xref: /openbmc/linux/lib/xarray.c (revision 34d6f206a88c2651d216bd3487ac956a40b2ba8e)
1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * XArray implementation
4   * Copyright (c) 2017-2018 Microsoft Corporation
5   * Copyright (c) 2018-2020 Oracle
6   * Author: Matthew Wilcox <willy@infradead.org>
7   */
8  
9  #include <linux/bitmap.h>
10  #include <linux/export.h>
11  #include <linux/list.h>
12  #include <linux/slab.h>
13  #include <linux/xarray.h>
14  
15  #include "radix-tree.h"
16  
17  /*
18   * Coding conventions in this file:
19   *
20   * @xa is used to refer to the entire xarray.
21   * @xas is the 'xarray operation state'.  It may be either a pointer to
22   * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
23   * ambiguity.
24   * @index is the index of the entry being operated on
25   * @mark is an xa_mark_t; a small number indicating one of the mark bits.
26   * @node refers to an xa_node; usually the primary one being operated on by
27   * this function.
28   * @offset is the index into the slots array inside an xa_node.
29   * @parent refers to the @xa_node closer to the head than @node.
30   * @entry refers to something stored in a slot in the xarray
31   */
32  
xa_lock_type(const struct xarray * xa)33  static inline unsigned int xa_lock_type(const struct xarray *xa)
34  {
35  	return (__force unsigned int)xa->xa_flags & 3;
36  }
37  
xas_lock_type(struct xa_state * xas,unsigned int lock_type)38  static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
39  {
40  	if (lock_type == XA_LOCK_IRQ)
41  		xas_lock_irq(xas);
42  	else if (lock_type == XA_LOCK_BH)
43  		xas_lock_bh(xas);
44  	else
45  		xas_lock(xas);
46  }
47  
xas_unlock_type(struct xa_state * xas,unsigned int lock_type)48  static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
49  {
50  	if (lock_type == XA_LOCK_IRQ)
51  		xas_unlock_irq(xas);
52  	else if (lock_type == XA_LOCK_BH)
53  		xas_unlock_bh(xas);
54  	else
55  		xas_unlock(xas);
56  }
57  
xa_track_free(const struct xarray * xa)58  static inline bool xa_track_free(const struct xarray *xa)
59  {
60  	return xa->xa_flags & XA_FLAGS_TRACK_FREE;
61  }
62  
xa_zero_busy(const struct xarray * xa)63  static inline bool xa_zero_busy(const struct xarray *xa)
64  {
65  	return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
66  }
67  
xa_mark_set(struct xarray * xa,xa_mark_t mark)68  static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
69  {
70  	if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
71  		xa->xa_flags |= XA_FLAGS_MARK(mark);
72  }
73  
xa_mark_clear(struct xarray * xa,xa_mark_t mark)74  static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
75  {
76  	if (xa->xa_flags & XA_FLAGS_MARK(mark))
77  		xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
78  }
79  
node_marks(struct xa_node * node,xa_mark_t mark)80  static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
81  {
82  	return node->marks[(__force unsigned)mark];
83  }
84  
node_get_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)85  static inline bool node_get_mark(struct xa_node *node,
86  		unsigned int offset, xa_mark_t mark)
87  {
88  	return test_bit(offset, node_marks(node, mark));
89  }
90  
91  /* returns true if the bit was set */
node_set_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)92  static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
93  				xa_mark_t mark)
94  {
95  	return __test_and_set_bit(offset, node_marks(node, mark));
96  }
97  
98  /* returns true if the bit was set */
node_clear_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)99  static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
100  				xa_mark_t mark)
101  {
102  	return __test_and_clear_bit(offset, node_marks(node, mark));
103  }
104  
node_any_mark(struct xa_node * node,xa_mark_t mark)105  static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
106  {
107  	return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
108  }
109  
node_mark_all(struct xa_node * node,xa_mark_t mark)110  static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
111  {
112  	bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
113  }
114  
115  #define mark_inc(mark) do { \
116  	mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
117  } while (0)
118  
119  /*
120   * xas_squash_marks() - Merge all marks to the first entry
121   * @xas: Array operation state.
122   *
123   * Set a mark on the first entry if any entry has it set.  Clear marks on
124   * all sibling entries.
125   */
xas_squash_marks(const struct xa_state * xas)126  static void xas_squash_marks(const struct xa_state *xas)
127  {
128  	unsigned int mark = 0;
129  	unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
130  
131  	if (!xas->xa_sibs)
132  		return;
133  
134  	do {
135  		unsigned long *marks = xas->xa_node->marks[mark];
136  		if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
137  			continue;
138  		__set_bit(xas->xa_offset, marks);
139  		bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
140  	} while (mark++ != (__force unsigned)XA_MARK_MAX);
141  }
142  
143  /* extracts the offset within this node from the index */
get_offset(unsigned long index,struct xa_node * node)144  static unsigned int get_offset(unsigned long index, struct xa_node *node)
145  {
146  	return (index >> node->shift) & XA_CHUNK_MASK;
147  }
148  
xas_set_offset(struct xa_state * xas)149  static void xas_set_offset(struct xa_state *xas)
150  {
151  	xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
152  }
153  
154  /* move the index either forwards (find) or backwards (sibling slot) */
xas_move_index(struct xa_state * xas,unsigned long offset)155  static void xas_move_index(struct xa_state *xas, unsigned long offset)
156  {
157  	unsigned int shift = xas->xa_node->shift;
158  	xas->xa_index &= ~XA_CHUNK_MASK << shift;
159  	xas->xa_index += offset << shift;
160  }
161  
xas_next_offset(struct xa_state * xas)162  static void xas_next_offset(struct xa_state *xas)
163  {
164  	xas->xa_offset++;
165  	xas_move_index(xas, xas->xa_offset);
166  }
167  
set_bounds(struct xa_state * xas)168  static void *set_bounds(struct xa_state *xas)
169  {
170  	xas->xa_node = XAS_BOUNDS;
171  	return NULL;
172  }
173  
174  /*
175   * Starts a walk.  If the @xas is already valid, we assume that it's on
176   * the right path and just return where we've got to.  If we're in an
177   * error state, return NULL.  If the index is outside the current scope
178   * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
179   * set @xas->xa_node to NULL and return the current head of the array.
180   */
xas_start(struct xa_state * xas)181  static void *xas_start(struct xa_state *xas)
182  {
183  	void *entry;
184  
185  	if (xas_valid(xas))
186  		return xas_reload(xas);
187  	if (xas_error(xas))
188  		return NULL;
189  
190  	entry = xa_head(xas->xa);
191  	if (!xa_is_node(entry)) {
192  		if (xas->xa_index)
193  			return set_bounds(xas);
194  	} else {
195  		if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
196  			return set_bounds(xas);
197  	}
198  
199  	xas->xa_node = NULL;
200  	return entry;
201  }
202  
xas_descend(struct xa_state * xas,struct xa_node * node)203  static void *xas_descend(struct xa_state *xas, struct xa_node *node)
204  {
205  	unsigned int offset = get_offset(xas->xa_index, node);
206  	void *entry = xa_entry(xas->xa, node, offset);
207  
208  	xas->xa_node = node;
209  	while (xa_is_sibling(entry)) {
210  		offset = xa_to_sibling(entry);
211  		entry = xa_entry(xas->xa, node, offset);
212  		if (node->shift && xa_is_node(entry))
213  			entry = XA_RETRY_ENTRY;
214  	}
215  
216  	xas->xa_offset = offset;
217  	return entry;
218  }
219  
220  /**
221   * xas_load() - Load an entry from the XArray (advanced).
222   * @xas: XArray operation state.
223   *
224   * Usually walks the @xas to the appropriate state to load the entry
225   * stored at xa_index.  However, it will do nothing and return %NULL if
226   * @xas is in an error state.  xas_load() will never expand the tree.
227   *
228   * If the xa_state is set up to operate on a multi-index entry, xas_load()
229   * may return %NULL or an internal entry, even if there are entries
230   * present within the range specified by @xas.
231   *
232   * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
233   * Return: Usually an entry in the XArray, but see description for exceptions.
234   */
xas_load(struct xa_state * xas)235  void *xas_load(struct xa_state *xas)
236  {
237  	void *entry = xas_start(xas);
238  
239  	while (xa_is_node(entry)) {
240  		struct xa_node *node = xa_to_node(entry);
241  
242  		if (xas->xa_shift > node->shift)
243  			break;
244  		entry = xas_descend(xas, node);
245  		if (node->shift == 0)
246  			break;
247  	}
248  	return entry;
249  }
250  EXPORT_SYMBOL_GPL(xas_load);
251  
252  #define XA_RCU_FREE	((struct xarray *)1)
253  
xa_node_free(struct xa_node * node)254  static void xa_node_free(struct xa_node *node)
255  {
256  	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
257  	node->array = XA_RCU_FREE;
258  	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
259  }
260  
261  /*
262   * xas_destroy() - Free any resources allocated during the XArray operation.
263   * @xas: XArray operation state.
264   *
265   * Most users will not need to call this function; it is called for you
266   * by xas_nomem().
267   */
xas_destroy(struct xa_state * xas)268  void xas_destroy(struct xa_state *xas)
269  {
270  	struct xa_node *next, *node = xas->xa_alloc;
271  
272  	while (node) {
273  		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
274  		next = rcu_dereference_raw(node->parent);
275  		radix_tree_node_rcu_free(&node->rcu_head);
276  		xas->xa_alloc = node = next;
277  	}
278  }
279  
280  /**
281   * xas_nomem() - Allocate memory if needed.
282   * @xas: XArray operation state.
283   * @gfp: Memory allocation flags.
284   *
285   * If we need to add new nodes to the XArray, we try to allocate memory
286   * with GFP_NOWAIT while holding the lock, which will usually succeed.
287   * If it fails, @xas is flagged as needing memory to continue.  The caller
288   * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
289   * the caller should retry the operation.
290   *
291   * Forward progress is guaranteed as one node is allocated here and
292   * stored in the xa_state where it will be found by xas_alloc().  More
293   * nodes will likely be found in the slab allocator, but we do not tie
294   * them up here.
