init_device(data); 656 657 /* Register sysfs hooks */ | 702 err = -ENOMEM; 703 goto exit_release; 704 } 705 706 platform_set_drvdata(pdev, data); 707 data->addr = res->start; 708 data->name = "via686a"; 709 mutex_init(&data->update_lock); 710 711 /* Initialize the VIA686A chip */ 712 via686a_init_device(data); 713 714 /* Register sysfs hooks */ |
658 if ((err = sysfs_create_group(&pdev->dev.kobj, &via686a_group))) | 715 err = sysfs_create_group(&pdev->dev.kobj, &via686a_group); 716 if (err) |
659 goto exit_free; 660 661 data->hwmon_dev = hwmon_device_register(&pdev->dev); 662 if (IS_ERR(data->hwmon_dev)) { 663 err = PTR_ERR(data->hwmon_dev); 664 goto exit_remove_files; 665 } 666 --- 76 unchanged lines hidden (view full) --- 743 VIA686A_REG_TEMP[i]) << 2; 744 data->temp_over[i] = 745 via686a_read_value(data, 746 VIA686A_REG_TEMP_OVER[i]); 747 data->temp_hyst[i] = 748 via686a_read_value(data, 749 VIA686A_REG_TEMP_HYST[i]); 750 } | 717 goto exit_free; 718 719 data->hwmon_dev = hwmon_device_register(&pdev->dev); 720 if (IS_ERR(data->hwmon_dev)) { 721 err = PTR_ERR(data->hwmon_dev); 722 goto exit_remove_files; 723 } 724 --- 76 unchanged lines hidden (view full) --- 801 VIA686A_REG_TEMP[i]) << 2; 802 data->temp_over[i] = 803 via686a_read_value(data, 804 VIA686A_REG_TEMP_OVER[i]); 805 data->temp_hyst[i] = 806 via686a_read_value(data, 807 VIA686A_REG_TEMP_HYST[i]); 808 } |
751 /* add in lower 2 bits 752 temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1 753 temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23 754 temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23 | 809 /* 810 * add in lower 2 bits 811 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1 812 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23 813 * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23 |
755 */ 756 data->temp[0] |= (via686a_read_value(data, 757 VIA686A_REG_TEMP_LOW1) 758 & 0xc0) >> 6; 759 data->temp[1] |= 760 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) & 761 0x30) >> 4; 762 data->temp[2] |= --- 11 unchanged lines hidden (view full) --- 774 775 mutex_unlock(&data->update_lock); 776 777 return data; 778} 779 780static DEFINE_PCI_DEVICE_TABLE(via686a_pci_ids) = { 781 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) }, | 814 */ 815 data->temp[0] |= (via686a_read_value(data, 816 VIA686A_REG_TEMP_LOW1) 817 & 0xc0) >> 6; 818 data->temp[1] |= 819 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) & 820 0x30) >> 4; 821 data->temp[2] |= --- 11 unchanged lines hidden (view full) --- 833 834 mutex_unlock(&data->update_lock); 835 836 return data; 837} 838 839static DEFINE_PCI_DEVICE_TABLE(via686a_pci_ids) = { 840 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) }, |
782 { 0, } | 841 { } |
783}; | 842}; |
784 | |
785MODULE_DEVICE_TABLE(pci, via686a_pci_ids); 786 787static int __devinit via686a_device_add(unsigned short address) 788{ 789 struct resource res = { 790 .start = address, 791 .end = address + VIA686A_EXTENT - 1, 792 .name = "via686a", --- 74 unchanged lines hidden (view full) --- 867 868 if (platform_driver_register(&via686a_driver)) 869 goto exit; 870 871 /* Sets global pdev as a side effect */ 872 if (via686a_device_add(address)) 873 goto exit_unregister; 874 | 843MODULE_DEVICE_TABLE(pci, via686a_pci_ids); 844 845static int __devinit via686a_device_add(unsigned short address) 846{ 847 struct resource res = { 848 .start = address, 849 .end = address + VIA686A_EXTENT - 1, 850 .name = "via686a", --- 74 unchanged lines hidden (view full) --- 925 926 if (platform_driver_register(&via686a_driver)) 927 goto exit; 928 929 /* Sets global pdev as a side effect */ 930 if (via686a_device_add(address)) 931 goto exit_unregister; 932 |
875 /* Always return failure here. This is to allow other drivers to bind | 933 /* 934 * Always return failure here. This is to allow other drivers to bind |
876 * to this pci device. We don't really want to have control over the 877 * pci device, we only wanted to read as few register values from it. 878 */ 879 s_bridge = pci_dev_get(dev); 880 return -ENODEV; 881 882exit_unregister: 883 platform_driver_unregister(&via686a_driver); --- 34 unchanged lines hidden --- | 935 * to this pci device. We don't really want to have control over the 936 * pci device, we only wanted to read as few register values from it. 937 */ 938 s_bridge = pci_dev_get(dev); 939 return -ENODEV; 940 941exit_unregister: 942 platform_driver_unregister(&via686a_driver); --- 34 unchanged lines hidden --- |