xref: /openbmc/linux/arch/x86/events/intel/pt.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Intel(R) Processor Trace PMU driver for perf
4   * Copyright (c) 2013-2014, Intel Corporation.
5   *
6   * Intel PT is specified in the Intel Architecture Instruction Set Extensions
7   * Programming Reference:
8   * http://software.intel.com/en-us/intel-isa-extensions
9   */
10  
11  #undef DEBUG
12  
13  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14  
15  #include <linux/types.h>
16  #include <linux/bits.h>
17  #include <linux/limits.h>
18  #include <linux/slab.h>
19  #include <linux/device.h>
20  
21  #include <asm/perf_event.h>
22  #include <asm/insn.h>
23  #include <asm/io.h>
24  #include <asm/intel_pt.h>
25  #include <asm/intel-family.h>
26  
27  #include "../perf_event.h"
28  #include "pt.h"
29  
30  static DEFINE_PER_CPU(struct pt, pt_ctx);
31  
32  static struct pt_pmu pt_pmu;
33  
34  /*
35   * Capabilities of Intel PT hardware, such as number of address bits or
36   * supported output schemes, are cached and exported to userspace as "caps"
37   * attribute group of pt pmu device
38   * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
39   * relevant bits together with intel_pt traces.
40   *
41   * These are necessary for both trace decoding (payloads_lip, contains address
42   * width encoded in IP-related packets), and event configuration (bitmasks with
43   * permitted values for certain bit fields).
44   */
45  #define PT_CAP(_n, _l, _r, _m)						\
46  	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
47  			    .reg = _r, .mask = _m }
48  
49  static struct pt_cap_desc {
50  	const char	*name;
51  	u32		leaf;
52  	u8		reg;
53  	u32		mask;
54  } pt_caps[] = {
55  	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
56  	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
57  	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
58  	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
59  	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
60  	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
61  	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
62  	PT_CAP(event_trace,		0, CPUID_EBX, BIT(7)),
63  	PT_CAP(tnt_disable,		0, CPUID_EBX, BIT(8)),
64  	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
65  	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
66  	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
67  	PT_CAP(output_subsys,		0, CPUID_ECX, BIT(3)),
68  	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
69  	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x7),
70  	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
71  	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
72  	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
73  };
74  
intel_pt_validate_cap(u32 * caps,enum pt_capabilities capability)75  u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
76  {
77  	struct pt_cap_desc *cd = &pt_caps[capability];
78  	u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
79  	unsigned int shift = __ffs(cd->mask);
80  
81  	return (c & cd->mask) >> shift;
82  }
83  EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
84  
intel_pt_validate_hw_cap(enum pt_capabilities cap)85  u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
86  {
87  	return intel_pt_validate_cap(pt_pmu.caps, cap);
88  }
89  EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
90  
pt_cap_show(struct device * cdev,struct device_attribute * attr,char * buf)91  static ssize_t pt_cap_show(struct device *cdev,
92  			   struct device_attribute *attr,
93  			   char *buf)
94  {
95  	struct dev_ext_attribute *ea =
96  		container_of(attr, struct dev_ext_attribute, attr);
97  	enum pt_capabilities cap = (long)ea->var;
98  
99  	return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
100  }
101  
102  static struct attribute_group pt_cap_group __ro_after_init = {
103  	.name	= "caps",
104  };
105  
106  PMU_FORMAT_ATTR(pt,		"config:0"	);
107  PMU_FORMAT_ATTR(cyc,		"config:1"	);
108  PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
109  PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
110  PMU_FORMAT_ATTR(mtc,		"config:9"	);
111  PMU_FORMAT_ATTR(tsc,		"config:10"	);
112  PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
113  PMU_FORMAT_ATTR(ptw,		"config:12"	);
114  PMU_FORMAT_ATTR(branch,		"config:13"	);
115  PMU_FORMAT_ATTR(event,		"config:31"	);
116  PMU_FORMAT_ATTR(notnt,		"config:55"	);
117  PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
118  PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
119  PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
120  
121  static struct attribute *pt_formats_attr[] = {
122  	&format_attr_pt.attr,
123  	&format_attr_cyc.attr,
124  	&format_attr_pwr_evt.attr,
125  	&format_attr_event.attr,
126  	&format_attr_notnt.attr,
127  	&format_attr_fup_on_ptw.attr,
128  	&format_attr_mtc.attr,
129  	&format_attr_tsc.attr,
130  	&format_attr_noretcomp.attr,
131  	&format_attr_ptw.attr,
132  	&format_attr_branch.attr,
133  	&format_attr_mtc_period.attr,
134  	&format_attr_cyc_thresh.attr,
135  	&format_attr_psb_period.attr,
136  	NULL,
137  };
138  
139  static struct attribute_group pt_format_group = {
140  	.name	= "format",
141  	.attrs	= pt_formats_attr,
142  };
143  
144  static ssize_t
pt_timing_attr_show(struct device * dev,struct device_attribute * attr,char * page)145  pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
146  		    char *page)
147  {
148  	struct perf_pmu_events_attr *pmu_attr =
149  		container_of(attr, struct perf_pmu_events_attr, attr);
150  
151  	switch (pmu_attr->id) {
152  	case 0:
153  		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
154  	case 1:
155  		return sprintf(page, "%u:%u\n",
156  			       pt_pmu.tsc_art_num,
157  			       pt_pmu.tsc_art_den);
158  	default:
159  		break;
160  	}
161  
162  	return -EINVAL;
163  }
164  
165  PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
166  	       pt_timing_attr_show);
167  PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
168  	       pt_timing_attr_show);
169  
170  static struct attribute *pt_timing_attr[] = {
171  	&timing_attr_max_nonturbo_ratio.attr.attr,
172  	&timing_attr_tsc_art_ratio.attr.attr,
173  	NULL,
174  };
175  
176  static struct attribute_group pt_timing_group = {
177  	.attrs	= pt_timing_attr,
178  };
179  
180  static const struct attribute_group *pt_attr_groups[] = {
181  	&pt_cap_group,
182  	&pt_format_group,
183  	&pt_timing_group,
184  	NULL,
185  };
186  
pt_pmu_hw_init(void)187  static int __init pt_pmu_hw_init(void)
188  {
189  	struct dev_ext_attribute *de_attrs;
190  	struct attribute **attrs;
191  	size_t size;
192  	u64 reg;
193  	int ret;
194  	long i;
195  
196  	rdmsrl(MSR_PLATFORM_INFO, reg);
197  	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
198  
199  	/*
200  	 * if available, read in TSC to core crystal clock ratio,
201  	 * otherwise, zero for numerator stands for "not enumerated"
202  	 * as per SDM
203  	 */
204  	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
205  		u32 eax, ebx, ecx, edx;
206  
207  		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
208  
209  		pt_pmu.tsc_art_num = ebx;
210  		pt_pmu.tsc_art_den = eax;
211  	}
212  
213  	/* model-specific quirks */
214  	switch (boot_cpu_data.x86_model) {
215  	case INTEL_FAM6_BROADWELL:
216  	case INTEL_FAM6_BROADWELL_D:
217  	case INTEL_FAM6_BROADWELL_G:
218  	case INTEL_FAM6_BROADWELL_X:
219  		/* not setting BRANCH_EN will #GP, erratum BDM106 */
220  		pt_pmu.branch_en_always_on = true;
221  		break;
222  	default:
223  		break;
224  	}
225  
226  	if (boot_cpu_has(X86_FEATURE_VMX)) {
227  		/*
228  		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
229  		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
230  		 * post-VMXON.