295   *
296   * Return: true if memory was needed, and was successfully allocated.
297   */
xas_nomem(struct xa_state * xas,gfp_t gfp)298  bool xas_nomem(struct xa_state *xas, gfp_t gfp)
299  {
300  	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
301  		xas_destroy(xas);
302  		return false;
303  	}
304  	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
305  		gfp |= __GFP_ACCOUNT;
306  	xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
307  	if (!xas->xa_alloc)
308  		return false;
309  	xas->xa_alloc->parent = NULL;
310  	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
311  	xas->xa_node = XAS_RESTART;
312  	return true;
313  }
314  EXPORT_SYMBOL_GPL(xas_nomem);
315  
316  /*
317   * __xas_nomem() - Drop locks and allocate memory if needed.
318   * @xas: XArray operation state.
319   * @gfp: Memory allocation flags.
320   *
321   * Internal variant of xas_nomem().
322   *
323   * Return: true if memory was needed, and was successfully allocated.
324   */
__xas_nomem(struct xa_state * xas,gfp_t gfp)325  static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
326  	__must_hold(xas->xa->xa_lock)
327  {
328  	unsigned int lock_type = xa_lock_type(xas->xa);
329  
330  	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
331  		xas_destroy(xas);
332  		return false;
333  	}
334  	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
335  		gfp |= __GFP_ACCOUNT;
336  	if (gfpflags_allow_blocking(gfp)) {
337  		xas_unlock_type(xas, lock_type);
338  		xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
339  		xas_lock_type(xas, lock_type);
340  	} else {
341  		xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
342  	}
343  	if (!xas->xa_alloc)
344  		return false;
345  	xas->xa_alloc->parent = NULL;
346  	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
347  	xas->xa_node = XAS_RESTART;
348  	return true;
349  }
350  
xas_update(struct xa_state * xas,struct xa_node * node)351  static void xas_update(struct xa_state *xas, struct xa_node *node)
352  {
353  	if (xas->xa_update)
354  		xas->xa_update(node);
355  	else
356  		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
357  }
358  
xas_alloc(struct xa_state * xas,unsigned int shift)359  static void *xas_alloc(struct xa_state *xas, unsigned int shift)
360  {
361  	struct xa_node *parent = xas->xa_node;
362  	struct xa_node *node = xas->xa_alloc;
363  
364  	if (xas_invalid(xas))
365  		return NULL;
366  
367  	if (node) {
368  		xas->xa_alloc = NULL;
369  	} else {
370  		gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
371  
372  		if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
373  			gfp |= __GFP_ACCOUNT;
374  
375  		node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
376  		if (!node) {
377  			xas_set_err(xas, -ENOMEM);
378  			return NULL;
379  		}
380  	}
381  
382  	if (parent) {
383  		node->offset = xas->xa_offset;
384  		parent->count++;
385  		XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
386  		xas_update(xas, parent);
387  	}
388  	XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
389  	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
390  	node->shift = shift;
391  	node->count = 0;
392  	node->nr_values = 0;
393  	RCU_INIT_POINTER(node->parent, xas->xa_node);
394  	node->array = xas->xa;
395  
396  	return node;
397  }
398  
399  #ifdef CONFIG_XARRAY_MULTI
400  /* Returns the number of indices covered by a given xa_state */
xas_size(const struct xa_state * xas)401  static unsigned long xas_size(const struct xa_state *xas)
402  {
403  	return (xas->xa_sibs + 1UL) << xas->xa_shift;
404  }
405  #endif
406  
407  /*
408   * Use this to calculate the maximum index that will need to be created
409   * in order to add the entry described by @xas.  Because we cannot store a
410   * multi-index entry at index 0, the calculation is a little more complex
411   * than you might expect.
412   */
xas_max(struct xa_state * xas)413  static unsigned long xas_max(struct xa_state *xas)
414  {
415  	unsigned long max = xas->xa_index;
416  
417  #ifdef CONFIG_XARRAY_MULTI
418  	if (xas->xa_shift || xas->xa_sibs) {
419  		unsigned long mask = xas_size(xas) - 1;
420  		max |= mask;
421  		if (mask == max)
422  			max++;
423  	}
424  #endif
425  
426  	return max;
427  }
428  
429  /* The maximum index that can be contained in the array without expanding it */
max_index(void * entry)430  static unsigned long max_index(void *entry)
431  {
432  	if (!xa_is_node(entry))
433  		return 0;
434  	return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
435  }
436  
xas_shrink(struct xa_state * xas)437  static void xas_shrink(struct xa_state *xas)
438  {
439  	struct xarray *xa = xas->xa;
440  	struct xa_node *node = xas->xa_node;
441  
442  	for (;;) {
443  		void *entry;
444  
445  		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
446  		if (node->count != 1)
447  			break;
448  		entry = xa_entry_locked(xa, node, 0);
449  		if (!entry)
450  			break;
451  		if (!xa_is_node(entry) && node->shift)
452  			break;
453  		if (xa_is_zero(entry) && xa_zero_busy(xa))
454  			entry = NULL;
455  		xas->xa_node = XAS_BOUNDS;
456  
457  		RCU_INIT_POINTER(xa->xa_head, entry);
458  		if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
459  			xa_mark_clear(xa, XA_FREE_MARK);
460  
461  		node->count = 0;
462  		node->nr_values = 0;
463  		if (!xa_is_node(entry))
464  			RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
465  		xas_update(xas, node);
466  		xa_node_free(node);
467  		if (!xa_is_node(entry))
468  			break;
469  		node = xa_to_node(entry);
470  		node->parent = NULL;
471  	}
472  }
473  
474  /*
475   * xas_delete_node() - Attempt to delete an xa_node
476   * @xas: Array operation state.
477   *
478   * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
479   * a non-zero reference count.
480   */
xas_delete_node(struct xa_state * xas)481  static void xas_delete_node(struct xa_state *xas)
482  {
483  	struct xa_node *node = xas->xa_node;
484  
485  	for (;;) {
486  		struct xa_node *parent;
487  
488  		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
489  		if (node->count)
490  			break;
491  
492  		parent = xa_parent_locked(xas->xa, node);
493  		xas->xa_node = parent;
494  		xas->xa_offset = node->offset;
495  		xa_node_free(node);
496  
497  		if (!parent) {
498  			xas->xa->xa_head = NULL;
499  			xas->xa_node = XAS_BOUNDS;
500  			return;
501  		}
502  
503  		parent->slots[xas->xa_offset] = NULL;
504  		parent->count--;
505  		XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
506  		node = parent;
507  		xas_update(xas, node);
508  	}
509  
510  	if (!node->parent)
511  		xas_shrink(xas);
512  }
513  
514  /**
515   * xas_free_nodes() - Free this node and all nodes that it references
516   * @xas: Array operation state.
517   * @top: Node to free
518   *
519   * This node has been removed from the tree.  We must now free it and all
520   * of its subnodes.  There may be RCU walkers with references into the tree,
521   * so we must replace all entries with retry markers.
522   */
xas_free_nodes(struct xa_state * xas,struct xa_node * top)523  static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
524  {
525  	unsigned int offset = 0;
526  	struct xa_node *node = top;
527  
528  	for (;;) {
529  		void *entry = xa_entry_locked(xas->xa, node, offset);
530  
531  		if (node->shift && xa_is_node(entry)) {
532  			node = xa_to_node(entry);
533  			offset = 0;
534  			continue;
535  		}
536  		if (entry)
537  			RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
538  		offset++;
539  		while (offset == XA_CHUNK_SIZE) {
540  			struct xa_node *parent;
541  
542  			parent = xa_parent_locked(xas->xa, node);
543  			offset = node->offset + 1;
544  			node->count = 0;
545  			node->nr_values = 0;
546  			xas_update(xas, node);
547  			xa_node_free(node);
548  			if (node == top)
549  				return;
550  			node = parent;
551  		}
552  	}
553  }
554  
555  /*
556   * xas_expand adds nodes to the head of the tree until it has reached
557   * sufficient height to be able to contain @xas->xa_index
558   */
xas_expand(struct xa_state * xas,void * head)559  static int xas_expand(struct xa_state *xas, void *head)
560  {
561  	struct xarray *xa = xas->xa;
562  	struct xa_node *node = NULL;
563  	unsigned int shift = 0;
564  	unsigned long max = xas_max(xas);
565  
566  	if (!head) {
567  		if (max == 0)
568  			return 0;
569  		while ((max >> shift) >= XA_CHUNK_SIZE)
570  			shift += XA_CHUNK_SHIFT;
571  		return shift + XA_CHUNK_SHIFT;
572  	} else if (xa_is_node(head)) {
573  		node = xa_to_node(head);
574  		shift = node->shift + XA_CHUNK_SHIFT;
575  	}
576  	xas->xa_node = NULL;
577  
578  	while (max > max_index(head)) {
579  		xa_mark_t mark = 0;
580  
581  		XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
582  		node = xas_alloc(xas, shift);
583  		if (!node)
584  			return -ENOMEM;
585  
586  		node->count = 1;
587  		if (xa_is_value(head))
588  			node->nr_values = 1;
589  		RCU_INIT_POINTER(node->slots[0], head);
590  
591  		/* Propagate the aggregated mark info to the new child */
592  		for (;;) {
593  			if (xa_track_free(xa) && mark == XA_FREE_MARK) {
594  				node_mark_all(node, XA_FREE_MARK);
595  				if (!xa_marked(xa, XA_FREE_MARK)) {
596  					node_clear_mark(node, 0, XA_FREE_MARK);
597  					xa_mark_set(xa, XA_FREE_MARK);
598  				}
599  			} else if (xa_marked(xa, mark)) {
600  				node_set_mark(node, 0, mark);
601  			}
602  			if (mark == XA_MARK_MAX)
603  				break;
604  			mark_inc(mark);
605  		}
606  
607  		/*
608  		 * Now that the new node is fully initialised, we can add
609  		 * it to the tree
610  		 */
611  		if (xa_is_node(head)) {
612  			xa_to_node(head)->offset = 0;
613  			rcu_assign_pointer(xa_to_node(head)->parent, node);
614  		}
615  		head = xa_mk_node(node);
616  		rcu_assign_pointer(xa->xa_head, head);
617  		xas_update(xas, node);
618  
619  		shift += XA_CHUNK_SHIFT;
620  	}
621  
622  	xas->xa_node = node;
623  	return shift;
624  }
625  
626  /*
627   * xas_create() - Create a slot to store an entry in.
