xref: /openbmc/linux/drivers/char/hpet.c (revision a3d83021)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel & MS High Precision Event Timer Implementation.
4  *
5  * Copyright (C) 2003 Intel Corporation
6  *	Venki Pallipadi
7  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8  *	Bob Picco <robert.picco@hp.com>
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/miscdevice.h>
15 #include <linux/major.h>
16 #include <linux/ioport.h>
17 #include <linux/fcntl.h>
18 #include <linux/init.h>
19 #include <linux/io-64-nonatomic-lo-hi.h>
20 #include <linux/poll.h>
21 #include <linux/mm.h>
22 #include <linux/proc_fs.h>
23 #include <linux/spinlock.h>
24 #include <linux/sysctl.h>
25 #include <linux/wait.h>
26 #include <linux/sched/signal.h>
27 #include <linux/bcd.h>
28 #include <linux/seq_file.h>
29 #include <linux/bitops.h>
30 #include <linux/compat.h>
31 #include <linux/clocksource.h>
32 #include <linux/uaccess.h>
33 #include <linux/slab.h>
34 #include <linux/io.h>
35 #include <linux/acpi.h>
36 #include <linux/hpet.h>
37 #include <asm/current.h>
38 #include <asm/irq.h>
39 #include <asm/div64.h>
40 
41 /*
42  * The High Precision Event Timer driver.
43  * This driver is closely modelled after the rtc.c driver.
44  * See HPET spec revision 1.
45  */
46 #define	HPET_USER_FREQ	(64)
47 #define	HPET_DRIFT	(500)
48 
49 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
50 
51 
52 /* WARNING -- don't get confused.  These macros are never used
53  * to write the (single) counter, and rarely to read it.
54  * They're badly named; to fix, someday.
55  */
56 #if BITS_PER_LONG == 64
57 #define	write_counter(V, MC)	writeq(V, MC)
58 #define	read_counter(MC)	readq(MC)
59 #else
60 #define	write_counter(V, MC)	writel(V, MC)
61 #define	read_counter(MC)	readl(MC)
62 #endif
63 
64 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
65 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
66 
67 /* This clocksource driver currently only works on ia64 */
68 #ifdef CONFIG_IA64
69 static void __iomem *hpet_mctr;
70 
read_hpet(struct clocksource * cs)71 static u64 read_hpet(struct clocksource *cs)
72 {
73 	return (u64)read_counter((void __iomem *)hpet_mctr);
74 }
75 
76 static struct clocksource clocksource_hpet = {
77 	.name		= "hpet",
78 	.rating		= 250,
79 	.read		= read_hpet,
80 	.mask		= CLOCKSOURCE_MASK(64),
81 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
82 };
83 static struct clocksource *hpet_clocksource;
84 #endif
85 
86 /* A lock for concurrent access by app and isr hpet activity. */
87 static DEFINE_SPINLOCK(hpet_lock);
88 
89 #define	HPET_DEV_NAME	(7)
90 
91 struct hpet_dev {
92 	struct hpets *hd_hpets;
93 	struct hpet __iomem *hd_hpet;
94 	struct hpet_timer __iomem *hd_timer;
95 	unsigned long hd_ireqfreq;
96 	unsigned long hd_irqdata;
97 	wait_queue_head_t hd_waitqueue;
98 	struct fasync_struct *hd_async_queue;
99 	unsigned int hd_flags;
100 	unsigned int hd_irq;
101 	unsigned int hd_hdwirq;
102 	char hd_name[HPET_DEV_NAME];
103 };
104 
105 struct hpets {
106 	struct hpets *hp_next;
107 	struct hpet __iomem *hp_hpet;
108 	unsigned long hp_hpet_phys;
109 	struct clocksource *hp_clocksource;
110 	unsigned long long hp_tick_freq;
111 	unsigned long hp_delta;
112 	unsigned int hp_ntimer;
113 	unsigned int hp_which;
114 	struct hpet_dev hp_dev[];
115 };
116 
117 static struct hpets *hpets;
118 
119 #define	HPET_OPEN		0x0001
120 #define	HPET_IE			0x0002	/* interrupt enabled */
121 #define	HPET_PERIODIC		0x0004
122 #define	HPET_SHARED_IRQ		0x0008
123 
hpet_interrupt(int irq,void * data)124 static irqreturn_t hpet_interrupt(int irq, void *data)
125 {
126 	struct hpet_dev *devp;
127 	unsigned long isr;
128 
129 	devp = data;
130 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
131 
132 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
133 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
134 		return IRQ_NONE;
135 
136 	spin_lock(&hpet_lock);
137 	devp->hd_irqdata++;
138 
139 	/*
140 	 * For non-periodic timers, increment the accumulator.
