1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * file.c
4 *
5 * File open, close, extend, truncate
6 *
7 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
8 */
9
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25
26 #include <cluster/masklog.h>
27
28 #include "ocfs2.h"
29
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49
50 #include "buffer_head_io.h"
51
ocfs2_init_file_private(struct inode * inode,struct file * file)52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54 struct ocfs2_file_private *fp;
55
56 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57 if (!fp)
58 return -ENOMEM;
59
60 fp->fp_file = file;
61 mutex_init(&fp->fp_mutex);
62 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 file->private_data = fp;
64
65 return 0;
66 }
67
ocfs2_free_file_private(struct inode * inode,struct file * file)68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70 struct ocfs2_file_private *fp = file->private_data;
71 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72
73 if (fp) {
74 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 ocfs2_lock_res_free(&fp->fp_flock);
76 kfree(fp);
77 file->private_data = NULL;
78 }
79 }
80
ocfs2_file_open(struct inode * inode,struct file * file)81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83 int status;
84 int mode = file->f_flags;
85 struct ocfs2_inode_info *oi = OCFS2_I(inode);
86
87 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 (unsigned long long)oi->ip_blkno,
89 file->f_path.dentry->d_name.len,
90 file->f_path.dentry->d_name.name, mode);
91
92 if (file->f_mode & FMODE_WRITE) {
93 status = dquot_initialize(inode);
94 if (status)
95 goto leave;
96 }
97
98 spin_lock(&oi->ip_lock);
99
100 /* Check that the inode hasn't been wiped from disk by another
101 * node. If it hasn't then we're safe as long as we hold the
102 * spin lock until our increment of open count. */
103 if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 spin_unlock(&oi->ip_lock);
105
106 status = -ENOENT;
107 goto leave;
108 }
109
110 if (mode & O_DIRECT)
111 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112
113 oi->ip_open_count++;
114 spin_unlock(&oi->ip_lock);
115
116 status = ocfs2_init_file_private(inode, file);
117 if (status) {
118 /*
119 * We want to set open count back if we're failing the
120 * open.
121 */
122 spin_lock(&oi->ip_lock);
123 oi->ip_open_count--;
124 spin_unlock(&oi->ip_lock);
125 }
126
127 file->f_mode |= FMODE_NOWAIT;
128
129 leave:
130 return status;
131 }
132
ocfs2_file_release(struct inode * inode,struct file * file)133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135 struct ocfs2_inode_info *oi = OCFS2_I(inode);
136
137 spin_lock(&oi->ip_lock);
138 if (!--oi->ip_open_count)
139 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140
141 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142 oi->ip_blkno,
143 file->f_path.dentry->d_name.len,
144 file->f_path.dentry->d_name.name,
145 oi->ip_open_count);
146 spin_unlock(&oi->ip_lock);
147
148 ocfs2_free_file_private(inode, file);
149
150 return 0;
151 }
152
ocfs2_dir_open(struct inode * inode,struct file * file)153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155 return ocfs2_init_file_private(inode, file);
156 }
157
ocfs2_dir_release(struct inode * inode,struct file * file)158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160 ocfs2_free_file_private(inode, file);
161 return 0;
162 }
163
ocfs2_sync_file(struct file * file,loff_t start,loff_t end,int datasync)164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165 int datasync)
166 {
167 int err = 0;
168 struct inode *inode = file->f_mapping->host;
169 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 journal_t *journal = osb->journal->j_journal;
172 int ret;
173 tid_t commit_tid;
174 bool needs_barrier = false;
175
176 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177 oi->ip_blkno,
178 file->f_path.dentry->d_name.len,
179 file->f_path.dentry->d_name.name,
180 (unsigned long long)datasync);
181
182 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183 return -EROFS;
184
185 err = file_write_and_wait_range(file, start, end);
186 if (err)
187 return err;
188
189 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 if (journal->j_flags & JBD2_BARRIER &&
191 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 needs_barrier = true;
193 err = jbd2_complete_transaction(journal, commit_tid);
194 if (needs_barrier) {
195 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196 if (!err)
197 err = ret;
198 }
199
200 if (err)
201 mlog_errno(err);
202
203 return (err < 0) ? -EIO : 0;
204 }
205
ocfs2_should_update_atime(struct inode * inode,struct vfsmount * vfsmnt)206 int ocfs2_should_update_atime(struct inode *inode,
207 struct vfsmount *vfsmnt)
208 {
209 struct timespec64 now;
210 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211
212 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213 return 0;
214
215 if ((inode->i_flags & S_NOATIME) ||
216 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217 return 0;
218
219 /*
220 * We can be called with no vfsmnt structure - NFSD will
221 * sometimes do this.
222 *
223 * Note that our action here is different than touch_atime() -
224 * if we can't tell whether this is a noatime mount, then we
225 * don't know whether to trust the value of s_atime_quantum.
226 */
227 if (vfsmnt == NULL)
228 return 0;
229
230 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232 return 0;
233
234 if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 struct timespec64 ctime = inode_get_ctime(inode);
236 struct timespec64 atime = inode_get_atime(inode);
237 struct timespec64 mtime = inode_get_mtime(inode);
238
239 if ((timespec64_compare(&atime, &mtime) <= 0) ||
240 (timespec64_compare(&atime, &ctime) <= 0))
241 return 1;
242
243 return 0;
244 }
245
246 now = current_time(inode);
247 if ((now.tv_sec - inode_get_atime_sec(inode) <= osb->s_atime_quantum))
248 return 0;
249 else
250 return 1;
251 }
252
ocfs2_update_inode_atime(struct inode * inode,struct buffer_head * bh)253 int ocfs2_update_inode_atime(struct inode *inode,
254 struct buffer_head *bh)
255 {
256 int ret;
257 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
258 handle_t *handle;
259 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
260
261 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
262 if (IS_ERR(handle)) {
263 ret = PTR_ERR(handle);
264 mlog_errno(ret);
265 goto out;
266 }
267
268 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
269 OCFS2_JOURNAL_ACCESS_WRITE);
270 if (ret) {
271 mlog_errno(ret);
272 goto out_commit;
273 }
274
275 /*
276 * Don't use ocfs2_mark_inode_dirty() here as we don't always
277 * have i_rwsem to guard against concurrent changes to other
278 * inode fields.
279 */
280 inode_set_atime_to_ts(inode, current_time(inode));
281 di->i_atime = cpu_to_le64(inode_get_atime_sec(inode));
282 di->i_atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
283 ocfs2_update_inode_fsync_trans(handle, inode, 0);
284 ocfs2_journal_dirty(handle, bh);
285
286 out_commit:
287 ocfs2_commit_trans(osb, handle);
288 out:
289 return ret;
290 }
291
ocfs2_set_inode_size(handle_t * handle,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)292 int ocfs2_set_inode_size(handle_t *handle,
293 struct inode *inode,
294 struct buffer_head *fe_bh,
295 u64 new_i_size)
296 {
297 int status;
298
299 i_size_write(inode, new_i_size);
300 inode->i_blocks = ocfs2_inode_sector_count(inode);
301 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
302
303 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
304 if (status < 0) {
305 mlog_errno(status);
306 goto bail;
307 }
308
309 bail:
310 return status;
311 }
312
ocfs2_simple_size_update(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)313 int ocfs2_simple_size_update(struct inode *inode,
314 struct buffer_head *di_bh,
315 u64 new_i_size)
316 {
317 int ret;
318 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
319 handle_t *handle = NULL;
320
321 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
322 if (IS_ERR(handle)) {
323 ret = PTR_ERR(handle);
324 mlog_errno(ret);
325 goto out;
326 }
327
328 ret = ocfs2_set_inode_size(handle, inode, di_bh,
329 new_i_size);
330 if (ret < 0)
331 mlog_errno(ret);
332
333 ocfs2_update_inode_fsync_trans(handle, inode, 0);
334 ocfs2_commit_trans(osb, handle);
335 out:
336 return ret;
337 }
338
ocfs2_cow_file_pos(struct inode * inode,struct buffer_head * fe_bh,u64 offset)339 static int ocfs2_cow_file_pos(struct inode *inode,
340 struct buffer_head *fe_bh,
341 u64 offset)
342 {
343 int status;
344 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
345 unsigned int num_clusters = 0;
346 unsigned int ext_flags = 0;
347
348 /*
349 * If the new offset is aligned to the range of the cluster, there is
350 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
351 * CoW either.
352 */
353 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
354 return 0;
355
356 status = ocfs2_get_clusters(inode, cpos, &phys,
357 &num_clusters, &ext_flags);
358 if (status) {
359 mlog_errno(status);
360 goto out;
361 }
362
363 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
364 goto out;
365
366 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
367
368 out:
369 return status;
370 }
371
ocfs2_orphan_for_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)372 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
373 struct inode *inode,
374 struct buffer_head *fe_bh,
375 u64 new_i_size)
376 {
377 int status;
378 handle_t *handle;
379 struct ocfs2_dinode *di;
380 u64 cluster_bytes;
381
382 /*
383 * We need to CoW the cluster contains the offset if it is reflinked
384 * since we will call ocfs2_zero_range_for_truncate later which will
385 * write "0" from offset to the end of the cluster.
386 */
387 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
388 if (status) {
389 mlog_errno(status);
390 return status;
391 }
392
393 /* TODO: This needs to actually orphan the inode in this
394 * transaction. */
395
396 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
397 if (IS_ERR(handle)) {
398 status = PTR_ERR(handle);
399 mlog_errno(status);
400 goto out;
401 }
402
403 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
404 OCFS2_JOURNAL_ACCESS_WRITE);
405 if (status < 0) {
406 mlog_errno(status);
407 goto out_commit;
408 }
409
410 /*
411 * Do this before setting i_size.