628   * @xas: XArray operation state.
629   * @allow_root: %true if we can store the entry in the root directly
630   *
631   * Most users will not need to call this function directly, as it is called
632   * by xas_store().  It is useful for doing conditional store operations
633   * (see the xa_cmpxchg() implementation for an example).
634   *
635   * Return: If the slot already existed, returns the contents of this slot.
636   * If the slot was newly created, returns %NULL.  If it failed to create the
637   * slot, returns %NULL and indicates the error in @xas.
638   */
xas_create(struct xa_state * xas,bool allow_root)639  static void *xas_create(struct xa_state *xas, bool allow_root)
640  {
641  	struct xarray *xa = xas->xa;
642  	void *entry;
643  	void __rcu **slot;
644  	struct xa_node *node = xas->xa_node;
645  	int shift;
646  	unsigned int order = xas->xa_shift;
647  
648  	if (xas_top(node)) {
649  		entry = xa_head_locked(xa);
650  		xas->xa_node = NULL;
651  		if (!entry && xa_zero_busy(xa))
652  			entry = XA_ZERO_ENTRY;
653  		shift = xas_expand(xas, entry);
654  		if (shift < 0)
655  			return NULL;
656  		if (!shift && !allow_root)
657  			shift = XA_CHUNK_SHIFT;
658  		entry = xa_head_locked(xa);
659  		slot = &xa->xa_head;
660  	} else if (xas_error(xas)) {
661  		return NULL;
662  	} else if (node) {
663  		unsigned int offset = xas->xa_offset;
664  
665  		shift = node->shift;
666  		entry = xa_entry_locked(xa, node, offset);
667  		slot = &node->slots[offset];
668  	} else {
669  		shift = 0;
670  		entry = xa_head_locked(xa);
671  		slot = &xa->xa_head;
672  	}
673  
674  	while (shift > order) {
675  		shift -= XA_CHUNK_SHIFT;
676  		if (!entry) {
677  			node = xas_alloc(xas, shift);
678  			if (!node)
679  				break;
680  			if (xa_track_free(xa))
681  				node_mark_all(node, XA_FREE_MARK);
682  			rcu_assign_pointer(*slot, xa_mk_node(node));
683  		} else if (xa_is_node(entry)) {
684  			node = xa_to_node(entry);
685  		} else {
686  			break;
687  		}
688  		entry = xas_descend(xas, node);
689  		slot = &node->slots[xas->xa_offset];
690  	}
691  
692  	return entry;
693  }
694  
695  /**
696   * xas_create_range() - Ensure that stores to this range will succeed
697   * @xas: XArray operation state.
698   *
699   * Creates all of the slots in the range covered by @xas.  Sets @xas to
700   * create single-index entries and positions it at the beginning of the
701   * range.  This is for the benefit of users which have not yet been
702   * converted to use multi-index entries.
703   */
xas_create_range(struct xa_state * xas)704  void xas_create_range(struct xa_state *xas)
705  {
706  	unsigned long index = xas->xa_index;
707  	unsigned char shift = xas->xa_shift;
708  	unsigned char sibs = xas->xa_sibs;
709  
710  	xas->xa_index |= ((sibs + 1UL) << shift) - 1;
711  	if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
712  		xas->xa_offset |= sibs;
713  	xas->xa_shift = 0;
714  	xas->xa_sibs = 0;
715  
716  	for (;;) {
717  		xas_create(xas, true);
718  		if (xas_error(xas))
719  			goto restore;
720  		if (xas->xa_index <= (index | XA_CHUNK_MASK))
721  			goto success;
722  		xas->xa_index -= XA_CHUNK_SIZE;
723  
724  		for (;;) {
725  			struct xa_node *node = xas->xa_node;
726  			if (node->shift >= shift)
727  				break;
728  			xas->xa_node = xa_parent_locked(xas->xa, node);
729  			xas->xa_offset = node->offset - 1;
730  			if (node->offset != 0)
731  				break;
732  		}
733  	}
734  
735  restore:
736  	xas->xa_shift = shift;
737  	xas->xa_sibs = sibs;
738  	xas->xa_index = index;
739  	return;
740  success:
741  	xas->xa_index = index;
742  	if (xas->xa_node)
743  		xas_set_offset(xas);
744  }
745  EXPORT_SYMBOL_GPL(xas_create_range);
746  
update_node(struct xa_state * xas,struct xa_node * node,int count,int values)747  static void update_node(struct xa_state *xas, struct xa_node *node,
748  		int count, int values)
749  {
750  	if (!node || (!count && !values))
751  		return;
752  
753  	node->count += count;
754  	node->nr_values += values;
755  	XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
756  	XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
757  	xas_update(xas, node);
758  	if (count < 0)
759  		xas_delete_node(xas);
760  }
761  
762  /**
763   * xas_store() - Store this entry in the XArray.
764   * @xas: XArray operation state.
765   * @entry: New entry.
766   *
767   * If @xas is operating on a multi-index entry, the entry returned by this
768   * function is essentially meaningless (it may be an internal entry or it
769   * may be %NULL, even if there are non-NULL entries at some of the indices
770   * covered by the range).  This is not a problem for any current users,
771   * and can be changed if needed.
772   *
773   * Return: The old entry at this index.
774   */
xas_store(struct xa_state * xas,void * entry)775  void *xas_store(struct xa_state *xas, void *entry)
776  {
777  	struct xa_node *node;
778  	void __rcu **slot = &xas->xa->xa_head;
779  	unsigned int offset, max;
780  	int count = 0;
781  	int values = 0;
782  	void *first, *next;
783  	bool value = xa_is_value(entry);
784  
785  	if (entry) {
786  		bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
787  		first = xas_create(xas, allow_root);
788  	} else {
789  		first = xas_load(xas);
790  	}
791  
792  	if (xas_invalid(xas))
793  		return first;
794  	node = xas->xa_node;
795  	if (node && (xas->xa_shift < node->shift))
796  		xas->xa_sibs = 0;
797  	if ((first == entry) && !xas->xa_sibs)
798  		return first;
799  
800  	next = first;
801  	offset = xas->xa_offset;
802  	max = xas->xa_offset + xas->xa_sibs;
803  	if (node) {
804  		slot = &node->slots[offset];
805  		if (xas->xa_sibs)
806  			xas_squash_marks(xas);
807  	}
808  	if (!entry)
809  		xas_init_marks(xas);
810  
811  	for (;;) {
812  		/*
813  		 * Must clear the marks before setting the entry to NULL,
814  		 * otherwise xas_for_each_marked may find a NULL entry and
815  		 * stop early.  rcu_assign_pointer contains a release barrier
816  		 * so the mark clearing will appear to happen before the
817  		 * entry is set to NULL.
818  		 */
819  		rcu_assign_pointer(*slot, entry);
820  		if (xa_is_node(next) && (!node || node->shift))
821  			xas_free_nodes(xas, xa_to_node(next));
822  		if (!node)
823  			break;
824  		count += !next - !entry;
825  		values += !xa_is_value(first) - !value;
826  		if (entry) {
827  			if (offset == max)
828  				break;
829  			if (!xa_is_sibling(entry))
830  				entry = xa_mk_sibling(xas->xa_offset);
831  		} else {
832  			if (offset == XA_CHUNK_MASK)
833  				break;
834  		}
835  		next = xa_entry_locked(xas->xa, node, ++offset);
836  		if (!xa_is_sibling(next)) {
837  			if (!entry && (offset > max))
838  				break;
839  			first = next;
840  		}
841  		slot++;
842  	}
843  
844  	update_node(xas, node, count, values);
845  	return first;
846  }
847  EXPORT_SYMBOL_GPL(xas_store);
848  
849  /**
850   * xas_get_mark() - Returns the state of this mark.
851   * @xas: XArray operation state.
852   * @mark: Mark number.
853   *
854   * Return: true if the mark is set, false if the mark is clear or @xas
855   * is in an error state.
856   */
xas_get_mark(const struct xa_state * xas,xa_mark_t mark)857  bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
858  {
859  	if (xas_invalid(xas))
860  		return false;
861  	if (!xas->xa_node)
862  		return xa_marked(xas->xa, mark);
863  	return node_get_mark(xas->xa_node, xas->xa_offset, mark);
864  }
865  EXPORT_SYMBOL_GPL(xas_get_mark);
866  
867  /**
868   * xas_set_mark() - Sets the mark on this entry and its parents.
869   * @xas: XArray operation state.
870   * @mark: Mark number.
871   *
872   * Sets the specified mark on this entry, and walks up the tree setting it
873   * on all the ancestor entries.  Does nothing if @xas has not been walked to
874   * an entry, or is in an error state.
875   */
xas_set_mark(const struct xa_state * xas,xa_mark_t mark)876  void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
877  {
878  	struct xa_node *node = xas->xa_node;
879  	unsigned int offset = xas->xa_offset;
880  
881  	if (xas_invalid(xas))
882  		return;
883  
884  	while (node) {
885  		if (node_set_mark(node, offset, mark))
886  			return;
887  		offset = node->offset;
888  		node = xa_parent_locked(xas->xa, node);
889  	}
890  
891  	if (!xa_marked(xas->xa, mark))
892  		xa_mark_set(xas->xa, mark);
893  }
894  EXPORT_SYMBOL_GPL(xas_set_mark);
895  
896  /**
897   * xas_clear_mark() - Clears the mark on this entry and its parents.
898   * @xas: XArray operation state.
899   * @mark: Mark number.
900   *
901   * Clears the specified mark on this entry, and walks back to the head
902   * attempting to clear it on all the ancestor entries.  Does nothing if
903   * @xas has not been walked to an entry, or is in an error state.