141 	 * This has the effect of treating non-periodic like periodic.
142 	 */
143 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
144 		unsigned long t, mc, base, k;
145 		struct hpet __iomem *hpet = devp->hd_hpet;
146 		struct hpets *hpetp = devp->hd_hpets;
147 
148 		t = devp->hd_ireqfreq;
149 		read_counter(&devp->hd_timer->hpet_compare);
150 		mc = read_counter(&hpet->hpet_mc);
151 		/* The time for the next interrupt would logically be t + m,
152 		 * however, if we are very unlucky and the interrupt is delayed
153 		 * for longer than t then we will completely miss the next
154 		 * interrupt if we set t + m and an application will hang.
155 		 * Therefore we need to make a more complex computation assuming
156 		 * that there exists a k for which the following is true:
157 		 * k * t + base < mc + delta
158 		 * (k + 1) * t + base > mc + delta
159 		 * where t is the interval in hpet ticks for the given freq,
160 		 * base is the theoretical start value 0 < base < t,
161 		 * mc is the main counter value at the time of the interrupt,
162 		 * delta is the time it takes to write the a value to the
163 		 * comparator.
164 		 * k may then be computed as (mc - base + delta) / t .
165 		 */
166 		base = mc % t;
167 		k = (mc - base + hpetp->hp_delta) / t;
168 		write_counter(t * (k + 1) + base,
169 			      &devp->hd_timer->hpet_compare);
170 	}
171 
172 	if (devp->hd_flags & HPET_SHARED_IRQ)
173 		writel(isr, &devp->hd_hpet->hpet_isr);
174 	spin_unlock(&hpet_lock);
175 
176 	wake_up_interruptible(&devp->hd_waitqueue);
177 
178 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
179 
180 	return IRQ_HANDLED;
181 }
182 
hpet_timer_set_irq(struct hpet_dev * devp)183 static void hpet_timer_set_irq(struct hpet_dev *devp)
184 {
185 	unsigned long v;
186 	int irq, gsi;
187 	struct hpet_timer __iomem *timer;
188 
189 	spin_lock_irq(&hpet_lock);
190 	if (devp->hd_hdwirq) {
191 		spin_unlock_irq(&hpet_lock);
192 		return;
193 	}
194 
195 	timer = devp->hd_timer;
196 
197 	/* we prefer level triggered mode */
198 	v = readl(&timer->hpet_config);
199 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
200 		v |= Tn_INT_TYPE_CNF_MASK;
201 		writel(v, &timer->hpet_config);
202 	}
203 	spin_unlock_irq(&hpet_lock);
204 
205 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
206 				 Tn_INT_ROUTE_CAP_SHIFT;
207 
208 	/*
209 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
210 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
211 	 */
212 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
213 		v &= ~0xf3df;
214 	else
215 		v &= ~0xffff;
216 
217 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
218 		if (irq >= nr_irqs) {
219 			irq = HPET_MAX_IRQ;
220 			break;
221 		}
222 
223 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
224 					ACPI_ACTIVE_LOW);
225 		if (gsi > 0)
226 			break;
227 
228 		/* FIXME: Setup interrupt source table */
229 	}
230 
231 	if (irq < HPET_MAX_IRQ) {
232 		spin_lock_irq(&hpet_lock);
233 		v = readl(&timer->hpet_config);
234 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
235 		writel(v, &timer->hpet_config);
236 		devp->hd_hdwirq = gsi;
237 		spin_unlock_irq(&hpet_lock);
238 	}
239 	return;
240 }
241 
hpet_open(struct inode * inode,struct file * file)242 static int hpet_open(struct inode *inode, struct file *file)
243 {
244 	struct hpet_dev *devp;
245 	struct hpets *hpetp;
246 	int i;
247 
248 	if (file->f_mode & FMODE_WRITE)
249 		return -EINVAL;
250 
251 	mutex_lock(&hpet_mutex);
252 	spin_lock_irq(&hpet_lock);
253 
254 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
255 		for (i = 0; i < hpetp->hp_ntimer; i++)