412 */
413 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
414 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
415 cluster_bytes);
416 if (status) {
417 mlog_errno(status);
418 goto out_commit;
419 }
420
421 i_size_write(inode, new_i_size);
422 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
423
424 di = (struct ocfs2_dinode *) fe_bh->b_data;
425 di->i_size = cpu_to_le64(new_i_size);
426 di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime_sec(inode));
427 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
428 ocfs2_update_inode_fsync_trans(handle, inode, 0);
429
430 ocfs2_journal_dirty(handle, fe_bh);
431
432 out_commit:
433 ocfs2_commit_trans(osb, handle);
434 out:
435 return status;
436 }
437
ocfs2_truncate_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)438 int ocfs2_truncate_file(struct inode *inode,
439 struct buffer_head *di_bh,
440 u64 new_i_size)
441 {
442 int status = 0;
443 struct ocfs2_dinode *fe = NULL;
444 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
445
446 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
447 * already validated it */
448 fe = (struct ocfs2_dinode *) di_bh->b_data;
449
450 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
451 (unsigned long long)le64_to_cpu(fe->i_size),
452 (unsigned long long)new_i_size);
453
454 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
455 "Inode %llu, inode i_size = %lld != di "
456 "i_size = %llu, i_flags = 0x%x\n",
457 (unsigned long long)OCFS2_I(inode)->ip_blkno,
458 i_size_read(inode),
459 (unsigned long long)le64_to_cpu(fe->i_size),
460 le32_to_cpu(fe->i_flags));
461
462 if (new_i_size > le64_to_cpu(fe->i_size)) {
463 trace_ocfs2_truncate_file_error(
464 (unsigned long long)le64_to_cpu(fe->i_size),
465 (unsigned long long)new_i_size);
466 status = -EINVAL;
467 mlog_errno(status);
468 goto bail;
469 }
470
471 down_write(&OCFS2_I(inode)->ip_alloc_sem);
472
473 ocfs2_resv_discard(&osb->osb_la_resmap,
474 &OCFS2_I(inode)->ip_la_data_resv);
475
476 /*
477 * The inode lock forced other nodes to sync and drop their
478 * pages, which (correctly) happens even if we have a truncate
479 * without allocation change - ocfs2 cluster sizes can be much
480 * greater than page size, so we have to truncate them
481 * anyway.
482 */
483
484 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485 unmap_mapping_range(inode->i_mapping,
486 new_i_size + PAGE_SIZE - 1, 0, 1);
487 truncate_inode_pages(inode->i_mapping, new_i_size);
488 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
489 i_size_read(inode), 1);
490 if (status)
491 mlog_errno(status);
492
493 goto bail_unlock_sem;
494 }
495
496 /* alright, we're going to need to do a full blown alloc size
497 * change. Orphan the inode so that recovery can complete the
498 * truncate if necessary. This does the task of marking
499 * i_size. */
500 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
501 if (status < 0) {
502 mlog_errno(status);
503 goto bail_unlock_sem;
504 }
505
506 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
507 truncate_inode_pages(inode->i_mapping, new_i_size);
508
509 status = ocfs2_commit_truncate(osb, inode, di_bh);
510 if (status < 0) {
511 mlog_errno(status);
512 goto bail_unlock_sem;
513 }
514
515 /* TODO: orphan dir cleanup here. */
516 bail_unlock_sem:
517 up_write(&OCFS2_I(inode)->ip_alloc_sem);
518
519 bail:
520 if (!status && OCFS2_I(inode)->ip_clusters == 0)
521 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
522
523 return status;
524 }
525
526 /*
527 * extend file allocation only here.
528 * we'll update all the disk stuff, and oip->alloc_size
529 *
530 * expect stuff to be locked, a transaction started and enough data /
531 * metadata reservations in the contexts.
532 *
533 * Will return -EAGAIN, and a reason if a restart is needed.
534 * If passed in, *reason will always be set, even in error.
535 */
ocfs2_add_inode_data(struct ocfs2_super * osb,struct inode * inode,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct buffer_head * fe_bh,handle_t * handle,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)536 int ocfs2_add_inode_data(struct ocfs2_super *osb,
537 struct inode *inode,
538 u32 *logical_offset,
539 u32 clusters_to_add,
540 int mark_unwritten,
541 struct buffer_head *fe_bh,
542 handle_t *handle,
543 struct ocfs2_alloc_context *data_ac,
544 struct ocfs2_alloc_context *meta_ac,
545 enum ocfs2_alloc_restarted *reason_ret)
546 {
547 struct ocfs2_extent_tree et;
548
549 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
550 return ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
551 clusters_to_add, mark_unwritten,
552 data_ac, meta_ac, reason_ret);
553 }
554
ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)555 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
556 u32 clusters_to_add, int mark_unwritten)
557 {
558 int status = 0;
559 int restart_func = 0;
560 int credits;
561 u32 prev_clusters;
562 struct buffer_head *bh = NULL;
563 struct ocfs2_dinode *fe = NULL;
564 handle_t *handle = NULL;
565 struct ocfs2_alloc_context *data_ac = NULL;
566 struct ocfs2_alloc_context *meta_ac = NULL;
567 enum ocfs2_alloc_restarted why = RESTART_NONE;
568 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
569 struct ocfs2_extent_tree et;
570 int did_quota = 0;
571
572 /*
573 * Unwritten extent only exists for file systems which
574 * support holes.
575 */
576 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
577
578 status = ocfs2_read_inode_block(inode, &bh);
579 if (status < 0) {
580 mlog_errno(status);
581 goto leave;
582 }
583 fe = (struct ocfs2_dinode *) bh->b_data;
584
585 restart_all:
586 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
587
588 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
589 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
590 &data_ac, &meta_ac);
591 if (status) {
592 mlog_errno(status);
593 goto leave;
594 }
595
596 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
597 handle = ocfs2_start_trans(osb, credits);
598 if (IS_ERR(handle)) {
599 status = PTR_ERR(handle);
600 handle = NULL;
601 mlog_errno(status);
602 goto leave;
603 }
604
605 restarted_transaction:
606 trace_ocfs2_extend_allocation(
607 (unsigned long long)OCFS2_I(inode)->ip_blkno,
608 (unsigned long long)i_size_read(inode),
609 le32_to_cpu(fe->i_clusters), clusters_to_add,
610 why, restart_func);
611
612 status = dquot_alloc_space_nodirty(inode,
613 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
614 if (status)
615 goto leave;
616 did_quota = 1;
617
618 /* reserve a write to the file entry early on - that we if we
619 * run out of credits in the allocation path, we can still
620 * update i_size. */
621 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
622 OCFS2_JOURNAL_ACCESS_WRITE);
623 if (status < 0) {
624 mlog_errno(status);
625 goto leave;
626 }
627
628 prev_clusters = OCFS2_I(inode)->ip_clusters;
629
630 status = ocfs2_add_inode_data(osb,
631 inode,
632 &logical_start,
633 clusters_to_add,
634 mark_unwritten,
635 bh,
636 handle,
637 data_ac,
638 meta_ac,
639 &why);
640 if ((status < 0) && (status != -EAGAIN)) {
641 if (status != -ENOSPC)
642 mlog_errno(status);
643 goto leave;
644 }
645 ocfs2_update_inode_fsync_trans(handle, inode, 1);
646 ocfs2_journal_dirty(handle, bh);
647
648 spin_lock(&OCFS2_I(inode)->ip_lock);
649 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
650 spin_unlock(&OCFS2_I(inode)->ip_lock);
651 /* Release unused quota reservation */
652 dquot_free_space(inode,
653 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
654 did_quota = 0;
655
656 if (why != RESTART_NONE && clusters_to_add) {
657 if (why == RESTART_META) {
658 restart_func = 1;
659 status = 0;
660 } else {
661 BUG_ON(why != RESTART_TRANS);
662
663 status = ocfs2_allocate_extend_trans(handle, 1);
664 if (status < 0) {
665 /* handle still has to be committed at
666 * this point. */
667 status = -ENOMEM;
668 mlog_errno(status);
669 goto leave;
670 }
671 goto restarted_transaction;
672 }
673 }
674
675 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
676 le32_to_cpu(fe->i_clusters),
677 (unsigned long long)le64_to_cpu(fe->i_size),
678 OCFS2_I(inode)->ip_clusters,
679 (unsigned long long)i_size_read(inode));
680
681 leave:
682 if (status < 0 && did_quota)
683 dquot_free_space(inode,
684 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
685 if (handle) {
686 ocfs2_commit_trans(osb, handle);
687 handle = NULL;
688 }
689 if (data_ac) {
690 ocfs2_free_alloc_context(data_ac);
691 data_ac = NULL;
692 }
693 if (meta_ac) {
694 ocfs2_free_alloc_context(meta_ac);
695 meta_ac = NULL;
696 }
697 if ((!status) && restart_func) {
698 restart_func = 0;
699 goto restart_all;
700 }
701 brelse(bh);
702 bh = NULL;
703
704 return status;
705 }
706
707 /*
708 * While a write will already be ordering the data, a truncate will not.
709 * Thus, we need to explicitly order the zeroed pages.
710 */
ocfs2_zero_start_ordered_transaction(struct inode * inode,struct buffer_head * di_bh,loff_t start_byte,loff_t length)711 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
712 struct buffer_head *di_bh,
713 loff_t start_byte,
714 loff_t length)
715 {
716 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
717 handle_t *handle = NULL;
718 int ret = 0;
719
720 if (!ocfs2_should_order_data(inode))
721 goto out;
722
723 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
724 if (IS_ERR(handle)) {
725 ret = -ENOMEM;
726 mlog_errno(ret);
727 goto out;
728 }
729
730 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
731 if (ret < 0) {
732 mlog_errno(ret);
733 goto out;
734 }
735
736 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
737 OCFS2_JOURNAL_ACCESS_WRITE);
738 if (ret)
739 mlog_errno(ret);
740 ocfs2_update_inode_fsync_trans(handle, inode, 1);
741
742 out:
743 if (ret) {
744 if (!IS_ERR(handle))
745 ocfs2_commit_trans(osb, handle);
746 handle = ERR_PTR(ret);
747 }
748 return handle;
749 }
750
751 /* Some parts of this taken from generic_cont_expand, which turned out
752 * to be too fragile to do exactly what we need without us having to
753 * worry about recursive locking in ->write_begin() and ->write_end(). */
ocfs2_write_zero_page(struct inode * inode,u64 abs_from,u64 abs_to,struct buffer_head * di_bh)754 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
755 u64 abs_to, struct buffer_head *di_bh)
756 {
757 struct address_space *mapping = inode->i_mapping;
758 struct page *page;
759 unsigned long index = abs_from >> PAGE_SHIFT;
760 handle_t *handle;
761 int ret = 0;
762 unsigned zero_from, zero_to, block_start, block_end;
763 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
764
765 BUG_ON(abs_from >= abs_to);
766 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
767 BUG_ON(abs_from & (inode->i_blkbits - 1));
768
769 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
770 abs_from,
771 abs_to - abs_from);
772 if (IS_ERR(handle)) {
773 ret = PTR_ERR(handle);
774 goto out;
775 }
776
777 page = find_or_create_page(mapping, index, GFP_NOFS);
778 if (!page) {
779 ret = -ENOMEM;
780 mlog_errno(ret);
781 goto out_commit_trans;
782 }
783
784 /* Get the offsets within the page that we want to zero */
785 zero_from = abs_from & (PAGE_SIZE - 1);
786 zero_to = abs_to & (PAGE_SIZE - 1);
787 if (!zero_to)
788 zero_to = PAGE_SIZE;
789
790 trace_ocfs2_write_zero_page(
791 (unsigned long long)OCFS2_I(inode)->ip_blkno,
792 (unsigned long long)abs_from,
793 (unsigned long long)abs_to,
794 index, zero_from, zero_to);
795
796 /* We know that zero_from is block aligned */
797 for (block_start = zero_from; block_start < zero_to;
798 block_start = block_end) {
799 block_end = block_start + i_blocksize(inode);
800
801 /*
802 * block_start is block-aligned. Bump it by one to force
803 * __block_write_begin and block_commit_write to zero the
804 * whole block.