231  		 */
232  		rdmsrl(MSR_IA32_VMX_MISC, reg);
233  		if (reg & BIT(14))
234  			pt_pmu.vmx = true;
235  	}
236  
237  	for (i = 0; i < PT_CPUID_LEAVES; i++) {
238  		cpuid_count(20, i,
239  			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
240  			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
241  			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
242  			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
243  	}
244  
245  	ret = -ENOMEM;
246  	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
247  	attrs = kzalloc(size, GFP_KERNEL);
248  	if (!attrs)
249  		goto fail;
250  
251  	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
252  	de_attrs = kzalloc(size, GFP_KERNEL);
253  	if (!de_attrs)
254  		goto fail;
255  
256  	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
257  		struct dev_ext_attribute *de_attr = de_attrs + i;
258  
259  		de_attr->attr.attr.name = pt_caps[i].name;
260  
261  		sysfs_attr_init(&de_attr->attr.attr);
262  
263  		de_attr->attr.attr.mode		= S_IRUGO;
264  		de_attr->attr.show		= pt_cap_show;
265  		de_attr->var			= (void *)i;
266  
267  		attrs[i] = &de_attr->attr.attr;
268  	}
269  
270  	pt_cap_group.attrs = attrs;
271  
272  	return 0;
273  
274  fail:
275  	kfree(attrs);
276  
277  	return ret;
278  }
279  
280  #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
281  			  RTIT_CTL_CYC_THRESH	| \
282  			  RTIT_CTL_PSB_FREQ)
283  
284  #define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
285  			 RTIT_CTL_MTC_RANGE)
286  
287  #define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
288  			 RTIT_CTL_FUP_ON_PTW)
289  
290  /*
291   * Bit 0 (TraceEn) in the attr.config is meaningless as the
292   * corresponding bit in the RTIT_CTL can only be controlled
293   * by the driver; therefore, repurpose it to mean: pass
294   * through the bit that was previously assumed to be always
295   * on for PT, thereby allowing the user to *not* set it if
296   * they so wish. See also pt_event_valid() and pt_config().
297   */
298  #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
299  
300  #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN	| \
301  			RTIT_CTL_TSC_EN		| \
302  			RTIT_CTL_DISRETC	| \
303  			RTIT_CTL_BRANCH_EN	| \
304  			RTIT_CTL_CYC_PSB	| \
305  			RTIT_CTL_MTC		| \
306  			RTIT_CTL_PWR_EVT_EN	| \
307  			RTIT_CTL_EVENT_EN	| \
308  			RTIT_CTL_NOTNT		| \
309  			RTIT_CTL_FUP_ON_PTW	| \
310  			RTIT_CTL_PTW_EN)
311  
pt_event_valid(struct perf_event * event)312  static bool pt_event_valid(struct perf_event *event)
313  {
314  	u64 config = event->attr.config;
315  	u64 allowed, requested;
316  
317  	if ((config & PT_CONFIG_MASK) != config)
318  		return false;
319  
320  	if (config & RTIT_CTL_CYC_PSB) {
321  		if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
322  			return false;
323  
324  		allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
325  		requested = (config & RTIT_CTL_PSB_FREQ) >>
326  			RTIT_CTL_PSB_FREQ_OFFSET;
327  		if (requested && (!(allowed & BIT(requested))))
328  			return false;
329  
330  		allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
331  		requested = (config & RTIT_CTL_CYC_THRESH) >>
332  			RTIT_CTL_CYC_THRESH_OFFSET;
333  		if (requested && (!(allowed & BIT(requested))))
334  			return false;
335  	}
336  
337  	if (config & RTIT_CTL_MTC) {
338  		/*
339  		 * In the unlikely case that CPUID lists valid mtc periods,
340  		 * but not the mtc capability, drop out here.
341  		 *
342  		 * Spec says that setting mtc period bits while mtc bit in
343  		 * CPUID is 0 will #GP, so better safe than sorry.
344  		 */
345  		if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
346  			return false;
347  
348  		allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
349  		if (!allowed)
350  			return false;
351  
352  		requested = (config & RTIT_CTL_MTC_RANGE) >>
353  			RTIT_CTL_MTC_RANGE_OFFSET;
354  
355  		if (!(allowed & BIT(requested)))
356  			return false;
357  	}
358  
359  	if (config & RTIT_CTL_PWR_EVT_EN &&
360  	    !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
361  		return false;
362  
363  	if (config & RTIT_CTL_EVENT_EN &&
364  	    !intel_pt_validate_hw_cap(PT_CAP_event_trace))
365  		return false;
366  
367  	if (config & RTIT_CTL_NOTNT &&
368  	    !intel_pt_validate_hw_cap(PT_CAP_tnt_disable))
369  		return false;
370  
371  	if (config & RTIT_CTL_PTW) {
372  		if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
373  			return false;
374  
375  		/* FUPonPTW without PTW doesn't make sense */
376  		if ((config & RTIT_CTL_FUP_ON_PTW) &&
377  		    !(config & RTIT_CTL_PTW_EN))
378  			return false;
379  	}
380  
381  	/*
382  	 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
383  	 * clears the assumption that BranchEn must always be enabled,
384  	 * as was the case with the first implementation of PT.
385  	 * If this bit is not set, the legacy behavior is preserved
386  	 * for compatibility with the older userspace.
387  	 *
388  	 * Re-using bit 0 for this purpose is fine because it is never
389  	 * directly set by the user; previous attempts at setting it in
390  	 * the attr.config resulted in -EINVAL.
391  	 */
392  	if (config & RTIT_CTL_PASSTHROUGH) {
393  		/*
394  		 * Disallow not setting BRANCH_EN where BRANCH_EN is
395  		 * always required.
396  		 */
397  		if (pt_pmu.branch_en_always_on &&
398  		    !(config & RTIT_CTL_BRANCH_EN))
399  			return false;
400  	} else {
401  		/*
402  		 * Disallow BRANCH_EN without the PASSTHROUGH.
403  		 */
404  		if (config & RTIT_CTL_BRANCH_EN)
405  			return false;
406  	}
407  
408  	return true;
409  }
410  
411  /*
412   * PT configuration helpers
413   * These all are cpu affine and operate on a local PT
414   */
415  
pt_config_start(struct perf_event * event)416  static void pt_config_start(struct perf_event *event)
417  {
418  	struct pt *pt = this_cpu_ptr(&pt_ctx);
419  	u64 ctl = event->hw.config;
420  
421  	ctl |= RTIT_CTL_TRACEEN;
422  	if (READ_ONCE(pt->vmx_on))
423  		perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
424  	else
425  		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
426  
427  	WRITE_ONCE(event->hw.config, ctl);
428  }
429  
430  /* Address ranges and their corresponding msr configuration registers */
431  static const struct pt_address_range {
432  	unsigned long	msr_a;
433  	unsigned long	msr_b;
434  	unsigned int	reg_off;
435  } pt_address_ranges[] = {
436  	{
437  		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
438  		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
439  		.reg_off = RTIT_CTL_ADDR0_OFFSET,
440  	},
441  	{
442  		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
443  		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
444  		.reg_off = RTIT_CTL_ADDR1_OFFSET,
445  	},
446  	{
447  		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
448  		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
449  		.reg_off = RTIT_CTL_ADDR2_OFFSET,
450  	},
451  	{
452  		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
453  		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
454  		.reg_off = RTIT_CTL_ADDR3_OFFSET,
455  	}
456  };
457  
pt_config_filters(struct perf_event * event)458  static u64 pt_config_filters(struct perf_event *event)
459  {
460  	struct pt_filters *filters = event->hw.addr_filters;
461  	struct pt *pt = this_cpu_ptr(&pt_ctx);
462  	unsigned int range = 0;
463  	u64 rtit_ctl = 0;
464  
465  	if (!filters)
466  		return 0;
467  
468  	perf_event_addr_filters_sync(event);
469  
470  	for (range = 0; range < filters->nr_filters; range++) {
471  		struct pt_filter *filter = &filters->filter[range];
472  
473  		/*
474  		 * Note, if the range has zero start/end addresses due
475  		 * to its dynamic object not being loaded yet, we just
476  		 * go ahead and program zeroed range, which will simply
477  		 * produce no data. Note^2: if executable code at 0x0
478  		 * is a concern, we can set up an "invalid" configuration
479  		 * such as msr_b < msr_a.