256 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
257 				continue;
258 			} else {
259 				devp = &hpetp->hp_dev[i];
260 				break;
261 			}
262 
263 	if (!devp) {
264 		spin_unlock_irq(&hpet_lock);
265 		mutex_unlock(&hpet_mutex);
266 		return -EBUSY;
267 	}
268 
269 	file->private_data = devp;
270 	devp->hd_irqdata = 0;
271 	devp->hd_flags |= HPET_OPEN;
272 	spin_unlock_irq(&hpet_lock);
273 	mutex_unlock(&hpet_mutex);
274 
275 	hpet_timer_set_irq(devp);
276 
277 	return 0;
278 }
279 
280 static ssize_t
hpet_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)281 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
282 {
283 	DECLARE_WAITQUEUE(wait, current);
284 	unsigned long data;
285 	ssize_t retval;
286 	struct hpet_dev *devp;
287 
288 	devp = file->private_data;
289 	if (!devp->hd_ireqfreq)
290 		return -EIO;
291 
292 	if (in_compat_syscall()) {
293 		if (count < sizeof(compat_ulong_t))
294 			return -EINVAL;
295 	} else {
296 		if (count < sizeof(unsigned long))
297 			return -EINVAL;
298 	}
299 
300 	add_wait_queue(&devp->hd_waitqueue, &wait);
301 
302 	for ( ; ; ) {
303 		set_current_state(TASK_INTERRUPTIBLE);
304 
305 		spin_lock_irq(&hpet_lock);
306 		data = devp->hd_irqdata;
307 		devp->hd_irqdata = 0;
308 		spin_unlock_irq(&hpet_lock);
309 
310 		if (data) {
311 			break;
312 		} else if (file->f_flags & O_NONBLOCK) {
313 			retval = -EAGAIN;
314 			goto out;
315 		} else if (signal_pending(current)) {
316 			retval = -ERESTARTSYS;
317 			goto out;
318 		}
319 		schedule();
320 	}
321 
322 	if (in_compat_syscall()) {
323 		retval = put_user(data, (compat_ulong_t __user *)buf);
324 		if (!retval)
325 			retval = sizeof(compat_ulong_t);
326 	} else {
327 		retval = put_user(data, (unsigned long __user *)buf);
328 		if (!retval)
329 			retval = sizeof(unsigned long);
330 	}
331 
332 out:
333 	__set_current_state(TASK_RUNNING);
334 	remove_wait_queue(&devp->hd_waitqueue, &wait);
335 
336 	return retval;
337 }
338 
hpet_poll(struct file * file,poll_table * wait)339 static __poll_t hpet_poll(struct file *file, poll_table * wait)
340 {
341 	unsigned long v;
342 	struct hpet_dev *devp;
343 
344 	devp = file->private_data;
345 
346 	if (!devp->hd_ireqfreq)
347 		return 0;
348 
349 	poll_wait(file, &devp->hd_waitqueue, wait);
350 
351 	spin_lock_irq(&hpet_lock);
352 	v = devp->hd_irqdata;
353 	spin_unlock_irq(&hpet_lock);
354 
355 	if (v != 0)
356 		return EPOLLIN | EPOLLRDNORM;
357 
358 	return 0;
359 }
360 
361 #ifdef CONFIG_HPET_MMAP
362 #ifdef CONFIG_HPET_MMAP_DEFAULT
363 static int hpet_mmap_enabled = 1;
364 #else
365 static int hpet_mmap_enabled = 0;
366 #endif
367 
hpet_mmap_enable(char * str)368 static __init int hpet_mmap_enable(char *str)
369 {
370 	get_option(&str, &hpet_mmap_enabled);
371 	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
372 	return 1;
373 }
374 __setup("hpet_mmap=", hpet_mmap_enable);
375 
hpet_mmap(struct file * file,struct vm_area_struct * vma)376 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
377 {
378 	struct hpet_dev *devp;
379 	unsigned long addr;
380 
381 	if (!hpet_mmap_enabled)
382 		return -EACCES;
383 
384 	devp = file->private_data;
385 	addr = devp->hd_hpets->hp_hpet_phys;
386 
387 	if (addr & (PAGE_SIZE - 1))
388 		return -ENOSYS;
389 
390 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
391 	return vm_iomap_memory(vma, addr, PAGE_SIZE);
392 }
393 #else
hpet_mmap(struct file * file,struct vm_area_struct * vma)394 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
395 {
396 	return -ENOSYS;
397 }
398 #endif
399 
hpet_fasync(int fd,struct file * file,int on)400 static int hpet_fasync(int fd, struct file *file, int on)