805 */
806 ret = __block_write_begin(page, block_start + 1, 0,
807 ocfs2_get_block);
808 if (ret < 0) {
809 mlog_errno(ret);
810 goto out_unlock;
811 }
812
813
814 /* must not update i_size! */
815 block_commit_write(page, block_start + 1, block_start + 1);
816 }
817
818 /*
819 * fs-writeback will release the dirty pages without page lock
820 * whose offset are over inode size, the release happens at
821 * block_write_full_page().
822 */
823 i_size_write(inode, abs_to);
824 inode->i_blocks = ocfs2_inode_sector_count(inode);
825 di->i_size = cpu_to_le64((u64)i_size_read(inode));
826 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
827 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
828 di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
829 di->i_mtime_nsec = di->i_ctime_nsec;
830 if (handle) {
831 ocfs2_journal_dirty(handle, di_bh);
832 ocfs2_update_inode_fsync_trans(handle, inode, 1);
833 }
834
835 out_unlock:
836 unlock_page(page);
837 put_page(page);
838 out_commit_trans:
839 if (handle)
840 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
841 out:
842 return ret;
843 }
844
845 /*
846 * Find the next range to zero. We do this in terms of bytes because
847 * that's what ocfs2_zero_extend() wants, and it is dealing with the
848 * pagecache. We may return multiple extents.
849 *
850 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
851 * needs to be zeroed. range_start and range_end return the next zeroing
852 * range. A subsequent call should pass the previous range_end as its
853 * zero_start. If range_end is 0, there's nothing to do.
854 *
855 * Unwritten extents are skipped over. Refcounted extents are CoWd.
856 */
ocfs2_zero_extend_get_range(struct inode * inode,struct buffer_head * di_bh,u64 zero_start,u64 zero_end,u64 * range_start,u64 * range_end)857 static int ocfs2_zero_extend_get_range(struct inode *inode,
858 struct buffer_head *di_bh,
859 u64 zero_start, u64 zero_end,
860 u64 *range_start, u64 *range_end)
861 {
862 int rc = 0, needs_cow = 0;
863 u32 p_cpos, zero_clusters = 0;
864 u32 zero_cpos =
865 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
866 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
867 unsigned int num_clusters = 0;
868 unsigned int ext_flags = 0;
869
870 while (zero_cpos < last_cpos) {
871 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
872 &num_clusters, &ext_flags);
873 if (rc) {
874 mlog_errno(rc);
875 goto out;
876 }
877
878 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
879 zero_clusters = num_clusters;
880 if (ext_flags & OCFS2_EXT_REFCOUNTED)
881 needs_cow = 1;
882 break;
883 }
884
885 zero_cpos += num_clusters;
886 }
887 if (!zero_clusters) {
888 *range_end = 0;
889 goto out;
890 }
891
892 while ((zero_cpos + zero_clusters) < last_cpos) {
893 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
894 &p_cpos, &num_clusters,
895 &ext_flags);
896 if (rc) {
897 mlog_errno(rc);
898 goto out;
899 }
900
901 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
902 break;
903 if (ext_flags & OCFS2_EXT_REFCOUNTED)
904 needs_cow = 1;
905 zero_clusters += num_clusters;
906 }
907 if ((zero_cpos + zero_clusters) > last_cpos)
908 zero_clusters = last_cpos - zero_cpos;
909
910 if (needs_cow) {
911 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
912 zero_clusters, UINT_MAX);
913 if (rc) {
914 mlog_errno(rc);
915 goto out;
916 }
917 }
918
919 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
920 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
921 zero_cpos + zero_clusters);
922
923 out:
924 return rc;
925 }
926
927 /*
928 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
929 * has made sure that the entire range needs zeroing.
930 */
ocfs2_zero_extend_range(struct inode * inode,u64 range_start,u64 range_end,struct buffer_head * di_bh)931 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
932 u64 range_end, struct buffer_head *di_bh)
933 {
934 int rc = 0;
935 u64 next_pos;
936 u64 zero_pos = range_start;
937
938 trace_ocfs2_zero_extend_range(
939 (unsigned long long)OCFS2_I(inode)->ip_blkno,
940 (unsigned long long)range_start,
941 (unsigned long long)range_end);
942 BUG_ON(range_start >= range_end);
943
944 while (zero_pos < range_end) {
945 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
946 if (next_pos > range_end)
947 next_pos = range_end;
948 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
949 if (rc < 0) {
950 mlog_errno(rc);
951 break;
952 }
953 zero_pos = next_pos;
954
955 /*
956 * Very large extends have the potential to lock up
957 * the cpu for extended periods of time.
958 */
959 cond_resched();
960 }
961
962 return rc;
963 }
964
ocfs2_zero_extend(struct inode * inode,struct buffer_head * di_bh,loff_t zero_to_size)965 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
966 loff_t zero_to_size)
967 {
968 int ret = 0;
969 u64 zero_start, range_start = 0, range_end = 0;
970 struct super_block *sb = inode->i_sb;
971
972 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
973 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
974 (unsigned long long)zero_start,
975 (unsigned long long)i_size_read(inode));
976 while (zero_start < zero_to_size) {
977 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
978 zero_to_size,
979 &range_start,
980 &range_end);
981 if (ret) {
982 mlog_errno(ret);
983 break;
984 }
985 if (!range_end)
986 break;
987 /* Trim the ends */
988 if (range_start < zero_start)
989 range_start = zero_start;
990 if (range_end > zero_to_size)
991 range_end = zero_to_size;
992
993 ret = ocfs2_zero_extend_range(inode, range_start,
994 range_end, di_bh);
995 if (ret) {
996 mlog_errno(ret);
997 break;
998 }
999 zero_start = range_end;
1000 }
1001
1002 return ret;
1003 }
1004
ocfs2_extend_no_holes(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size,u64 zero_to)1005 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1006 u64 new_i_size, u64 zero_to)
1007 {
1008 int ret;
1009 u32 clusters_to_add;
1010 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1011
1012 /*
1013 * Only quota files call this without a bh, and they can't be
1014 * refcounted.
1015 */
1016 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1017 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1018
1019 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1020 if (clusters_to_add < oi->ip_clusters)
1021 clusters_to_add = 0;
1022 else
1023 clusters_to_add -= oi->ip_clusters;
1024
1025 if (clusters_to_add) {
1026 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1027 clusters_to_add, 0);
1028 if (ret) {
1029 mlog_errno(ret);
1030 goto out;
1031 }
1032 }
1033
1034 /*
1035 * Call this even if we don't add any clusters to the tree. We
1036 * still need to zero the area between the old i_size and the
1037 * new i_size.
1038 */
1039 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1040 if (ret < 0)
1041 mlog_errno(ret);
1042
1043 out:
1044 return ret;
1045 }
1046
ocfs2_extend_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)1047 static int ocfs2_extend_file(struct inode *inode,
1048 struct buffer_head *di_bh,
1049 u64 new_i_size)
1050 {
1051 int ret = 0;
1052 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1053
1054 BUG_ON(!di_bh);
1055
1056 /* setattr sometimes calls us like this. */
1057 if (new_i_size == 0)
1058 goto out;
1059
1060 if (i_size_read(inode) == new_i_size)
1061 goto out;
1062 BUG_ON(new_i_size < i_size_read(inode));
1063
1064 /*
1065 * The alloc sem blocks people in read/write from reading our
1066 * allocation until we're done changing it. We depend on
1067 * i_rwsem to block other extend/truncate calls while we're
1068 * here. We even have to hold it for sparse files because there
1069 * might be some tail zeroing.
1070 */
1071 down_write(&oi->ip_alloc_sem);
1072
1073 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1074 /*
1075 * We can optimize small extends by keeping the inodes
1076 * inline data.
1077 */
1078 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1079 up_write(&oi->ip_alloc_sem);
1080 goto out_update_size;
1081 }
1082
1083 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1084 if (ret) {
1085 up_write(&oi->ip_alloc_sem);
1086 mlog_errno(ret);
1087 goto out;
1088 }
1089 }
1090
1091 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1092 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1093 else
1094 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1095 new_i_size);
1096
1097 up_write(&oi->ip_alloc_sem);
1098
1099 if (ret < 0) {
1100 mlog_errno(ret);
1101 goto out;
1102 }
1103
1104 out_update_size:
1105 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1106 if (ret < 0)
1107 mlog_errno(ret);
1108
1109 out:
1110 return ret;
1111 }
1112
ocfs2_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1113 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1114 struct iattr *attr)
1115 {
1116 int status = 0, size_change;
1117 int inode_locked = 0;
1118 struct inode *inode = d_inode(dentry);
1119 struct super_block *sb = inode->i_sb;
1120 struct ocfs2_super *osb = OCFS2_SB(sb);
1121 struct buffer_head *bh = NULL;
1122 handle_t *handle = NULL;
1123 struct dquot *transfer_to[MAXQUOTAS] = { };
1124 int qtype;
1125 int had_lock;
1126 struct ocfs2_lock_holder oh;
1127
1128 trace_ocfs2_setattr(inode, dentry,
1129 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1130 dentry->d_name.len, dentry->d_name.name,
1131 attr->ia_valid, attr->ia_mode,
1132 from_kuid(&init_user_ns, attr->ia_uid),
1133 from_kgid(&init_user_ns, attr->ia_gid));
1134
1135 /* ensuring we don't even attempt to truncate a symlink */
1136 if (S_ISLNK(inode->i_mode))
1137 attr->ia_valid &= ~ATTR_SIZE;
1138
1139 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1140 | ATTR_GID | ATTR_UID | ATTR_MODE)
1141 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1142 return 0;
1143
1144 status = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1145 if (status)
1146 return status;
1147
1148 if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
1149 status = dquot_initialize(inode);
1150 if (status)
1151 return status;
1152 }
1153 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1154 if (size_change) {
1155 /*
1156 * Here we should wait dio to finish before inode lock
1157 * to avoid a deadlock between ocfs2_setattr() and
1158 * ocfs2_dio_end_io_write()
1159 */
1160 inode_dio_wait(inode);
1161
1162 status = ocfs2_rw_lock(inode, 1);
1163 if (status < 0) {
1164 mlog_errno(status);
1165 goto bail;
1166 }
1167 }
1168
1169 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1170 if (had_lock < 0) {
1171 status = had_lock;
1172 goto bail_unlock_rw;
1173 } else if (had_lock) {
1174 /*
1175 * As far as we know, ocfs2_setattr() could only be the first
1176 * VFS entry point in the call chain of recursive cluster
1177 * locking issue.