480  		 */
481  
482  		/* avoid redundant msr writes */
483  		if (pt->filters.filter[range].msr_a != filter->msr_a) {
484  			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
485  			pt->filters.filter[range].msr_a = filter->msr_a;
486  		}
487  
488  		if (pt->filters.filter[range].msr_b != filter->msr_b) {
489  			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
490  			pt->filters.filter[range].msr_b = filter->msr_b;
491  		}
492  
493  		rtit_ctl |= (u64)filter->config << pt_address_ranges[range].reg_off;
494  	}
495  
496  	return rtit_ctl;
497  }
498  
pt_config(struct perf_event * event)499  static void pt_config(struct perf_event *event)
500  {
501  	struct pt *pt = this_cpu_ptr(&pt_ctx);
502  	struct pt_buffer *buf = perf_get_aux(&pt->handle);
503  	u64 reg;
504  
505  	/* First round: clear STATUS, in particular the PSB byte counter. */
506  	if (!event->hw.config) {
507  		perf_event_itrace_started(event);
508  		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
509  	}
510  
511  	reg = pt_config_filters(event);
512  	reg |= RTIT_CTL_TRACEEN;
513  	if (!buf->single)
514  		reg |= RTIT_CTL_TOPA;
515  
516  	/*
517  	 * Previously, we had BRANCH_EN on by default, but now that PT has
518  	 * grown features outside of branch tracing, it is useful to allow
519  	 * the user to disable it. Setting bit 0 in the event's attr.config
520  	 * allows BRANCH_EN to pass through instead of being always on. See
521  	 * also the comment in pt_event_valid().
522  	 */
523  	if (event->attr.config & BIT(0)) {
524  		reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
525  	} else {
526  		reg |= RTIT_CTL_BRANCH_EN;
527  	}
528  
529  	if (!event->attr.exclude_kernel)
530  		reg |= RTIT_CTL_OS;
531  	if (!event->attr.exclude_user)
532  		reg |= RTIT_CTL_USR;
533  
534  	reg |= (event->attr.config & PT_CONFIG_MASK);
535  
536  	event->hw.config = reg;
537  	pt_config_start(event);
538  }
539  
pt_config_stop(struct perf_event * event)540  static void pt_config_stop(struct perf_event *event)
541  {
542  	struct pt *pt = this_cpu_ptr(&pt_ctx);
543  	u64 ctl = READ_ONCE(event->hw.config);
544  
545  	/* may be already stopped by a PMI */
546  	if (!(ctl & RTIT_CTL_TRACEEN))
547  		return;
548  
549  	ctl &= ~RTIT_CTL_TRACEEN;
550  	if (!READ_ONCE(pt->vmx_on))
551  		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
552  
553  	WRITE_ONCE(event->hw.config, ctl);
554  
555  	/*
556  	 * A wrmsr that disables trace generation serializes other PT
557  	 * registers and causes all data packets to be written to memory,
558  	 * but a fence is required for the data to become globally visible.
559  	 *
560  	 * The below WMB, separating data store and aux_head store matches
561  	 * the consumer's RMB that separates aux_head load and data load.
562  	 */
563  	wmb();
564  }
565  
566  /**
567   * struct topa - ToPA metadata
568   * @list:	linkage to struct pt_buffer's list of tables
569   * @offset:	offset of the first entry in this table in the buffer
570   * @size:	total size of all entries in this table
571   * @last:	index of the last initialized entry in this table
572   * @z_count:	how many times the first entry repeats
573   */
574  struct topa {
575  	struct list_head	list;
576  	u64			offset;
577  	size_t			size;
578  	int			last;
579  	unsigned int		z_count;
580  };
581  
582  /*
583   * Keep ToPA table-related metadata on the same page as the actual table,
584   * taking up a few words from the top
585   */
586  
587  #define TENTS_PER_PAGE	\
588  	((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry))
589  
590  /**
591   * struct topa_page - page-sized ToPA table with metadata at the top
592   * @table:	actual ToPA table entries, as understood by PT hardware
593   * @topa:	metadata
594   */
595  struct topa_page {
596  	struct topa_entry	table[TENTS_PER_PAGE];
597  	struct topa		topa;
598  };
599  
topa_to_page(struct topa * topa)600  static inline struct topa_page *topa_to_page(struct topa *topa)
601  {
602  	return container_of(topa, struct topa_page, topa);
603  }
604  
topa_entry_to_page(struct topa_entry * te)605  static inline struct topa_page *topa_entry_to_page(struct topa_entry *te)
606  {
607  	return (struct topa_page *)((unsigned long)te & PAGE_MASK);
608  }
609  
topa_pfn(struct topa * topa)610  static inline phys_addr_t topa_pfn(struct topa *topa)
611  {
612  	return PFN_DOWN(virt_to_phys(topa_to_page(topa)));
613  }
614  
615  /* make -1 stand for the last table entry */
616  #define TOPA_ENTRY(t, i)				\
617  	((i) == -1					\
618  		? &topa_to_page(t)->table[(t)->last]	\
619  		: &topa_to_page(t)->table[(i)])
620  #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size))
621  #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size)
622  
pt_config_buffer(struct pt_buffer * buf)623  static void pt_config_buffer(struct pt_buffer *buf)
624  {
625  	struct pt *pt = this_cpu_ptr(&pt_ctx);
626  	u64 reg, mask;
627  	void *base;
628  
629  	if (buf->single) {
630  		base = buf->data_pages[0];
631  		mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7;
632  	} else {
633  		base = topa_to_page(buf->cur)->table;
634  		mask = (u64)buf->cur_idx;
635  	}
636  
637  	reg = virt_to_phys(base);
638  	if (pt->output_base != reg) {
639  		pt->output_base = reg;
640  		wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg);
641  	}
642  
643  	reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32);
644  	if (pt->output_mask != reg) {
645  		pt->output_mask = reg;
646  		wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
647  	}
648  }
649  
650  /**
651   * topa_alloc() - allocate page-sized ToPA table
652   * @cpu:	CPU on which to allocate.
653   * @gfp:	Allocation flags.
654   *
655   * Return:	On success, return the pointer to ToPA table page.
656   */
topa_alloc(int cpu,gfp_t gfp)657  static struct topa *topa_alloc(int cpu, gfp_t gfp)
658  {
659  	int node = cpu_to_node(cpu);
660  	struct topa_page *tp;
661  	struct page *p;
662  
663  	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
664  	if (!p)
665  		return NULL;
666  
667  	tp = page_address(p);
668  	tp->topa.last = 0;
669  
670  	/*
671  	 * In case of singe-entry ToPA, always put the self-referencing END
672  	 * link as the 2nd entry in the table
673  	 */
674  	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
675  		TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT;
676  		TOPA_ENTRY(&tp->topa, 1)->end = 1;
677  	}
678  
679  	return &tp->topa;
680  }
681  
682  /**
683   * topa_free() - free a page-sized ToPA table
684   * @topa:	Table to deallocate.
685   */
topa_free(struct topa * topa)686  static void topa_free(struct topa *topa)
687  {
688  	free_page((unsigned long)topa);
689  }
690  
691  /**
692   * topa_insert_table() - insert a ToPA table into a buffer
693   * @buf:	 PT buffer that's being extended.
