1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_bmap.h" 17 #include "xfs_alloc.h" 18 #include "xfs_fsops.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_log.h" 22 #include "xfs_log_priv.h" 23 #include "xfs_dir2.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_mru_cache.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_icache.h" 28 #include "xfs_trace.h" 29 #include "xfs_icreate_item.h" 30 #include "xfs_filestream.h" 31 #include "xfs_quota.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_ondisk.h" 34 #include "xfs_rmap_item.h" 35 #include "xfs_refcount_item.h" 36 #include "xfs_bmap_item.h" 37 #include "xfs_reflink.h" 38 #include "xfs_pwork.h" 39 #include "xfs_ag.h" 40 #include "xfs_defer.h" 41 #include "xfs_attr_item.h" 42 #include "xfs_xattr.h" 43 #include "xfs_iunlink_item.h" 44 #include "xfs_dahash_test.h" 45 #include "scrub/stats.h" 46 47 #include <linux/magic.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 51 static const struct super_operations xfs_super_operations; 52 53 static struct dentry *xfs_debugfs; /* top-level xfs debugfs dir */ 54 static struct kset *xfs_kset; /* top-level xfs sysfs dir */ 55 #ifdef DEBUG 56 static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ 57 #endif 58 59 enum xfs_dax_mode { 60 XFS_DAX_INODE = 0, 61 XFS_DAX_ALWAYS = 1, 62 XFS_DAX_NEVER = 2, 63 }; 64 65 static void xfs_mount_set_dax_mode(struct xfs_mount * mp,enum xfs_dax_mode mode)66 xfs_mount_set_dax_mode( 67 struct xfs_mount *mp, 68 enum xfs_dax_mode mode) 69 { 70 switch (mode) { 71 case XFS_DAX_INODE: 72 mp->m_features &= ~(XFS_FEAT_DAX_ALWAYS | XFS_FEAT_DAX_NEVER); 73 break; 74 case XFS_DAX_ALWAYS: 75 mp->m_features |= XFS_FEAT_DAX_ALWAYS; 76 mp->m_features &= ~XFS_FEAT_DAX_NEVER; 77 break; 78 case XFS_DAX_NEVER: 79 mp->m_features |= XFS_FEAT_DAX_NEVER; 80 mp->m_features &= ~XFS_FEAT_DAX_ALWAYS; 81 break; 82 } 83 } 84 85 static const struct constant_table dax_param_enums[] = { 86 {"inode", XFS_DAX_INODE }, 87 {"always", XFS_DAX_ALWAYS }, 88 {"never", XFS_DAX_NEVER }, 89 {} 90 }; 91 92 /* 93 * Table driven mount option parser. 94 */ 95 enum { 96 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, 97 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, 98 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, 99 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, 100 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, 101 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, 102 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, 103 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, 104 Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum, 105 }; 106 107 static const struct fs_parameter_spec xfs_fs_parameters[] = { 108 fsparam_u32("logbufs", Opt_logbufs), 109 fsparam_string("logbsize", Opt_logbsize), 110 fsparam_string("logdev", Opt_logdev), 111 fsparam_string("rtdev", Opt_rtdev), 112 fsparam_flag("wsync", Opt_wsync), 113 fsparam_flag("noalign", Opt_noalign), 114 fsparam_flag("swalloc", Opt_swalloc), 115 fsparam_u32("sunit", Opt_sunit), 116 fsparam_u32("swidth", Opt_swidth), 117 fsparam_flag("nouuid", Opt_nouuid), 118 fsparam_flag("grpid", Opt_grpid), 119 fsparam_flag("nogrpid", Opt_nogrpid), 120 fsparam_flag("bsdgroups", Opt_bsdgroups), 121 fsparam_flag("sysvgroups", Opt_sysvgroups), 122 fsparam_string("allocsize", Opt_allocsize), 123 fsparam_flag("norecovery", Opt_norecovery), 124 fsparam_flag("inode64", Opt_inode64), 125 fsparam_flag("inode32", Opt_inode32), 126 fsparam_flag("ikeep", Opt_ikeep), 127 fsparam_flag("noikeep", Opt_noikeep), 128 fsparam_flag("largeio", Opt_largeio), 129 fsparam_flag("nolargeio", Opt_nolargeio), 130 fsparam_flag("attr2", Opt_attr2), 131 fsparam_flag("noattr2", Opt_noattr2), 132 fsparam_flag("filestreams", Opt_filestreams), 133 fsparam_flag("quota", Opt_quota), 134 fsparam_flag("noquota", Opt_noquota), 135 fsparam_flag("usrquota", Opt_usrquota), 136 fsparam_flag("grpquota", Opt_grpquota), 137 fsparam_flag("prjquota", Opt_prjquota), 138 fsparam_flag("uquota", Opt_uquota), 139 fsparam_flag("gquota", Opt_gquota), 140 fsparam_flag("pquota", Opt_pquota), 141 fsparam_flag("uqnoenforce", Opt_uqnoenforce), 142 fsparam_flag("gqnoenforce", Opt_gqnoenforce), 143 fsparam_flag("pqnoenforce", Opt_pqnoenforce), 144 fsparam_flag("qnoenforce", Opt_qnoenforce), 145 fsparam_flag("discard", Opt_discard), 146 fsparam_flag("nodiscard", Opt_nodiscard), 147 fsparam_flag("dax", Opt_dax), 148 fsparam_enum("dax", Opt_dax_enum, dax_param_enums), 149 {} 150 }; 151 152 struct proc_xfs_info { 153 uint64_t flag; 154 char *str; 155 }; 156 157 static int xfs_fs_show_options(struct seq_file * m,struct dentry * root)158 xfs_fs_show_options( 159 struct seq_file *m, 160 struct dentry *root) 161 { 162 static struct proc_xfs_info xfs_info_set[] = { 163 /* the few simple ones we can get from the mount struct */ 164 { XFS_FEAT_IKEEP, ",ikeep" }, 165 { XFS_FEAT_WSYNC, ",wsync" }, 166 { XFS_FEAT_NOALIGN, ",noalign" }, 167 { XFS_FEAT_SWALLOC, ",swalloc" }, 168 { XFS_FEAT_NOUUID, ",nouuid" }, 169 { XFS_FEAT_NORECOVERY, ",norecovery" }, 170 { XFS_FEAT_ATTR2, ",attr2" }, 171 { XFS_FEAT_FILESTREAMS, ",filestreams" }, 172 { XFS_FEAT_GRPID, ",grpid" }, 173 { XFS_FEAT_DISCARD, ",discard" }, 174 { XFS_FEAT_LARGE_IOSIZE, ",largeio" }, 175 { XFS_FEAT_DAX_ALWAYS, ",dax=always" }, 176 { XFS_FEAT_DAX_NEVER, ",dax=never" }, 177 { 0, NULL } 178 }; 179 struct xfs_mount *mp = XFS_M(root->d_sb); 180 struct proc_xfs_info *xfs_infop; 181 182 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { 183 if (mp->m_features & xfs_infop->flag) 184 seq_puts(m, xfs_infop->str); 185 } 186 187 seq_printf(m, ",inode%d", xfs_has_small_inums(mp) ? 32 : 64); 188 189 if (xfs_has_allocsize(mp)) 190 seq_printf(m, ",allocsize=%dk", 191 (1 << mp->m_allocsize_log) >> 10); 192 193 if (mp->m_logbufs > 0) 194 seq_printf(m, ",logbufs=%d", mp->m_logbufs); 195 if (mp->m_logbsize > 0) 196 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); 197 198 if (mp->m_logname) 199 seq_show_option(m, "logdev", mp->m_logname); 200 if (mp->m_rtname) 201 seq_show_option(m, "rtdev", mp->m_rtname); 202 203 if (mp->m_dalign > 0) 204 seq_printf(m, ",sunit=%d", 205 (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); 206 if (mp->m_swidth > 0) 207 seq_printf(m, ",swidth=%d", 208 (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); 209 210 if (mp->m_qflags & XFS_UQUOTA_ENFD) 211 seq_puts(m, ",usrquota"); 212 else if (mp->m_qflags & XFS_UQUOTA_ACCT) 213 seq_puts(m, ",uqnoenforce"); 214 215 if (mp->m_qflags & XFS_PQUOTA_ENFD) 216 seq_puts(m, ",prjquota"); 217 else if (mp->m_qflags & XFS_PQUOTA_ACCT) 218 seq_puts(m, ",pqnoenforce"); 219 220 if (mp->m_qflags & XFS_GQUOTA_ENFD) 221 seq_puts(m, ",grpquota"); 222 else if (mp->m_qflags & XFS_GQUOTA_ACCT) 223 seq_puts(m, ",gqnoenforce"); 224 225 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) 226 seq_puts(m, ",noquota"); 227 228 return 0; 229 } 230 231 static bool xfs_set_inode_alloc_perag(struct xfs_perag * pag,xfs_ino_t ino,xfs_agnumber_t max_metadata)232 xfs_set_inode_alloc_perag( 233 struct xfs_perag *pag, 234 xfs_ino_t ino, 235 xfs_agnumber_t max_metadata) 236 { 237 if (!xfs_is_inode32(pag->pag_mount)) { 238 set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); 239 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 240 return false; 241 } 242 243 if (ino > XFS_MAXINUMBER_32) { 244 clear_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); 245 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 246 return false; 247 } 248 249 set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); 250 if (pag->pag_agno < max_metadata) 251 set_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 252 else 253 clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); 254 return true; 255 } 256 257 /* 258 * Set parameters for inode allocation heuristics, taking into account 259 * filesystem size and inode32/inode64 mount options; i.e. specifically 260 * whether or not XFS_FEAT_SMALL_INUMS is set. 261 * 262 * Inode allocation patterns are altered only if inode32 is requested 263 * (XFS_FEAT_SMALL_INUMS), and the filesystem is sufficiently large. 264 * If altered, XFS_OPSTATE_INODE32 is set as well. 265 * 266 * An agcount independent of that in the mount structure is provided 267 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated 268 * to the potentially higher ag count. 269 * 270 * Returns the maximum AG index which may contain inodes. 271 */ 272 xfs_agnumber_t xfs_set_inode_alloc(struct xfs_mount * mp,xfs_agnumber_t agcount)273 xfs_set_inode_alloc( 274 struct xfs_mount *mp, 275 xfs_agnumber_t agcount) 276 { 277 xfs_agnumber_t index; 278 xfs_agnumber_t maxagi = 0; 279 xfs_sb_t *sbp = &mp->m_sb; 280 xfs_agnumber_t max_metadata; 281 xfs_agino_t agino; 282 xfs_ino_t ino; 283 284 /* 285 * Calculate how much should be reserved for inodes to meet 286 * the max inode percentage. Used only for inode32. 