1178 *
1179 * For instance:
1180 * chmod_common()
1181 * notify_change()
1182 * ocfs2_setattr()
1183 * posix_acl_chmod()
1184 * ocfs2_iop_get_acl()
1185 *
1186 * But, we're not 100% sure if it's always true, because the
1187 * ordering of the VFS entry points in the call chain is out
1188 * of our control. So, we'd better dump the stack here to
1189 * catch the other cases of recursive locking.
1190 */
1191 mlog(ML_ERROR, "Another case of recursive locking:\n");
1192 dump_stack();
1193 }
1194 inode_locked = 1;
1195
1196 if (size_change) {
1197 status = inode_newsize_ok(inode, attr->ia_size);
1198 if (status)
1199 goto bail_unlock;
1200
1201 if (i_size_read(inode) >= attr->ia_size) {
1202 if (ocfs2_should_order_data(inode)) {
1203 status = ocfs2_begin_ordered_truncate(inode,
1204 attr->ia_size);
1205 if (status)
1206 goto bail_unlock;
1207 }
1208 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1209 } else
1210 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1211 if (status < 0) {
1212 if (status != -ENOSPC)
1213 mlog_errno(status);
1214 status = -ENOSPC;
1215 goto bail_unlock;
1216 }
1217 }
1218
1219 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1220 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1221 /*
1222 * Gather pointers to quota structures so that allocation /
1223 * freeing of quota structures happens here and not inside
1224 * dquot_transfer() where we have problems with lock ordering
1225 */
1226 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1227 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1228 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1229 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1230 if (IS_ERR(transfer_to[USRQUOTA])) {
1231 status = PTR_ERR(transfer_to[USRQUOTA]);
1232 transfer_to[USRQUOTA] = NULL;
1233 goto bail_unlock;
1234 }
1235 }
1236 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1237 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1238 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1239 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1240 if (IS_ERR(transfer_to[GRPQUOTA])) {
1241 status = PTR_ERR(transfer_to[GRPQUOTA]);
1242 transfer_to[GRPQUOTA] = NULL;
1243 goto bail_unlock;
1244 }
1245 }
1246 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1247 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1248 2 * ocfs2_quota_trans_credits(sb));
1249 if (IS_ERR(handle)) {
1250 status = PTR_ERR(handle);
1251 mlog_errno(status);
1252 goto bail_unlock_alloc;
1253 }
1254 status = __dquot_transfer(inode, transfer_to);
1255 if (status < 0)
1256 goto bail_commit;
1257 } else {
1258 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1260 if (IS_ERR(handle)) {
1261 status = PTR_ERR(handle);
1262 mlog_errno(status);
1263 goto bail_unlock_alloc;
1264 }
1265 }
1266
1267 setattr_copy(&nop_mnt_idmap, inode, attr);
1268 mark_inode_dirty(inode);
1269
1270 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1271 if (status < 0)
1272 mlog_errno(status);
1273
1274 bail_commit:
1275 ocfs2_commit_trans(osb, handle);
1276 bail_unlock_alloc:
1277 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1278 bail_unlock:
1279 if (status && inode_locked) {
1280 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1281 inode_locked = 0;
1282 }
1283 bail_unlock_rw:
1284 if (size_change)
1285 ocfs2_rw_unlock(inode, 1);
1286 bail:
1287
1288 /* Release quota pointers in case we acquired them */
1289 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1290 dqput(transfer_to[qtype]);
1291
1292 if (!status && attr->ia_valid & ATTR_MODE) {
1293 status = ocfs2_acl_chmod(inode, bh);
1294 if (status < 0)
1295 mlog_errno(status);
1296 }
1297 if (inode_locked)
1298 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1299
1300 brelse(bh);
1301 return status;
1302 }
1303
ocfs2_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)1304 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path,
1305 struct kstat *stat, u32 request_mask, unsigned int flags)
1306 {
1307 struct inode *inode = d_inode(path->dentry);
1308 struct super_block *sb = path->dentry->d_sb;
1309 struct ocfs2_super *osb = sb->s_fs_info;
1310 int err;
1311
1312 err = ocfs2_inode_revalidate(path->dentry);
1313 if (err) {
1314 if (err != -ENOENT)
1315 mlog_errno(err);
1316 goto bail;
1317 }
1318
1319 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1320 /*
1321 * If there is inline data in the inode, the inode will normally not
1322 * have data blocks allocated (it may have an external xattr block).
1323 * Report at least one sector for such files, so tools like tar, rsync,
1324 * others don't incorrectly think the file is completely sparse.
1325 */
1326 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1327 stat->blocks += (stat->size + 511)>>9;
1328
1329 /* We set the blksize from the cluster size for performance */
1330 stat->blksize = osb->s_clustersize;
1331
1332 bail:
1333 return err;
1334 }
1335
ocfs2_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)1336 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode,
1337 int mask)
1338 {
1339 int ret, had_lock;
1340 struct ocfs2_lock_holder oh;
1341
1342 if (mask & MAY_NOT_BLOCK)
1343 return -ECHILD;
1344
1345 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1346 if (had_lock < 0) {
1347 ret = had_lock;
1348 goto out;
1349 } else if (had_lock) {
1350 /* See comments in ocfs2_setattr() for details.
1351 * The call chain of this case could be:
1352 * do_sys_open()
1353 * may_open()
1354 * inode_permission()
1355 * ocfs2_permission()
1356 * ocfs2_iop_get_acl()
1357 */
1358 mlog(ML_ERROR, "Another case of recursive locking:\n");
1359 dump_stack();
1360 }
1361
1362 ret = generic_permission(&nop_mnt_idmap, inode, mask);
1363
1364 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1365 out:
1366 return ret;
1367 }
1368
__ocfs2_write_remove_suid(struct inode * inode,struct buffer_head * bh)1369 static int __ocfs2_write_remove_suid(struct inode *inode,
1370 struct buffer_head *bh)
1371 {
1372 int ret;
1373 handle_t *handle;
1374 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1375 struct ocfs2_dinode *di;
1376
1377 trace_ocfs2_write_remove_suid(
1378 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1379 inode->i_mode);
1380
1381 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1382 if (IS_ERR(handle)) {
1383 ret = PTR_ERR(handle);
1384 mlog_errno(ret);
1385 goto out;
1386 }
1387
1388 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1389 OCFS2_JOURNAL_ACCESS_WRITE);
1390 if (ret < 0) {
1391 mlog_errno(ret);
1392 goto out_trans;
1393 }
1394
1395 inode->i_mode &= ~S_ISUID;
1396 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1397 inode->i_mode &= ~S_ISGID;
1398
1399 di = (struct ocfs2_dinode *) bh->b_data;
1400 di->i_mode = cpu_to_le16(inode->i_mode);
1401 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1402
1403 ocfs2_journal_dirty(handle, bh);
1404
1405 out_trans:
1406 ocfs2_commit_trans(osb, handle);
1407 out:
1408 return ret;
1409 }
1410
ocfs2_write_remove_suid(struct inode * inode)1411 static int ocfs2_write_remove_suid(struct inode *inode)
1412 {
1413 int ret;
1414 struct buffer_head *bh = NULL;
1415
1416 ret = ocfs2_read_inode_block(inode, &bh);
1417 if (ret < 0) {
1418 mlog_errno(ret);
1419 goto out;
1420 }
1421
1422 ret = __ocfs2_write_remove_suid(inode, bh);
1423 out:
1424 brelse(bh);
1425 return ret;
1426 }
1427
1428 /*
1429 * Allocate enough extents to cover the region starting at byte offset
1430 * start for len bytes. Existing extents are skipped, any extents
1431 * added are marked as "unwritten".
1432 */
ocfs2_allocate_unwritten_extents(struct inode * inode,u64 start,u64 len)1433 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1434 u64 start, u64 len)
1435 {
1436 int ret;
1437 u32 cpos, phys_cpos, clusters, alloc_size;
1438 u64 end = start + len;
1439 struct buffer_head *di_bh = NULL;
1440
1441 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1442 ret = ocfs2_read_inode_block(inode, &di_bh);
1443 if (ret) {
1444 mlog_errno(ret);
1445 goto out;
1446 }
1447
1448 /*
1449 * Nothing to do if the requested reservation range
1450 * fits within the inode.
1451 */
1452 if (ocfs2_size_fits_inline_data(di_bh, end))
1453 goto out;
1454
1455 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1456 if (ret) {
1457 mlog_errno(ret);
1458 goto out;
1459 }
1460 }
1461
1462 /*
1463 * We consider both start and len to be inclusive.
1464 */
1465 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1466 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1467 clusters -= cpos;
1468
1469 while (clusters) {
1470 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1471 &alloc_size, NULL);
1472 if (ret) {
1473 mlog_errno(ret);
1474 goto out;
1475 }
1476
1477 /*
1478 * Hole or existing extent len can be arbitrary, so
1479 * cap it to our own allocation request.