694   * @topa:	 New topa table to be inserted.
695   *
696   * If it's the first table in this buffer, set up buffer's pointers
697   * accordingly; otherwise, add a END=1 link entry to @topa to the current
698   * "last" table and adjust the last table pointer to @topa.
699   */
topa_insert_table(struct pt_buffer * buf,struct topa * topa)700  static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
701  {
702  	struct topa *last = buf->last;
703  
704  	list_add_tail(&topa->list, &buf->tables);
705  
706  	if (!buf->first) {
707  		buf->first = buf->last = buf->cur = topa;
708  		return;
709  	}
710  
711  	topa->offset = last->offset + last->size;
712  	buf->last = topa;
713  
714  	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
715  		return;
716  
717  	BUG_ON(last->last != TENTS_PER_PAGE - 1);
718  
719  	TOPA_ENTRY(last, -1)->base = topa_pfn(topa);
720  	TOPA_ENTRY(last, -1)->end = 1;
721  }
722  
723  /**
724   * topa_table_full() - check if a ToPA table is filled up
725   * @topa:	ToPA table.
726   */
topa_table_full(struct topa * topa)727  static bool topa_table_full(struct topa *topa)
728  {
729  	/* single-entry ToPA is a special case */
730  	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
731  		return !!topa->last;
732  
733  	return topa->last == TENTS_PER_PAGE - 1;
734  }
735  
736  /**
737   * topa_insert_pages() - create a list of ToPA tables
738   * @buf:	PT buffer being initialized.
739   * @gfp:	Allocation flags.
740   *
741   * This initializes a list of ToPA tables with entries from
742   * the data_pages provided by rb_alloc_aux().
743   *
744   * Return:	0 on success or error code.
745   */
topa_insert_pages(struct pt_buffer * buf,int cpu,gfp_t gfp)746  static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp)
747  {
748  	struct topa *topa = buf->last;
749  	int order = 0;
750  	struct page *p;
751  
752  	p = virt_to_page(buf->data_pages[buf->nr_pages]);
753  	if (PagePrivate(p))
754  		order = page_private(p);
755  
756  	if (topa_table_full(topa)) {
757  		topa = topa_alloc(cpu, gfp);
758  		if (!topa)
759  			return -ENOMEM;
760  
761  		topa_insert_table(buf, topa);
762  	}
763  
764  	if (topa->z_count == topa->last - 1) {
765  		if (order == TOPA_ENTRY(topa, topa->last - 1)->size)
766  			topa->z_count++;
767  	}
768  
769  	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
770  	TOPA_ENTRY(topa, -1)->size = order;
771  	if (!buf->snapshot &&
772  	    !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
773  		TOPA_ENTRY(topa, -1)->intr = 1;
774  		TOPA_ENTRY(topa, -1)->stop = 1;
775  	}
776  
777  	topa->last++;
778  	topa->size += sizes(order);
779  
780  	buf->nr_pages += 1ul << order;
781  
782  	return 0;
783  }
784  
785  /**
786   * pt_topa_dump() - print ToPA tables and their entries
787   * @buf:	PT buffer.
788   */
pt_topa_dump(struct pt_buffer * buf)789  static void pt_topa_dump(struct pt_buffer *buf)
790  {
791  	struct topa *topa;
792  
793  	list_for_each_entry(topa, &buf->tables, list) {
794  		struct topa_page *tp = topa_to_page(topa);
795  		int i;
796  
797  		pr_debug("# table @%p, off %llx size %zx\n", tp->table,
798  			 topa->offset, topa->size);
799  		for (i = 0; i < TENTS_PER_PAGE; i++) {
800  			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
801  				 &tp->table[i],
802  				 (unsigned long)tp->table[i].base << TOPA_SHIFT,
803  				 sizes(tp->table[i].size),
804  				 tp->table[i].end ?  'E' : ' ',
805  				 tp->table[i].intr ? 'I' : ' ',
806  				 tp->table[i].stop ? 'S' : ' ',
807  				 *(u64 *)&tp->table[i]);
808  			if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
809  			     tp->table[i].stop) ||
810  			    tp->table[i].end)
811  				break;
812  			if (!i && topa->z_count)
813  				i += topa->z_count;
814  		}
815  	}
816  }
817  
818  /**
819   * pt_buffer_advance() - advance to the next output region
820   * @buf:	PT buffer.
821   *
822   * Advance the current pointers in the buffer to the next ToPA entry.
823   */
pt_buffer_advance(struct pt_buffer * buf)824  static void pt_buffer_advance(struct pt_buffer *buf)
825  {
826  	buf->output_off = 0;
827  	buf->cur_idx++;
828  
829  	if (buf->cur_idx == buf->cur->last) {
830  		if (buf->cur == buf->last) {
831  			buf->cur = buf->first;
832  			buf->wrapped = true;
833  		} else {
834  			buf->cur = list_entry(buf->cur->list.next, struct topa,
835  					      list);
836  		}
837  		buf->cur_idx = 0;
838  	}
839  }
840  
841  /**
842   * pt_update_head() - calculate current offsets and sizes
843   * @pt:		Per-cpu pt context.
844   *
845   * Update buffer's current write pointer position and data size.
846   */
pt_update_head(struct pt * pt)847  static void pt_update_head(struct pt *pt)
848  {
849  	struct pt_buffer *buf = perf_get_aux(&pt->handle);
850  	bool wrapped = buf->wrapped;
851  	u64 topa_idx, base, old;
852  
853  	buf->wrapped = false;
854  
855  	if (buf->single) {
856  		local_set(&buf->data_size, buf->output_off);
857  		return;
858  	}
859  
860  	/* offset of the first region in this table from the beginning of buf */
861  	base = buf->cur->offset + buf->output_off;
862  
863  	/* offset of the current output region within this table */
864  	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
865  		base += TOPA_ENTRY_SIZE(buf->cur, topa_idx);
866  
867  	if (buf->snapshot) {
868  		local_set(&buf->data_size, base);
869  	} else {
870  		old = (local64_xchg(&buf->head, base) &
871  		       ((buf->nr_pages << PAGE_SHIFT) - 1));
872  		if (base < old || (base == old && wrapped))
873  			base += buf->nr_pages << PAGE_SHIFT;
874  
875  		local_add(base - old, &buf->data_size);
876  	}
877  }
878  
879  /**
880   * pt_buffer_region() - obtain current output region's address
881   * @buf:	PT buffer.
882   */
pt_buffer_region(struct pt_buffer * buf)883  static void *pt_buffer_region(struct pt_buffer *buf)
884  {
885  	return phys_to_virt((phys_addr_t)TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT);
886  }
887  
888  /**
889   * pt_buffer_region_size() - obtain current output region's size
890   * @buf:	PT buffer.
891   */
pt_buffer_region_size(struct pt_buffer * buf)892  static size_t pt_buffer_region_size(struct pt_buffer *buf)
893  {
894  	return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx);
895  }
896  
897  /**
898   * pt_handle_status() - take care of possible status conditions
899   * @pt:		Per-cpu pt context.
900   */
pt_handle_status(struct pt * pt)901  static void pt_handle_status(struct pt *pt)
902  {
903  	struct pt_buffer *buf = perf_get_aux(&pt->handle);
904  	int advance = 0;
905  	u64 status;
906  
907  	rdmsrl(MSR_IA32_RTIT_STATUS, status);
908  
909  	if (status & RTIT_STATUS_ERROR) {
910  		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
911  		pt_topa_dump(buf);
912  		status &= ~RTIT_STATUS_ERROR;
913  	}
914  
915  	if (status & RTIT_STATUS_STOPPED) {
916  		status &= ~RTIT_STATUS_STOPPED;
917  
918  		/*
919  		 * On systems that only do single-entry ToPA, hitting STOP
920  		 * means we are already losing data; need to let the decoder
921  		 * know.