401 {
402 	struct hpet_dev *devp;
403 
404 	devp = file->private_data;
405 
406 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
407 		return 0;
408 	else
409 		return -EIO;
410 }
411 
hpet_release(struct inode * inode,struct file * file)412 static int hpet_release(struct inode *inode, struct file *file)
413 {
414 	struct hpet_dev *devp;
415 	struct hpet_timer __iomem *timer;
416 	int irq = 0;
417 
418 	devp = file->private_data;
419 	timer = devp->hd_timer;
420 
421 	spin_lock_irq(&hpet_lock);
422 
423 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
424 	       &timer->hpet_config);
425 
426 	irq = devp->hd_irq;
427 	devp->hd_irq = 0;
428 
429 	devp->hd_ireqfreq = 0;
430 
431 	if (devp->hd_flags & HPET_PERIODIC
432 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
433 		unsigned long v;
434 
435 		v = readq(&timer->hpet_config);
436 		v ^= Tn_TYPE_CNF_MASK;
437 		writeq(v, &timer->hpet_config);
438 	}
439 
440 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
441 	spin_unlock_irq(&hpet_lock);
442 
443 	if (irq)
444 		free_irq(irq, devp);
445 
446 	file->private_data = NULL;
447 	return 0;
448 }
449 
hpet_ioctl_ieon(struct hpet_dev * devp)450 static int hpet_ioctl_ieon(struct hpet_dev *devp)
451 {
452 	struct hpet_timer __iomem *timer;
453 	struct hpet __iomem *hpet;
454 	struct hpets *hpetp;
455 	int irq;
456 	unsigned long g, v, t, m;
457 	unsigned long flags, isr;
458 
459 	timer = devp->hd_timer;
460 	hpet = devp->hd_hpet;
461 	hpetp = devp->hd_hpets;
462 
463 	if (!devp->hd_ireqfreq)
464 		return -EIO;
465 
466 	spin_lock_irq(&hpet_lock);
467 
468 	if (devp->hd_flags & HPET_IE) {
469 		spin_unlock_irq(&hpet_lock);
470 		return -EBUSY;
471 	}
472 
473 	devp->hd_flags |= HPET_IE;
474 
475 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
476 		devp->hd_flags |= HPET_SHARED_IRQ;
477 	spin_unlock_irq(&hpet_lock);
478 
479 	irq = devp->hd_hdwirq;
480 
481 	if (irq) {
482 		unsigned long irq_flags;
483 
484 		if (devp->hd_flags & HPET_SHARED_IRQ) {
485 			/*
486 			 * To prevent the interrupt handler from seeing an
487 			 * unwanted interrupt status bit, program the timer
488 			 * so that it will not fire in the near future ...
489 			 */
490 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
491 			       &timer->hpet_config);
492 			write_counter(read_counter(&hpet->hpet_mc),
493 				      &timer->hpet_compare);
494 			/* ... and clear any left-over status. */
495 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
496 			writel(isr, &hpet->hpet_isr);
497 		}
498 
499 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
500 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
501 		if (request_irq(irq, hpet_interrupt, irq_flags,
502 				devp->hd_name, (void *)devp)) {
503 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
504 			irq = 0;
505 		}
506 	}
507 
508 	if (irq == 0) {
509 		spin_lock_irq(&hpet_lock);
510 		devp->hd_flags ^= HPET_IE;
511 		spin_unlock_irq(&hpet_lock);
512 		return -EIO;
513 	}
514 
515 	devp->hd_irq = irq;
516 	t = devp->hd_ireqfreq;
517 	v = readq(&timer->hpet_config);
518 
519 	/* 64-bit comparators are not yet supported through the ioctls,
520 	 * so force this into 32-bit mode if it supports both modes
521 	 */
522 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
523 
524 	if (devp->hd_flags & HPET_PERIODIC) {
525 		g |= Tn_TYPE_CNF_MASK;
526 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
527 		writeq(v, &timer->hpet_config);
528 		local_irq_save(flags);
529 
530 		/*
531 		 * NOTE: First we modify the hidden accumulator
532 		 * register supported by periodic-capable comparators.