1480 */
1481 if (alloc_size > clusters)
1482 alloc_size = clusters;
1483
1484 if (phys_cpos) {
1485 /*
1486 * We already have an allocation at this
1487 * region so we can safely skip it.
1488 */
1489 goto next;
1490 }
1491
1492 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1493 if (ret) {
1494 if (ret != -ENOSPC)
1495 mlog_errno(ret);
1496 goto out;
1497 }
1498
1499 next:
1500 cpos += alloc_size;
1501 clusters -= alloc_size;
1502 }
1503
1504 ret = 0;
1505 out:
1506
1507 brelse(di_bh);
1508 return ret;
1509 }
1510
1511 /*
1512 * Truncate a byte range, avoiding pages within partial clusters. This
1513 * preserves those pages for the zeroing code to write to.
1514 */
ocfs2_truncate_cluster_pages(struct inode * inode,u64 byte_start,u64 byte_len)1515 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1516 u64 byte_len)
1517 {
1518 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1519 loff_t start, end;
1520 struct address_space *mapping = inode->i_mapping;
1521
1522 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1523 end = byte_start + byte_len;
1524 end = end & ~(osb->s_clustersize - 1);
1525
1526 if (start < end) {
1527 unmap_mapping_range(mapping, start, end - start, 0);
1528 truncate_inode_pages_range(mapping, start, end - 1);
1529 }
1530 }
1531
1532 /*
1533 * zero out partial blocks of one cluster.
1534 *
1535 * start: file offset where zero starts, will be made upper block aligned.
1536 * len: it will be trimmed to the end of current cluster if "start + len"
1537 * is bigger than it.
1538 */
ocfs2_zeroout_partial_cluster(struct inode * inode,u64 start,u64 len)1539 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1540 u64 start, u64 len)
1541 {
1542 int ret;
1543 u64 start_block, end_block, nr_blocks;
1544 u64 p_block, offset;
1545 u32 cluster, p_cluster, nr_clusters;
1546 struct super_block *sb = inode->i_sb;
1547 u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1548
1549 if (start + len < end)
1550 end = start + len;
1551
1552 start_block = ocfs2_blocks_for_bytes(sb, start);
1553 end_block = ocfs2_blocks_for_bytes(sb, end);
1554 nr_blocks = end_block - start_block;
1555 if (!nr_blocks)
1556 return 0;
1557
1558 cluster = ocfs2_bytes_to_clusters(sb, start);
1559 ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1560 &nr_clusters, NULL);
1561 if (ret)
1562 return ret;
1563 if (!p_cluster)
1564 return 0;
1565
1566 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1567 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1568 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1569 }
1570
ocfs2_zero_partial_clusters(struct inode * inode,u64 start,u64 len)1571 static int ocfs2_zero_partial_clusters(struct inode *inode,
1572 u64 start, u64 len)
1573 {
1574 int ret = 0;
1575 u64 tmpend = 0;
1576 u64 end = start + len;
1577 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1578 unsigned int csize = osb->s_clustersize;
1579 handle_t *handle;
1580 loff_t isize = i_size_read(inode);
1581
1582 /*
1583 * The "start" and "end" values are NOT necessarily part of
1584 * the range whose allocation is being deleted. Rather, this
1585 * is what the user passed in with the request. We must zero
1586 * partial clusters here. There's no need to worry about
1587 * physical allocation - the zeroing code knows to skip holes.
1588 */
1589 trace_ocfs2_zero_partial_clusters(
1590 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1591 (unsigned long long)start, (unsigned long long)end);
1592
1593 /*
1594 * If both edges are on a cluster boundary then there's no
1595 * zeroing required as the region is part of the allocation to
1596 * be truncated.
1597 */
1598 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1599 goto out;
1600
1601 /* No page cache for EOF blocks, issue zero out to disk. */
1602 if (end > isize) {
1603 /*
1604 * zeroout eof blocks in last cluster starting from
1605 * "isize" even "start" > "isize" because it is
1606 * complicated to zeroout just at "start" as "start"
1607 * may be not aligned with block size, buffer write
1608 * would be required to do that, but out of eof buffer
1609 * write is not supported.
1610 */
1611 ret = ocfs2_zeroout_partial_cluster(inode, isize,
1612 end - isize);
1613 if (ret) {
1614 mlog_errno(ret);
1615 goto out;
1616 }
1617 if (start >= isize)
1618 goto out;
1619 end = isize;
1620 }
1621 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1622 if (IS_ERR(handle)) {
1623 ret = PTR_ERR(handle);
1624 mlog_errno(ret);
1625 goto out;
1626 }
1627
1628 /*
1629 * If start is on a cluster boundary and end is somewhere in another
1630 * cluster, we have not COWed the cluster starting at start, unless
1631 * end is also within the same cluster. So, in this case, we skip this
1632 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1633 * to the next one.
1634 */
1635 if ((start & (csize - 1)) != 0) {
1636 /*
1637 * We want to get the byte offset of the end of the 1st
1638 * cluster.
1639 */
1640 tmpend = (u64)osb->s_clustersize +
1641 (start & ~(osb->s_clustersize - 1));
1642 if (tmpend > end)
1643 tmpend = end;
1644
1645 trace_ocfs2_zero_partial_clusters_range1(
1646 (unsigned long long)start,
1647 (unsigned long long)tmpend);
1648
1649 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1650 tmpend);
1651 if (ret)
1652 mlog_errno(ret);
1653 }
1654
1655 if (tmpend < end) {
1656 /*
1657 * This may make start and end equal, but the zeroing
1658 * code will skip any work in that case so there's no
1659 * need to catch it up here.
1660 */
1661 start = end & ~(osb->s_clustersize - 1);
1662
1663 trace_ocfs2_zero_partial_clusters_range2(
1664 (unsigned long long)start, (unsigned long long)end);
1665
1666 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1667 if (ret)
1668 mlog_errno(ret);
1669 }
1670 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1671
1672 ocfs2_commit_trans(osb, handle);
1673 out:
1674 return ret;
1675 }
1676
ocfs2_find_rec(struct ocfs2_extent_list * el,u32 pos)1677 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1678 {
1679 int i;
1680 struct ocfs2_extent_rec *rec = NULL;
1681
1682 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1683
1684 rec = &el->l_recs[i];
1685
1686 if (le32_to_cpu(rec->e_cpos) < pos)
1687 break;
1688 }
1689
1690 return i;
1691 }
1692
1693 /*
1694 * Helper to calculate the punching pos and length in one run, we handle the
1695 * following three cases in order:
1696 *
1697 * - remove the entire record
1698 * - remove a partial record
1699 * - no record needs to be removed (hole-punching completed)
1700 */
ocfs2_calc_trunc_pos(struct inode * inode,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * rec,u32 trunc_start,u32 * trunc_cpos,u32 * trunc_len,u32 * trunc_end,u64 * blkno,int * done)1701 static void ocfs2_calc_trunc_pos(struct inode *inode,
1702 struct ocfs2_extent_list *el,
1703 struct ocfs2_extent_rec *rec,
1704 u32 trunc_start, u32 *trunc_cpos,
1705 u32 *trunc_len, u32 *trunc_end,
1706 u64 *blkno, int *done)
1707 {
1708 int ret = 0;
1709 u32 coff, range;
1710
1711 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1712
1713 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1714 /*
1715 * remove an entire extent record.
1716 */
1717 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1718 /*
1719 * Skip holes if any.
1720 */
1721 if (range < *trunc_end)
1722 *trunc_end = range;
1723 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1724 *blkno = le64_to_cpu(rec->e_blkno);
1725 *trunc_end = le32_to_cpu(rec->e_cpos);
1726 } else if (range > trunc_start) {
1727 /*
1728 * remove a partial extent record, which means we're
1729 * removing the last extent record.
1730 */
1731 *trunc_cpos = trunc_start;
1732 /*
1733 * skip hole if any.
1734 */
1735 if (range < *trunc_end)
1736 *trunc_end = range;
1737 *trunc_len = *trunc_end - trunc_start;
1738 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1739 *blkno = le64_to_cpu(rec->e_blkno) +
1740 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1741 *trunc_end = trunc_start;
1742 } else {
1743 /*
1744 * It may have two following possibilities:
1745 *
1746 * - last record has been removed
1747 * - trunc_start was within a hole
1748 *
1749 * both two cases mean the completion of hole punching.
1750 */
1751 ret = 1;
1752 }
1753
1754 *done = ret;
1755 }
1756
ocfs2_remove_inode_range(struct inode * inode,struct buffer_head * di_bh,u64 byte_start,u64 byte_len)1757 int ocfs2_remove_inode_range(struct inode *inode,
1758 struct buffer_head *di_bh, u64 byte_start,
1759 u64 byte_len)
1760 {
1761 int ret = 0, flags = 0, done = 0, i;
1762 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1763 u32 cluster_in_el;
1764 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1765 struct ocfs2_cached_dealloc_ctxt dealloc;
1766 struct address_space *mapping = inode->i_mapping;
1767 struct ocfs2_extent_tree et;
1768 struct ocfs2_path *path = NULL;
1769 struct ocfs2_extent_list *el = NULL;
1770 struct ocfs2_extent_rec *rec = NULL;
1771 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1772 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1773
1774 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1775 ocfs2_init_dealloc_ctxt(&dealloc);
1776
1777 trace_ocfs2_remove_inode_range(
1778 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1779 (unsigned long long)byte_start,
1780 (unsigned long long)byte_len);
1781
1782 if (byte_len == 0)
1783 return 0;
1784
1785 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1786 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1787 byte_start + byte_len, 0);
1788 if (ret) {
1789 mlog_errno(ret);
1790 goto out;
1791 }
1792 /*
1793 * There's no need to get fancy with the page cache
1794 * truncate of an inline-data inode. We're talking
1795 * about less than a page here, which will be cached
1796 * in the dinode buffer anyway.
1797 */
1798 unmap_mapping_range(mapping, 0, 0, 0);
1799 truncate_inode_pages(mapping, 0);
1800 goto out;
1801 }
1802
1803 /*
1804 * For reflinks, we may need to CoW 2 clusters which might be
1805 * partially zero'd later, if hole's start and end offset were
1806 * within one cluster(means is not exactly aligned to clustersize).