287 */ 288 if (M_IGEO(mp)->maxicount) { 289 uint64_t icount; 290 291 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 292 do_div(icount, 100); 293 icount += sbp->sb_agblocks - 1; 294 do_div(icount, sbp->sb_agblocks); 295 max_metadata = icount; 296 } else { 297 max_metadata = agcount; 298 } 299 300 /* Get the last possible inode in the filesystem */ 301 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); 302 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 303 304 /* 305 * If user asked for no more than 32-bit inodes, and the fs is 306 * sufficiently large, set XFS_OPSTATE_INODE32 if we must alter 307 * the allocator to accommodate the request. 308 */ 309 if (xfs_has_small_inums(mp) && ino > XFS_MAXINUMBER_32) 310 set_bit(XFS_OPSTATE_INODE32, &mp->m_opstate); 311 else 312 clear_bit(XFS_OPSTATE_INODE32, &mp->m_opstate); 313 314 for (index = 0; index < agcount; index++) { 315 struct xfs_perag *pag; 316 317 ino = XFS_AGINO_TO_INO(mp, index, agino); 318 319 pag = xfs_perag_get(mp, index); 320 if (xfs_set_inode_alloc_perag(pag, ino, max_metadata)) 321 maxagi++; 322 xfs_perag_put(pag); 323 } 324 325 return xfs_is_inode32(mp) ? maxagi : agcount; 326 } 327 328 static int xfs_setup_dax_always(struct xfs_mount * mp)329 xfs_setup_dax_always( 330 struct xfs_mount *mp) 331 { 332 if (!mp->m_ddev_targp->bt_daxdev && 333 (!mp->m_rtdev_targp || !mp->m_rtdev_targp->bt_daxdev)) { 334 xfs_alert(mp, 335 "DAX unsupported by block device. Turning off DAX."); 336 goto disable_dax; 337 } 338 339 if (mp->m_super->s_blocksize != PAGE_SIZE) { 340 xfs_alert(mp, 341 "DAX not supported for blocksize. Turning off DAX."); 342 goto disable_dax; 343 } 344 345 if (xfs_has_reflink(mp) && 346 bdev_is_partition(mp->m_ddev_targp->bt_bdev)) { 347 xfs_alert(mp, 348 "DAX and reflink cannot work with multi-partitions!"); 349 return -EINVAL; 350 } 351 352 xfs_warn(mp, "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 353 return 0; 354 355 disable_dax: 356 xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER); 357 return 0; 358 } 359 360 STATIC int xfs_blkdev_get(xfs_mount_t * mp,const char * name,struct block_device ** bdevp)361 xfs_blkdev_get( 362 xfs_mount_t *mp, 363 const char *name, 364 struct block_device **bdevp) 365 { 366 int error = 0; 367 368 *bdevp = blkdev_get_by_path(name, BLK_OPEN_READ | BLK_OPEN_WRITE, 369 mp->m_super, &fs_holder_ops); 370 if (IS_ERR(*bdevp)) { 371 error = PTR_ERR(*bdevp); 372 xfs_warn(mp, "Invalid device [%s], error=%d", name, error); 373 } 374 375 return error; 376 } 377 378 STATIC void xfs_shutdown_devices(struct xfs_mount * mp)379 xfs_shutdown_devices( 380 struct xfs_mount *mp) 381 { 382 /* 383 * Udev is triggered whenever anyone closes a block device or unmounts 384 * a file systemm on a block device. 385 * The default udev rules invoke blkid to read the fs super and create 386 * symlinks to the bdev under /dev/disk. For this, it uses buffered 387 * reads through the page cache. 388 * 389 * xfs_db also uses buffered reads to examine metadata. There is no 390 * coordination between xfs_db and udev, which means that they can run 391 * concurrently. Note there is no coordination between the kernel and 392 * blkid either. 393 * 394 * On a system with 64k pages, the page cache can cache the superblock 395 * and the root inode (and hence the root directory) with the same 64k 396 * page. If udev spawns blkid after the mkfs and the system is busy 397 * enough that it is still running when xfs_db starts up, they'll both 398 * read from the same page in the pagecache. 399 * 400 * The unmount writes updated inode metadata to disk directly. The XFS 401 * buffer cache does not use the bdev pagecache, so it needs to 402 * invalidate that pagecache on unmount. If the above scenario occurs, 403 * the pagecache no longer reflects what's on disk, xfs_db reads the 404 * stale metadata, and fails to find /a. Most of the time this succeeds 405 * because closing a bdev invalidates the page cache, but when processes 406 * race, everyone loses. 407 */ 408 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 409 blkdev_issue_flush(mp->m_logdev_targp->bt_bdev); 410 invalidate_bdev(mp->m_logdev_targp->bt_bdev); 411 } 412 if (mp->m_rtdev_targp) { 413 blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); 414 invalidate_bdev(mp->m_rtdev_targp->bt_bdev); 415 } 416 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 417 invalidate_bdev(mp->m_ddev_targp->bt_bdev); 418 } 419 420 /* 421 * The file system configurations are: 422 * (1) device (partition) with data and internal log 423 * (2) logical volume with data and log subvolumes. 424 * (3) logical volume with data, log, and realtime subvolumes. 425 * 426 * We only have to handle opening the log and realtime volumes here if 427 * they are present. The data subvolume has already been opened by 428 * get_sb_bdev() and is stored in sb->s_bdev. 429 */ 430 STATIC int xfs_open_devices(struct xfs_mount * mp)431 xfs_open_devices( 432 struct xfs_mount *mp) 433 { 434 struct super_block *sb = mp->m_super; 435 struct block_device *ddev = sb->s_bdev; 436 struct block_device *logdev = NULL, *rtdev = NULL; 437 int error; 438 439 /* 440 * blkdev_put() can't be called under s_umount, see the comment 441 * in get_tree_bdev() for more details 442 */ 443 up_write(&sb->s_umount); 444 445 /* 446 * Open real time and log devices - order is important. 447 */ 448 if (mp->m_logname) { 449 error = xfs_blkdev_get(mp, mp->m_logname, &logdev); 450 if (error) 451 goto out_relock; 452 } 453 454 if (mp->m_rtname) { 455 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); 456 if (error) 457 goto out_close_logdev; 458 459 if (rtdev == ddev || rtdev == logdev) { 460 xfs_warn(mp, 461 "Cannot mount filesystem with identical rtdev and ddev/logdev."); 462 error = -EINVAL; 463 goto out_close_rtdev; 464 } 465 } 466 467 /* 468 * Setup xfs_mount buffer target pointers 469 */ 470 error = -ENOMEM; 471 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev); 472 if (!mp->m_ddev_targp) 473 goto out_close_rtdev; 474 475 if (rtdev) { 476 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev); 477 if (!mp->m_rtdev_targp) 478 goto out_free_ddev_targ; 479 } 480 481 if (logdev && logdev != ddev) { 482 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev); 483 if (!mp->m_logdev_targp) 484 goto out_free_rtdev_targ; 485 } else { 486 mp->m_logdev_targp = mp->m_ddev_targp; 487 } 488 489 error = 0; 490 out_relock: 491 down_write(&sb->s_umount); 492 return error; 493 494 out_free_rtdev_targ: 495 if (mp->m_rtdev_targp) 496 xfs_free_buftarg(mp->m_rtdev_targp); 497 out_free_ddev_targ: 498 xfs_free_buftarg(mp->m_ddev_targp); 499 out_close_rtdev: 500 if (rtdev) 501 blkdev_put(rtdev, sb); 502 out_close_logdev: 503 if (logdev && logdev != ddev) 504 blkdev_put(logdev, sb); 505 goto out_relock; 506 } 507 508 /* 509 * Setup xfs_mount buffer target pointers based on superblock 510 */ 511 STATIC int xfs_setup_devices(struct xfs_mount * mp)512 xfs_setup_devices( 513 struct xfs_mount *mp) 514 { 515 int error; 516 517 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); 518 if (error) 519 return error; 520 521 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { 522 unsigned int log_sector_size = BBSIZE; 523 524 if (xfs_has_sector(mp)) 525 log_sector_size = mp->m_sb.sb_logsectsize; 526 error = xfs_setsize_buftarg(mp->m_logdev_targp, 527 log_sector_size); 528 if (error) 529 return error; 530 } 531 if (mp->m_rtdev_targp) { 532 error = xfs_setsize_buftarg(mp->m_rtdev_targp, 533 mp->m_sb.sb_sectsize); 534 if (error) 535 return error; 536 } 537 538 return 0; 539 } 540 541 STATIC int xfs_init_mount_workqueues(struct xfs_mount * mp)542 xfs_init_mount_workqueues( 543 struct xfs_mount *mp) 544 { 545 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", 546 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 547 1, mp->m_super->s_id); 548 if (!mp->m_buf_workqueue) 549 goto out; 550 551 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", 552 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 553 0, mp->m_super->s_id); 554 if (!mp->m_unwritten_workqueue) 555 goto out_destroy_buf; 556 557 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", 558 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 559 0, mp->m_super->s_id); 560 if (!mp->m_reclaim_workqueue) 561 goto out_destroy_unwritten; 562 563 mp->m_blockgc_wq = alloc_workqueue("xfs-blockgc/%s", 564 XFS_WQFLAGS(WQ_UNBOUND | WQ_FREEZABLE | WQ_MEM_RECLAIM), 565 0, mp->m_super->s_id); 566 if (!mp->m_blockgc_wq) 567 goto out_destroy_reclaim; 568 569 mp->m_inodegc_wq = alloc_workqueue("xfs-inodegc/%s", 570 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), 571 1, mp->m_super->s_id); 572 if (!mp->m_inodegc_wq) 573 goto out_destroy_blockgc; 574 575 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", 576 XFS_WQFLAGS(WQ_FREEZABLE), 0, mp->m_super->s_id); 577 if (!mp->m_sync_workqueue) 578 goto out_destroy_inodegc; 579 580 return 0; 581 582 out_destroy_inodegc: 583 destroy_workqueue(mp->m_inodegc_wq); 584 out_destroy_blockgc: 585 destroy_workqueue(mp->m_blockgc_wq); 586 out_destroy_reclaim: 587 destroy_workqueue(mp->m_reclaim_workqueue); 588 out_destroy_unwritten: 589 destroy_workqueue(mp->m_unwritten_workqueue); 590 out_destroy_buf: 591 destroy_workqueue(mp->m_buf_workqueue); 592 out: 593 return -ENOMEM; 594 } 595 596 STATIC void xfs_destroy_mount_workqueues(struct xfs_mount * mp)597 xfs_destroy_mount_workqueues( 598 struct xfs_mount *mp) 599 { 600 destroy_workqueue(mp->m_sync_workqueue); 601 destroy_workqueue(mp->m_blockgc_wq); 602 destroy_workqueue(mp->m_inodegc_wq); 603 destroy_workqueue(mp->m_reclaim_workqueue); 604 destroy_workqueue(mp->m_unwritten_workqueue); 605 destroy_workqueue(mp->m_buf_workqueue); 606 } 607 608 static void xfs_flush_inodes_worker(struct work_struct * work)609 xfs_flush_inodes_worker( 610 struct work_struct *work) 611 { 612 struct xfs_mount *mp = container_of(work, struct xfs_mount, 613 m_flush_inodes_work); 614 struct super_block *sb = mp->m_super; 615 616 if (down_read_trylock(&sb->s_umount)) { 617 sync_inodes_sb(sb); 618 up_read(&sb->s_umount); 619 } 620 } 621 622 /* 623 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK 624 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting 625 * for IO to complete so that we effectively throttle multiple callers to the 626 * rate at which IO is completing. 