904   */
xas_clear_mark(const struct xa_state * xas,xa_mark_t mark)905  void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
906  {
907  	struct xa_node *node = xas->xa_node;
908  	unsigned int offset = xas->xa_offset;
909  
910  	if (xas_invalid(xas))
911  		return;
912  
913  	while (node) {
914  		if (!node_clear_mark(node, offset, mark))
915  			return;
916  		if (node_any_mark(node, mark))
917  			return;
918  
919  		offset = node->offset;
920  		node = xa_parent_locked(xas->xa, node);
921  	}
922  
923  	if (xa_marked(xas->xa, mark))
924  		xa_mark_clear(xas->xa, mark);
925  }
926  EXPORT_SYMBOL_GPL(xas_clear_mark);
927  
928  /**
929   * xas_init_marks() - Initialise all marks for the entry
930   * @xas: Array operations state.
931   *
932   * Initialise all marks for the entry specified by @xas.  If we're tracking
933   * free entries with a mark, we need to set it on all entries.  All other
934   * marks are cleared.
935   *
936   * This implementation is not as efficient as it could be; we may walk
937   * up the tree multiple times.
938   */
xas_init_marks(const struct xa_state * xas)939  void xas_init_marks(const struct xa_state *xas)
940  {
941  	xa_mark_t mark = 0;
942  
943  	for (;;) {
944  		if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
945  			xas_set_mark(xas, mark);
946  		else
947  			xas_clear_mark(xas, mark);
948  		if (mark == XA_MARK_MAX)
949  			break;
950  		mark_inc(mark);
951  	}
952  }
953  EXPORT_SYMBOL_GPL(xas_init_marks);
954  
955  #ifdef CONFIG_XARRAY_MULTI
node_get_marks(struct xa_node * node,unsigned int offset)956  static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
957  {
958  	unsigned int marks = 0;
959  	xa_mark_t mark = XA_MARK_0;
960  
961  	for (;;) {
962  		if (node_get_mark(node, offset, mark))
963  			marks |= 1 << (__force unsigned int)mark;
964  		if (mark == XA_MARK_MAX)
965  			break;
966  		mark_inc(mark);
967  	}
968  
969  	return marks;
970  }
971  
node_set_marks(struct xa_node * node,unsigned int offset,struct xa_node * child,unsigned int marks)972  static void node_set_marks(struct xa_node *node, unsigned int offset,
973  			struct xa_node *child, unsigned int marks)
974  {
975  	xa_mark_t mark = XA_MARK_0;
976  
977  	for (;;) {
978  		if (marks & (1 << (__force unsigned int)mark)) {
979  			node_set_mark(node, offset, mark);
980  			if (child)
981  				node_mark_all(child, mark);
982  		}
983  		if (mark == XA_MARK_MAX)
984  			break;
985  		mark_inc(mark);
986  	}
987  }
988  
989  /**
990   * xas_split_alloc() - Allocate memory for splitting an entry.
991   * @xas: XArray operation state.
992   * @entry: New entry which will be stored in the array.
993   * @order: Current entry order.
994   * @gfp: Memory allocation flags.
995   *
996   * This function should be called before calling xas_split().
997   * If necessary, it will allocate new nodes (and fill them with @entry)
998   * to prepare for the upcoming split of an entry of @order size into
999   * entries of the order stored in the @xas.
1000   *
1001   * Context: May sleep if @gfp flags permit.
1002   */
xas_split_alloc(struct xa_state * xas,void * entry,unsigned int order,gfp_t gfp)1003  void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1004  		gfp_t gfp)
1005  {
1006  	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1007  	unsigned int mask = xas->xa_sibs;
1008  
1009  	/* XXX: no support for splitting really large entries yet */
1010  	if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1011  		goto nomem;
1012  	if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1013  		return;
1014  
1015  	do {
1016  		unsigned int i;
1017  		void *sibling = NULL;
1018  		struct xa_node *node;
1019  
1020  		node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1021  		if (!node)
1022  			goto nomem;
1023  		node->array = xas->xa;
1024  		for (i = 0; i < XA_CHUNK_SIZE; i++) {
1025  			if ((i & mask) == 0) {
1026  				RCU_INIT_POINTER(node->slots[i], entry);
1027  				sibling = xa_mk_sibling(i);
1028  			} else {
1029  				RCU_INIT_POINTER(node->slots[i], sibling);
1030  			}
1031  		}
1032  		RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1033  		xas->xa_alloc = node;
1034  	} while (sibs-- > 0);
1035  
1036  	return;
1037  nomem:
1038  	xas_destroy(xas);
1039  	xas_set_err(xas, -ENOMEM);
1040  }
1041  EXPORT_SYMBOL_GPL(xas_split_alloc);
1042  
1043  /**
1044   * xas_split() - Split a multi-index entry into smaller entries.
1045   * @xas: XArray operation state.
1046   * @entry: New entry to store in the array.
1047   * @order: Current entry order.
1048   *
1049   * The size of the new entries is set in @xas.  The value in @entry is
1050   * copied to all the replacement entries.
1051   *
1052   * Context: Any context.  The caller should hold the xa_lock.
1053   */
xas_split(struct xa_state * xas,void * entry,unsigned int order)1054  void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1055  {
1056  	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1057  	unsigned int offset, marks;
1058  	struct xa_node *node;
1059  	void *curr = xas_load(xas);
1060  	int values = 0;
1061  
1062  	node = xas->xa_node;
1063  	if (xas_top(node))
1064  		return;
1065  
1066  	marks = node_get_marks(node, xas->xa_offset);
1067  
1068  	offset = xas->xa_offset + sibs;
1069  	do {
1070  		if (xas->xa_shift < node->shift) {
1071  			struct xa_node *child = xas->xa_alloc;
1072  
1073  			xas->xa_alloc = rcu_dereference_raw(child->parent);
1074  			child->shift = node->shift - XA_CHUNK_SHIFT;
1075  			child->offset = offset;
1076  			child->count = XA_CHUNK_SIZE;
1077  			child->nr_values = xa_is_value(entry) ?
1078  					XA_CHUNK_SIZE : 0;
1079  			RCU_INIT_POINTER(child->parent, node);
1080  			node_set_marks(node, offset, child, marks);
1081  			rcu_assign_pointer(node->slots[offset],
1082  					xa_mk_node(child));
1083  			if (xa_is_value(curr))
1084  				values--;
1085  			xas_update(xas, child);
1086  		} else {
1087  			unsigned int canon = offset - xas->xa_sibs;
1088  
1089  			node_set_marks(node, canon, NULL, marks);
1090  			rcu_assign_pointer(node->slots[canon], entry);
1091  			while (offset > canon)
1092  				rcu_assign_pointer(node->slots[offset--],
1093  						xa_mk_sibling(canon));
1094  			values += (xa_is_value(entry) - xa_is_value(curr)) *
1095  					(xas->xa_sibs + 1);
1096  		}
1097  	} while (offset-- > xas->xa_offset);
1098  
1099  	node->nr_values += values;
1100  	xas_update(xas, node);
1101  }
1102  EXPORT_SYMBOL_GPL(xas_split);
1103  #endif
1104  
1105  /**
1106   * xas_pause() - Pause a walk to drop a lock.
1107   * @xas: XArray operation state.
1108   *
1109   * Some users need to pause a walk and drop the lock they're holding in
1110   * order to yield to a higher priority thread or carry out an operation
1111   * on an entry.  Those users should call this function before they drop
1112   * the lock.  It resets the @xas to be suitable for the next iteration
1113   * of the loop after the user has reacquired the lock.  If most entries
1114   * found during a walk require you to call xas_pause(), the xa_for_each()
1115   * iterator may be more appropriate.
1116   *
1117   * Note that xas_pause() only works for forward iteration.  If a user needs
1118   * to pause a reverse iteration, we will need a xas_pause_rev().
1119   */
xas_pause(struct xa_state * xas)1120  void xas_pause(struct xa_state *xas)
1121  {
1122  	struct xa_node *node = xas->xa_node;
1123  
1124  	if (xas_invalid(xas))
1125  		return;
1126  
1127  	xas->xa_node = XAS_RESTART;
1128  	if (node) {
1129  		unsigned long offset = xas->xa_offset;
1130  		while (++offset < XA_CHUNK_SIZE) {
1131  			if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1132  				break;
1133  		}
1134  		xas->xa_index += (offset - xas->xa_offset) << node->shift;
1135  		if (xas->xa_index == 0)
1136  			xas->xa_node = XAS_BOUNDS;
1137  	} else {
1138  		xas->xa_index++;
1139  	}
1140  }
1141  EXPORT_SYMBOL_GPL(xas_pause);
1142  
1143  /*
1144   * __xas_prev() - Find the previous entry in the XArray.
1145   * @xas: XArray operation state.
1146   *
1147   * Helper function for xas_prev() which handles all the complex cases
1148   * out of line.
1149   */
__xas_prev(struct xa_state * xas)1150  void *__xas_prev(struct xa_state *xas)
1151  {
1152  	void *entry;
1153  
1154  	if (!xas_frozen(xas->xa_node))
1155  		xas->xa_index--;
1156  	if (!xas->xa_node)
1157  		return set_bounds(xas);
1158  	if (xas_not_node(xas->xa_node))
1159  		return xas_load(xas);
1160  
1161  	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1162  		xas->xa_offset--;
1163  
1164  	while (xas->xa_offset == 255) {
1165  		xas->xa_offset = xas->xa_node->offset - 1;
1166  		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1167  		if (!xas->xa_node)
1168  			return set_bounds(xas);
1169  	}
1170  
1171  	for (;;) {
1172  		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1173  		if (!xa_is_node(entry))
1174  			return entry;
1175  
1176  		xas->xa_node = xa_to_node(entry);
1177  		xas_set_offset(xas);
1178  	}
1179  }
1180  EXPORT_SYMBOL_GPL(__xas_prev);
1181  
1182  /*
1183   * __xas_next() - Find the next entry in the XArray.
1184   * @xas: XArray operation state.
1185   *
1186   * Helper function for xas_next() which handles all the complex cases
1187   * out of line.