1807 */
1808
1809 if (ocfs2_is_refcount_inode(inode)) {
1810 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1811 if (ret) {
1812 mlog_errno(ret);
1813 goto out;
1814 }
1815
1816 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1817 if (ret) {
1818 mlog_errno(ret);
1819 goto out;
1820 }
1821 }
1822
1823 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1824 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1825 cluster_in_el = trunc_end;
1826
1827 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1828 if (ret) {
1829 mlog_errno(ret);
1830 goto out;
1831 }
1832
1833 path = ocfs2_new_path_from_et(&et);
1834 if (!path) {
1835 ret = -ENOMEM;
1836 mlog_errno(ret);
1837 goto out;
1838 }
1839
1840 while (trunc_end > trunc_start) {
1841
1842 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1843 cluster_in_el);
1844 if (ret) {
1845 mlog_errno(ret);
1846 goto out;
1847 }
1848
1849 el = path_leaf_el(path);
1850
1851 i = ocfs2_find_rec(el, trunc_end);
1852 /*
1853 * Need to go to previous extent block.
1854 */
1855 if (i < 0) {
1856 if (path->p_tree_depth == 0)
1857 break;
1858
1859 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1860 path,
1861 &cluster_in_el);
1862 if (ret) {
1863 mlog_errno(ret);
1864 goto out;
1865 }
1866
1867 /*
1868 * We've reached the leftmost extent block,
1869 * it's safe to leave.
1870 */
1871 if (cluster_in_el == 0)
1872 break;
1873
1874 /*
1875 * The 'pos' searched for previous extent block is
1876 * always one cluster less than actual trunc_end.
1877 */
1878 trunc_end = cluster_in_el + 1;
1879
1880 ocfs2_reinit_path(path, 1);
1881
1882 continue;
1883
1884 } else
1885 rec = &el->l_recs[i];
1886
1887 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1888 &trunc_len, &trunc_end, &blkno, &done);
1889 if (done)
1890 break;
1891
1892 flags = rec->e_flags;
1893 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1894
1895 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1896 phys_cpos, trunc_len, flags,
1897 &dealloc, refcount_loc, false);
1898 if (ret < 0) {
1899 mlog_errno(ret);
1900 goto out;
1901 }
1902
1903 cluster_in_el = trunc_end;
1904
1905 ocfs2_reinit_path(path, 1);
1906 }
1907
1908 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1909
1910 out:
1911 ocfs2_free_path(path);
1912 ocfs2_schedule_truncate_log_flush(osb, 1);
1913 ocfs2_run_deallocs(osb, &dealloc);
1914
1915 return ret;
1916 }
1917
1918 /*
1919 * Parts of this function taken from xfs_change_file_space()
1920 */
__ocfs2_change_file_space(struct file * file,struct inode * inode,loff_t f_pos,unsigned int cmd,struct ocfs2_space_resv * sr,int change_size)1921 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1922 loff_t f_pos, unsigned int cmd,
1923 struct ocfs2_space_resv *sr,
1924 int change_size)
1925 {
1926 int ret;
1927 s64 llen;
1928 loff_t size, orig_isize;
1929 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1930 struct buffer_head *di_bh = NULL;
1931 handle_t *handle;
1932 unsigned long long max_off = inode->i_sb->s_maxbytes;
1933
1934 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1935 return -EROFS;
1936
1937 inode_lock(inode);
1938
1939 /* Wait all existing dio workers, newcomers will block on i_rwsem */
1940 inode_dio_wait(inode);
1941 /*
1942 * This prevents concurrent writes on other nodes
1943 */
1944 ret = ocfs2_rw_lock(inode, 1);
1945 if (ret) {
1946 mlog_errno(ret);
1947 goto out;
1948 }
1949
1950 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1951 if (ret) {
1952 mlog_errno(ret);
1953 goto out_rw_unlock;
1954 }
1955
1956 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1957 ret = -EPERM;
1958 goto out_inode_unlock;
1959 }
1960
1961 switch (sr->l_whence) {
1962 case 0: /*SEEK_SET*/
1963 break;
1964 case 1: /*SEEK_CUR*/
1965 sr->l_start += f_pos;
1966 break;
1967 case 2: /*SEEK_END*/
1968 sr->l_start += i_size_read(inode);
1969 break;
1970 default:
1971 ret = -EINVAL;
1972 goto out_inode_unlock;
1973 }
1974 sr->l_whence = 0;
1975
1976 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1977
1978 if (sr->l_start < 0
1979 || sr->l_start > max_off
1980 || (sr->l_start + llen) < 0
1981 || (sr->l_start + llen) > max_off) {
1982 ret = -EINVAL;
1983 goto out_inode_unlock;
1984 }
1985 size = sr->l_start + sr->l_len;
1986
1987 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1988 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1989 if (sr->l_len <= 0) {
1990 ret = -EINVAL;
1991 goto out_inode_unlock;
1992 }
1993 }
1994
1995 if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) {
1996 ret = __ocfs2_write_remove_suid(inode, di_bh);
1997 if (ret) {
1998 mlog_errno(ret);
1999 goto out_inode_unlock;
2000 }
2001 }
2002
2003 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2004 switch (cmd) {
2005 case OCFS2_IOC_RESVSP:
2006 case OCFS2_IOC_RESVSP64:
2007 /*
2008 * This takes unsigned offsets, but the signed ones we
2009 * pass have been checked against overflow above.
2010 */
2011 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2012 sr->l_len);
2013 break;
2014 case OCFS2_IOC_UNRESVSP:
2015 case OCFS2_IOC_UNRESVSP64:
2016 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2017 sr->l_len);
2018 break;
2019 default:
2020 ret = -EINVAL;
2021 }
2022
2023 orig_isize = i_size_read(inode);
2024 /* zeroout eof blocks in the cluster. */
2025 if (!ret && change_size && orig_isize < size) {
2026 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2027 size - orig_isize);
2028 if (!ret)
2029 i_size_write(inode, size);
2030 }
2031 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2032 if (ret) {
2033 mlog_errno(ret);
2034 goto out_inode_unlock;
2035 }
2036
2037 /*
2038 * We update c/mtime for these changes
2039 */
2040 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2041 if (IS_ERR(handle)) {
2042 ret = PTR_ERR(handle);
2043 mlog_errno(ret);
2044 goto out_inode_unlock;
2045 }
2046
2047 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2048 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2049 if (ret < 0)
2050 mlog_errno(ret);
2051
2052 if (file && (file->f_flags & O_SYNC))
2053 handle->h_sync = 1;
2054
2055 ocfs2_commit_trans(osb, handle);
2056
2057 out_inode_unlock:
2058 brelse(di_bh);
2059 ocfs2_inode_unlock(inode, 1);
2060 out_rw_unlock:
2061 ocfs2_rw_unlock(inode, 1);
2062
2063 out:
2064 inode_unlock(inode);
2065 return ret;
2066 }
2067
ocfs2_change_file_space(struct file * file,unsigned int cmd,struct ocfs2_space_resv * sr)2068 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2069 struct ocfs2_space_resv *sr)
2070 {
2071 struct inode *inode = file_inode(file);
2072 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2073 int ret;
2074
2075 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2076 !ocfs2_writes_unwritten_extents(osb))
2077 return -ENOTTY;
2078 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2079 !ocfs2_sparse_alloc(osb))
2080 return -ENOTTY;
2081
2082 if (!S_ISREG(inode->i_mode))
2083 return -EINVAL;
2084
2085 if (!(file->f_mode & FMODE_WRITE))
2086 return -EBADF;
2087
2088 ret = mnt_want_write_file(file);
2089 if (ret)
2090 return ret;
2091 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2092 mnt_drop_write_file(file);
2093 return ret;
2094 }
2095
ocfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2096 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2097 loff_t len)
2098 {
2099 struct inode *inode = file_inode(file);
2100 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2101 struct ocfs2_space_resv sr;
2102 int change_size = 1;
2103 int cmd = OCFS2_IOC_RESVSP64;
2104 int ret = 0;
2105
2106 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2107 return -EOPNOTSUPP;
2108 if (!ocfs2_writes_unwritten_extents(osb))
2109 return -EOPNOTSUPP;
2110
2111 if (mode & FALLOC_FL_KEEP_SIZE) {
2112 change_size = 0;
2113 } else {
2114 ret = inode_newsize_ok(inode, offset + len);
2115 if (ret)
2116 return ret;
2117 }
2118
2119 if (mode & FALLOC_FL_PUNCH_HOLE)
2120 cmd = OCFS2_IOC_UNRESVSP64;
2121
2122 sr.l_whence = 0;
2123 sr.l_start = (s64)offset;
2124 sr.l_len = (s64)len;
2125
2126 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2127 change_size);
2128 }
2129
ocfs2_check_range_for_refcount(struct inode * inode,loff_t pos,size_t count)2130 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2131 size_t count)
2132 {
2133 int ret = 0;
2134 unsigned int extent_flags;
2135 u32 cpos, clusters, extent_len, phys_cpos;
2136 struct super_block *sb = inode->i_sb;
2137
2138 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2139 !ocfs2_is_refcount_inode(inode) ||
2140 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2141 return 0;
2142
2143 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2144 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2145
2146 while (clusters) {
2147 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2148 &extent_flags);
2149 if (ret < 0) {
2150 mlog_errno(ret);
2151 goto out;
2152 }
2153
2154 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2155 ret = 1;
2156 break;
2157 }
2158
2159 if (extent_len > clusters)
2160 extent_len = clusters;
2161
2162 clusters -= extent_len;
2163 cpos += extent_len;
2164 }
2165 out:
2166 return ret;
2167 }
2168
ocfs2_is_io_unaligned(struct inode * inode,size_t count,loff_t pos)2169 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2170 {
2171 int blockmask = inode->i_sb->s_blocksize - 1;
2172 loff_t final_size = pos + count;
2173
2174 if ((pos & blockmask) || (final_size & blockmask))
2175 return 1;
2176 return 0;
2177 }
2178
ocfs2_inode_lock_for_extent_tree(struct inode * inode,struct buffer_head ** di_bh,int meta_level,int write_sem,int wait)2179 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2180 struct buffer_head **di_bh,
2181 int meta_level,
2182 int write_sem,
2183 int wait)
2184 {
2185 int ret = 0;
2186
2187 if (wait)
2188 ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2189 else
2190 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2191 if (ret < 0)
2192 goto out;
2193
2194 if (wait) {
2195 if (write_sem)
2196 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2197 else
2198 down_read(&OCFS2_I(inode)->ip_alloc_sem);
2199 } else {
2200 if (write_sem)
2201 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2202 else
2203 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2204
2205 if (!ret) {
2206 ret = -EAGAIN;
2207 goto out_unlock;
2208 }
2209 }
2210
2211 return ret;
2212
2213 out_unlock:
2214 brelse(*di_bh);
2215 *di_bh = NULL;
2216 ocfs2_inode_unlock(inode, meta_level);
2217 out:
2218 return ret;
2219 }
2220
ocfs2_inode_unlock_for_extent_tree(struct inode * inode,struct buffer_head ** di_bh,int meta_level,int write_sem)2221 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2222 struct buffer_head **di_bh,
2223 int meta_level,
2224 int write_sem)
2225 {
2226 if (write_sem)
2227 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2228 else
2229 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2230
2231 brelse(*di_bh);
2232 *di_bh = NULL;
2233
2234 if (meta_level >= 0)
2235 ocfs2_inode_unlock(inode, meta_level);
2236 }
2237
ocfs2_prepare_inode_for_write(struct file * file,loff_t pos,size_t count,int wait)2238 static int ocfs2_prepare_inode_for_write(struct file *file,
2239 loff_t pos, size_t count, int wait)
2240 {
2241 int ret = 0, meta_level = 0, overwrite_io = 0;
2242 int write_sem = 0;
2243 struct dentry *dentry = file->f_path.dentry;
2244 struct inode *inode = d_inode(dentry);
2245 struct buffer_head *di_bh = NULL;
2246 u32 cpos;
2247 u32 clusters;
2248
2249 /*
2250 * We start with a read level meta lock and only jump to an ex
2251 * if we need to make modifications here.