627 */ 628 void xfs_flush_inodes(struct xfs_mount * mp)629 xfs_flush_inodes( 630 struct xfs_mount *mp) 631 { 632 /* 633 * If flush_work() returns true then that means we waited for a flush 634 * which was already in progress. Don't bother running another scan. 635 */ 636 if (flush_work(&mp->m_flush_inodes_work)) 637 return; 638 639 queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work); 640 flush_work(&mp->m_flush_inodes_work); 641 } 642 643 /* Catch misguided souls that try to use this interface on XFS */ 644 STATIC struct inode * xfs_fs_alloc_inode(struct super_block * sb)645 xfs_fs_alloc_inode( 646 struct super_block *sb) 647 { 648 BUG(); 649 return NULL; 650 } 651 652 /* 653 * Now that the generic code is guaranteed not to be accessing 654 * the linux inode, we can inactivate and reclaim the inode. 655 */ 656 STATIC void xfs_fs_destroy_inode(struct inode * inode)657 xfs_fs_destroy_inode( 658 struct inode *inode) 659 { 660 struct xfs_inode *ip = XFS_I(inode); 661 662 trace_xfs_destroy_inode(ip); 663 664 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 665 XFS_STATS_INC(ip->i_mount, vn_rele); 666 XFS_STATS_INC(ip->i_mount, vn_remove); 667 xfs_inode_mark_reclaimable(ip); 668 } 669 670 static void xfs_fs_dirty_inode(struct inode * inode,int flags)671 xfs_fs_dirty_inode( 672 struct inode *inode, 673 int flags) 674 { 675 struct xfs_inode *ip = XFS_I(inode); 676 struct xfs_mount *mp = ip->i_mount; 677 struct xfs_trans *tp; 678 679 if (!(inode->i_sb->s_flags & SB_LAZYTIME)) 680 return; 681 682 /* 683 * Only do the timestamp update if the inode is dirty (I_DIRTY_SYNC) 684 * and has dirty timestamp (I_DIRTY_TIME). I_DIRTY_TIME can be passed 685 * in flags possibly together with I_DIRTY_SYNC. 686 */ 687 if ((flags & ~I_DIRTY_TIME) != I_DIRTY_SYNC || !(flags & I_DIRTY_TIME)) 688 return; 689 690 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) 691 return; 692 xfs_ilock(ip, XFS_ILOCK_EXCL); 693 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 694 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); 695 xfs_trans_commit(tp); 696 } 697 698 /* 699 * Slab object creation initialisation for the XFS inode. 700 * This covers only the idempotent fields in the XFS inode; 701 * all other fields need to be initialised on allocation 702 * from the slab. This avoids the need to repeatedly initialise 703 * fields in the xfs inode that left in the initialise state 704 * when freeing the inode. 705 */ 706 STATIC void xfs_fs_inode_init_once(void * inode)707 xfs_fs_inode_init_once( 708 void *inode) 709 { 710 struct xfs_inode *ip = inode; 711 712 memset(ip, 0, sizeof(struct xfs_inode)); 713 714 /* vfs inode */ 715 inode_init_once(VFS_I(ip)); 716 717 /* xfs inode */ 718 atomic_set(&ip->i_pincount, 0); 719 spin_lock_init(&ip->i_flags_lock); 720 721 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, 722 "xfsino", ip->i_ino); 723 } 724 725 /* 726 * We do an unlocked check for XFS_IDONTCACHE here because we are already 727 * serialised against cache hits here via the inode->i_lock and igrab() in 728 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be 729 * racing with us, and it avoids needing to grab a spinlock here for every inode 730 * we drop the final reference on. 731 */ 732 STATIC int xfs_fs_drop_inode(struct inode * inode)733 xfs_fs_drop_inode( 734 struct inode *inode) 735 { 736 struct xfs_inode *ip = XFS_I(inode); 737 738 /* 739 * If this unlinked inode is in the middle of recovery, don't 740 * drop the inode just yet; log recovery will take care of 741 * that. See the comment for this inode flag. 742 */ 743 if (ip->i_flags & XFS_IRECOVERY) { 744 ASSERT(xlog_recovery_needed(ip->i_mount->m_log)); 745 return 0; 746 } 747 748 return generic_drop_inode(inode); 749 } 750 751 static void xfs_mount_free(struct xfs_mount * mp)752 xfs_mount_free( 753 struct xfs_mount *mp) 754 { 755 /* 756 * Free the buftargs here because blkdev_put needs to be called outside 757 * of sb->s_umount, which is held around the call to ->put_super. 758 */ 759 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 760 xfs_free_buftarg(mp->m_logdev_targp); 761 if (mp->m_rtdev_targp) 762 xfs_free_buftarg(mp->m_rtdev_targp); 763 if (mp->m_ddev_targp) 764 xfs_free_buftarg(mp->m_ddev_targp); 765 766 debugfs_remove(mp->m_debugfs); 767 kfree(mp->m_rtname); 768 kfree(mp->m_logname); 769 kmem_free(mp); 770 } 771 772 STATIC int xfs_fs_sync_fs(struct super_block * sb,int wait)773 xfs_fs_sync_fs( 774 struct super_block *sb, 775 int wait) 776 { 777 struct xfs_mount *mp = XFS_M(sb); 778 int error; 779 780 trace_xfs_fs_sync_fs(mp, __return_address); 781 782 /* 783 * Doing anything during the async pass would be counterproductive. 784 */ 785 if (!wait) 786 return 0; 787 788 error = xfs_log_force(mp, XFS_LOG_SYNC); 789 if (error) 790 return error; 791 792 if (laptop_mode) { 793 /* 794 * The disk must be active because we're syncing. 795 * We schedule log work now (now that the disk is 796 * active) instead of later (when it might not be). 797 */ 798 flush_delayed_work(&mp->m_log->l_work); 799 } 800 801 /* 802 * If we are called with page faults frozen out, it means we are about 803 * to freeze the transaction subsystem. Take the opportunity to shut 804 * down inodegc because once SB_FREEZE_FS is set it's too late to 805 * prevent inactivation races with freeze. The fs doesn't get called 806 * again by the freezing process until after SB_FREEZE_FS has been set, 807 * so it's now or never. Same logic applies to speculative allocation 808 * garbage collection. 809 * 810 * We don't care if this is a normal syncfs call that does this or 811 * freeze that does this - we can run this multiple times without issue 812 * and we won't race with a restart because a restart can only occur 813 * when the state is either SB_FREEZE_FS or SB_FREEZE_COMPLETE. 814 */ 815 if (sb->s_writers.frozen == SB_FREEZE_PAGEFAULT) { 816 xfs_inodegc_stop(mp); 817 xfs_blockgc_stop(mp); 818 } 819 820 return 0; 821 } 822 823 STATIC int xfs_fs_statfs(struct dentry * dentry,struct kstatfs * statp)824 xfs_fs_statfs( 825 struct dentry *dentry, 826 struct kstatfs *statp) 827 { 828 struct xfs_mount *mp = XFS_M(dentry->d_sb); 829 xfs_sb_t *sbp = &mp->m_sb; 830 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 831 uint64_t fakeinos, id; 832 uint64_t icount; 833 uint64_t ifree; 834 uint64_t fdblocks; 835 xfs_extlen_t lsize; 836 int64_t ffree; 837 838 /* 839 * Expedite background inodegc but don't wait. We do not want to block 840 * here waiting hours for a billion extent file to be truncated. 841 */ 842 xfs_inodegc_push(mp); 843 844 statp->f_type = XFS_SUPER_MAGIC; 845 statp->f_namelen = MAXNAMELEN - 1; 846 847 id = huge_encode_dev(mp->m_ddev_targp->bt_dev); 848 statp->f_fsid = u64_to_fsid(id); 849 850 icount = percpu_counter_sum(&mp->m_icount); 851 ifree = percpu_counter_sum(&mp->m_ifree); 852 fdblocks = percpu_counter_sum(&mp->m_fdblocks); 853 854 spin_lock(&mp->m_sb_lock); 855 statp->f_bsize = sbp->sb_blocksize; 856 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; 857 statp->f_blocks = sbp->sb_dblocks - lsize; 858 spin_unlock(&mp->m_sb_lock); 859 860 /* make sure statp->f_bfree does not underflow */ 861 statp->f_bfree = max_t(int64_t, 0, 862 fdblocks - xfs_fdblocks_unavailable(mp)); 863 statp->f_bavail = statp->f_bfree; 864 865 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); 866 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); 867 if (M_IGEO(mp)->maxicount) 868 statp->f_files = min_t(typeof(statp->f_files), 869 statp->f_files, 870 M_IGEO(mp)->maxicount); 871 872 /* If sb_icount overshot maxicount, report actual allocation */ 873 statp->f_files = max_t(typeof(statp->f_files), 874 statp->f_files, 875 sbp->sb_icount); 876 877 /* make sure statp->f_ffree does not underflow */ 878 ffree = statp->f_files - (icount - ifree); 879 statp->f_ffree = max_t(int64_t, ffree, 0); 880 881 if (XFS_IS_REALTIME_MOUNT(mp) && 882 (ip->i_diflags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { 883 s64 freertx; 884 885 statp->f_blocks = sbp->sb_rblocks; 886 freertx = percpu_counter_sum_positive(&mp->m_frextents); 887 statp->f_bavail = statp->f_bfree = freertx * sbp->sb_rextsize; 888 } 889 890 if ((ip->i_diflags & XFS_DIFLAG_PROJINHERIT) && 891 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == 892 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) 893 xfs_qm_statvfs(ip, statp); 894 895 return 0; 896 } 897 898 STATIC void xfs_save_resvblks(struct xfs_mount * mp)899 xfs_save_resvblks(struct xfs_mount *mp) 900 { 901 uint64_t resblks = 0; 902 903 mp->m_resblks_save = mp->m_resblks; 904 xfs_reserve_blocks(mp, &resblks, NULL); 905 } 906 907 STATIC void xfs_restore_resvblks(struct xfs_mount * mp)908 xfs_restore_resvblks(struct xfs_mount *mp) 909 { 910 uint64_t resblks; 911 912 if (mp->m_resblks_save) { 913 resblks = mp->m_resblks_save; 914 mp->m_resblks_save = 0; 915 } else 916 resblks = xfs_default_resblks(mp); 917 918 xfs_reserve_blocks(mp, &resblks, NULL); 919 } 920 921 /* 922 * Second stage of a freeze. The data is already frozen so we only 923 * need to take care of the metadata. Once that's done sync the superblock 924 * to the log to dirty it in case of a crash while frozen. This ensures that we 925 * will recover the unlinked inode lists on the next mount. 