1188   */
__xas_next(struct xa_state * xas)1189  void *__xas_next(struct xa_state *xas)
1190  {
1191  	void *entry;
1192  
1193  	if (!xas_frozen(xas->xa_node))
1194  		xas->xa_index++;
1195  	if (!xas->xa_node)
1196  		return set_bounds(xas);
1197  	if (xas_not_node(xas->xa_node))
1198  		return xas_load(xas);
1199  
1200  	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1201  		xas->xa_offset++;
1202  
1203  	while (xas->xa_offset == XA_CHUNK_SIZE) {
1204  		xas->xa_offset = xas->xa_node->offset + 1;
1205  		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1206  		if (!xas->xa_node)
1207  			return set_bounds(xas);
1208  	}
1209  
1210  	for (;;) {
1211  		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1212  		if (!xa_is_node(entry))
1213  			return entry;
1214  
1215  		xas->xa_node = xa_to_node(entry);
1216  		xas_set_offset(xas);
1217  	}
1218  }
1219  EXPORT_SYMBOL_GPL(__xas_next);
1220  
1221  /**
1222   * xas_find() - Find the next present entry in the XArray.
1223   * @xas: XArray operation state.
1224   * @max: Highest index to return.
1225   *
1226   * If the @xas has not yet been walked to an entry, return the entry
1227   * which has an index >= xas.xa_index.  If it has been walked, the entry
1228   * currently being pointed at has been processed, and so we move to the
1229   * next entry.
1230   *
1231   * If no entry is found and the array is smaller than @max, the iterator
1232   * is set to the smallest index not yet in the array.  This allows @xas
1233   * to be immediately passed to xas_store().
1234   *
1235   * Return: The entry, if found, otherwise %NULL.
1236   */
xas_find(struct xa_state * xas,unsigned long max)1237  void *xas_find(struct xa_state *xas, unsigned long max)
1238  {
1239  	void *entry;
1240  
1241  	if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1242  		return NULL;
1243  	if (xas->xa_index > max)
1244  		return set_bounds(xas);
1245  
1246  	if (!xas->xa_node) {
1247  		xas->xa_index = 1;
1248  		return set_bounds(xas);
1249  	} else if (xas->xa_node == XAS_RESTART) {
1250  		entry = xas_load(xas);
1251  		if (entry || xas_not_node(xas->xa_node))
1252  			return entry;
1253  	} else if (!xas->xa_node->shift &&
1254  		    xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1255  		xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1256  	}
1257  
1258  	xas_next_offset(xas);
1259  
1260  	while (xas->xa_node && (xas->xa_index <= max)) {
1261  		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1262  			xas->xa_offset = xas->xa_node->offset + 1;
1263  			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1264  			continue;
1265  		}
1266  
1267  		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1268  		if (xa_is_node(entry)) {
1269  			xas->xa_node = xa_to_node(entry);
1270  			xas->xa_offset = 0;
1271  			continue;
1272  		}
1273  		if (entry && !xa_is_sibling(entry))
1274  			return entry;
1275  
1276  		xas_next_offset(xas);
1277  	}
1278  
1279  	if (!xas->xa_node)
1280  		xas->xa_node = XAS_BOUNDS;
1281  	return NULL;
1282  }
1283  EXPORT_SYMBOL_GPL(xas_find);
1284  
1285  /**
1286   * xas_find_marked() - Find the next marked entry in the XArray.
1287   * @xas: XArray operation state.
1288   * @max: Highest index to return.
1289   * @mark: Mark number to search for.
1290   *
1291   * If the @xas has not yet been walked to an entry, return the marked entry
1292   * which has an index >= xas.xa_index.  If it has been walked, the entry
1293   * currently being pointed at has been processed, and so we return the
1294   * first marked entry with an index > xas.xa_index.
1295   *
1296   * If no marked entry is found and the array is smaller than @max, @xas is
1297   * set to the bounds state and xas->xa_index is set to the smallest index
1298   * not yet in the array.  This allows @xas to be immediately passed to
1299   * xas_store().
1300   *
1301   * If no entry is found before @max is reached, @xas is set to the restart
1302   * state.
1303   *
1304   * Return: The entry, if found, otherwise %NULL.
1305   */
xas_find_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1306  void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1307  {
1308  	bool advance = true;
1309  	unsigned int offset;
1310  	void *entry;
1311  
1312  	if (xas_error(xas))
1313  		return NULL;
1314  	if (xas->xa_index > max)
1315  		goto max;
1316  
1317  	if (!xas->xa_node) {
1318  		xas->xa_index = 1;
1319  		goto out;
1320  	} else if (xas_top(xas->xa_node)) {
1321  		advance = false;
1322  		entry = xa_head(xas->xa);
1323  		xas->xa_node = NULL;
1324  		if (xas->xa_index > max_index(entry))
1325  			goto out;
1326  		if (!xa_is_node(entry)) {
1327  			if (xa_marked(xas->xa, mark))
1328  				return entry;
1329  			xas->xa_index = 1;
1330  			goto out;
1331  		}
1332  		xas->xa_node = xa_to_node(entry);
1333  		xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1334  	}
1335  
1336  	while (xas->xa_index <= max) {
1337  		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1338  			xas->xa_offset = xas->xa_node->offset + 1;
1339  			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1340  			if (!xas->xa_node)
1341  				break;
1342  			advance = false;
1343  			continue;
1344  		}
1345  
1346  		if (!advance) {
1347  			entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1348  			if (xa_is_sibling(entry)) {
1349  				xas->xa_offset = xa_to_sibling(entry);
1350  				xas_move_index(xas, xas->xa_offset);
1351  			}
1352  		}
1353  
1354  		offset = xas_find_chunk(xas, advance, mark);
1355  		if (offset > xas->xa_offset) {
1356  			advance = false;
1357  			xas_move_index(xas, offset);
1358  			/* Mind the wrap */
1359  			if ((xas->xa_index - 1) >= max)
1360  				goto max;
1361  			xas->xa_offset = offset;
1362  			if (offset == XA_CHUNK_SIZE)
1363  				continue;
1364  		}
1365  
1366  		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1367  		if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1368  			continue;
1369  		if (!xa_is_node(entry))
1370  			return entry;
1371  		xas->xa_node = xa_to_node(entry);
1372  		xas_set_offset(xas);
1373  	}
1374  
1375  out:
1376  	if (xas->xa_index > max)
1377  		goto max;
1378  	return set_bounds(xas);
1379  max:
1380  	xas->xa_node = XAS_RESTART;
1381  	return NULL;
1382  }
1383  EXPORT_SYMBOL_GPL(xas_find_marked);
1384  
1385  /**
1386   * xas_find_conflict() - Find the next present entry in a range.
1387   * @xas: XArray operation state.
1388   *
1389   * The @xas describes both a range and a position within that range.
1390   *
1391   * Context: Any context.  Expects xa_lock to be held.
1392   * Return: The next entry in the range covered by @xas or %NULL.
1393   */
xas_find_conflict(struct xa_state * xas)1394  void *xas_find_conflict(struct xa_state *xas)
1395  {
1396  	void *curr;
1397  
1398  	if (xas_error(xas))
1399  		return NULL;
1400  
1401  	if (!xas->xa_node)
1402  		return NULL;
1403  
1404  	if (xas_top(xas->xa_node)) {
1405  		curr = xas_start(xas);
1406  		if (!curr)
1407  			return NULL;
1408  		while (xa_is_node(curr)) {
1409  			struct xa_node *node = xa_to_node(curr);
1410  			curr = xas_descend(xas, node);
1411  		}
1412  		if (curr)
1413  			return curr;
1414  	}
1415  
1416  	if (xas->xa_node->shift > xas->xa_shift)
1417  		return NULL;
1418  
1419  	for (;;) {
1420  		if (xas->xa_node->shift == xas->xa_shift) {
1421  			if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1422  				break;
1423  		} else if (xas->xa_offset == XA_CHUNK_MASK) {
1424  			xas->xa_offset = xas->xa_node->offset;
1425  			xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1426  			if (!xas->xa_node)
1427  				break;
1428  			continue;
1429  		}
1430  		curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1431  		if (xa_is_sibling(curr))
1432  			continue;
1433  		while (xa_is_node(curr)) {
1434  			xas->xa_node = xa_to_node(curr);
1435  			xas->xa_offset = 0;
1436  			curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1437  		}
1438  		if (curr)
1439  			return curr;
1440  	}
1441  	xas->xa_offset -= xas->xa_sibs;
1442  	return NULL;
1443  }
1444  EXPORT_SYMBOL_GPL(xas_find_conflict);
1445  
1446  /**
1447   * xa_load() - Load an entry from an XArray.
1448   * @xa: XArray.
1449   * @index: index into array.
1450   *
1451   * Context: Any context.  Takes and releases the RCU lock.
1452   * Return: The entry at @index in @xa.
1453   */
xa_load(struct xarray * xa,unsigned long index)1454  void *xa_load(struct xarray *xa, unsigned long index)
1455  {
1456  	XA_STATE(xas, xa, index);
1457  	void *entry;
1458  
1459  	rcu_read_lock();
1460  	do {
1461  		entry = xas_load(&xas);
1462  		if (xa_is_zero(entry))
1463  			entry = NULL;
1464  	} while (xas_retry(&xas, entry));
1465  	rcu_read_unlock();
1466  
1467  	return entry;
1468  }
1469  EXPORT_SYMBOL(xa_load);
1470  
xas_result(struct xa_state * xas,void * curr)1471  static void *xas_result(struct xa_state *xas, void *curr)
1472  {
1473  	if (xa_is_zero(curr))
1474  		return NULL;
1475  	if (xas_error(xas))
1476  		curr = xas->xa_node;
1477  	return curr;
1478  }
1479  
1480  /**
1481   * __xa_erase() - Erase this entry from the XArray while locked.
1482   * @xa: XArray.
1483   * @index: Index into array.
1484   *
1485   * After this function returns, loading from @index will return %NULL.
1486   * If the index is part of a multi-index entry, all indices will be erased
1487   * and none of the entries will be part of a multi-index entry.
1488   *
1489   * Context: Any context.  Expects xa_lock to be held on entry.
1490   * Return: The entry which used to be at this index.