2252 */
2253 for(;;) {
2254 ret = ocfs2_inode_lock_for_extent_tree(inode,
2255 &di_bh,
2256 meta_level,
2257 write_sem,
2258 wait);
2259 if (ret < 0) {
2260 if (ret != -EAGAIN)
2261 mlog_errno(ret);
2262 goto out;
2263 }
2264
2265 /*
2266 * Check if IO will overwrite allocated blocks in case
2267 * IOCB_NOWAIT flag is set.
2268 */
2269 if (!wait && !overwrite_io) {
2270 overwrite_io = 1;
2271
2272 ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2273 if (ret < 0) {
2274 if (ret != -EAGAIN)
2275 mlog_errno(ret);
2276 goto out_unlock;
2277 }
2278 }
2279
2280 /* Clear suid / sgid if necessary. We do this here
2281 * instead of later in the write path because
2282 * remove_suid() calls ->setattr without any hint that
2283 * we may have already done our cluster locking. Since
2284 * ocfs2_setattr() *must* take cluster locks to
2285 * proceed, this will lead us to recursively lock the
2286 * inode. There's also the dinode i_size state which
2287 * can be lost via setattr during extending writes (we
2288 * set inode->i_size at the end of a write. */
2289 if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) {
2290 if (meta_level == 0) {
2291 ocfs2_inode_unlock_for_extent_tree(inode,
2292 &di_bh,
2293 meta_level,
2294 write_sem);
2295 meta_level = 1;
2296 continue;
2297 }
2298
2299 ret = ocfs2_write_remove_suid(inode);
2300 if (ret < 0) {
2301 mlog_errno(ret);
2302 goto out_unlock;
2303 }
2304 }
2305
2306 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2307 if (ret == 1) {
2308 ocfs2_inode_unlock_for_extent_tree(inode,
2309 &di_bh,
2310 meta_level,
2311 write_sem);
2312 meta_level = 1;
2313 write_sem = 1;
2314 ret = ocfs2_inode_lock_for_extent_tree(inode,
2315 &di_bh,
2316 meta_level,
2317 write_sem,
2318 wait);
2319 if (ret < 0) {
2320 if (ret != -EAGAIN)
2321 mlog_errno(ret);
2322 goto out;
2323 }
2324
2325 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2326 clusters =
2327 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2328 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2329 }
2330
2331 if (ret < 0) {
2332 if (ret != -EAGAIN)
2333 mlog_errno(ret);
2334 goto out_unlock;
2335 }
2336
2337 break;
2338 }
2339
2340 out_unlock:
2341 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2342 pos, count, wait);
2343
2344 ocfs2_inode_unlock_for_extent_tree(inode,
2345 &di_bh,
2346 meta_level,
2347 write_sem);
2348
2349 out:
2350 return ret;
2351 }
2352
ocfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2353 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2354 struct iov_iter *from)
2355 {
2356 int rw_level;
2357 ssize_t written = 0;
2358 ssize_t ret;
2359 size_t count = iov_iter_count(from);
2360 struct file *file = iocb->ki_filp;
2361 struct inode *inode = file_inode(file);
2362 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2363 int full_coherency = !(osb->s_mount_opt &
2364 OCFS2_MOUNT_COHERENCY_BUFFERED);
2365 void *saved_ki_complete = NULL;
2366 int append_write = ((iocb->ki_pos + count) >=
2367 i_size_read(inode) ? 1 : 0);
2368 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2369 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2370
2371 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2372 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2373 file->f_path.dentry->d_name.len,
2374 file->f_path.dentry->d_name.name,
2375 (unsigned int)from->nr_segs); /* GRRRRR */
2376
2377 if (!direct_io && nowait)
2378 return -EOPNOTSUPP;
2379
2380 if (count == 0)
2381 return 0;
2382
2383 if (nowait) {
2384 if (!inode_trylock(inode))
2385 return -EAGAIN;
2386 } else
2387 inode_lock(inode);
2388
2389 /*
2390 * Concurrent O_DIRECT writes are allowed with
2391 * mount_option "coherency=buffered".
2392 * For append write, we must take rw EX.
2393 */
2394 rw_level = (!direct_io || full_coherency || append_write);
2395
2396 if (nowait)
2397 ret = ocfs2_try_rw_lock(inode, rw_level);
2398 else
2399 ret = ocfs2_rw_lock(inode, rw_level);
2400 if (ret < 0) {
2401 if (ret != -EAGAIN)
2402 mlog_errno(ret);
2403 goto out_mutex;
2404 }
2405
2406 /*
2407 * O_DIRECT writes with "coherency=full" need to take EX cluster
2408 * inode_lock to guarantee coherency.
2409 */
2410 if (direct_io && full_coherency) {
2411 /*
2412 * We need to take and drop the inode lock to force
2413 * other nodes to drop their caches. Buffered I/O
2414 * already does this in write_begin().
2415 */
2416 if (nowait)
2417 ret = ocfs2_try_inode_lock(inode, NULL, 1);
2418 else
2419 ret = ocfs2_inode_lock(inode, NULL, 1);
2420 if (ret < 0) {
2421 if (ret != -EAGAIN)
2422 mlog_errno(ret);
2423 goto out;
2424 }
2425
2426 ocfs2_inode_unlock(inode, 1);
2427 }
2428
2429 ret = generic_write_checks(iocb, from);
2430 if (ret <= 0) {
2431 if (ret)
2432 mlog_errno(ret);
2433 goto out;
2434 }
2435 count = ret;
2436
2437 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2438 if (ret < 0) {
2439 if (ret != -EAGAIN)
2440 mlog_errno(ret);
2441 goto out;
2442 }
2443
2444 if (direct_io && !is_sync_kiocb(iocb) &&
2445 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2446 /*
2447 * Make it a sync io if it's an unaligned aio.
2448 */
2449 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2450 }
2451
2452 /* communicate with ocfs2_dio_end_io */
2453 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2454
2455 written = __generic_file_write_iter(iocb, from);
2456 /* buffered aio wouldn't have proper lock coverage today */
2457 BUG_ON(written == -EIOCBQUEUED && !direct_io);
2458
2459 /*
2460 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2461 * function pointer which is called when o_direct io completes so that
2462 * it can unlock our rw lock.
2463 * Unfortunately there are error cases which call end_io and others
2464 * that don't. so we don't have to unlock the rw_lock if either an
2465 * async dio is going to do it in the future or an end_io after an
2466 * error has already done it.
2467 */
2468 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2469 rw_level = -1;
2470 }
2471
2472 if (unlikely(written <= 0))
2473 goto out;
2474
2475 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2476 IS_SYNC(inode)) {
2477 ret = filemap_fdatawrite_range(file->f_mapping,
2478 iocb->ki_pos - written,
2479 iocb->ki_pos - 1);
2480 if (ret < 0)
2481 written = ret;
2482
2483 if (!ret) {
2484 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2485 if (ret < 0)
2486 written = ret;
2487 }
2488
2489 if (!ret)
2490 ret = filemap_fdatawait_range(file->f_mapping,
2491 iocb->ki_pos - written,
2492 iocb->ki_pos - 1);
2493 }
2494
2495 out:
2496 if (saved_ki_complete)
2497 xchg(&iocb->ki_complete, saved_ki_complete);
2498
2499 if (rw_level != -1)
2500 ocfs2_rw_unlock(inode, rw_level);
2501
2502 out_mutex:
2503 inode_unlock(inode);
2504
2505 if (written)
2506 ret = written;
2507 return ret;
2508 }
2509
ocfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2510 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2511 struct iov_iter *to)
2512 {
2513 int ret = 0, rw_level = -1, lock_level = 0;
2514 struct file *filp = iocb->ki_filp;
2515 struct inode *inode = file_inode(filp);
2516 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2517 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2518
2519 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2520 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2521 filp->f_path.dentry->d_name.len,
2522 filp->f_path.dentry->d_name.name,
2523 to->nr_segs); /* GRRRRR */
2524
2525
2526 if (!inode) {
2527 ret = -EINVAL;
2528 mlog_errno(ret);
2529 goto bail;
2530 }
2531
2532 if (!direct_io && nowait)
2533 return -EOPNOTSUPP;
2534
2535 /*
2536 * buffered reads protect themselves in ->read_folio(). O_DIRECT reads
2537 * need locks to protect pending reads from racing with truncate.
2538 */
2539 if (direct_io) {
2540 if (nowait)
2541 ret = ocfs2_try_rw_lock(inode, 0);
2542 else
2543 ret = ocfs2_rw_lock(inode, 0);
2544
2545 if (ret < 0) {
2546 if (ret != -EAGAIN)
2547 mlog_errno(ret);
2548 goto bail;
2549 }
2550 rw_level = 0;
2551 /* communicate with ocfs2_dio_end_io */
2552 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2553 }
2554
2555 /*
2556 * We're fine letting folks race truncates and extending
2557 * writes with read across the cluster, just like they can
2558 * locally. Hence no rw_lock during read.