533 		 * We never want to modify the (single) counter; that
534 		 * would affect all the comparators. The value written
535 		 * is the counter value when the first interrupt is due.
536 		 */
537 		m = read_counter(&hpet->hpet_mc);
538 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
539 		/*
540 		 * Then we modify the comparator, indicating the period
541 		 * for subsequent interrupt.
542 		 */
543 		write_counter(t, &timer->hpet_compare);
544 	} else {
545 		local_irq_save(flags);
546 		m = read_counter(&hpet->hpet_mc);
547 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
548 	}
549 
550 	if (devp->hd_flags & HPET_SHARED_IRQ) {
551 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
552 		writel(isr, &hpet->hpet_isr);
553 	}
554 	writeq(g, &timer->hpet_config);
555 	local_irq_restore(flags);
556 
557 	return 0;
558 }
559 
560 /* converts Hz to number of timer ticks */
hpet_time_div(struct hpets * hpets,unsigned long dis)561 static inline unsigned long hpet_time_div(struct hpets *hpets,
562 					  unsigned long dis)
563 {
564 	unsigned long long m;
565 
566 	m = hpets->hp_tick_freq + (dis >> 1);
567 	return div64_ul(m, dis);
568 }
569 
570 static int
hpet_ioctl_common(struct hpet_dev * devp,unsigned int cmd,unsigned long arg,struct hpet_info * info)571 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
572 		  struct hpet_info *info)
573 {
574 	struct hpet_timer __iomem *timer;
575 	struct hpets *hpetp;
576 	int err;
577 	unsigned long v;
578 
579 	switch (cmd) {
580 	case HPET_IE_OFF:
581 	case HPET_INFO:
582 	case HPET_EPI:
583 	case HPET_DPI:
584 	case HPET_IRQFREQ:
585 		timer = devp->hd_timer;
586 		hpetp = devp->hd_hpets;
587 		break;
588 	case HPET_IE_ON:
589 		return hpet_ioctl_ieon(devp);
590 	default:
591 		return -EINVAL;
592 	}
593 
594 	err = 0;
595 
596 	switch (cmd) {
597 	case HPET_IE_OFF:
598 		if ((devp->hd_flags & HPET_IE) == 0)
599 			break;
600 		v = readq(&timer->hpet_config);
601 		v &= ~Tn_INT_ENB_CNF_MASK;
602 		writeq(v, &timer->hpet_config);
603 		if (devp->hd_irq) {
604 			free_irq(devp->hd_irq, devp);
605 			devp->hd_irq = 0;
606 		}
607 		devp->hd_flags ^= HPET_IE;
608 		break;
609 	case HPET_INFO:
610 		{
611 			memset(info, 0, sizeof(*info));
612 			if (devp->hd_ireqfreq)
613 				info->hi_ireqfreq =
614 					hpet_time_div(hpetp, devp->hd_ireqfreq);
615 			info->hi_flags =
616 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
617 			info->hi_hpet = hpetp->hp_which;
618 			info->hi_timer = devp - hpetp->hp_dev;
619 			break;
620 		}
621 	case HPET_EPI:
622 		v = readq(&timer->hpet_config);
623 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
624 			err = -ENXIO;
625 			break;
626 		}
627 		devp->hd_flags |= HPET_PERIODIC;
628 		break;
629 	case HPET_DPI:
630 		v = readq(&timer->hpet_config);
631 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
632 			err = -ENXIO;
633 			break;
634 		}
635 		if (devp->hd_flags & HPET_PERIODIC &&
636 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
637 			v = readq(&timer->hpet_config);
638 			v ^= Tn_TYPE_CNF_MASK;
639 			writeq(v, &timer->hpet_config);
640 		}
641 		devp->hd_flags &= ~HPET_PERIODIC;
642 		break;
643 	case HPET_IRQFREQ:
644 		if ((arg > hpet_max_freq) &&
645 		    !capable(CAP_SYS_RESOURCE)) {
646 			err = -EACCES;
647 			break;
648 		}
649 
650 		if (!arg) {
651 			err = -EINVAL;
652 			break;
653 		}
654 
655 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
656 	}
657 
658 	return err;
659 }
660 
661 static long
hpet_ioctl(struct file * file,unsigned int cmd,unsigned long arg)662 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
663 {
664 	struct hpet_info info;
665 	int err;
666 
667 	mutex_lock(&hpet_mutex);
668 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
669 	mutex_unlock(&hpet_mutex);
670 