1491   */
__xa_erase(struct xarray * xa,unsigned long index)1492  void *__xa_erase(struct xarray *xa, unsigned long index)
1493  {
1494  	XA_STATE(xas, xa, index);
1495  	return xas_result(&xas, xas_store(&xas, NULL));
1496  }
1497  EXPORT_SYMBOL(__xa_erase);
1498  
1499  /**
1500   * xa_erase() - Erase this entry from the XArray.
1501   * @xa: XArray.
1502   * @index: Index of entry.
1503   *
1504   * After this function returns, loading from @index will return %NULL.
1505   * If the index is part of a multi-index entry, all indices will be erased
1506   * and none of the entries will be part of a multi-index entry.
1507   *
1508   * Context: Any context.  Takes and releases the xa_lock.
1509   * Return: The entry which used to be at this index.
1510   */
xa_erase(struct xarray * xa,unsigned long index)1511  void *xa_erase(struct xarray *xa, unsigned long index)
1512  {
1513  	void *entry;
1514  
1515  	xa_lock(xa);
1516  	entry = __xa_erase(xa, index);
1517  	xa_unlock(xa);
1518  
1519  	return entry;
1520  }
1521  EXPORT_SYMBOL(xa_erase);
1522  
1523  /**
1524   * __xa_store() - Store this entry in the XArray.
1525   * @xa: XArray.
1526   * @index: Index into array.
1527   * @entry: New entry.
1528   * @gfp: Memory allocation flags.
1529   *
1530   * You must already be holding the xa_lock when calling this function.
1531   * It will drop the lock if needed to allocate memory, and then reacquire
1532   * it afterwards.
1533   *
1534   * Context: Any context.  Expects xa_lock to be held on entry.  May
1535   * release and reacquire xa_lock if @gfp flags permit.
1536   * Return: The old entry at this index or xa_err() if an error happened.
1537   */
__xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1538  void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1539  {
1540  	XA_STATE(xas, xa, index);
1541  	void *curr;
1542  
1543  	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1544  		return XA_ERROR(-EINVAL);
1545  	if (xa_track_free(xa) && !entry)
1546  		entry = XA_ZERO_ENTRY;
1547  
1548  	do {
1549  		curr = xas_store(&xas, entry);
1550  		if (xa_track_free(xa))
1551  			xas_clear_mark(&xas, XA_FREE_MARK);
1552  	} while (__xas_nomem(&xas, gfp));
1553  
1554  	return xas_result(&xas, curr);
1555  }
1556  EXPORT_SYMBOL(__xa_store);
1557  
1558  /**
1559   * xa_store() - Store this entry in the XArray.
1560   * @xa: XArray.
1561   * @index: Index into array.
1562   * @entry: New entry.
1563   * @gfp: Memory allocation flags.
1564   *
1565   * After this function returns, loads from this index will return @entry.
1566   * Storing into an existing multi-index entry updates the entry of every index.
1567   * The marks associated with @index are unaffected unless @entry is %NULL.
1568   *
1569   * Context: Any context.  Takes and releases the xa_lock.
1570   * May sleep if the @gfp flags permit.
1571   * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1572   * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1573   * failed.
1574   */
xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1575  void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1576  {
1577  	void *curr;
1578  
1579  	xa_lock(xa);
1580  	curr = __xa_store(xa, index, entry, gfp);
1581  	xa_unlock(xa);
1582  
1583  	return curr;
1584  }
1585  EXPORT_SYMBOL(xa_store);
1586  
1587  /**
1588   * __xa_cmpxchg() - Store this entry in the XArray.
1589   * @xa: XArray.
1590   * @index: Index into array.
1591   * @old: Old value to test against.
1592   * @entry: New entry.
1593   * @gfp: Memory allocation flags.
1594   *
1595   * You must already be holding the xa_lock when calling this function.
1596   * It will drop the lock if needed to allocate memory, and then reacquire
1597   * it afterwards.
1598   *
1599   * Context: Any context.  Expects xa_lock to be held on entry.  May
1600   * release and reacquire xa_lock if @gfp flags permit.
1601   * Return: The old entry at this index or xa_err() if an error happened.
1602   */
__xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)1603  void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1604  			void *old, void *entry, gfp_t gfp)
1605  {
1606  	XA_STATE(xas, xa, index);
1607  	void *curr;
1608  
1609  	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1610  		return XA_ERROR(-EINVAL);
1611  
1612  	do {
1613  		curr = xas_load(&xas);
1614  		if (curr == old) {
1615  			xas_store(&xas, entry);
1616  			if (xa_track_free(xa) && entry && !curr)
1617  				xas_clear_mark(&xas, XA_FREE_MARK);
1618  		}
1619  	} while (__xas_nomem(&xas, gfp));
1620  
1621  	return xas_result(&xas, curr);
1622  }
1623  EXPORT_SYMBOL(__xa_cmpxchg);
1624  
1625  /**
1626   * __xa_insert() - Store this entry in the XArray if no entry is present.
1627   * @xa: XArray.
1628   * @index: Index into array.
1629   * @entry: New entry.
1630   * @gfp: Memory allocation flags.
1631   *
1632   * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1633   * if no entry is present.  Inserting will fail if a reserved entry is
1634   * present, even though loading from this index will return NULL.
1635   *
1636   * Context: Any context.  Expects xa_lock to be held on entry.  May
1637   * release and reacquire xa_lock if @gfp flags permit.
1638   * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
1639   * -ENOMEM if memory could not be allocated.
1640   */
__xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1641  int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1642  {
1643  	XA_STATE(xas, xa, index);
1644  	void *curr;
1645  
1646  	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1647  		return -EINVAL;
1648  	if (!entry)
1649  		entry = XA_ZERO_ENTRY;
1650  
1651  	do {
1652  		curr = xas_load(&xas);
1653  		if (!curr) {
1654  			xas_store(&xas, entry);
1655  			if (xa_track_free(xa))
1656  				xas_clear_mark(&xas, XA_FREE_MARK);
1657  		} else {
1658  			xas_set_err(&xas, -EBUSY);
1659  		}
1660  	} while (__xas_nomem(&xas, gfp));
1661  
1662  	return xas_error(&xas);
1663  }
1664  EXPORT_SYMBOL(__xa_insert);
1665  
1666  #ifdef CONFIG_XARRAY_MULTI
xas_set_range(struct xa_state * xas,unsigned long first,unsigned long last)1667  static void xas_set_range(struct xa_state *xas, unsigned long first,
1668  		unsigned long last)
1669  {
1670  	unsigned int shift = 0;
1671  	unsigned long sibs = last - first;
1672  	unsigned int offset = XA_CHUNK_MASK;
1673  
1674  	xas_set(xas, first);
1675  
1676  	while ((first & XA_CHUNK_MASK) == 0) {
1677  		if (sibs < XA_CHUNK_MASK)
1678  			break;
1679  		if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1680  			break;
1681  		shift += XA_CHUNK_SHIFT;
1682  		if (offset == XA_CHUNK_MASK)
1683  			offset = sibs & XA_CHUNK_MASK;
1684  		sibs >>= XA_CHUNK_SHIFT;
1685  		first >>= XA_CHUNK_SHIFT;
1686  	}
1687  
1688  	offset = first & XA_CHUNK_MASK;
1689  	if (offset + sibs > XA_CHUNK_MASK)
1690  		sibs = XA_CHUNK_MASK - offset;
1691  	if ((((first + sibs + 1) << shift) - 1) > last)
1692  		sibs -= 1;
1693  
1694  	xas->xa_shift = shift;
1695  	xas->xa_sibs = sibs;
1696  }
1697  
1698  /**
1699   * xa_store_range() - Store this entry at a range of indices in the XArray.
1700   * @xa: XArray.
1701   * @first: First index to affect.
1702   * @last: Last index to affect.
1703   * @entry: New entry.
1704   * @gfp: Memory allocation flags.
1705   *
1706   * After this function returns, loads from any index between @first and @last,
1707   * inclusive will return @entry.
1708   * Storing into an existing multi-index entry updates the entry of every index.
1709   * The marks associated with @index are unaffected unless @entry is %NULL.
1710   *
1711   * Context: Process context.  Takes and releases the xa_lock.  May sleep
1712   * if the @gfp flags permit.
1713   * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1714   * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1715   */
xa_store_range(struct xarray * xa,unsigned long first,unsigned long last,void * entry,gfp_t gfp)1716  void *xa_store_range(struct xarray *xa, unsigned long first,
1717  		unsigned long last, void *entry, gfp_t gfp)
1718  {
1719  	XA_STATE(xas, xa, 0);
1720  
1721  	if (WARN_ON_ONCE(xa_is_internal(entry)))
1722  		return XA_ERROR(-EINVAL);
1723  	if (last < first)
1724  		return XA_ERROR(-EINVAL);
1725  
1726  	do {
1727  		xas_lock(&xas);
1728  		if (entry) {
1729  			unsigned int order = BITS_PER_LONG;
1730  			if (last + 1)
1731  				order = __ffs(last + 1);
1732  			xas_set_order(&xas, last, order);
1733  			xas_create(&xas, true);
1734  			if (xas_error(&xas))
1735  				goto unlock;
1736  		}
1737  		do {
1738  			xas_set_range(&xas, first, last);
1739  			xas_store(&xas, entry);
1740  			if (xas_error(&xas))
1741  				goto unlock;
1742  			first += xas_size(&xas);
1743  		} while (first <= last);
1744  unlock:
1745  		xas_unlock(&xas);
1746  	} while (xas_nomem(&xas, gfp));
1747  
1748  	return xas_result(&xas, NULL);
1749  }
1750  EXPORT_SYMBOL(xa_store_range);
1751  
1752  /**
1753   * xas_get_order() - Get the order of an entry.
1754   * @xas: XArray operation state.
1755   *
1756   * Called after xas_load, the xas should not be in an error state.
1757   *
1758   * Return: A number between 0 and 63 indicating the order of the entry.
