Home
last modified time | relevance | path

Searched hist:"615 c164d" (Results 1 – 5 of 5) sorted by relevance

/openbmc/linux/include/linux/
H A Dintel_th.h615c164d Fri Jul 05 09:14:21 CDT 2019 Alexander Shishkin <alexander.shishkin@linux.intel.com> intel_th: msu: Introduce buffer interface

Introduces a concept of external buffers, which is a mechanism for creating
trace sinks that would receive trace data from MSC buffers and transfer it
elsewhere.

A external buffer can implement its own window allocation/deallocation if
it has to. It must provide a callback that's used to notify it when a
window fills up, so that it can then start a DMA transaction from that
window 'elsewhere'. This window remains in a 'locked' state and won't be
used for storing new trace data until the buffer 'unlocks' it with a
provided API call, at which point the window can be used again for storing
trace data.

This relies on a functional "last block" interrupt, so not all versions of
Trace Hub can use this feature, which does not reflect on existing users.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20190705141425.19894-2-alexander.shishkin@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
615c164d Fri Jul 05 09:14:21 CDT 2019 Alexander Shishkin <alexander.shishkin@linux.intel.com> intel_th: msu: Introduce buffer interface

Introduces a concept of external buffers, which is a mechanism for creating
trace sinks that would receive trace data from MSC buffers and transfer it
elsewhere.

A external buffer can implement its own window allocation/deallocation if
it has to. It must provide a callback that's used to notify it when a
window fills up, so that it can then start a DMA transaction from that
window 'elsewhere'. This window remains in a 'locked' state and won't be
used for storing new trace data until the buffer 'unlocks' it with a
provided API call, at which point the window can be used again for storing
trace data.

This relies on a functional "last block" interrupt, so not all versions of
Trace Hub can use this feature, which does not reflect on existing users.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20190705141425.19894-2-alexander.shishkin@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
/openbmc/linux/Documentation/ABI/testing/
H A Dsysfs-bus-intel_th-devices-msc615c164d Fri Jul 05 09:14:21 CDT 2019 Alexander Shishkin <alexander.shishkin@linux.intel.com> intel_th: msu: Introduce buffer interface

Introduces a concept of external buffers, which is a mechanism for creating
trace sinks that would receive trace data from MSC buffers and transfer it
elsewhere.

A external buffer can implement its own window allocation/deallocation if
it has to. It must provide a callback that's used to notify it when a
window fills up, so that it can then start a DMA transaction from that
window 'elsewhere'. This window remains in a 'locked' state and won't be
used for storing new trace data until the buffer 'unlocks' it with a
provided API call, at which point the window can be used again for storing
trace data.

This relies on a functional "last block" interrupt, so not all versions of
Trace Hub can use this feature, which does not reflect on existing users.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20190705141425.19894-2-alexander.shishkin@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
615c164d Fri Jul 05 09:14:21 CDT 2019 Alexander Shishkin <alexander.shishkin@linux.intel.com> intel_th: msu: Introduce buffer interface

Introduces a concept of external buffers, which is a mechanism for creating
trace sinks that would receive trace data from MSC buffers and transfer it
elsewhere.

A external buffer can implement its own window allocation/deallocation if
it has to. It must provide a callback that's used to notify it when a
window fills up, so that it can then start a DMA transaction from that
window 'elsewhere'. This window remains in a 'locked' state and won't be
used for storing new trace data until the buffer 'unlocks' it with a
provided API call, at which point the window can be used again for storing
trace data.

This relies on a functional "last block" interrupt, so not all versions of
Trace Hub can use this feature, which does not reflect on existing users.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20190705141425.19894-2-alexander.shishkin@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
/openbmc/linux/drivers/hwtracing/intel_th/
H A Dmsu.h615c164d Fri Jul 05 09:14:21 CDT 2019 Alexander Shishkin <alexander.shishkin@linux.intel.com> intel_th: msu: Introduce buffer interface

Introduces a concept of external buffers, which is a mechanism for creating
trace sinks that would receive trace data from MSC buffers and transfer it
elsewhere.