671 	if ((cmd == HPET_INFO) && !err &&
672 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
673 		err = -EFAULT;
674 
675 	return err;
676 }
677 
678 #ifdef CONFIG_COMPAT
679 struct compat_hpet_info {
680 	compat_ulong_t hi_ireqfreq;	/* Hz */
681 	compat_ulong_t hi_flags;	/* information */
682 	unsigned short hi_hpet;
683 	unsigned short hi_timer;
684 };
685 
686 /* 32-bit types would lead to different command codes which should be
687  * translated into 64-bit ones before passed to hpet_ioctl_common
688  */
689 #define COMPAT_HPET_INFO       _IOR('h', 0x03, struct compat_hpet_info)
690 #define COMPAT_HPET_IRQFREQ    _IOW('h', 0x6, compat_ulong_t)
691 
692 static long
hpet_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)693 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
694 {
695 	struct hpet_info info;
696 	int err;
697 
698 	if (cmd == COMPAT_HPET_INFO)
699 		cmd = HPET_INFO;
700 
701 	if (cmd == COMPAT_HPET_IRQFREQ)
702 		cmd = HPET_IRQFREQ;
703 
704 	mutex_lock(&hpet_mutex);
705 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
706 	mutex_unlock(&hpet_mutex);
707 
708 	if ((cmd == HPET_INFO) && !err) {
709 		struct compat_hpet_info __user *u = compat_ptr(arg);
710 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
711 		    put_user(info.hi_flags, &u->hi_flags) ||
712 		    put_user(info.hi_hpet, &u->hi_hpet) ||
713 		    put_user(info.hi_timer, &u->hi_timer))
714 			err = -EFAULT;
715 	}
716 
717 	return err;
718 }
719 #endif
720 
721 static const struct file_operations hpet_fops = {
722 	.owner = THIS_MODULE,
723 	.llseek = no_llseek,
724 	.read = hpet_read,
725 	.poll = hpet_poll,
726 	.unlocked_ioctl = hpet_ioctl,
727 #ifdef CONFIG_COMPAT
728 	.compat_ioctl = hpet_compat_ioctl,
729 #endif
730 	.open = hpet_open,
731 	.release = hpet_release,
732 	.fasync = hpet_fasync,
733 	.mmap = hpet_mmap,
734 };
735 
hpet_is_known(struct hpet_data * hdp)736 static int hpet_is_known(struct hpet_data *hdp)
737 {
738 	struct hpets *hpetp;
739 
740 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
741 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
742 			return 1;
743 
744 	return 0;
745 }
746 
747 static struct ctl_table hpet_table[] = {
748 	{
749 	 .procname = "max-user-freq",
750 	 .data = &hpet_max_freq,
751 	 .maxlen = sizeof(int),
752 	 .mode = 0644,
753 	 .proc_handler = proc_dointvec,
754 	 },
755 	{}
756 };
757 
758 static struct ctl_table_header *sysctl_header;
759 
760 /*
761  * Adjustment for when arming the timer with
762  * initial conditions.  That is, main counter
763  * ticks expired before interrupts are enabled.
764  */
765 #define	TICK_CALIBRATE	(1000UL)
766 
__hpet_calibrate(struct hpets * hpetp)767 static unsigned long __hpet_calibrate(struct hpets *hpetp)
768 {
769 	struct hpet_timer __iomem *timer = NULL;
770 	unsigned long t, m, count, i, flags, start;
771 	struct hpet_dev *devp;
772 	int j;
773 	struct hpet __iomem *hpet;
774 
775 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
776 		if ((devp->hd_flags & HPET_OPEN) == 0) {
777 			timer = devp->hd_timer;
778 			break;
779 		}
780 
781 	if (!timer)
782 		return 0;
783 
784 	hpet = hpetp->hp_hpet;
785 	t = read_counter(&timer->hpet_compare);
786 
787 	i = 0;
788 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
789 
790 	local_irq_save(flags);
791 
792 	start = read_counter(&hpet->hpet_mc);
793 
794 	do {
795 		m = read_counter(&hpet->hpet_mc);
796 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
797 	} while (i++, (m - start) < count);
798 
799 	local_irq_restore(flags);
800 
801 	return (m - start) / i;
802 }
803 
hpet_calibrate(struct hpets * hpetp)804 static unsigned long hpet_calibrate(struct hpets *hpetp)
805 {
806 	unsigned long ret = ~0UL;
807 	unsigned long tmp;
808 
809 	/*
810 	 * Try to calibrate until return value becomes stable small value.