926 */ 927 STATIC int xfs_fs_freeze(struct super_block * sb)928 xfs_fs_freeze( 929 struct super_block *sb) 930 { 931 struct xfs_mount *mp = XFS_M(sb); 932 unsigned int flags; 933 int ret; 934 935 /* 936 * The filesystem is now frozen far enough that memory reclaim 937 * cannot safely operate on the filesystem. Hence we need to 938 * set a GFP_NOFS context here to avoid recursion deadlocks. 939 */ 940 flags = memalloc_nofs_save(); 941 xfs_save_resvblks(mp); 942 ret = xfs_log_quiesce(mp); 943 memalloc_nofs_restore(flags); 944 945 /* 946 * For read-write filesystems, we need to restart the inodegc on error 947 * because we stopped it at SB_FREEZE_PAGEFAULT level and a thaw is not 948 * going to be run to restart it now. We are at SB_FREEZE_FS level 949 * here, so we can restart safely without racing with a stop in 950 * xfs_fs_sync_fs(). 951 */ 952 if (ret && !xfs_is_readonly(mp)) { 953 xfs_blockgc_start(mp); 954 xfs_inodegc_start(mp); 955 } 956 957 return ret; 958 } 959 960 STATIC int xfs_fs_unfreeze(struct super_block * sb)961 xfs_fs_unfreeze( 962 struct super_block *sb) 963 { 964 struct xfs_mount *mp = XFS_M(sb); 965 966 xfs_restore_resvblks(mp); 967 xfs_log_work_queue(mp); 968 969 /* 970 * Don't reactivate the inodegc worker on a readonly filesystem because 971 * inodes are sent directly to reclaim. Don't reactivate the blockgc 972 * worker because there are no speculative preallocations on a readonly 973 * filesystem. 974 */ 975 if (!xfs_is_readonly(mp)) { 976 xfs_blockgc_start(mp); 977 xfs_inodegc_start(mp); 978 } 979 980 return 0; 981 } 982 983 /* 984 * This function fills in xfs_mount_t fields based on mount args. 985 * Note: the superblock _has_ now been read in. 986 */ 987 STATIC int xfs_finish_flags(struct xfs_mount * mp)988 xfs_finish_flags( 989 struct xfs_mount *mp) 990 { 991 /* Fail a mount where the logbuf is smaller than the log stripe */ 992 if (xfs_has_logv2(mp)) { 993 if (mp->m_logbsize <= 0 && 994 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { 995 mp->m_logbsize = mp->m_sb.sb_logsunit; 996 } else if (mp->m_logbsize > 0 && 997 mp->m_logbsize < mp->m_sb.sb_logsunit) { 998 xfs_warn(mp, 999 "logbuf size must be greater than or equal to log stripe size"); 1000 return -EINVAL; 1001 } 1002 } else { 1003 /* Fail a mount if the logbuf is larger than 32K */ 1004 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { 1005 xfs_warn(mp, 1006 "logbuf size for version 1 logs must be 16K or 32K"); 1007 return -EINVAL; 1008 } 1009 } 1010 1011 /* 1012 * V5 filesystems always use attr2 format for attributes. 1013 */ 1014 if (xfs_has_crc(mp) && xfs_has_noattr2(mp)) { 1015 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " 1016 "attr2 is always enabled for V5 filesystems."); 1017 return -EINVAL; 1018 } 1019 1020 /* 1021 * prohibit r/w mounts of read-only filesystems 1022 */ 1023 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !xfs_is_readonly(mp)) { 1024 xfs_warn(mp, 1025 "cannot mount a read-only filesystem as read-write"); 1026 return -EROFS; 1027 } 1028 1029 if ((mp->m_qflags & XFS_GQUOTA_ACCT) && 1030 (mp->m_qflags & XFS_PQUOTA_ACCT) && 1031 !xfs_has_pquotino(mp)) { 1032 xfs_warn(mp, 1033 "Super block does not support project and group quota together"); 1034 return -EINVAL; 1035 } 1036 1037 return 0; 1038 } 1039 1040 static int xfs_init_percpu_counters(struct xfs_mount * mp)1041 xfs_init_percpu_counters( 1042 struct xfs_mount *mp) 1043 { 1044 int error; 1045 1046 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); 1047 if (error) 1048 return -ENOMEM; 1049 1050 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); 1051 if (error) 1052 goto free_icount; 1053 1054 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); 1055 if (error) 1056 goto free_ifree; 1057 1058 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); 1059 if (error) 1060 goto free_fdblocks; 1061 1062 error = percpu_counter_init(&mp->m_frextents, 0, GFP_KERNEL); 1063 if (error) 1064 goto free_delalloc; 1065 1066 return 0; 1067 1068 free_delalloc: 1069 percpu_counter_destroy(&mp->m_delalloc_blks); 1070 free_fdblocks: 1071 percpu_counter_destroy(&mp->m_fdblocks); 1072 free_ifree: 1073 percpu_counter_destroy(&mp->m_ifree); 1074 free_icount: 1075 percpu_counter_destroy(&mp->m_icount); 1076 return -ENOMEM; 1077 } 1078 1079 void xfs_reinit_percpu_counters(struct xfs_mount * mp)1080 xfs_reinit_percpu_counters( 1081 struct xfs_mount *mp) 1082 { 1083 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); 1084 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); 1085 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); 1086 percpu_counter_set(&mp->m_frextents, mp->m_sb.sb_frextents); 1087 } 1088 1089 static void xfs_destroy_percpu_counters(struct xfs_mount * mp)1090 xfs_destroy_percpu_counters( 1091 struct xfs_mount *mp) 1092 { 1093 percpu_counter_destroy(&mp->m_icount); 1094 percpu_counter_destroy(&mp->m_ifree); 1095 percpu_counter_destroy(&mp->m_fdblocks); 1096 ASSERT(xfs_is_shutdown(mp) || 1097 percpu_counter_sum(&mp->m_delalloc_blks) == 0); 1098 percpu_counter_destroy(&mp->m_delalloc_blks); 1099 percpu_counter_destroy(&mp->m_frextents); 1100 } 1101 1102 static int xfs_inodegc_init_percpu(struct xfs_mount * mp)1103 xfs_inodegc_init_percpu( 1104 struct xfs_mount *mp) 1105 { 1106 struct xfs_inodegc *gc; 1107 int cpu; 1108 1109 mp->m_inodegc = alloc_percpu(struct xfs_inodegc); 1110 if (!mp->m_inodegc) 1111 return -ENOMEM; 1112 1113 for_each_possible_cpu(cpu) { 1114 gc = per_cpu_ptr(mp->m_inodegc, cpu); 1115 gc->cpu = cpu; 1116 gc->mp = mp; 1117 init_llist_head(&gc->list); 1118 gc->items = 0; 1119 gc->error = 0; 1120 INIT_DELAYED_WORK(&gc->work, xfs_inodegc_worker); 1121 } 1122 return 0; 1123 } 1124 1125 static void xfs_inodegc_free_percpu(struct xfs_mount * mp)1126 xfs_inodegc_free_percpu( 1127 struct xfs_mount *mp) 1128 { 1129 if (!mp->m_inodegc) 1130 return; 1131 free_percpu(mp->m_inodegc); 1132 } 1133 1134 static void xfs_fs_put_super(struct super_block * sb)1135 xfs_fs_put_super( 1136 struct super_block *sb) 1137 { 1138 struct xfs_mount *mp = XFS_M(sb); 1139 1140 xfs_notice(mp, "Unmounting Filesystem %pU", &mp->m_sb.sb_uuid); 1141 xfs_filestream_unmount(mp); 1142 xfs_unmountfs(mp); 1143 1144 xfs_freesb(mp); 1145 xchk_mount_stats_free(mp); 1146 free_percpu(mp->m_stats.xs_stats); 1147 xfs_inodegc_free_percpu(mp); 1148 xfs_destroy_percpu_counters(mp); 1149 xfs_destroy_mount_workqueues(mp); 1150 xfs_shutdown_devices(mp); 1151 } 1152 1153 static long xfs_fs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)1154 xfs_fs_nr_cached_objects( 1155 struct super_block *sb, 1156 struct shrink_control *sc) 1157 { 1158 /* Paranoia: catch incorrect calls during mount setup or teardown */ 1159 if (WARN_ON_ONCE(!sb->s_fs_info)) 1160 return 0; 1161 return xfs_reclaim_inodes_count(XFS_M(sb)); 1162 } 1163 1164 static long xfs_fs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)1165 xfs_fs_free_cached_objects( 1166 struct super_block *sb, 1167 struct shrink_control *sc) 1168 { 1169 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); 1170 } 1171 1172 static void xfs_fs_shutdown(struct super_block * sb)1173 xfs_fs_shutdown( 1174 struct super_block *sb) 1175 { 1176 xfs_force_shutdown(XFS_M(sb), SHUTDOWN_DEVICE_REMOVED); 1177 } 1178 1179 static const struct super_operations xfs_super_operations = { 1180 .alloc_inode = xfs_fs_alloc_inode, 1181 .destroy_inode = xfs_fs_destroy_inode, 1182 .dirty_inode = xfs_fs_dirty_inode, 1183 .drop_inode = xfs_fs_drop_inode, 1184 .put_super = xfs_fs_put_super, 1185 .sync_fs = xfs_fs_sync_fs, 1186 .freeze_fs = xfs_fs_freeze, 1187 .unfreeze_fs = xfs_fs_unfreeze, 1188 .statfs = xfs_fs_statfs, 1189 .show_options = xfs_fs_show_options, 1190 .nr_cached_objects = xfs_fs_nr_cached_objects, 1191 .free_cached_objects = xfs_fs_free_cached_objects, 1192 .shutdown = xfs_fs_shutdown, 1193 }; 1194 1195 static int suffix_kstrtoint(const char * s,unsigned int base,int * res)1196 suffix_kstrtoint( 1197 const char *s, 1198 unsigned int base, 1199 int *res) 1200 { 1201 int last, shift_left_factor = 0, _res; 1202 char *value; 1203 int ret = 0; 1204 1205 value = kstrdup(s, GFP_KERNEL); 1206 if (!value) 1207 return -ENOMEM; 1208 1209 last = strlen(value) - 1; 1210 if (value[last] == 'K' || value[last] == 'k') { 1211 shift_left_factor = 10; 1212 value[last] = '\0'; 1213 } 1214 if (value[last] == 'M' || value[last] == 'm') { 1215 shift_left_factor = 20; 1216 value[last] = '\0'; 1217 } 1218 if (value[last] == 'G' || value[last] == 'g') { 1219 shift_left_factor = 30; 1220 value[last] = '\0'; 1221 } 1222 1223 if (kstrtoint(value, base, &_res)) 1224 ret = -EINVAL; 1225 kfree(value); 1226 *res = _res << shift_left_factor; 1227 return ret; 1228 } 1229 1230 static inline void xfs_fs_warn_deprecated(struct fs_context * fc,struct fs_parameter * param,uint64_t flag,bool value)1231 xfs_fs_warn_deprecated( 1232 struct fs_context *fc, 1233 struct fs_parameter *param, 1234 uint64_t flag, 1235 bool value) 1236 { 1237 /* Don't print the warning if reconfiguring and current mount point 1238 * already had the flag set 1239 */ 1240 if ((fc->purpose & FS_CONTEXT_FOR_RECONFIGURE) && 1241 !!