922  		 */
923  		if (!buf->single &&
924  		    (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
925  		     buf->output_off == pt_buffer_region_size(buf))) {
926  			perf_aux_output_flag(&pt->handle,
927  			                     PERF_AUX_FLAG_TRUNCATED);
928  			advance++;
929  		}
930  	}
931  
932  	/*
933  	 * Also on single-entry ToPA implementations, interrupt will come
934  	 * before the output reaches its output region's boundary.
935  	 */
936  	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
937  	    !buf->snapshot &&
938  	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
939  		void *head = pt_buffer_region(buf);
940  
941  		/* everything within this margin needs to be zeroed out */
942  		memset(head + buf->output_off, 0,
943  		       pt_buffer_region_size(buf) -
944  		       buf->output_off);
945  		advance++;
946  	}
947  
948  	if (advance)
949  		pt_buffer_advance(buf);
950  
951  	wrmsrl(MSR_IA32_RTIT_STATUS, status);
952  }
953  
954  /**
955   * pt_read_offset() - translate registers into buffer pointers
956   * @buf:	PT buffer.
957   *
958   * Set buffer's output pointers from MSR values.
959   */
pt_read_offset(struct pt_buffer * buf)960  static void pt_read_offset(struct pt_buffer *buf)
961  {
962  	struct pt *pt = this_cpu_ptr(&pt_ctx);
963  	struct topa_page *tp;
964  
965  	if (!buf->single) {
966  		rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base);
967  		tp = phys_to_virt(pt->output_base);
968  		buf->cur = &tp->topa;
969  	}
970  
971  	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask);
972  	/* offset within current output region */
973  	buf->output_off = pt->output_mask >> 32;
974  	/* index of current output region within this table */
975  	if (!buf->single)
976  		buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7;
977  }
978  
979  static struct topa_entry *
pt_topa_entry_for_page(struct pt_buffer * buf,unsigned int pg)980  pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg)
981  {
982  	struct topa_page *tp;
983  	struct topa *topa;
984  	unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0;
985  
986  	/*
987  	 * Indicates a bug in the caller.
988  	 */
989  	if (WARN_ON_ONCE(pg >= buf->nr_pages))
990  		return NULL;
991  
992  	/*
993  	 * First, find the ToPA table where @pg fits. With high
994  	 * order allocations, there shouldn't be many of these.
995  	 */
996  	list_for_each_entry(topa, &buf->tables, list) {
997  		if (topa->offset + topa->size > (unsigned long)pg << PAGE_SHIFT)
998  			goto found;
999  	}
1000  
1001  	/*
1002  	 * Hitting this means we have a problem in the ToPA
1003  	 * allocation code.
1004  	 */
1005  	WARN_ON_ONCE(1);
1006  
1007  	return NULL;
1008  
1009  found:
1010  	/*
1011  	 * Indicates a problem in the ToPA allocation code.
1012  	 */
1013  	if (WARN_ON_ONCE(topa->last == -1))
1014  		return NULL;
1015  
1016  	tp = topa_to_page(topa);
1017  	cur_pg = PFN_DOWN(topa->offset);
1018  	if (topa->z_count) {
1019  		z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1);
1020  		start_idx = topa->z_count + 1;
1021  	}
1022  
1023  	/*
1024  	 * Multiple entries at the beginning of the table have the same size,
1025  	 * ideally all of them; if @pg falls there, the search is done.
1026  	 */
1027  	if (pg >= cur_pg && pg < cur_pg + z_pg) {
1028  		idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0);
1029  		return &tp->table[idx];
1030  	}
1031  
1032  	/*
1033  	 * Otherwise, slow path: iterate through the remaining entries.
1034  	 */
1035  	for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) {
1036  		if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg)
1037  			return &tp->table[idx];
1038  
1039  		cur_pg += TOPA_ENTRY_PAGES(topa, idx);
1040  	}
1041  
1042  	/*
1043  	 * Means we couldn't find a ToPA entry in the table that does match.
1044  	 */
1045  	WARN_ON_ONCE(1);
1046  
1047  	return NULL;
1048  }
1049  
1050  static struct topa_entry *
pt_topa_prev_entry(struct pt_buffer * buf,struct topa_entry * te)1051  pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te)
1052  {
1053  	unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1);
1054  	struct topa_page *tp;
1055  	struct topa *topa;
1056  
1057  	tp = (struct topa_page *)table;
1058  	if (tp->table != te)
1059  		return --te;
1060  
1061  	topa = &tp->topa;
1062  	if (topa == buf->first)
1063  		topa = buf->last;
1064  	else
1065  		topa = list_prev_entry(topa, list);
1066  
1067  	tp = topa_to_page(topa);
1068  
1069  	return &tp->table[topa->last - 1];
1070  }
1071  
1072  /**
1073   * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
1074   * @buf:	PT buffer.
1075   * @handle:	Current output handle.
1076   *
1077   * Place INT and STOP marks to prevent overwriting old data that the consumer
1078   * hasn't yet collected and waking up the consumer after a certain fraction of
1079   * the buffer has filled up. Only needed and sensible for non-snapshot counters.
1080   *
1081   * This obviously relies on buf::head to figure out buffer markers, so it has
1082   * to be called after pt_buffer_reset_offsets() and before the hardware tracing
1083   * is enabled.
1084   */
pt_buffer_reset_markers(struct pt_buffer * buf,struct perf_output_handle * handle)1085  static int pt_buffer_reset_markers(struct pt_buffer *buf,
1086  				   struct perf_output_handle *handle)
1087  
1088  {
1089  	unsigned long head = local64_read(&buf->head);
1090  	unsigned long idx, npages, wakeup;
1091  
1092  	if (buf->single)
1093  		return 0;
1094  
1095  	/* can't stop in the middle of an output region */
1096  	if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) {
1097  		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1098  		return -EINVAL;
1099  	}
1100  
1101  
1102  	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
1103  	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1104  		return 0;
1105  
1106  	/* clear STOP and INT from current entry */
1107  	if (buf->stop_te) {
1108  		buf->stop_te->stop = 0;
1109  		buf->stop_te->intr = 0;
1110  	}
1111  
1112  	if (buf->intr_te)
1113  		buf->intr_te->intr = 0;
1114  
1115  	/* how many pages till the STOP marker */
1116  	npages = handle->size >> PAGE_SHIFT;
1117  
1118  	/* if it's on a page boundary, fill up one more page */
1119  	if (!offset_in_page(head + handle->size + 1))
1120  		npages++;
1121  
1122  	idx = (head >> PAGE_SHIFT) + npages;
1123  	idx &= buf->nr_pages - 1;
1124  
1125  	if (idx != buf->stop_pos) {
1126  		buf->stop_pos = idx;
1127  		buf->stop_te = pt_topa_entry_for_page(buf, idx);
1128  		buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te);
1129  	}
1130  
1131  	wakeup = handle->wakeup >> PAGE_SHIFT;
1132  
1133  	/* in the worst case, wake up the consumer one page before hard stop */
1134  	idx = (head >> PAGE_SHIFT) + npages - 1;
1135  	if (idx > wakeup)
1136  		idx = wakeup;
1137  
1138  	idx &= buf->nr_pages - 1;
1139  	if (idx != buf->intr_pos) {
1140  		buf->intr_pos = idx;
1141  		buf->intr_te = pt_topa_entry_for_page(buf, idx);
1142  		buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te);
1143  	}
1144  
1145  	buf->stop_te->stop = 1;
1146  	buf->stop_te->intr = 1;
1147  	buf->intr_te->intr = 1;
1148  
1149  	return 0;
1150  }
1151  
1152  /**
1153   * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1154   * @buf:	PT buffer.