1759   */
xas_get_order(struct xa_state * xas)1760  int xas_get_order(struct xa_state *xas)
1761  {
1762  	int order = 0;
1763  
1764  	if (!xas->xa_node)
1765  		return 0;
1766  
1767  	for (;;) {
1768  		unsigned int slot = xas->xa_offset + (1 << order);
1769  
1770  		if (slot >= XA_CHUNK_SIZE)
1771  			break;
1772  		if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot)))
1773  			break;
1774  		order++;
1775  	}
1776  
1777  	order += xas->xa_node->shift;
1778  	return order;
1779  }
1780  EXPORT_SYMBOL_GPL(xas_get_order);
1781  
1782  /**
1783   * xa_get_order() - Get the order of an entry.
1784   * @xa: XArray.
1785   * @index: Index of the entry.
1786   *
1787   * Return: A number between 0 and 63 indicating the order of the entry.
1788   */
xa_get_order(struct xarray * xa,unsigned long index)1789  int xa_get_order(struct xarray *xa, unsigned long index)
1790  {
1791  	XA_STATE(xas, xa, index);
1792  	int order = 0;
1793  	void *entry;
1794  
1795  	rcu_read_lock();
1796  	entry = xas_load(&xas);
1797  	if (entry)
1798  		order = xas_get_order(&xas);
1799  	rcu_read_unlock();
1800  
1801  	return order;
1802  }
1803  EXPORT_SYMBOL(xa_get_order);
1804  #endif /* CONFIG_XARRAY_MULTI */
1805  
1806  /**
1807   * __xa_alloc() - Find somewhere to store this entry in the XArray.
1808   * @xa: XArray.
1809   * @id: Pointer to ID.
1810   * @limit: Range for allocated ID.
1811   * @entry: New entry.
1812   * @gfp: Memory allocation flags.
1813   *
1814   * Finds an empty entry in @xa between @limit.min and @limit.max,
1815   * stores the index into the @id pointer, then stores the entry at
1816   * that index.  A concurrent lookup will not see an uninitialised @id.
1817   *
1818   * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1819   * in xa_init_flags().
1820   *
1821   * Context: Any context.  Expects xa_lock to be held on entry.  May
1822   * release and reacquire xa_lock if @gfp flags permit.
1823   * Return: 0 on success, -ENOMEM if memory could not be allocated or
1824   * -EBUSY if there are no free entries in @limit.
1825   */
__xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)1826  int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1827  		struct xa_limit limit, gfp_t gfp)
1828  {
1829  	XA_STATE(xas, xa, 0);
1830  
1831  	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1832  		return -EINVAL;
1833  	if (WARN_ON_ONCE(!xa_track_free(xa)))
1834  		return -EINVAL;
1835  
1836  	if (!entry)
1837  		entry = XA_ZERO_ENTRY;
1838  
1839  	do {
1840  		xas.xa_index = limit.min;
1841  		xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1842  		if (xas.xa_node == XAS_RESTART)
1843  			xas_set_err(&xas, -EBUSY);
1844  		else
1845  			*id = xas.xa_index;
1846  		xas_store(&xas, entry);
1847  		xas_clear_mark(&xas, XA_FREE_MARK);
1848  	} while (__xas_nomem(&xas, gfp));
1849  
1850  	return xas_error(&xas);
1851  }
1852  EXPORT_SYMBOL(__xa_alloc);
1853  
1854  /**
1855   * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1856   * @xa: XArray.
1857   * @id: Pointer to ID.
1858   * @entry: New entry.
1859   * @limit: Range of allocated ID.
1860   * @next: Pointer to next ID to allocate.
1861   * @gfp: Memory allocation flags.
1862   *
1863   * Finds an empty entry in @xa between @limit.min and @limit.max,
1864   * stores the index into the @id pointer, then stores the entry at
1865   * that index.  A concurrent lookup will not see an uninitialised @id.
1866   * The search for an empty entry will start at @next and will wrap
1867   * around if necessary.
1868   *
1869   * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1870   * in xa_init_flags().
1871   *
1872   * Context: Any context.  Expects xa_lock to be held on entry.  May
1873   * release and reacquire xa_lock if @gfp flags permit.
1874   * Return: 0 if the allocation succeeded without wrapping.  1 if the
1875   * allocation succeeded after wrapping, -ENOMEM if memory could not be
1876   * allocated or -EBUSY if there are no free entries in @limit.
1877   */
__xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)1878  int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1879  		struct xa_limit limit, u32 *next, gfp_t gfp)
1880  {
1881  	u32 min = limit.min;
1882  	int ret;
1883  
1884  	limit.min = max(min, *next);
1885  	ret = __xa_alloc(xa, id, entry, limit, gfp);
1886  	if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1887  		xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1888  		ret = 1;
1889  	}
1890  
1891  	if (ret < 0 && limit.min > min) {
1892  		limit.min = min;
1893  		ret = __xa_alloc(xa, id, entry, limit, gfp);
1894  		if (ret == 0)
1895  			ret = 1;
1896  	}
1897  
1898  	if (ret >= 0) {
1899  		*next = *id + 1;
1900  		if (*next == 0)
1901  			xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1902  	}
1903  	return ret;
1904  }
1905  EXPORT_SYMBOL(__xa_alloc_cyclic);
1906  
1907  /**
1908   * __xa_set_mark() - Set this mark on this entry while locked.
1909   * @xa: XArray.
1910   * @index: Index of entry.
1911   * @mark: Mark number.
1912   *
1913   * Attempting to set a mark on a %NULL entry does not succeed.
1914   *
1915   * Context: Any context.  Expects xa_lock to be held on entry.
1916   */
__xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1917  void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1918  {
1919  	XA_STATE(xas, xa, index);
1920  	void *entry = xas_load(&xas);
1921  
1922  	if (entry)
1923  		xas_set_mark(&xas, mark);
1924  }
1925  EXPORT_SYMBOL(__xa_set_mark);
1926  
1927  /**
1928   * __xa_clear_mark() - Clear this mark on this entry while locked.
1929   * @xa: XArray.
1930   * @index: Index of entry.
1931   * @mark: Mark number.
1932   *
1933   * Context: Any context.  Expects xa_lock to be held on entry.
1934   */
__xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1935  void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1936  {
1937  	XA_STATE(xas, xa, index);
1938  	void *entry = xas_load(&xas);
1939  
1940  	if (entry)
1941  		xas_clear_mark(&xas, mark);
1942  }
1943  EXPORT_SYMBOL(__xa_clear_mark);
1944  
1945  /**
1946   * xa_get_mark() - Inquire whether this mark is set on this entry.
1947   * @xa: XArray.
1948   * @index: Index of entry.
1949   * @mark: Mark number.
1950   *
1951   * This function uses the RCU read lock, so the result may be out of date
1952   * by the time it returns.  If you need the result to be stable, use a lock.
1953   *
1954   * Context: Any context.  Takes and releases the RCU lock.
1955   * Return: True if the entry at @index has this mark set, false if it doesn't.
1956   */
xa_get_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1957  bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1958  {
1959  	XA_STATE(xas, xa, index);
1960  	void *entry;
1961  
1962  	rcu_read_lock();
1963  	entry = xas_start(&xas);
1964  	while (xas_get_mark(&xas, mark)) {
1965  		if (!xa_is_node(entry))
1966  			goto found;
1967  		entry = xas_descend(&xas, xa_to_node(entry));
1968  	}
1969  	rcu_read_unlock();
1970  	return false;
1971   found:
1972  	rcu_read_unlock();
1973  	return true;
1974  }
1975  EXPORT_SYMBOL(xa_get_mark);
1976  
1977  /**
1978   * xa_set_mark() - Set this mark on this entry.
1979   * @xa: XArray.
1980   * @index: Index of entry.
1981   * @mark: Mark number.
1982   *
1983   * Attempting to set a mark on a %NULL entry does not succeed.
1984   *
1985   * Context: Process context.  Takes and releases the xa_lock.
1986   */
xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1987  void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1988  {
1989  	xa_lock(xa);
1990  	__xa_set_mark(xa, index, mark);
1991  	xa_unlock(xa);
1992  }
1993  EXPORT_SYMBOL(xa_set_mark);
1994  
1995  /**
1996   * xa_clear_mark() - Clear this mark on this entry.
1997   * @xa: XArray.
1998   * @index: Index of entry.
1999   * @mark: Mark number.
2000   *
2001   * Clearing a mark always succeeds.
2002   *
2003   * Context: Process context.  Takes and releases the xa_lock.
2004   */
xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)2005  void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2006  {
2007  	xa_lock(xa);
2008  	__xa_clear_mark(xa, index, mark);
2009  	xa_unlock(xa);
2010  }
2011  EXPORT_SYMBOL(xa_clear_mark);
2012  
2013  /**
2014   * xa_find() - Search the XArray for an entry.
2015   * @xa: XArray.
2016   * @indexp: Pointer to an index.
2017   * @max: Maximum index to search to.
2018   * @filter: Selection criterion.
2019   *
2020   * Finds the entry in @xa which matches the @filter, and has the lowest
2021   * index that is at least @indexp and no more than @max.
2022   * If an entry is found, @indexp is updated to be the index of the entry.
2023   * This function is protected by the RCU read lock, so it may not find
2024   * entries which are being simultaneously added.  It will not return an
2025   * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2026   *
2027   * Context: Any context.  Takes and releases the RCU lock.
2028   * Return: The entry, if found, otherwise %NULL.
2029   */
xa_find(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)2030  void *xa_find(struct xarray *xa, unsigned long *indexp,
2031  			unsigned long max, xa_mark_t filter)
2032  {
2033  	XA_STATE(xas, xa, *indexp);
2034  	void *entry;
2035  
2036  	rcu_read_lock();
2037  	do {
2038  		if ((__force unsigned int)filter < XA_MAX_MARKS)
2039  			entry = xas_find_marked(&xas, max, filter);
2040  		else
2041  			entry = xas_find(&xas, max);
2042  	} while (xas_retry(&xas, entry));
2043  	rcu_read_unlock();
2044  
2045  	if (entry)
2046  		*indexp = xas.xa_index;
2047  	return entry;
2048  }
2049  EXPORT_SYMBOL(xa_find);
2050  
xas_sibling(struct xa_state * xas)2051  static bool xas_sibling(struct xa_state *xas)
2052  {
2053  	struct xa_node *node = xas->xa_node;
2054  	unsigned long mask;
2055  
2056  	if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2057  		return false;
2058  	mask = (XA_CHUNK_SIZE << node->shift) - 1;
2059  	return (xas->xa_index & mask) >
2060  		((unsigned long)xas->xa_offset << node->shift);
2061  }
2062  
2063  /**
2064   * xa_find_after() - Search the XArray for a present entry.