(XFS_M(fc->root->d_sb)->m_features & flag) == value) 1242 return; 1243 xfs_warn(fc->s_fs_info, "%s mount option is deprecated.", param->key); 1244 } 1245 1246 /* 1247 * Set mount state from a mount option. 1248 * 1249 * NOTE: mp->m_super is NULL here! 1250 */ 1251 static int xfs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1252 xfs_fs_parse_param( 1253 struct fs_context *fc, 1254 struct fs_parameter *param) 1255 { 1256 struct xfs_mount *parsing_mp = fc->s_fs_info; 1257 struct fs_parse_result result; 1258 int size = 0; 1259 int opt; 1260 1261 opt = fs_parse(fc, xfs_fs_parameters, param, &result); 1262 if (opt < 0) 1263 return opt; 1264 1265 switch (opt) { 1266 case Opt_logbufs: 1267 parsing_mp->m_logbufs = result.uint_32; 1268 return 0; 1269 case Opt_logbsize: 1270 if (suffix_kstrtoint(param->string, 10, &parsing_mp->m_logbsize)) 1271 return -EINVAL; 1272 return 0; 1273 case Opt_logdev: 1274 kfree(parsing_mp->m_logname); 1275 parsing_mp->m_logname = kstrdup(param->string, GFP_KERNEL); 1276 if (!parsing_mp->m_logname) 1277 return -ENOMEM; 1278 return 0; 1279 case Opt_rtdev: 1280 kfree(parsing_mp->m_rtname); 1281 parsing_mp->m_rtname = kstrdup(param->string, GFP_KERNEL); 1282 if (!parsing_mp->m_rtname) 1283 return -ENOMEM; 1284 return 0; 1285 case Opt_allocsize: 1286 if (suffix_kstrtoint(param->string, 10, &size)) 1287 return -EINVAL; 1288 parsing_mp->m_allocsize_log = ffs(size) - 1; 1289 parsing_mp->m_features |= XFS_FEAT_ALLOCSIZE; 1290 return 0; 1291 case Opt_grpid: 1292 case Opt_bsdgroups: 1293 parsing_mp->m_features |= XFS_FEAT_GRPID; 1294 return 0; 1295 case Opt_nogrpid: 1296 case Opt_sysvgroups: 1297 parsing_mp->m_features &= ~XFS_FEAT_GRPID; 1298 return 0; 1299 case Opt_wsync: 1300 parsing_mp->m_features |= XFS_FEAT_WSYNC; 1301 return 0; 1302 case Opt_norecovery: 1303 parsing_mp->m_features |= XFS_FEAT_NORECOVERY; 1304 return 0; 1305 case Opt_noalign: 1306 parsing_mp->m_features |= XFS_FEAT_NOALIGN; 1307 return 0; 1308 case Opt_swalloc: 1309 parsing_mp->m_features |= XFS_FEAT_SWALLOC; 1310 return 0; 1311 case Opt_sunit: 1312 parsing_mp->m_dalign = result.uint_32; 1313 return 0; 1314 case Opt_swidth: 1315 parsing_mp->m_swidth = result.uint_32; 1316 return 0; 1317 case Opt_inode32: 1318 parsing_mp->m_features |= XFS_FEAT_SMALL_INUMS; 1319 return 0; 1320 case Opt_inode64: 1321 parsing_mp->m_features &= ~XFS_FEAT_SMALL_INUMS; 1322 return 0; 1323 case Opt_nouuid: 1324 parsing_mp->m_features |= XFS_FEAT_NOUUID; 1325 return 0; 1326 case Opt_largeio: 1327 parsing_mp->m_features |= XFS_FEAT_LARGE_IOSIZE; 1328 return 0; 1329 case Opt_nolargeio: 1330 parsing_mp->m_features &= ~XFS_FEAT_LARGE_IOSIZE; 1331 return 0; 1332 case Opt_filestreams: 1333 parsing_mp->m_features |= XFS_FEAT_FILESTREAMS; 1334 return 0; 1335 case Opt_noquota: 1336 parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; 1337 parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; 1338 return 0; 1339 case Opt_quota: 1340 case Opt_uquota: 1341 case Opt_usrquota: 1342 parsing_mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ENFD); 1343 return 0; 1344 case Opt_qnoenforce: 1345 case Opt_uqnoenforce: 1346 parsing_mp->m_qflags |= XFS_UQUOTA_ACCT; 1347 parsing_mp->m_qflags &= ~XFS_UQUOTA_ENFD; 1348 return 0; 1349 case Opt_pquota: 1350 case Opt_prjquota: 1351 parsing_mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ENFD); 1352 return 0; 1353 case Opt_pqnoenforce: 1354 parsing_mp->m_qflags |= XFS_PQUOTA_ACCT; 1355 parsing_mp->m_qflags &= ~XFS_PQUOTA_ENFD; 1356 return 0; 1357 case Opt_gquota: 1358 case Opt_grpquota: 1359 parsing_mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ENFD); 1360 return 0; 1361 case Opt_gqnoenforce: 1362 parsing_mp->m_qflags |= XFS_GQUOTA_ACCT; 1363 parsing_mp->m_qflags &= ~XFS_GQUOTA_ENFD; 1364 return 0; 1365 case Opt_discard: 1366 parsing_mp->m_features |= XFS_FEAT_DISCARD; 1367 return 0; 1368 case Opt_nodiscard: 1369 parsing_mp->m_features &= ~XFS_FEAT_DISCARD; 1370 return 0; 1371 #ifdef CONFIG_FS_DAX 1372 case Opt_dax: 1373 xfs_mount_set_dax_mode(parsing_mp, XFS_DAX_ALWAYS); 1374 return 0; 1375 case Opt_dax_enum: 1376 xfs_mount_set_dax_mode(parsing_mp, result.uint_32); 1377 return 0; 1378 #endif 1379 /* Following mount options will be removed in September 2025 */ 1380 case Opt_ikeep: 1381 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, true); 1382 parsing_mp->m_features |= XFS_FEAT_IKEEP; 1383 return 0; 1384 case Opt_noikeep: 1385 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, false); 1386 parsing_mp->m_features &= ~XFS_FEAT_IKEEP; 1387 return 0; 1388 case Opt_attr2: 1389 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_ATTR2, true); 1390 parsing_mp->m_features |= XFS_FEAT_ATTR2; 1391 return 0; 1392 case Opt_noattr2: 1393 xfs_fs_warn_deprecated(fc, param, XFS_FEAT_NOATTR2, true); 1394 parsing_mp->m_features |= XFS_FEAT_NOATTR2; 1395 return 0; 1396 default: 1397 xfs_warn(parsing_mp, "unknown mount option [%s].", param->key); 1398 return -EINVAL; 1399 } 1400 1401 return 0; 1402 } 1403 1404 static int xfs_fs_validate_params(struct xfs_mount * mp)1405 xfs_fs_validate_params( 1406 struct xfs_mount *mp) 1407 { 1408 /* No recovery flag requires a read-only mount */ 1409 if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) { 1410 xfs_warn(mp, "no-recovery mounts must be read-only."); 1411 return -EINVAL; 1412 } 1413 1414 /* 1415 * We have not read the superblock at this point, so only the attr2 1416 * mount option can set the attr2 feature by this stage. 1417 */ 1418 if (xfs_has_attr2(mp) && xfs_has_noattr2(mp)) { 1419 xfs_warn(mp, "attr2 and noattr2 cannot both be specified."); 1420 return -EINVAL; 1421 } 1422 1423 1424 if (xfs_has_noalign(mp) && (mp->m_dalign || mp->m_swidth)) { 1425 xfs_warn(mp, 1426 "sunit and swidth options incompatible with the noalign option"); 1427 return -EINVAL; 1428 } 1429 1430 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { 1431 xfs_warn(mp, "quota support not available in this kernel."); 1432 return -EINVAL; 1433 } 1434 1435 if ((mp->m_dalign && !mp->m_swidth) || 1436 (!mp->m_dalign && mp->m_swidth)) { 1437 xfs_warn(mp, "sunit and swidth must be specified together"); 1438 return -EINVAL; 1439 } 1440 1441 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { 1442 xfs_warn(mp, 1443 "stripe width (%d) must be a multiple of the stripe unit (%d)", 1444 mp->m_swidth, mp->m_dalign); 1445 return -EINVAL; 1446 } 1447 1448 if (mp->m_logbufs != -1 && 1449 mp->m_logbufs != 0 && 1450 (mp->m_logbufs < XLOG_MIN_ICLOGS || 1451 mp->m_logbufs > XLOG_MAX_ICLOGS)) { 1452 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", 1453 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); 1454 return -EINVAL; 1455 } 1456 1457 if (mp->m_logbsize != -1 && 1458 mp->m_logbsize != 0 && 1459 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || 1460 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || 1461 !is_power_of_2(mp->m_logbsize))) { 1462 xfs_warn(mp, 1463 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", 1464 mp->m_logbsize); 1465 return -EINVAL; 1466 } 1467 1468 if (xfs_has_allocsize(mp) && 1469 (mp->m_allocsize_log > XFS_MAX_IO_LOG || 1470 mp->m_allocsize_log < XFS_MIN_IO_LOG)) { 1471 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", 1472 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); 1473 return -EINVAL; 1474 } 1475 1476 return 0; 1477 } 1478 1479 struct dentry * xfs_debugfs_mkdir(const char * name,struct dentry * parent)1480 xfs_debugfs_mkdir( 1481 const char *name, 1482 struct dentry *parent) 1483 { 1484 struct dentry *child; 1485 1486 /* Apparently we're expected to ignore error returns?? */ 1487 child = debugfs_create_dir(name, parent); 1488 if (IS_ERR(child)) 1489 return NULL; 1490 1491 return child; 1492 } 1493 1494 static int xfs_fs_fill_super(struct super_block * sb,struct fs_context * fc)1495 xfs_fs_fill_super( 1496 struct super_block *sb, 1497 struct fs_context *fc) 1498 { 1499 struct xfs_mount *mp = sb->s_fs_info; 1500 struct inode *root; 1501 int flags = 0, error; 1502 1503 mp->m_super = sb; 1504 1505 /* 1506 * Copy VFS mount flags from the context now that all parameter parsing 1507 * is guaranteed to have been completed by either the