811 	 * If SMI interruption occurs in calibration loop, the return value
812 	 * will be big. This avoids its impact.
813 	 */
814 	for ( ; ; ) {
815 		tmp = __hpet_calibrate(hpetp);
816 		if (ret <= tmp)
817 			break;
818 		ret = tmp;
819 	}
820 
821 	return ret;
822 }
823 
hpet_alloc(struct hpet_data * hdp)824 int hpet_alloc(struct hpet_data *hdp)
825 {
826 	u64 cap, mcfg;
827 	struct hpet_dev *devp;
828 	u32 i, ntimer;
829 	struct hpets *hpetp;
830 	struct hpet __iomem *hpet;
831 	static struct hpets *last;
832 	unsigned long period;
833 	unsigned long long temp;
834 	u32 remainder;
835 
836 	/*
837 	 * hpet_alloc can be called by platform dependent code.
838 	 * If platform dependent code has allocated the hpet that
839 	 * ACPI has also reported, then we catch it here.
840 	 */
841 	if (hpet_is_known(hdp)) {
842 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
843 			__func__);
844 		return 0;
845 	}
846 
847 	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
848 			GFP_KERNEL);
849 
850 	if (!hpetp)
851 		return -ENOMEM;
852 
853 	hpetp->hp_which = hpet_nhpet++;
854 	hpetp->hp_hpet = hdp->hd_address;
855 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
856 
857 	hpetp->hp_ntimer = hdp->hd_nirqs;
858 
859 	for (i = 0; i < hdp->hd_nirqs; i++)
860 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
861 
862 	hpet = hpetp->hp_hpet;
863 
864 	cap = readq(&hpet->hpet_cap);
865 
866 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
867 
868 	if (hpetp->hp_ntimer != ntimer) {
869 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
870 		       " with number of timers\n");
871 		kfree(hpetp);
872 		return -ENODEV;
873 	}
874 
875 	if (last)
876 		last->hp_next = hpetp;
877 	else
878 		hpets = hpetp;
879 
880 	last = hpetp;
881 
882 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
883 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
884 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
885 	temp += period >> 1; /* round */
886 	do_div(temp, period);
887 	hpetp->hp_tick_freq = temp; /* ticks per second */
888 
889 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
890 		hpetp->hp_which, hdp->hd_phys_address,
891 		hpetp->hp_ntimer > 1 ? "s" : "");
892 	for (i = 0; i < hpetp->hp_ntimer; i++)
893 		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
894 	printk(KERN_CONT "\n");
895 
896 	temp = hpetp->hp_tick_freq;
897 	remainder = do_div(temp, 1000000);
898 	printk(KERN_INFO
899 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
900 		hpetp->hp_which, hpetp->hp_ntimer,
901 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
902 		(unsigned) temp, remainder);
903 
904 	mcfg = readq(&hpet->hpet_config);
905 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
906 		write_counter(0L, &hpet->hpet_mc);
907 		mcfg |= HPET_ENABLE_CNF_MASK;
908 		writeq(mcfg, &hpet->hpet_config);
909 	}
910 
911 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
912 		struct hpet_timer __iomem *timer;
913 
914 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
915 
916 		devp->hd_hpets = hpetp;
917 		devp->hd_hpet = hpet;
918 		devp->hd_timer = timer;
919 
920 		/*
921 		 * If the timer was reserved by platform code,
922 		 * then make timer unavailable for opens.