A external buffer can implement its own window allocation/deallocation if
it has to. It must provide a callback that's used to notify it when a
window fills up, so that it can then start a DMA transaction from that
window 'elsewhere'. This window remains in a 'locked' state and won't be
used for storing new trace data until the buffer 'unlocks' it with a
provided API call, at which point the window can be used again for storing
trace data.

This relies on a functional "last block" interrupt, so not all versions of
Trace Hub can use this feature, which does not reflect on existing users.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20190705141425.19894-2-alexander.shishkin@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
615c164d Fri Jul 05 09:14:21 CDT 2019 Alexander Shishkin <alexander.shishkin@linux.intel.com> intel_th: msu: Introduce buffer interface

Introduces a concept of external buffers, which is a mechanism for creating
trace sinks that would receive trace data from MSC buffers and transfer it
elsewhere.

A external buffer can implement its own window allocation/deallocation if
it has to. It must provide a callback that's used to notify it when a
window fills up, so that it can then start a DMA transaction from that
window 'elsewhere'. This window remains in a 'locked' state and won't be
used for storing new trace data until the buffer 'unlocks' it with a
provided API call, at which point the window can be used again for storing
trace data.

This relies on a functional "last block" interrupt, so not all versions of
Trace Hub can use this feature, which does not reflect on existing users.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20190705141425.19894-2-alexander.shishkin@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
H A Dmsu.c615c164d Fri Jul 05 09:14:21 CDT 2019 Alexander Shishkin <alexander.shishkin@linux.intel.com> intel_th: msu: Introduce buffer interface

Introduces a concept of external buffers, which is a mechanism for creating
trace sinks that would receive trace data from MSC buffers and transfer it
elsewhere.

A external buffer can implement its own window allocation/deallocation if
it has to. It must provide a callback that's used to notify it when a
window fills up, so that it can then start a DMA transaction from that
window 'elsewhere'. This window remains in a 'locked' state and won't be
used for storing new trace data until the buffer 'unlocks' it with a
provided API call, at which point the window can be used again for storing
trace data.

This relies on a functional "last block" interrupt, so not all versions of
Trace Hub can use this feature, which does not reflect on existing users.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20190705141425.19894-2-alexander.shishkin@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
615c164d Fri Jul 05 09:14:21 CDT 2019 Alexander Shishkin <alexander.shishkin@linux.intel.com> intel_th: msu: Introduce buffer interface

Introduces a concept of external buffers, which is a mechanism for creating
trace sinks that would receive trace data from MSC buffers and transfer it
elsewhere.

A external buffer can implement its own window allocation/deallocation if
it has to. It must provide a callback that's used to notify it when a
window fills up, so that it can then start a DMA transaction from that
window 'elsewhere'. This window remains in a 'locked' state and won't be
used for storing new trace data until the buffer 'unlocks' it with a
provided API call, at which point the window can be used again for storing
trace data.

This relies on a functional "last block" interrupt, so not all versions of
Trace Hub can use this feature, which does not reflect on existing users.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20190705141425.19894-2-alexander.shishkin@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
/openbmc/linux/
H A DMAINTAINERS615c164d Fri Jul 05 09:14:21 CDT 2019 Alexander Shishkin <alexander.shishkin@linux.intel.com> intel_th: msu: Introduce buffer interface

Introduces a concept of external buffers, which is a mechanism for creating
trace sinks that would receive trace data from MSC buffers and transfer it
elsewhere.

A external buffer can implement its own window allocation/deallocation if
it has to. It must provide a callback that's used to notify it when a
window fills up, so that it can then start a DMA transaction from that
window 'elsewhere'. This window remains in a 'locked' state and won't be
used for storing new trace data until the buffer 'unlocks' it with a
provided API call, at which point the window can be used again for storing
trace data.

This relies on a functional "last block" interrupt, so not all versions of
Trace Hub can use this feature, which does not reflect on existing users.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20190705141425.19894-2-alexander.shishkin@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>