2559 *
2560 * Take and drop the meta data lock to update inode fields
2561 * like i_size. This allows the checks down below
2562 * copy_splice_read() a chance of actually working.
2563 */
2564 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2565 !nowait);
2566 if (ret < 0) {
2567 if (ret != -EAGAIN)
2568 mlog_errno(ret);
2569 goto bail;
2570 }
2571 ocfs2_inode_unlock(inode, lock_level);
2572
2573 ret = generic_file_read_iter(iocb, to);
2574 trace_generic_file_read_iter_ret(ret);
2575
2576 /* buffered aio wouldn't have proper lock coverage today */
2577 BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2578
2579 /* see ocfs2_file_write_iter */
2580 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2581 rw_level = -1;
2582 }
2583
2584 bail:
2585 if (rw_level != -1)
2586 ocfs2_rw_unlock(inode, rw_level);
2587
2588 return ret;
2589 }
2590
ocfs2_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2591 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos,
2592 struct pipe_inode_info *pipe,
2593 size_t len, unsigned int flags)
2594 {
2595 struct inode *inode = file_inode(in);
2596 ssize_t ret = 0;
2597 int lock_level = 0;
2598
2599 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2600 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2601 in->f_path.dentry->d_name.len,
2602 in->f_path.dentry->d_name.name,
2603 flags);
2604
2605 /*
2606 * We're fine letting folks race truncates and extending writes with
2607 * read across the cluster, just like they can locally. Hence no
2608 * rw_lock during read.
2609 *
2610 * Take and drop the meta data lock to update inode fields like i_size.
2611 * This allows the checks down below filemap_splice_read() a chance of
2612 * actually working.
2613 */
2614 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1);
2615 if (ret < 0) {
2616 if (ret != -EAGAIN)
2617 mlog_errno(ret);
2618 goto bail;
2619 }
2620 ocfs2_inode_unlock(inode, lock_level);
2621
2622 ret = filemap_splice_read(in, ppos, pipe, len, flags);
2623 trace_filemap_splice_read_ret(ret);
2624 bail:
2625 return ret;
2626 }
2627
2628 /* Refer generic_file_llseek_unlocked() */
ocfs2_file_llseek(struct file * file,loff_t offset,int whence)2629 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2630 {
2631 struct inode *inode = file->f_mapping->host;
2632 int ret = 0;
2633
2634 inode_lock(inode);
2635
2636 switch (whence) {
2637 case SEEK_SET:
2638 break;
2639 case SEEK_END:
2640 /* SEEK_END requires the OCFS2 inode lock for the file
2641 * because it references the file's size.
2642 */
2643 ret = ocfs2_inode_lock(inode, NULL, 0);
2644 if (ret < 0) {
2645 mlog_errno(ret);
2646 goto out;
2647 }
2648 offset += i_size_read(inode);
2649 ocfs2_inode_unlock(inode, 0);
2650 break;
2651 case SEEK_CUR:
2652 if (offset == 0) {
2653 offset = file->f_pos;
2654 goto out;
2655 }
2656 offset += file->f_pos;
2657 break;
2658 case SEEK_DATA:
2659 case SEEK_HOLE:
2660 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2661 if (ret)
2662 goto out;
2663 break;
2664 default:
2665 ret = -EINVAL;
2666 goto out;
2667 }
2668
2669 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2670
2671 out:
2672 inode_unlock(inode);
2673 if (ret)
2674 return ret;
2675 return offset;
2676 }
2677
ocfs2_remap_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)2678 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2679 struct file *file_out, loff_t pos_out,
2680 loff_t len, unsigned int remap_flags)
2681 {
2682 struct inode *inode_in = file_inode(file_in);
2683 struct inode *inode_out = file_inode(file_out);
2684 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2685 struct buffer_head *in_bh = NULL, *out_bh = NULL;
2686 bool same_inode = (inode_in == inode_out);
2687 loff_t remapped = 0;
2688 ssize_t ret;
2689
2690 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2691 return -EINVAL;
2692 if (!ocfs2_refcount_tree(osb))
2693 return -EOPNOTSUPP;
2694 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2695 return -EROFS;
2696
2697 /* Lock both files against IO */
2698 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2699 if (ret)
2700 return ret;
2701
2702 /* Check file eligibility and prepare for block sharing. */
2703 ret = -EINVAL;
2704 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2705 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2706 goto out_unlock;
2707
2708 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2709 &len, remap_flags);
2710 if (ret < 0 || len == 0)
2711 goto out_unlock;
2712
2713 /* Lock out changes to the allocation maps and remap. */
2714 down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2715 if (!same_inode)
2716 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2717 SINGLE_DEPTH_NESTING);
2718
2719 /* Zap any page cache for the destination file's range. */
2720 truncate_inode_pages_range(&inode_out->i_data,
2721 round_down(pos_out, PAGE_SIZE),
2722 round_up(pos_out + len, PAGE_SIZE) - 1);
2723
2724 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2725 inode_out, out_bh, pos_out, len);
2726 up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2727 if (!same_inode)
2728 up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2729 if (remapped < 0) {
2730 ret = remapped;
2731 mlog_errno(ret);
2732 goto out_unlock;
2733 }
2734
2735 /*
2736 * Empty the extent map so that we may get the right extent
2737 * record from the disk.
2738 */
2739 ocfs2_extent_map_trunc(inode_in, 0);
2740 ocfs2_extent_map_trunc(inode_out, 0);
2741
2742 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2743 if (ret) {
2744 mlog_errno(ret);
2745 goto out_unlock;
2746 }
2747
2748 out_unlock:
2749 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2750 return remapped > 0 ? remapped : ret;
2751 }
2752
2753 const struct inode_operations ocfs2_file_iops = {
2754 .setattr = ocfs2_setattr,
2755 .getattr = ocfs2_getattr,
2756 .permission = ocfs2_permission,
2757 .listxattr = ocfs2_listxattr,
2758 .fiemap = ocfs2_fiemap,
2759 .get_inode_acl = ocfs2_iop_get_acl,
2760 .set_acl = ocfs2_iop_set_acl,
2761 .fileattr_get = ocfs2_fileattr_get,
2762 .fileattr_set = ocfs2_fileattr_set,
2763 };
2764
2765 const struct inode_operations ocfs2_special_file_iops = {
2766 .setattr = ocfs2_setattr,
2767 .getattr = ocfs2_getattr,
2768 .permission = ocfs2_permission,
2769 .get_inode_acl = ocfs2_iop_get_acl,
2770 .set_acl = ocfs2_iop_set_acl,
2771 };
2772
2773 /*
2774 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2775 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2776 */
2777 const struct file_operations ocfs2_fops = {
2778 .llseek = ocfs2_file_llseek,
2779 .mmap = ocfs2_mmap,
2780 .fsync = ocfs2_sync_file,
2781 .release = ocfs2_file_release,
2782 .open = ocfs2_file_open,
2783 .read_iter = ocfs2_file_read_iter,
2784 .write_iter = ocfs2_file_write_iter,
2785 .unlocked_ioctl = ocfs2_ioctl,
2786 #ifdef CONFIG_COMPAT
2787 .compat_ioctl = ocfs2_compat_ioctl,
2788 #endif
2789 .lock = ocfs2_lock,
2790 .flock = ocfs2_flock,
2791 .splice_read = ocfs2_file_splice_read,
2792 .splice_write = iter_file_splice_write,
2793 .fallocate = ocfs2_fallocate,
2794 .remap_file_range = ocfs2_remap_file_range,
2795 };
2796
2797 WRAP_DIR_ITER(ocfs2_readdir) // FIXME!
2798 const struct file_operations ocfs2_dops = {
2799 .llseek = generic_file_llseek,
2800 .read = generic_read_dir,
2801 .iterate_shared = shared_ocfs2_readdir,
2802 .fsync = ocfs2_sync_file,
2803 .release = ocfs2_dir_release,
2804 .open = ocfs2_dir_open,
2805 .unlocked_ioctl = ocfs2_ioctl,
2806 #ifdef CONFIG_COMPAT
2807 .compat_ioctl = ocfs2_compat_ioctl,
2808 #endif
2809 .lock = ocfs2_lock,
2810 .flock = ocfs2_flock,
2811 };
2812
2813 /*
2814 * POSIX-lockless variants of our file_operations.
2815 *
2816 * These will be used if the underlying cluster stack does not support
2817 * posix file locking, if the user passes the "localflocks" mount
2818 * option, or if we have a local-only fs.
2819 *
2820 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2821 * so we still want it in the case of no stack support for
2822 * plocks. Internally, it will do the right thing when asked to ignore
2823 * the cluster.
2824 */
2825 const struct file_operations ocfs2_fops_no_plocks = {
2826 .llseek = ocfs2_file_llseek,
2827 .mmap = ocfs2_mmap,
2828 .fsync = ocfs2_sync_file,
2829 .release = ocfs2_file_release,
2830 .open = ocfs2_file_open,
2831 .read_iter = ocfs2_file_read_iter,
2832 .write_iter = ocfs2_file_write_iter,
2833 .unlocked_ioctl = ocfs2_ioctl,
2834 #ifdef CONFIG_COMPAT
2835 .compat_ioctl = ocfs2_compat_ioctl,
2836 #endif
2837 .flock = ocfs2_flock,
2838 .splice_read = filemap_splice_read,
2839 .splice_write = iter_file_splice_write,
2840 .fallocate = ocfs2_fallocate,
2841 .remap_file_range = ocfs2_remap_file_range,
2842 };
2843
2844 const struct file_operations ocfs2_dops_no_plocks = {
2845 .llseek = generic_file_llseek,
2846 .read = generic_read_dir,
2847 .iterate_shared = shared_ocfs2_readdir,
2848 .fsync = ocfs2_sync_file,
2849 .release = ocfs2_dir_release,
2850 .open = ocfs2_dir_open,
2851 .unlocked_ioctl = ocfs2_ioctl,
2852 #ifdef CONFIG_COMPAT
2853 .compat_ioctl = ocfs2_compat_ioctl,
2854 #endif
2855 .flock = ocfs2_flock,
2856 };
2857