old mount API or 1508 * the newer fsopen/fsconfig API. 1509 */ 1510 if (fc->sb_flags & SB_RDONLY) 1511 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 1512 if (fc->sb_flags & SB_DIRSYNC) 1513 mp->m_features |= XFS_FEAT_DIRSYNC; 1514 if (fc->sb_flags & SB_SYNCHRONOUS) 1515 mp->m_features |= XFS_FEAT_WSYNC; 1516 1517 error = xfs_fs_validate_params(mp); 1518 if (error) 1519 return error; 1520 1521 sb_min_blocksize(sb, BBSIZE); 1522 sb->s_xattr = xfs_xattr_handlers; 1523 sb->s_export_op = &xfs_export_operations; 1524 #ifdef CONFIG_XFS_QUOTA 1525 sb->s_qcop = &xfs_quotactl_operations; 1526 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1527 #endif 1528 sb->s_op = &xfs_super_operations; 1529 1530 /* 1531 * Delay mount work if the debug hook is set. This is debug 1532 * instrumention to coordinate simulation of xfs mount failures with 1533 * VFS superblock operations 1534 */ 1535 if (xfs_globals.mount_delay) { 1536 xfs_notice(mp, "Delaying mount for %d seconds.", 1537 xfs_globals.mount_delay); 1538 msleep(xfs_globals.mount_delay * 1000); 1539 } 1540 1541 if (fc->sb_flags & SB_SILENT) 1542 flags |= XFS_MFSI_QUIET; 1543 1544 error = xfs_open_devices(mp); 1545 if (error) 1546 return error; 1547 1548 if (xfs_debugfs) { 1549 mp->m_debugfs = xfs_debugfs_mkdir(mp->m_super->s_id, 1550 xfs_debugfs); 1551 } else { 1552 mp->m_debugfs = NULL; 1553 } 1554 1555 error = xfs_init_mount_workqueues(mp); 1556 if (error) 1557 goto out_shutdown_devices; 1558 1559 error = xfs_init_percpu_counters(mp); 1560 if (error) 1561 goto out_destroy_workqueues; 1562 1563 error = xfs_inodegc_init_percpu(mp); 1564 if (error) 1565 goto out_destroy_counters; 1566 1567 /* Allocate stats memory before we do operations that might use it */ 1568 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1569 if (!mp->m_stats.xs_stats) { 1570 error = -ENOMEM; 1571 goto out_destroy_inodegc; 1572 } 1573 1574 error = xchk_mount_stats_alloc(mp); 1575 if (error) 1576 goto out_free_stats; 1577 1578 error = xfs_readsb(mp, flags); 1579 if (error) 1580 goto out_free_scrub_stats; 1581 1582 error = xfs_finish_flags(mp); 1583 if (error) 1584 goto out_free_sb; 1585 1586 error = xfs_setup_devices(mp); 1587 if (error) 1588 goto out_free_sb; 1589 1590 /* V4 support is undergoing deprecation. */ 1591 if (!xfs_has_crc(mp)) { 1592 #ifdef CONFIG_XFS_SUPPORT_V4 1593 xfs_warn_once(mp, 1594 "Deprecated V4 format (crc=0) will not be supported after September 2030."); 1595 #else 1596 xfs_warn(mp, 1597 "Deprecated V4 format (crc=0) not supported by kernel."); 1598 error = -EINVAL; 1599 goto out_free_sb; 1600 #endif 1601 } 1602 1603 /* ASCII case insensitivity is undergoing deprecation. */ 1604 if (xfs_has_asciici(mp)) { 1605 #ifdef CONFIG_XFS_SUPPORT_ASCII_CI 1606 xfs_warn_once(mp, 1607 "Deprecated ASCII case-insensitivity feature (ascii-ci=1) will not be supported after September 2030."); 1608 #else 1609 xfs_warn(mp, 1610 "Deprecated ASCII case-insensitivity feature (ascii-ci=1) not supported by kernel."); 1611 error = -EINVAL; 1612 goto out_free_sb; 1613 #endif 1614 } 1615 1616 /* Filesystem claims it needs repair, so refuse the mount. */ 1617 if (xfs_has_needsrepair(mp)) { 1618 xfs_warn(mp, "Filesystem needs repair. Please run xfs_repair."); 1619 error = -EFSCORRUPTED; 1620 goto out_free_sb; 1621 } 1622 1623 /* 1624 * Don't touch the filesystem if a user tool thinks it owns the primary 1625 * superblock. mkfs doesn't clear the flag from secondary supers, so 1626 * we don't check them at all. 1627 */ 1628 if (mp->m_sb.sb_inprogress) { 1629 xfs_warn(mp, "Offline file system operation in progress!"); 1630 error = -EFSCORRUPTED; 1631 goto out_free_sb; 1632 } 1633 1634 /* 1635 * Until this is fixed only page-sized or smaller data blocks work. 1636 */ 1637 if (mp->m_sb.sb_blocksize > PAGE_SIZE) { 1638 xfs_warn(mp, 1639 "File system with blocksize %d bytes. " 1640 "Only pagesize (%ld) or less will currently work.", 1641 mp->m_sb.sb_blocksize, PAGE_SIZE); 1642 error = -ENOSYS; 1643 goto out_free_sb; 1644 } 1645 1646 /* Ensure this filesystem fits in the page cache limits */ 1647 if (xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_dblocks) || 1648 xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_rblocks)) { 1649 xfs_warn(mp, 1650 "file system too large to be mounted on this system."); 1651 error = -EFBIG; 1652 goto out_free_sb; 1653 } 1654 1655 /* 1656 * XFS block mappings use 54 bits to store the logical block offset. 1657 * This should suffice to handle the maximum file size that the VFS 1658 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT 1659 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes 1660 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON 1661 * to check this assertion. 1662 * 1663 * Avoid integer overflow by comparing the maximum bmbt offset to the 1664 * maximum pagecache offset in units of fs blocks. 1665 */ 1666 if (!xfs_verify_fileoff(mp, XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE))) { 1667 xfs_warn(mp, 1668 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!", 1669 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE), 1670 XFS_MAX_FILEOFF); 1671 error = -EINVAL; 1672 goto out_free_sb; 1673 } 1674 1675 error = xfs_filestream_mount(mp); 1676 if (error) 1677 goto out_free_sb; 1678 1679 /* 1680 * we must configure the block size in the superblock before we run the 1681 * full mount process as the mount process can lookup and cache inodes. 1682 */ 1683 sb->s_magic = XFS_SUPER_MAGIC; 1684 sb->s_blocksize = mp->m_sb.sb_blocksize; 1685 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1686 sb->s_maxbytes = MAX_LFS_FILESIZE; 1687 sb->s_max_links = XFS_MAXLINK; 1688 sb->s_time_gran = 1; 1689 if (xfs_has_bigtime(mp)) { 1690 sb->s_time_min = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MIN); 1691 sb->s_time_max = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MAX); 1692 } else { 1693 sb->s_time_min = XFS_LEGACY_TIME_MIN; 1694 sb->s_time_max = XFS_LEGACY_TIME_MAX; 1695 } 1696 trace_xfs_inode_timestamp_range(mp, sb->s_time_min, sb->s_time_max); 1697 sb->s_iflags |= SB_I_CGROUPWB; 1698 1699 set_posix_acl_flag(sb); 1700 1701 /* version 5 superblocks support inode version counters. */ 1702 if (xfs_has_crc(mp)) 1703 sb->s_flags |= SB_I_VERSION; 1704 1705 if (xfs_has_dax_always(mp)) { 1706 error = xfs_setup_dax_always(mp); 1707 if (error) 1708 goto out_filestream_unmount; 1709 } 1710 1711 if (xfs_has_discard(mp) && !bdev_max_discard_sectors(sb->s_bdev)) { 1712 xfs_warn(mp, 1713 "mounting with \"discard\" option, but the device does not support discard"); 1714 mp->m_features &= ~XFS_FEAT_DISCARD; 1715 } 1716 1717 if (xfs_has_reflink(mp)) { 1718 if (mp->m_sb.sb_rblocks) { 1719 xfs_alert(mp, 1720 "reflink not compatible with realtime device!"); 1721 error = -EINVAL; 1722 goto out_filestream_unmount; 1723 } 1724 1725 if (xfs_globals.always_cow) { 1726 xfs_info(mp, "using DEBUG-only always_cow mode."); 1727 mp->m_always_cow = true; 1728 } 1729 } 1730 1731 if (xfs_has_rmapbt(mp) && mp->m_sb.sb_rblocks) { 1732 xfs_alert(mp, 1733 "reverse mapping btree not compatible with realtime device!"); 1734 error = -EINVAL; 1735 goto out_filestream_unmount; 1736 } 1737 1738 error = xfs_mountfs(mp); 1739 if (error) 1740 goto out_filestream_unmount; 1741 1742 root = igrab(VFS_I(mp->m_rootip)); 1743 if (!root) { 1744 error = -ENOENT; 1745 goto out_unmount; 1746 } 1747 sb->s_root = d_make_root(root); 1748 if (!sb->s_root) { 1749 error = -ENOMEM; 1750 goto out_unmount; 1751 } 1752 1753 return 0; 1754 1755 out_filestream_unmount: 1756 xfs_filestream_unmount(mp); 1757 out_free_sb: 1758 xfs_freesb(mp); 1759 out_free_scrub_stats: 1760 xchk_mount_stats_free(mp); 1761 out_free_stats: 1762 free_percpu(mp->m_stats.xs_stats); 1763 out_destroy_inodegc: 1764 xfs_inodegc_free_percpu(mp); 1765 out_destroy_counters: 1766 xfs_destroy_percpu_counters(mp); 1767 out_destroy_workqueues: 1768 xfs_destroy_mount_workqueues(mp); 1769 out_shutdown_devices: 1770 xfs_shutdown_devices(mp); 1771 return error; 1772 1773 out_unmount: 1774 xfs_filestream_unmount(mp); 1775 xfs_unmountfs(mp); 1776 goto out_free_sb; 1777 } 1778 1779 static int xfs_fs_get_tree(struct fs_context * fc)1780 xfs_fs_get_tree( 1781 struct fs_context *fc) 1782 { 1783 return get_tree_bdev(fc, xfs_fs_fill_super); 1784 } 1785 1786 static int xfs_remount_rw(struct xfs_mount * mp)1787 xfs_remount_rw( 1788 struct xfs_mount *mp) 1789 { 1790 struct xfs_sb *sbp = &mp->m_sb; 1791 int error; 1792 1793 if (xfs_has_norecovery(mp)) { 1794 xfs_warn(mp, 1795 "ro->rw transition prohibited on norecovery mount"); 1796 return -EINVAL; 1797 } 1798 1799 if (xfs_sb_is_v5(sbp) && 1800 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 1801 xfs_warn(mp, 1802 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", 1803 (sbp->sb_features_ro_compat & 1804 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 1805 return -EINVAL; 1806 } 1807 1808 clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 1809 1810 /* 1811 * If this is the first remount to writeable state we might have some 1812 * superblock changes to update. 