1155   * @head:	Write pointer (aux_head) from AUX buffer.
1156   *
1157   * Find the ToPA table and entry corresponding to given @head and set buffer's
1158   * "current" pointers accordingly. This is done after we have obtained the
1159   * current aux_head position from a successful call to perf_aux_output_begin()
1160   * to make sure the hardware is writing to the right place.
1161   *
1162   * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1163   * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1164   * which are used to determine INT and STOP markers' locations by a subsequent
1165   * call to pt_buffer_reset_markers().
1166   */
pt_buffer_reset_offsets(struct pt_buffer * buf,unsigned long head)1167  static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1168  {
1169  	struct topa_page *cur_tp;
1170  	struct topa_entry *te;
1171  	int pg;
1172  
1173  	if (buf->snapshot)
1174  		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1175  
1176  	if (!buf->single) {
1177  		pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1178  		te = pt_topa_entry_for_page(buf, pg);
1179  
1180  		cur_tp = topa_entry_to_page(te);
1181  		buf->cur = &cur_tp->topa;
1182  		buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0);
1183  		buf->output_off = head & (pt_buffer_region_size(buf) - 1);
1184  	} else {
1185  		buf->output_off = head;
1186  	}
1187  
1188  	local64_set(&buf->head, head);
1189  	local_set(&buf->data_size, 0);
1190  }
1191  
1192  /**
1193   * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1194   * @buf:	PT buffer.
1195   */
pt_buffer_fini_topa(struct pt_buffer * buf)1196  static void pt_buffer_fini_topa(struct pt_buffer *buf)
1197  {
1198  	struct topa *topa, *iter;
1199  
1200  	if (buf->single)
1201  		return;
1202  
1203  	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1204  		/*
1205  		 * right now, this is in free_aux() path only, so
1206  		 * no need to unlink this table from the list
1207  		 */
1208  		topa_free(topa);
1209  	}
1210  }
1211  
1212  /**
1213   * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1214   * @buf:	PT buffer.
1215   * @size:	Total size of all regions within this ToPA.
1216   * @gfp:	Allocation flags.
1217   */
pt_buffer_init_topa(struct pt_buffer * buf,int cpu,unsigned long nr_pages,gfp_t gfp)1218  static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu,
1219  			       unsigned long nr_pages, gfp_t gfp)
1220  {
1221  	struct topa *topa;
1222  	int err;
1223  
1224  	topa = topa_alloc(cpu, gfp);
1225  	if (!topa)
1226  		return -ENOMEM;
1227  
1228  	topa_insert_table(buf, topa);
1229  
1230  	while (buf->nr_pages < nr_pages) {
1231  		err = topa_insert_pages(buf, cpu, gfp);
1232  		if (err) {
1233  			pt_buffer_fini_topa(buf);
1234  			return -ENOMEM;
1235  		}
1236  	}
1237  
1238  	/* link last table to the first one, unless we're double buffering */
1239  	if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
1240  		TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first);
1241  		TOPA_ENTRY(buf->last, -1)->end = 1;
1242  	}
1243  
1244  	pt_topa_dump(buf);
1245  	return 0;
1246  }
1247  
pt_buffer_try_single(struct pt_buffer * buf,int nr_pages)1248  static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages)
1249  {
1250  	struct page *p = virt_to_page(buf->data_pages[0]);
1251  	int ret = -ENOTSUPP, order = 0;
1252  
1253  	/*
1254  	 * We can use single range output mode
1255  	 * + in snapshot mode, where we don't need interrupts;
1256  	 * + if the hardware supports it;
1257  	 * + if the entire buffer is one contiguous allocation.
1258  	 */
1259  	if (!buf->snapshot)
1260  		goto out;
1261  
1262  	if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output))
1263  		goto out;
1264  
1265  	if (PagePrivate(p))
1266  		order = page_private(p);
1267  
1268  	if (1 << order != nr_pages)
1269  		goto out;
1270  
1271  	/*
1272  	 * Some processors cannot always support single range for more than
1273  	 * 4KB - refer errata TGL052, ADL037 and RPL017. Future processors might
1274  	 * also be affected, so for now rather than trying to keep track of
1275  	 * which ones, just disable it for all.
1276  	 */
1277  	if (nr_pages > 1)
1278  		goto out;
1279  
1280  	buf->single = true;
1281  	buf->nr_pages = nr_pages;
1282  	ret = 0;
1283  out:
1284  	return ret;
1285  }
1286  
1287  /**
1288   * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1289   * @cpu:	Cpu on which to allocate, -1 means current.
1290   * @pages:	Array of pointers to buffer pages passed from perf core.
1291   * @nr_pages:	Number of pages in the buffer.
1292   * @snapshot:	If this is a snapshot/overwrite counter.
1293   *
1294   * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1295   * bookkeeping for an AUX buffer.
1296   *
1297   * Return:	Our private PT buffer structure.
1298   */
1299  static void *
pt_buffer_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1300  pt_buffer_setup_aux(struct perf_event *event, void **pages,
1301  		    int nr_pages, bool snapshot)
1302  {
1303  	struct pt_buffer *buf;
1304  	int node, ret, cpu = event->cpu;
1305  
1306  	if (!nr_pages)
1307  		return NULL;
1308  
1309  	/*
1310  	 * Only support AUX sampling in snapshot mode, where we don't
1311  	 * generate NMIs.
1312  	 */
1313  	if (event->attr.aux_sample_size && !snapshot)
1314  		return NULL;
1315  
1316  	if (cpu == -1)
1317  		cpu = raw_smp_processor_id();
1318  	node = cpu_to_node(cpu);
1319  
1320  	buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node);
1321  	if (!buf)
1322  		return NULL;
1323  
1324  	buf->snapshot = snapshot;
1325  	buf->data_pages = pages;
1326  	buf->stop_pos = -1;
1327  	buf->intr_pos = -1;
1328  
1329  	INIT_LIST_HEAD(&buf->tables);
1330  
1331  	ret = pt_buffer_try_single(buf, nr_pages);
1332  	if (!ret)
1333  		return buf;
1334  
1335  	ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL);
1336  	if (ret) {
1337  		kfree(buf);
1338  		return NULL;
1339  	}
1340  
1341  	return buf;
1342  }
1343  
1344  /**
1345   * pt_buffer_free_aux() - perf AUX deallocation path callback
1346   * @data:	PT buffer.
1347   */
pt_buffer_free_aux(void * data)1348  static void pt_buffer_free_aux(void *data)
1349  {
1350  	struct pt_buffer *buf = data;
1351  
1352  	pt_buffer_fini_topa(buf);
1353  	kfree(buf);
1354  }
1355  
pt_addr_filters_init(struct perf_event * event)1356  static int pt_addr_filters_init(struct perf_event *event)
1357  {
1358  	struct pt_filters *filters;
1359  	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1360  
1361  	if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1362  		return 0;
1363  
1364  	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1365  	if (!filters)
1366  		return -ENOMEM;
1367  
1368  	if (event->parent)
1369  		memcpy(filters, event->parent->hw.addr_filters,
1370  		       sizeof(*filters));
1371  
1372  	event->hw.addr_filters = filters;
1373  
1374  	return 0;
1375  }
1376  
pt_addr_filters_fini(struct perf_event * event)1377  static void pt_addr_filters_fini(struct perf_event *event)
1378  {
1379  	kfree(event->hw.addr_filters);
1380  	event->hw.addr_filters = NULL;
1381  }
1382  
1383  #ifdef CONFIG_X86_64
1384  /* Clamp to a canonical address greater-than-or-equal-to the address given */
clamp_to_ge_canonical_addr(u64 vaddr,u8 vaddr_bits)1385  static u64 clamp_to_ge_canonical_addr(u64 vaddr, u8 vaddr_bits)
1386  {
1387  	return __is_canonical_address(vaddr, vaddr_bits) ?