2065   * @xa: XArray.
2066   * @indexp: Pointer to an index.
2067   * @max: Maximum index to search to.
2068   * @filter: Selection criterion.
2069   *
2070   * Finds the entry in @xa which matches the @filter and has the lowest
2071   * index that is above @indexp and no more than @max.
2072   * If an entry is found, @indexp is updated to be the index of the entry.
2073   * This function is protected by the RCU read lock, so it may miss entries
2074   * which are being simultaneously added.  It will not return an
2075   * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2076   *
2077   * Context: Any context.  Takes and releases the RCU lock.
2078   * Return: The pointer, if found, otherwise %NULL.
2079   */
xa_find_after(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)2080  void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2081  			unsigned long max, xa_mark_t filter)
2082  {
2083  	XA_STATE(xas, xa, *indexp + 1);
2084  	void *entry;
2085  
2086  	if (xas.xa_index == 0)
2087  		return NULL;
2088  
2089  	rcu_read_lock();
2090  	for (;;) {
2091  		if ((__force unsigned int)filter < XA_MAX_MARKS)
2092  			entry = xas_find_marked(&xas, max, filter);
2093  		else
2094  			entry = xas_find(&xas, max);
2095  
2096  		if (xas_invalid(&xas))
2097  			break;
2098  		if (xas_sibling(&xas))
2099  			continue;
2100  		if (!xas_retry(&xas, entry))
2101  			break;
2102  	}
2103  	rcu_read_unlock();
2104  
2105  	if (entry)
2106  		*indexp = xas.xa_index;
2107  	return entry;
2108  }
2109  EXPORT_SYMBOL(xa_find_after);
2110  
xas_extract_present(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n)2111  static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2112  			unsigned long max, unsigned int n)
2113  {
2114  	void *entry;
2115  	unsigned int i = 0;
2116  
2117  	rcu_read_lock();
2118  	xas_for_each(xas, entry, max) {
2119  		if (xas_retry(xas, entry))
2120  			continue;
2121  		dst[i++] = entry;
2122  		if (i == n)
2123  			break;
2124  	}
2125  	rcu_read_unlock();
2126  
2127  	return i;
2128  }
2129  
xas_extract_marked(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n,xa_mark_t mark)2130  static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2131  			unsigned long max, unsigned int n, xa_mark_t mark)
2132  {
2133  	void *entry;
2134  	unsigned int i = 0;
2135  
2136  	rcu_read_lock();
2137  	xas_for_each_marked(xas, entry, max, mark) {
2138  		if (xas_retry(xas, entry))
2139  			continue;
2140  		dst[i++] = entry;
2141  		if (i == n)
2142  			break;
2143  	}
2144  	rcu_read_unlock();
2145  
2146  	return i;
2147  }
2148  
2149  /**
2150   * xa_extract() - Copy selected entries from the XArray into a normal array.
2151   * @xa: The source XArray to copy from.
2152   * @dst: The buffer to copy entries into.
2153   * @start: The first index in the XArray eligible to be selected.
2154   * @max: The last index in the XArray eligible to be selected.
2155   * @n: The maximum number of entries to copy.
2156   * @filter: Selection criterion.
2157   *
2158   * Copies up to @n entries that match @filter from the XArray.  The
2159   * copied entries will have indices between @start and @max, inclusive.
2160   *
2161   * The @filter may be an XArray mark value, in which case entries which are
2162   * marked with that mark will be copied.  It may also be %XA_PRESENT, in
2163   * which case all entries which are not %NULL will be copied.
2164   *
2165   * The entries returned may not represent a snapshot of the XArray at a
2166   * moment in time.  For example, if another thread stores to index 5, then
2167   * index 10, calling xa_extract() may return the old contents of index 5
2168   * and the new contents of index 10.  Indices not modified while this
2169   * function is running will not be skipped.
2170   *
2171   * If you need stronger guarantees, holding the xa_lock across calls to this
2172   * function will prevent concurrent modification.
2173   *
2174   * Context: Any context.  Takes and releases the RCU lock.
2175   * Return: The number of entries copied.
2176   */
xa_extract(struct xarray * xa,void ** dst,unsigned long start,unsigned long max,unsigned int n,xa_mark_t filter)2177  unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2178  			unsigned long max, unsigned int n, xa_mark_t filter)
2179  {
2180  	XA_STATE(xas, xa, start);
2181  
2182  	if (!n)
2183  		return 0;
2184  
2185  	if ((__force unsigned int)filter < XA_MAX_MARKS)
2186  		return xas_extract_marked(&xas, dst, max, n, filter);
2187  	return xas_extract_present(&xas, dst, max, n);
2188  }
2189  EXPORT_SYMBOL(xa_extract);
2190  
2191  /**
2192   * xa_delete_node() - Private interface for workingset code.
2193   * @node: Node to be removed from the tree.
2194   * @update: Function to call to update ancestor nodes.
2195   *
2196   * Context: xa_lock must be held on entry and will not be released.
2197   */
xa_delete_node(struct xa_node * node,xa_update_node_t update)2198  void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2199  {
2200  	struct xa_state xas = {
2201  		.xa = node->array,
2202  		.xa_index = (unsigned long)node->offset <<
2203  				(node->shift + XA_CHUNK_SHIFT),
2204  		.xa_shift = node->shift + XA_CHUNK_SHIFT,
2205  		.xa_offset = node->offset,
2206  		.xa_node = xa_parent_locked(node->array, node),
2207  		.xa_update = update,
2208  	};
2209  
2210  	xas_store(&xas, NULL);
2211  }
2212  EXPORT_SYMBOL_GPL(xa_delete_node);	/* For the benefit of the test suite */
2213  
2214  /**
2215   * xa_destroy() - Free all internal data structures.
2216   * @xa: XArray.
2217   *
2218   * After calling this function, the XArray is empty and has freed all memory
2219   * allocated for its internal data structures.  You are responsible for
2220   * freeing the objects referenced by the XArray.
2221   *
2222   * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
2223   */
xa_destroy(struct xarray * xa)2224  void xa_destroy(struct xarray *xa)
2225  {
2226  	XA_STATE(xas, xa, 0);
2227  	unsigned long flags;
2228  	void *entry;
2229  
2230  	xas.xa_node = NULL;
2231  	xas_lock_irqsave(&xas, flags);
2232  	entry = xa_head_locked(xa);
2233  	RCU_INIT_POINTER(xa->xa_head, NULL);
2234  	xas_init_marks(&xas);
2235  	if (xa_zero_busy(xa))
2236  		xa_mark_clear(xa, XA_FREE_MARK);
2237  	/* lockdep checks we're still holding the lock in xas_free_nodes() */
2238  	if (xa_is_node(entry))
2239  		xas_free_nodes(&xas, xa_to_node(entry));
2240  	xas_unlock_irqrestore(&xas, flags);
2241  }
2242  EXPORT_SYMBOL(xa_destroy);
2243  
2244  #ifdef XA_DEBUG
xa_dump_node(const struct xa_node * node)2245  void xa_dump_node(const struct xa_node *node)
2246  {
2247  	unsigned i, j;
2248  
2249  	if (!node)
2250  		return;
2251  	if ((unsigned long)node & 3) {
2252  		pr_cont("node %px\n", node);
2253  		return;
2254  	}
2255  
2256  	pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2257  		"array %px list %px %px marks",
2258  		node, node->parent ? "offset" : "max", node->offset,
2259  		node->parent, node->shift, node->count, node->nr_values,
2260  		node->array, node->private_list.prev, node->private_list.next);
2261  	for (i = 0; i < XA_MAX_MARKS; i++)
2262  		for (j = 0; j < XA_MARK_LONGS; j++)
2263  			pr_cont(" %lx", node->marks[i][j]);
2264  	pr_cont("\n");
2265  }
2266  
xa_dump_index(unsigned long index,unsigned int shift)2267  void xa_dump_index(unsigned long index, unsigned int shift)
2268  {
2269  	if (!shift)
2270  		pr_info("%lu: ", index);
2271  	else if (shift >= BITS_PER_LONG)
2272  		pr_info("0-%lu: ", ~0UL);
2273  	else
2274  		pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2275  }
2276  
xa_dump_entry(const void * entry,unsigned long index,unsigned long shift)2277  void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2278  {
2279  	if (!entry)
2280  		return;
2281  
2282  	xa_dump_index(index, shift);
2283  
2284  	if (xa_is_node(entry)) {
2285  		if (shift == 0) {
2286  			pr_cont("%px\n", entry);
2287  		} else {
2288  			unsigned long i;
2289  			struct xa_node *node = xa_to_node(entry);
2290  			xa_dump_node(node);
2291  			for (i = 0; i < XA_CHUNK_SIZE; i++)
2292  				xa_dump_entry(node->slots[i],
2293  				      index + (i << node->shift), node->shift);
2294  		}
2295  	} else if (xa_is_value(entry))
2296  		pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2297  						xa_to_value(entry), entry);
2298  	else if (!xa_is_internal(entry))
2299  		pr_cont("%px\n", entry);
2300  	else if (xa_is_retry(entry))
2301  		pr_cont("retry (%ld)\n", xa_to_internal(entry));
2302  	else if (xa_is_sibling(entry))
2303  		pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2304  	else if (xa_is_zero(entry))
2305  		pr_cont("zero (%ld)\n", xa_to_internal(entry));
2306  	else
2307  		pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2308  }
2309  
xa_dump(const struct xarray * xa)2310  void xa_dump(const struct xarray *xa)
2311  {
2312  	void *entry = xa->xa_head;
2313  	unsigned int shift = 0;
2314  
2315  	pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2316  			xa->xa_flags, xa_marked(xa, XA_MARK_0),
2317  			xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2318  	if (xa_is_node(entry))
2319  		shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2320  	xa_dump_entry(entry, 0, shift);
2321  }
2322  #endif
2323