1813 */ 1814 if (mp->m_update_sb) { 1815 error = xfs_sync_sb(mp, false); 1816 if (error) { 1817 xfs_warn(mp, "failed to write sb changes"); 1818 return error; 1819 } 1820 mp->m_update_sb = false; 1821 } 1822 1823 /* 1824 * Fill out the reserve pool if it is empty. Use the stashed value if 1825 * it is non-zero, otherwise go with the default. 1826 */ 1827 xfs_restore_resvblks(mp); 1828 xfs_log_work_queue(mp); 1829 xfs_blockgc_start(mp); 1830 1831 /* Create the per-AG metadata reservation pool .*/ 1832 error = xfs_fs_reserve_ag_blocks(mp); 1833 if (error && error != -ENOSPC) 1834 return error; 1835 1836 /* Re-enable the background inode inactivation worker. */ 1837 xfs_inodegc_start(mp); 1838 1839 return 0; 1840 } 1841 1842 static int xfs_remount_ro(struct xfs_mount * mp)1843 xfs_remount_ro( 1844 struct xfs_mount *mp) 1845 { 1846 struct xfs_icwalk icw = { 1847 .icw_flags = XFS_ICWALK_FLAG_SYNC, 1848 }; 1849 int error; 1850 1851 /* Flush all the dirty data to disk. */ 1852 error = sync_filesystem(mp->m_super); 1853 if (error) 1854 return error; 1855 1856 /* 1857 * Cancel background eofb scanning so it cannot race with the final 1858 * log force+buftarg wait and deadlock the remount. 1859 */ 1860 xfs_blockgc_stop(mp); 1861 1862 /* 1863 * Clear out all remaining COW staging extents and speculative post-EOF 1864 * preallocations so that we don't leave inodes requiring inactivation 1865 * cleanups during reclaim on a read-only mount. We must process every 1866 * cached inode, so this requires a synchronous cache scan. 1867 */ 1868 error = xfs_blockgc_free_space(mp, &icw); 1869 if (error) { 1870 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1871 return error; 1872 } 1873 1874 /* 1875 * Stop the inodegc background worker. xfs_fs_reconfigure already 1876 * flushed all pending inodegc work when it sync'd the filesystem. 1877 * The VFS holds s_umount, so we know that inodes cannot enter 1878 * xfs_fs_destroy_inode during a remount operation. In readonly mode 1879 * we send inodes straight to reclaim, so no inodes will be queued. 1880 */ 1881 xfs_inodegc_stop(mp); 1882 1883 /* Free the per-AG metadata reservation pool. */ 1884 error = xfs_fs_unreserve_ag_blocks(mp); 1885 if (error) { 1886 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1887 return error; 1888 } 1889 1890 /* 1891 * Before we sync the metadata, we need to free up the reserve block 1892 * pool so that the used block count in the superblock on disk is 1893 * correct at the end of the remount. Stash the current* reserve pool 1894 * size so that if we get remounted rw, we can return it to the same 1895 * size. 1896 */ 1897 xfs_save_resvblks(mp); 1898 1899 xfs_log_clean(mp); 1900 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); 1901 1902 return 0; 1903 } 1904 1905 /* 1906 * Logically we would return an error here to prevent users from believing 1907 * they might have changed mount options using remount which can't be changed. 1908 * 1909 * But unfortunately mount(8) adds all options from mtab and fstab to the mount 1910 * arguments in some cases so we can't blindly reject options, but have to 1911 * check for each specified option if it actually differs from the currently 1912 * set option and only reject it if that's the case. 1913 * 1914 * Until that is implemented we return success for every remount request, and 1915 * silently ignore all options that we can't actually change. 1916 */ 1917 static int xfs_fs_reconfigure(struct fs_context * fc)1918 xfs_fs_reconfigure( 1919 struct fs_context *fc) 1920 { 1921 struct xfs_mount *mp = XFS_M(fc->root->d_sb); 1922 struct xfs_mount *new_mp = fc->s_fs_info; 1923 int flags = fc->sb_flags; 1924 int error; 1925 1926 /* version 5 superblocks always support version counters. */ 1927 if (xfs_has_crc(mp)) 1928 fc->sb_flags |= SB_I_VERSION; 1929 1930 error = xfs_fs_validate_params(new_mp); 1931 if (error) 1932 return error; 1933 1934 /* inode32 -> inode64 */ 1935 if (xfs_has_small_inums(mp) && !xfs_has_small_inums(new_mp)) { 1936 mp->m_features &= ~XFS_FEAT_SMALL_INUMS; 1937 mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount); 1938 } 1939 1940 /* inode64 -> inode32 */ 1941 if (!xfs_has_small_inums(mp) && xfs_has_small_inums(new_mp)) { 1942 mp->m_features |= XFS_FEAT_SMALL_INUMS; 1943 mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount); 1944 } 1945 1946 /* ro -> rw */ 1947 if (xfs_is_readonly(mp) && !(flags & SB_RDONLY)) { 1948 error = xfs_remount_rw(mp); 1949 if (error) 1950 return error; 1951 } 1952 1953 /* rw -> ro */ 1954 if (!xfs_is_readonly(mp) && (flags & SB_RDONLY)) { 1955 error = xfs_remount_ro(mp); 1956 if (error) 1957 return error; 1958 } 1959 1960 return 0; 1961 } 1962 1963 static void xfs_fs_free(struct fs_context * fc)1964 xfs_fs_free( 1965 struct fs_context *fc) 1966 { 1967 struct xfs_mount *mp = fc->s_fs_info; 1968 1969 /* 1970 * mp is stored in the fs_context when it is initialized. 1971 * mp is transferred to the superblock on a successful mount, 1972 * but if an error occurs before the transfer we have to free 1973 * it here. 1974 */ 1975 if (mp) 1976 xfs_mount_free(mp); 1977 } 1978 1979 static const struct fs_context_operations xfs_context_ops = { 1980 .parse_param = xfs_fs_parse_param, 1981 .get_tree = xfs_fs_get_tree, 1982 .reconfigure = xfs_fs_reconfigure, 1983 .free = xfs_fs_free, 1984 }; 1985 1986 /* 1987 * WARNING: do not initialise any parameters in this function that depend on 1988 * mount option parsing having already been performed as this can be called from 1989 * fsopen() before any parameters have been set. 1990 */ xfs_init_fs_context(struct fs_context * fc)1991 static int xfs_init_fs_context( 1992 struct fs_context *fc) 1993 { 1994 struct xfs_mount *mp; 1995 1996 mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO); 1997 if (!mp) 1998 return -ENOMEM; 1999 2000 spin_lock_init(&mp->m_sb_lock); 2001 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 2002 spin_lock_init(&mp->m_perag_lock); 2003 mutex_init(&mp->m_growlock); 2004 INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker); 2005 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 2006 mp->m_kobj.kobject.kset = xfs_kset; 2007 /* 2008 * We don't create the finobt per-ag space reservation until after log 2009 * recovery, so we must set this to true so that an ifree transaction 2010 * started during log recovery will not depend on space reservations 2011 * for finobt expansion. 2012 */ 2013 mp->m_finobt_nores = true; 2014 2015 /* 2016 * These can be overridden by the mount option parsing. 2017 */ 2018 mp->m_logbufs = -1; 2019 mp->m_logbsize = -1; 2020 mp->m_allocsize_log = 16; /* 64k */ 2021 2022 fc->s_fs_info = mp; 2023 fc->ops = &xfs_context_ops; 2024 2025 return 0; 2026 } 2027 2028 static void xfs_kill_sb(struct super_block * sb)2029 xfs_kill_sb( 2030 struct super_block *sb) 2031 { 2032 kill_block_super(sb); 2033 xfs_mount_free(XFS_M(sb)); 2034 } 2035 2036 static struct file_system_type xfs_fs_type = { 2037 .owner = THIS_MODULE, 2038 .name = "xfs", 2039 .init_fs_context = xfs_init_fs_context, 2040 .parameters = xfs_fs_parameters, 2041 .kill_sb = xfs_kill_sb, 2042 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 2043 }; 2044 MODULE_ALIAS_FS("xfs"); 2045 2046 STATIC int __init xfs_init_caches(void)2047 xfs_init_caches(void) 2048 { 2049 int error; 2050 2051 xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0, 2052 SLAB_HWCACHE_ALIGN | 2053 SLAB_RECLAIM_ACCOUNT | 2054 SLAB_MEM_SPREAD, 2055 NULL); 2056 if (!xfs_buf_cache) 2057 goto out; 2058 2059 xfs_log_ticket_cache = kmem_cache_create("xfs_log_ticket", 2060 sizeof(struct xlog_ticket), 2061 0, 0, NULL); 2062 if (!xfs_log_ticket_cache) 2063 goto out_destroy_buf_cache; 2064 2065 error = xfs_btree_init_cur_caches(); 2066 if (error) 2067 goto out_destroy_log_ticket_cache; 2068 2069 error = xfs_defer_init_item_caches(); 2070 if (error) 2071 goto out_destroy_btree_cur_cache; 2072 2073 xfs_da_state_cache = kmem_cache_create("xfs_da_state", 2074 sizeof(struct xfs_da_state), 2075 0, 0, NULL); 2076 if (!xfs_da_state_cache) 2077 goto out_destroy_defer_item_cache; 2078 2079 xfs_ifork_cache = kmem_cache_create("xfs_ifork", 2080 sizeof(struct xfs_ifork), 2081 0, 0, NULL); 2082 if (!xfs_ifork_cache) 2083 goto out_destroy_da_state_cache; 2084 2085 xfs_trans_cache = kmem_cache_create("xfs_trans", 2086 sizeof(struct xfs_trans), 2087 0, 0, NULL); 2088 if (!xfs_trans_cache) 2089 goto out_destroy_ifork_cache; 2090 2091 2092 /* 2093 * The size of the cache-allocated buf log item is the maximum 2094 * size possible under XFS. This wastes a little bit of memory, 2095 * but it is much faster. 