1388  	       vaddr :
1389  	       -BIT_ULL(vaddr_bits - 1);
1390  }
1391  
1392  /* Clamp to a canonical address less-than-or-equal-to the address given */
clamp_to_le_canonical_addr(u64 vaddr,u8 vaddr_bits)1393  static u64 clamp_to_le_canonical_addr(u64 vaddr, u8 vaddr_bits)
1394  {
1395  	return __is_canonical_address(vaddr, vaddr_bits) ?
1396  	       vaddr :
1397  	       BIT_ULL(vaddr_bits - 1) - 1;
1398  }
1399  #else
1400  #define clamp_to_ge_canonical_addr(x, y) (x)
1401  #define clamp_to_le_canonical_addr(x, y) (x)
1402  #endif
1403  
pt_event_addr_filters_validate(struct list_head * filters)1404  static int pt_event_addr_filters_validate(struct list_head *filters)
1405  {
1406  	struct perf_addr_filter *filter;
1407  	int range = 0;
1408  
1409  	list_for_each_entry(filter, filters, entry) {
1410  		/*
1411  		 * PT doesn't support single address triggers and
1412  		 * 'start' filters.
1413  		 */
1414  		if (!filter->size ||
1415  		    filter->action == PERF_ADDR_FILTER_ACTION_START)
1416  			return -EOPNOTSUPP;
1417  
1418  		if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1419  			return -EOPNOTSUPP;
1420  	}
1421  
1422  	return 0;
1423  }
1424  
pt_event_addr_filters_sync(struct perf_event * event)1425  static void pt_event_addr_filters_sync(struct perf_event *event)
1426  {
1427  	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1428  	unsigned long msr_a, msr_b;
1429  	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
1430  	struct pt_filters *filters = event->hw.addr_filters;
1431  	struct perf_addr_filter *filter;
1432  	int range = 0;
1433  
1434  	if (!filters)
1435  		return;
1436  
1437  	list_for_each_entry(filter, &head->list, entry) {
1438  		if (filter->path.dentry && !fr[range].start) {
1439  			msr_a = msr_b = 0;
1440  		} else {
1441  			unsigned long n = fr[range].size - 1;
1442  			unsigned long a = fr[range].start;
1443  			unsigned long b;
1444  
1445  			if (a > ULONG_MAX - n)
1446  				b = ULONG_MAX;
1447  			else
1448  				b = a + n;
1449  			/*
1450  			 * Apply the offset. 64-bit addresses written to the
1451  			 * MSRs must be canonical, but the range can encompass
1452  			 * non-canonical addresses. Since software cannot
1453  			 * execute at non-canonical addresses, adjusting to
1454  			 * canonical addresses does not affect the result of the
1455  			 * address filter.
1456  			 */
1457  			msr_a = clamp_to_ge_canonical_addr(a, boot_cpu_data.x86_virt_bits);
1458  			msr_b = clamp_to_le_canonical_addr(b, boot_cpu_data.x86_virt_bits);
1459  			if (msr_b < msr_a)
1460  				msr_a = msr_b = 0;
1461  		}
1462  
1463  		filters->filter[range].msr_a  = msr_a;
1464  		filters->filter[range].msr_b  = msr_b;
1465  		if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
1466  			filters->filter[range].config = 1;
1467  		else
1468  			filters->filter[range].config = 2;
1469  		range++;
1470  	}
1471  
1472  	filters->nr_filters = range;
1473  }
1474  
1475  /**
1476   * intel_pt_interrupt() - PT PMI handler
1477   */
intel_pt_interrupt(void)1478  void intel_pt_interrupt(void)
1479  {
1480  	struct pt *pt = this_cpu_ptr(&pt_ctx);
1481  	struct pt_buffer *buf;
1482  	struct perf_event *event = pt->handle.event;
1483  
1484  	/*
1485  	 * There may be a dangling PT bit in the interrupt status register
1486  	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1487  	 * do anything (particularly, re-enable) for this event here.
1488  	 */
1489  	if (!READ_ONCE(pt->handle_nmi))
1490  		return;
1491  
1492  	if (!event)
1493  		return;
1494  
1495  	pt_config_stop(event);
1496  
1497  	buf = perf_get_aux(&pt->handle);
1498  	if (!buf)
1499  		return;
1500  
1501  	pt_read_offset(buf);
1502  
1503  	pt_handle_status(pt);
1504  
1505  	pt_update_head(pt);
1506  
1507  	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1508  
1509  	if (!event->hw.state) {
1510  		int ret;
1511  
1512  		buf = perf_aux_output_begin(&pt->handle, event);
1513  		if (!buf) {
1514  			event->hw.state = PERF_HES_STOPPED;
1515  			return;
1516  		}
1517  
1518  		pt_buffer_reset_offsets(buf, pt->handle.head);
1519  		/* snapshot counters don't use PMI, so it's safe */
1520  		ret = pt_buffer_reset_markers(buf, &pt->handle);
1521  		if (ret) {
1522  			perf_aux_output_end(&pt->handle, 0);
1523  			return;
1524  		}
1525  
1526  		pt_config_buffer(buf);
1527  		pt_config_start(event);
1528  	}
1529  }
1530  
intel_pt_handle_vmx(int on)1531  void intel_pt_handle_vmx(int on)
1532  {
1533  	struct pt *pt = this_cpu_ptr(&pt_ctx);
1534  	struct perf_event *event;
1535  	unsigned long flags;
1536  
1537  	/* PT plays nice with VMX, do nothing */
1538  	if (pt_pmu.vmx)
1539  		return;
1540  
1541  	/*
1542  	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1543  	 * sure to not try to set it while VMX is on. Disable
1544  	 * interrupts to avoid racing with pmu callbacks;
1545  	 * concurrent PMI should be handled fine.
1546  	 */
1547  	local_irq_save(flags);
1548  	WRITE_ONCE(pt->vmx_on, on);
1549  
1550  	/*
1551  	 * If an AUX transaction is in progress, it will contain
1552  	 * gap(s), so flag it PARTIAL to inform the user.
1553  	 */
1554  	event = pt->handle.event;
1555  	if (event)
1556  		perf_aux_output_flag(&pt->handle,
1557  		                     PERF_AUX_FLAG_PARTIAL);
1558  
1559  	/* Turn PTs back on */
1560  	if (!on && event)
1561  		wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
1562  
1563  	local_irq_restore(flags);
1564  }
1565  EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1566  
1567  /*
1568   * PMU callbacks
1569   */
1570  
pt_event_start(struct perf_event * event,int mode)1571  static void pt_event_start(struct perf_event *event, int mode)
1572  {
1573  	struct hw_perf_event *hwc = &event->hw;
1574  	struct pt *pt = this_cpu_ptr(&pt_ctx);
1575  	struct pt_buffer *buf;
1576  
1577  	buf = perf_aux_output_begin(&pt->handle, event);
1578  	if (!buf)
1579  		goto fail_stop;
1580  
1581  	pt_buffer_reset_offsets(buf, pt->handle.head);
1582  	if (!buf->snapshot) {
1583  		if (pt_buffer_reset_markers(buf, &pt->handle))
1584  			goto fail_end_stop;
1585  	}
1586  
1587  	WRITE_ONCE(pt->handle_nmi, 1);
1588  	hwc->state = 0;
1589  
1590  	pt_config_buffer(buf);
1591  	pt_config(event);
1592  
1593  	return;
1594  
1595  fail_end_stop:
1596  	perf_aux_output_end(&pt->handle, 0);
1597  fail_stop:
1598  	hwc->state = PERF_HES_STOPPED;
1599  }
1600  
pt_event_stop(struct perf_event * event,int mode)1601  static void pt_event_stop(struct perf_event *event, int mode)
1602  {
1603  	struct pt *pt = this_cpu_ptr(&pt_ctx);
1604  
1605  	/*
1606  	 * Protect against the PMI racing with disabling wrmsr,
1607  	 * see comment in intel_pt_interrupt().