923 		 */
924 		if (hdp->hd_state & (1 << i)) {
925 			devp->hd_flags = HPET_OPEN;
926 			continue;
927 		}
928 
929 		init_waitqueue_head(&devp->hd_waitqueue);
930 	}
931 
932 	hpetp->hp_delta = hpet_calibrate(hpetp);
933 
934 /* This clocksource driver currently only works on ia64 */
935 #ifdef CONFIG_IA64
936 	if (!hpet_clocksource) {
937 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
938 		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
939 		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
940 		hpetp->hp_clocksource = &clocksource_hpet;
941 		hpet_clocksource = &clocksource_hpet;
942 	}
943 #endif
944 
945 	return 0;
946 }
947 
hpet_resources(struct acpi_resource * res,void * data)948 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
949 {
950 	struct hpet_data *hdp;
951 	acpi_status status;
952 	struct acpi_resource_address64 addr;
953 
954 	hdp = data;
955 
956 	status = acpi_resource_to_address64(res, &addr);
957 
958 	if (ACPI_SUCCESS(status)) {
959 		hdp->hd_phys_address = addr.address.minimum;
960 		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
961 		if (!hdp->hd_address)
962 			return AE_ERROR;
963 
964 		if (hpet_is_known(hdp)) {
965 			iounmap(hdp->hd_address);
966 			return AE_ALREADY_EXISTS;
967 		}
968 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
969 		struct acpi_resource_fixed_memory32 *fixmem32;
970 
971 		fixmem32 = &res->data.fixed_memory32;
972 
973 		hdp->hd_phys_address = fixmem32->address;
974 		hdp->hd_address = ioremap(fixmem32->address,
975 						HPET_RANGE_SIZE);
976 		if (!hdp->hd_address)
977 			return AE_ERROR;
978 
979 		if (hpet_is_known(hdp)) {
980 			iounmap(hdp->hd_address);
981 			return AE_ALREADY_EXISTS;
982 		}
983 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
984 		struct acpi_resource_extended_irq *irqp;
985 		int i, irq;
986 
987 		irqp = &res->data.extended_irq;
988 
989 		for (i = 0; i < irqp->interrupt_count; i++) {
990 			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
991 				break;
992 
993 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
994 						irqp->triggering,
995 						irqp->polarity);
996 			if (irq < 0)
997 				return AE_ERROR;
998 
999 			hdp->hd_irq[hdp->hd_nirqs] = irq;
1000 			hdp->hd_nirqs++;
1001 		}
1002 	}
1003 
1004 	return AE_OK;
1005 }
1006 
hpet_acpi_add(struct acpi_device * device)1007 static int hpet_acpi_add(struct acpi_device *device)
1008 {
1009 	acpi_status result;
1010 	struct hpet_data data;
1011 
1012 	memset(&data, 0, sizeof(data));
1013 
1014 	result =
1015 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1016 				hpet_resources, &data);
1017 
1018 	if (ACPI_FAILURE(result))
1019 		return -ENODEV;
1020 
1021 	if (!data.hd_address || !data.hd_nirqs) {
1022 		if (data.hd_address)
1023 			iounmap(data.hd_address);
1024 		printk("%s: no address or irqs in _CRS\n", __func__);
1025 		return -ENODEV;
1026 	}
1027 
1028 	return hpet_alloc(&data);
1029 }
1030 
1031 static const struct acpi_device_id hpet_device_ids[] = {
1032 	{"PNP0103", 0},
1033 	{"", 0},
1034 };
1035 
1036 static struct acpi_driver hpet_acpi_driver = {
1037 	.name = "hpet",
1038 	.ids = hpet_device_ids,
1039 	.ops = {
1040 		.add = hpet_acpi_add,
1041 		},
1042 };
1043 
1044 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1045 
hpet_init(void)1046 static int __init hpet_init(void)
1047 {
1048 	int result;
1049 
1050 	result = misc_register(&hpet_misc);
1051 	if (result < 0)
1052 		return -ENODEV;
1053 
1054 	sysctl_header = register_sysctl("dev/hpet", hpet_table);
1055 
1056 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1057 	if (result < 0) {
1058 		if (sysctl_header)
1059 			unregister_sysctl_table(sysctl_header);
1060 		misc_deregister(&hpet_misc);
1061 		return result;
1062 	}
1063 
1064 	return 0;
1065 }
1066 device_initcall(hpet_init);
1067 
1068 /*
1069 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1070 MODULE_LICENSE("GPL");
1071 */
1072