2096 */ 2097 xfs_buf_item_cache = kmem_cache_create("xfs_buf_item", 2098 sizeof(struct xfs_buf_log_item), 2099 0, 0, NULL); 2100 if (!xfs_buf_item_cache) 2101 goto out_destroy_trans_cache; 2102 2103 xfs_efd_cache = kmem_cache_create("xfs_efd_item", 2104 xfs_efd_log_item_sizeof(XFS_EFD_MAX_FAST_EXTENTS), 2105 0, 0, NULL); 2106 if (!xfs_efd_cache) 2107 goto out_destroy_buf_item_cache; 2108 2109 xfs_efi_cache = kmem_cache_create("xfs_efi_item", 2110 xfs_efi_log_item_sizeof(XFS_EFI_MAX_FAST_EXTENTS), 2111 0, 0, NULL); 2112 if (!xfs_efi_cache) 2113 goto out_destroy_efd_cache; 2114 2115 xfs_inode_cache = kmem_cache_create("xfs_inode", 2116 sizeof(struct xfs_inode), 0, 2117 (SLAB_HWCACHE_ALIGN | 2118 SLAB_RECLAIM_ACCOUNT | 2119 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 2120 xfs_fs_inode_init_once); 2121 if (!xfs_inode_cache) 2122 goto out_destroy_efi_cache; 2123 2124 xfs_ili_cache = kmem_cache_create("xfs_ili", 2125 sizeof(struct xfs_inode_log_item), 0, 2126 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2127 NULL); 2128 if (!xfs_ili_cache) 2129 goto out_destroy_inode_cache; 2130 2131 xfs_icreate_cache = kmem_cache_create("xfs_icr", 2132 sizeof(struct xfs_icreate_item), 2133 0, 0, NULL); 2134 if (!xfs_icreate_cache) 2135 goto out_destroy_ili_cache; 2136 2137 xfs_rud_cache = kmem_cache_create("xfs_rud_item", 2138 sizeof(struct xfs_rud_log_item), 2139 0, 0, NULL); 2140 if (!xfs_rud_cache) 2141 goto out_destroy_icreate_cache; 2142 2143 xfs_rui_cache = kmem_cache_create("xfs_rui_item", 2144 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), 2145 0, 0, NULL); 2146 if (!xfs_rui_cache) 2147 goto out_destroy_rud_cache; 2148 2149 xfs_cud_cache = kmem_cache_create("xfs_cud_item", 2150 sizeof(struct xfs_cud_log_item), 2151 0, 0, NULL); 2152 if (!xfs_cud_cache) 2153 goto out_destroy_rui_cache; 2154 2155 xfs_cui_cache = kmem_cache_create("xfs_cui_item", 2156 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), 2157 0, 0, NULL); 2158 if (!xfs_cui_cache) 2159 goto out_destroy_cud_cache; 2160 2161 xfs_bud_cache = kmem_cache_create("xfs_bud_item", 2162 sizeof(struct xfs_bud_log_item), 2163 0, 0, NULL); 2164 if (!xfs_bud_cache) 2165 goto out_destroy_cui_cache; 2166 2167 xfs_bui_cache = kmem_cache_create("xfs_bui_item", 2168 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), 2169 0, 0, NULL); 2170 if (!xfs_bui_cache) 2171 goto out_destroy_bud_cache; 2172 2173 xfs_attrd_cache = kmem_cache_create("xfs_attrd_item", 2174 sizeof(struct xfs_attrd_log_item), 2175 0, 0, NULL); 2176 if (!xfs_attrd_cache) 2177 goto out_destroy_bui_cache; 2178 2179 xfs_attri_cache = kmem_cache_create("xfs_attri_item", 2180 sizeof(struct xfs_attri_log_item), 2181 0, 0, NULL); 2182 if (!xfs_attri_cache) 2183 goto out_destroy_attrd_cache; 2184 2185 xfs_iunlink_cache = kmem_cache_create("xfs_iul_item", 2186 sizeof(struct xfs_iunlink_item), 2187 0, 0, NULL); 2188 if (!xfs_iunlink_cache) 2189 goto out_destroy_attri_cache; 2190 2191 return 0; 2192 2193 out_destroy_attri_cache: 2194 kmem_cache_destroy(xfs_attri_cache); 2195 out_destroy_attrd_cache: 2196 kmem_cache_destroy(xfs_attrd_cache); 2197 out_destroy_bui_cache: 2198 kmem_cache_destroy(xfs_bui_cache); 2199 out_destroy_bud_cache: 2200 kmem_cache_destroy(xfs_bud_cache); 2201 out_destroy_cui_cache: 2202 kmem_cache_destroy(xfs_cui_cache); 2203 out_destroy_cud_cache: 2204 kmem_cache_destroy(xfs_cud_cache); 2205 out_destroy_rui_cache: 2206 kmem_cache_destroy(xfs_rui_cache); 2207 out_destroy_rud_cache: 2208 kmem_cache_destroy(xfs_rud_cache); 2209 out_destroy_icreate_cache: 2210 kmem_cache_destroy(xfs_icreate_cache); 2211 out_destroy_ili_cache: 2212 kmem_cache_destroy(xfs_ili_cache); 2213 out_destroy_inode_cache: 2214 kmem_cache_destroy(xfs_inode_cache); 2215 out_destroy_efi_cache: 2216 kmem_cache_destroy(xfs_efi_cache); 2217 out_destroy_efd_cache: 2218 kmem_cache_destroy(xfs_efd_cache); 2219 out_destroy_buf_item_cache: 2220 kmem_cache_destroy(xfs_buf_item_cache); 2221 out_destroy_trans_cache: 2222 kmem_cache_destroy(xfs_trans_cache); 2223 out_destroy_ifork_cache: 2224 kmem_cache_destroy(xfs_ifork_cache); 2225 out_destroy_da_state_cache: 2226 kmem_cache_destroy(xfs_da_state_cache); 2227 out_destroy_defer_item_cache: 2228 xfs_defer_destroy_item_caches(); 2229 out_destroy_btree_cur_cache: 2230 xfs_btree_destroy_cur_caches(); 2231 out_destroy_log_ticket_cache: 2232 kmem_cache_destroy(xfs_log_ticket_cache); 2233 out_destroy_buf_cache: 2234 kmem_cache_destroy(xfs_buf_cache); 2235 out: 2236 return -ENOMEM; 2237 } 2238 2239 STATIC void xfs_destroy_caches(void)2240 xfs_destroy_caches(void) 2241 { 2242 /* 2243 * Make sure all delayed rcu free are flushed before we 2244 * destroy caches. 2245 */ 2246 rcu_barrier(); 2247 kmem_cache_destroy(xfs_iunlink_cache); 2248 kmem_cache_destroy(xfs_attri_cache); 2249 kmem_cache_destroy(xfs_attrd_cache); 2250 kmem_cache_destroy(xfs_bui_cache); 2251 kmem_cache_destroy(xfs_bud_cache); 2252 kmem_cache_destroy(xfs_cui_cache); 2253 kmem_cache_destroy(xfs_cud_cache); 2254 kmem_cache_destroy(xfs_rui_cache); 2255 kmem_cache_destroy(xfs_rud_cache); 2256 kmem_cache_destroy(xfs_icreate_cache); 2257 kmem_cache_destroy(xfs_ili_cache); 2258 kmem_cache_destroy(xfs_inode_cache); 2259 kmem_cache_destroy(xfs_efi_cache); 2260 kmem_cache_destroy(xfs_efd_cache); 2261 kmem_cache_destroy(xfs_buf_item_cache); 2262 kmem_cache_destroy(xfs_trans_cache); 2263 kmem_cache_destroy(xfs_ifork_cache); 2264 kmem_cache_destroy(xfs_da_state_cache); 2265 xfs_defer_destroy_item_caches(); 2266 xfs_btree_destroy_cur_caches(); 2267 kmem_cache_destroy(xfs_log_ticket_cache); 2268 kmem_cache_destroy(xfs_buf_cache); 2269 } 2270 2271 STATIC int __init xfs_init_workqueues(void)2272 xfs_init_workqueues(void) 2273 { 2274 /* 2275 * The allocation workqueue can be used in memory reclaim situations 2276 * (writepage path), and parallelism is only limited by the number of 2277 * AGs in all the filesystems mounted. Hence use the default large 2278 * max_active value for this workqueue. 2279 */ 2280 xfs_alloc_wq = alloc_workqueue("xfsalloc", 2281 XFS_WQFLAGS(WQ_MEM_RECLAIM | WQ_FREEZABLE), 0); 2282 if (!xfs_alloc_wq) 2283 return -ENOMEM; 2284 2285 xfs_discard_wq = alloc_workqueue("xfsdiscard", XFS_WQFLAGS(WQ_UNBOUND), 2286 0); 2287 if (!xfs_discard_wq) 2288 goto out_free_alloc_wq; 2289 2290 return 0; 2291 out_free_alloc_wq: 2292 destroy_workqueue(xfs_alloc_wq); 2293 return -ENOMEM; 2294 } 2295 2296 STATIC void xfs_destroy_workqueues(void)2297 xfs_destroy_workqueues(void) 2298 { 2299 destroy_workqueue(xfs_discard_wq); 2300 destroy_workqueue(xfs_alloc_wq); 2301 } 2302 2303 STATIC int __init init_xfs_fs(void)2304 init_xfs_fs(void) 2305 { 2306 int error; 2307 2308 xfs_check_ondisk_structs(); 2309 2310 error = xfs_dahash_test(); 2311 if (error) 2312 return error; 2313 2314 printk(KERN_INFO XFS_VERSION_STRING " with " 2315 XFS_BUILD_OPTIONS " enabled\n"); 2316 2317 xfs_dir_startup(); 2318 2319 error = xfs_init_caches(); 2320 if (error) 2321 goto out; 2322 2323 error = xfs_init_workqueues(); 2324 if (error) 2325 goto out_destroy_caches; 2326 2327 error = xfs_mru_cache_init(); 2328 if (error) 2329 goto out_destroy_wq; 2330 2331 error = xfs_init_procfs(); 2332 if (error) 2333 goto out_mru_cache_uninit; 2334 2335 error = xfs_sysctl_register(); 2336 if (error) 2337 goto out_cleanup_procfs; 2338 2339 xfs_debugfs = xfs_debugfs_mkdir("xfs", NULL); 2340 2341 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); 2342 if (!xfs_kset) { 2343 error = -ENOMEM; 2344 goto out_debugfs_unregister; 2345 } 2346 2347 xfsstats.xs_kobj.kobject.kset = xfs_kset; 2348 2349 xfsstats.xs_stats = alloc_percpu(struct xfsstats); 2350 if (!xfsstats.xs_stats) { 2351 error = -ENOMEM; 2352 goto out_kset_unregister; 2353 } 2354 2355 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, 2356 "stats"); 2357 if (error) 2358 goto out_free_stats; 2359 2360 error = xchk_global_stats_setup(xfs_debugfs); 2361 if (error) 2362 goto out_remove_stats_kobj; 2363 2364 #ifdef DEBUG 2365 xfs_dbg_kobj.kobject.kset = xfs_kset; 2366 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); 2367 if (error) 2368 goto out_remove_scrub_stats; 2369 #endif 2370 2371 error = xfs_qm_init(); 2372 if (error) 2373 goto out_remove_dbg_kobj; 2374 2375 error = register_filesystem(&xfs_fs_type); 2376 if (error) 2377 goto out_qm_exit; 2378 return 0; 2379 2380 out_qm_exit: 2381 xfs_qm_exit(); 2382 out_remove_dbg_kobj: 2383 #ifdef DEBUG 2384 xfs_sysfs_del(&xfs_dbg_kobj); 2385 out_remove_scrub_stats: 2386 #endif 2387 xchk_global_stats_teardown(); 2388 out_remove_stats_kobj: 2389 xfs_sysfs_del(&xfsstats.xs_kobj); 2390 out_free_stats: 2391 free_percpu(xfsstats.xs_stats); 2392 out_kset_unregister: 2393 kset_unregister(xfs_kset); 2394 out_debugfs_unregister: 2395 debugfs_remove(xfs_debugfs); 2396 xfs_sysctl_unregister(); 2397 out_cleanup_procfs: 2398 xfs_cleanup_procfs(); 2399 out_mru_cache_uninit: 2400 xfs_mru_cache_uninit(); 2401 out_destroy_wq: 2402 xfs_destroy_workqueues(); 2403 out_destroy_caches: 2404 xfs_destroy_caches(); 2405 out: 2406 return error; 2407 } 2408 2409 STATIC void __exit exit_xfs_fs(void)2410 exit_xfs_fs(void) 2411 { 2412 xfs_qm_exit(); 2413 unregister_filesystem(&xfs_fs_type); 2414 #ifdef DEBUG 2415 xfs_sysfs_del(&xfs_dbg_kobj); 2416 #endif 2417 xchk_global_stats_teardown(); 2418 xfs_sysfs_del(&xfsstats.xs_kobj); 2419 free_percpu(xfsstats.xs_stats); 2420 kset_unregister(xfs_kset); 2421 debugfs_remove(xfs_debugfs); 2422 xfs_sysctl_unregister(); 2423 xfs_cleanup_procfs(); 2424 xfs_mru_cache_uninit(); 2425 xfs_destroy_workqueues(); 2426 xfs_destroy_caches(); 2427 xfs_uuid_table_free(); 2428 } 2429 2430 module_init(init_xfs_fs); 2431 module_exit(exit_xfs_fs); 2432 2433 MODULE_AUTHOR("Silicon Graphics, Inc."); 2434 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); 2435 MODULE_LICENSE("GPL"); 2436