1608  	 */
1609  	WRITE_ONCE(pt->handle_nmi, 0);
1610  	barrier();
1611  
1612  	pt_config_stop(event);
1613  
1614  	if (event->hw.state == PERF_HES_STOPPED)
1615  		return;
1616  
1617  	event->hw.state = PERF_HES_STOPPED;
1618  
1619  	if (mode & PERF_EF_UPDATE) {
1620  		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1621  
1622  		if (!buf)
1623  			return;
1624  
1625  		if (WARN_ON_ONCE(pt->handle.event != event))
1626  			return;
1627  
1628  		pt_read_offset(buf);
1629  
1630  		pt_handle_status(pt);
1631  
1632  		pt_update_head(pt);
1633  
1634  		if (buf->snapshot)
1635  			pt->handle.head =
1636  				local_xchg(&buf->data_size,
1637  					   buf->nr_pages << PAGE_SHIFT);
1638  		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1639  	}
1640  }
1641  
pt_event_snapshot_aux(struct perf_event * event,struct perf_output_handle * handle,unsigned long size)1642  static long pt_event_snapshot_aux(struct perf_event *event,
1643  				  struct perf_output_handle *handle,
1644  				  unsigned long size)
1645  {
1646  	struct pt *pt = this_cpu_ptr(&pt_ctx);
1647  	struct pt_buffer *buf = perf_get_aux(&pt->handle);
1648  	unsigned long from = 0, to;
1649  	long ret;
1650  
1651  	if (WARN_ON_ONCE(!buf))
1652  		return 0;
1653  
1654  	/*
1655  	 * Sampling is only allowed on snapshot events;
1656  	 * see pt_buffer_setup_aux().
1657  	 */
1658  	if (WARN_ON_ONCE(!buf->snapshot))
1659  		return 0;
1660  
1661  	/*
1662  	 * There is no PT interrupt in this mode, so stop the trace and it will
1663  	 * remain stopped while the buffer is copied.
1664  	 */
1665  	pt_config_stop(event);
1666  	pt_read_offset(buf);
1667  	pt_update_head(pt);
1668  
1669  	to = local_read(&buf->data_size);
1670  	if (to < size)
1671  		from = buf->nr_pages << PAGE_SHIFT;
1672  	from += to - size;
1673  
1674  	ret = perf_output_copy_aux(&pt->handle, handle, from, to);
1675  
1676  	/*
1677  	 * Here, handle_nmi tells us if the tracing was on.
1678  	 * If the tracing was on, restart it.
1679  	 */
1680  	if (READ_ONCE(pt->handle_nmi))
1681  		pt_config_start(event);
1682  
1683  	return ret;
1684  }
1685  
pt_event_del(struct perf_event * event,int mode)1686  static void pt_event_del(struct perf_event *event, int mode)
1687  {
1688  	pt_event_stop(event, PERF_EF_UPDATE);
1689  }
1690  
pt_event_add(struct perf_event * event,int mode)1691  static int pt_event_add(struct perf_event *event, int mode)
1692  {
1693  	struct pt *pt = this_cpu_ptr(&pt_ctx);
1694  	struct hw_perf_event *hwc = &event->hw;
1695  	int ret = -EBUSY;
1696  
1697  	if (pt->handle.event)
1698  		goto fail;
1699  
1700  	if (mode & PERF_EF_START) {
1701  		pt_event_start(event, 0);
1702  		ret = -EINVAL;
1703  		if (hwc->state == PERF_HES_STOPPED)
1704  			goto fail;
1705  	} else {
1706  		hwc->state = PERF_HES_STOPPED;
1707  	}
1708  
1709  	ret = 0;
1710  fail:
1711  
1712  	return ret;
1713  }
1714  
pt_event_read(struct perf_event * event)1715  static void pt_event_read(struct perf_event *event)
1716  {
1717  }
1718  
pt_event_destroy(struct perf_event * event)1719  static void pt_event_destroy(struct perf_event *event)
1720  {
1721  	pt_addr_filters_fini(event);
1722  	x86_del_exclusive(x86_lbr_exclusive_pt);
1723  }
1724  
pt_event_init(struct perf_event * event)1725  static int pt_event_init(struct perf_event *event)
1726  {
1727  	if (event->attr.type != pt_pmu.pmu.type)
1728  		return -ENOENT;
1729  
1730  	if (!pt_event_valid(event))
1731  		return -EINVAL;
1732  
1733  	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1734  		return -EBUSY;
1735  
1736  	if (pt_addr_filters_init(event)) {
1737  		x86_del_exclusive(x86_lbr_exclusive_pt);
1738  		return -ENOMEM;
1739  	}
1740  
1741  	event->destroy = pt_event_destroy;
1742  
1743  	return 0;
1744  }
1745  
cpu_emergency_stop_pt(void)1746  void cpu_emergency_stop_pt(void)
1747  {
1748  	struct pt *pt = this_cpu_ptr(&pt_ctx);
1749  
1750  	if (pt->handle.event)
1751  		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1752  }
1753  
is_intel_pt_event(struct perf_event * event)1754  int is_intel_pt_event(struct perf_event *event)
1755  {
1756  	return event->pmu == &pt_pmu.pmu;
1757  }
1758  
pt_init(void)1759  static __init int pt_init(void)
1760  {
1761  	int ret, cpu, prior_warn = 0;
1762  
1763  	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1764  
1765  	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1766  		return -ENODEV;
1767  
1768  	cpus_read_lock();
1769  	for_each_online_cpu(cpu) {
1770  		u64 ctl;
1771  
1772  		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1773  		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1774  			prior_warn++;
1775  	}
1776  	cpus_read_unlock();
1777  
1778  	if (prior_warn) {
1779  		x86_add_exclusive(x86_lbr_exclusive_pt);
1780  		pr_warn("PT is enabled at boot time, doing nothing\n");
1781  
1782  		return -EBUSY;
1783  	}
1784  
1785  	ret = pt_pmu_hw_init();
1786  	if (ret)
1787  		return ret;
1788  
1789  	if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
1790  		pr_warn("ToPA output is not supported on this CPU\n");
1791  		return -ENODEV;
1792  	}
1793  
1794  	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1795  		pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG;
1796  
1797  	pt_pmu.pmu.capabilities	|= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1798  	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1799  	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1800  	pt_pmu.pmu.event_init		 = pt_event_init;
1801  	pt_pmu.pmu.add			 = pt_event_add;
1802  	pt_pmu.pmu.del			 = pt_event_del;
1803  	pt_pmu.pmu.start		 = pt_event_start;
1804  	pt_pmu.pmu.stop			 = pt_event_stop;
1805  	pt_pmu.pmu.snapshot_aux		 = pt_event_snapshot_aux;
1806  	pt_pmu.pmu.read			 = pt_event_read;
1807  	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1808  	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1809  	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1810  	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1811  	pt_pmu.pmu.nr_addr_filters       =
1812  		intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
1813  
1814  	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1815  
1816  	return ret;
1817  }
1818  arch_initcall(pt_init);
1819